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Abstract. Collaborative �ltering systems assist users to identify items of interest by providing pre-
dictions based on ratings of other users. The quality of the predictions depends strongly on the amount
of available ratings and collaborative �ltering algorithms perform poorly when only few ratings are
available. In this paper we identify two important situations with sparse ratings: Bootstrapping a
collaborative �ltering system with few users and providing recommendations for new users, who rated
only few items. Further, we present a novel algorithm for collaborative �ltering, based on hierarchical
clustering, which tries to balance robustness and accuracy of predictions, and experimentally show
that it is especially e�cient in dealing with the previous situations.
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1 Introduction

Collaborative �ltering (CF) is a recent technique for recommendation and �ltering purposes in various
applications. Collaborative �ltering applications (CF-applications) use databases of user ratings (CF-
databases) and algorithms (CF-algorithms) to predict what users might like or dislike. Recent research
has concentrated on the predictive quality of CF-algorithms for various domains of �ltered items, such
as Usenet news, �lms, music, etc [1, 5] and has focused on CF-algorithms and variations of CF-
algorithms.

Typically, CF-algorithms are evaluated using fully-grown CF-databases. In this paper, we focus
on problematic states of CF-databases, which are especially interesting for providers of CF-services.
Initially, CF-databases do not contain su�cient information for the CF-algorithms to provide good
recommendations. The providers of CF-services have to promote their applications so that enough
clients participate. Similar lack of information also occurs in a fully-grown CF-database when a new
client starts using a CF-application. This is due to the fact that the quality of the predictions for a
user relies strongly on the amount of ratings that he has so far provided.

Due to the fact, that currently used CF-algorithms do not speci�cally address lack of data in
CF-databases, we �rst present a new colloaborative �ltering algorithm in section 2, which is based
on hierarchical clustering and tries to combine robustness and accuracy, especially when little data is
available.

In section 3 we then identify two general cases which correspond to problematic states of a CF-
database, the Bootstrap-Case and the New-User-Case. Through simulations, we prove that for these
cases our algorithm performs better than classically used algorithms.

2 Using Clustering for Collaborative Filtering

CF-databases are sets of ratings. Each rating expresses, on a numerical scale, how much a user has
valued a certain item. Ratings can be represented by the sparse matrix score(user; item).

Several algorithms are classically used for collaborative �ltering. In particular, we compare an
algorithm using Pearson correlation [3, 5, 1, 2] (Pearson algorithm for short), the Mean-Squared-
Di�erences algorithm (MSD algorithm) [5], and as a worst-case, an algorithm, which uses the average
ratings of each item, without adaption to a speci�c user as predictions (Base algorithm). The algorithms
vary in the way similarity is determined and in the way the ratings are accumulated to form predictions.

In the literature sparsity of ratings has been discovered as a major problem for CF-systems[4].
Several approaches have been made to reduce the sparsity by creating arti�cial or implicit ratings[4, 3].
We address the sparsity of ratings by a new CF-algorithm, which takes most advantage of the given
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data. We, therefore, propose clustering of rating data to overcome sparsity. Our algorithm is based on
a hierarchical clustering of users and rated items. Both users and items are clustered independently
into two cluster hierarchies. Each user and each item belongs to exactly one leaf of a cluster hierarchy.
Each node of a cluster hierarchy contains the members of descending nodes. The roots of the hierarchy
contain all users and items respectively. The hierarchies are derived, so that clusters contain similar
items or users, and the degree of similarity increases as we go down the hierarchy from the root to the
leaves.

Row vectors of the rating matrix score(user; item) (expressing all ratings to all items by a given
user) are clustered in the user-cluster-hierarchy and column vectors (expressing all ratings to a given
item by all users) are clustered in the item-cluster-hierarchy.

2.1 Deriving Cluster Hierarchies

The goal of clustering vectors is to group similar data points. In our case the data point are the
rating vectors of users (or in the case of a rated-item cluster the rating vectors of the item). Similarity
between data points (users or items) is determined by a distance function (which is described in the
next section). The center of a cluster is determined by the average of all contained data points. The
quality of a clustering is expressed as distortion, which is the sum of the distances of all data-points
from the center of their assigned cluster.

Cluster hierarchies can be constructed by using either a top-down or a bottom-up approach. The
bottom-up approach is not feasable in our case due to the size of the database. Therefore, we decided to
construct the hierarchy of clusters using the top-down approach. The steps of our top-down algorithm
are listed below:

� Initially each item is assigned to a single cluster, which is the root of the hierarchy RC.

� For RC the distortion is determined. If the distortion per item is greater than a prede�ned
threshold this cluster is further split into two son clusters C1 and C2.

{ From a random sample set of items in RC the pair I1 and I2 with the maximum distance is
determined. Ii are assigned to Ci respectively. All the remaining items are assigned to the
closest cluster of Ci.

{ While items in one son-cluster are closer to the other son-cluster the items are moved
respectively.

� For each son-cluster all the steps above are performed as if they were roots.

2.2 Clustering Metrics

We use the mean-squared-di�erence as the distance between items and clusters (see equation 3).
However, rating vectors are incomplete, since users have not rated all items and items have not been
rated by everyone. Default values have to be assumed for the gaps in the vectors associated with items.
In contrary of assuming an arbitrary value for all missing components, our algorithm chooses the center
of a common parent cluster as a default for unde�ned components in vectors. If the component of the
center of a cluster is not de�ned, then all items within this cluster have not de�ned this component
(otherwise the center would be de�ned for this dimension).

User(1,-,2,-)

Son2

Center(5,1,2,-)

Parent

Center(5,2,1,-)

Center(1,2,-,-)

Son1

Figure 1: Default value inheritance

Figure 1 depicts an example clustering. If in this example it should be decided whether user has
to be moved to son1 both distances d(user; son1) and d(user; son2) need to be compared. For the
completion of their vectors user inherits 2 as a default for the second component from parent and son1
inherits 1 as the third component of its center. After assuming the defaults the �rst three dimensions
of son1, son2 and user are de�ned and the distance can be determined.
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The inheritance of defaults takes advantage of the fact, that the neighborhood within a cluster
hierarchy contains similar items, and is therefore more precise than assuming a global default. Conse-
quently less noise is introduced to the calculation of distances.

2.3 Cluster Prediction

Cluster hierarchies of desired �ne granularity can be calculated by using the previously described
clustering algorithm. In this section we describe how the cluster hierarchies can be used to obtain
predictions. If a rating p(u; f) for a user u and an item f should be provided, the following formulas
are used:

Ci : component i of center vector of C (1)

IC = fijCi is de�nedg (2)

d(C; u) =

P
i2IC[Iu

(ui � Ci)
2

jIC [ IU j
(using default value inheritence for unde�ned ratings) (3)

HU : cluster hierarchies for users (HF for items) (4)

Lu : leaf cluster of Hu of user u (5)

Pu : path of all clusters from the root of HU to the leaf Lu (same for Pf ) (6)

Pu=f = fC 2 PujCf is de�ned.g similarly for Pf=u (7)

DIC =
X

i2C

d(C; i)

jCj
(8)

DIHU
= DI(root of HU ) (9)

wU (C) = 1�
DIC

DIHU

(10)

p(u; f) =

P
C2Pu=f

(Cf �wU (C)) +
P

c2Pf=u
(Cu �wF (C))

P
C2Pu=f

wU (C) +
P

C2Pf=u
wF (C)

(11)

The last formula performs the actual prediction. Expressed in words, the prediction formula is
the weighed sum of the de�ned centers of all nodes in the cluster hierarchies on the paths from the
hierarchy roots to the particular leaves. The weights are derived from the distortions of the hierarchy
nodes.

3 Modeling Problematic Cases

For evaluating di�erent CF-algorithms, we performed simulations on a dataset of movie ratings. We
used the data collected by Digital Equipment Research Center from 1995 to 1997 in a collaborative
movie recommendation project. The EachMovie dataset contains about 2:8 million ratings of 60000
users for 1600 movies on a rating scale from 0 to 5. After preprocessing, the dataset contains 2:5 million
ratings. For each user, ratings were split into 80% training-set and 20% test-set. From the ratings in
the training-set subsets are derived thus certain model parameters are met. Then the suitable subset of
the test-set is predicted, using the described algorithms. The performance of an algorithm is measured

in terms of the mean-absolute-error(MAE=

P
jpi�rij

n
) between the predictions and the ratings in the

test-set. Even though this measure strongly depends on the rating scale in use and can therefore not
be used to compare single results with results of other studies, we found this measure indicative enough
to compare the algorithms within this paper.

3.1 The Bootstrap-Case

When a CF-application is set up, it has initially no users but many items, which can be rated, or for
which recommendations should be predicted. Eventually, some users will start to add ratings. We
captured the number of initial users (IU ) as a parameter for characterizing a CF-database. Users, who
start using a CF-application, are confronted with many unrated items, of which they rate eventually
a portion. The ratio of rated items to the number of items increases over the time. The amount of
ratings a user has provided that we call Rating Frequency (RF ) is used to express that behavior. It is
important for service providers, who want to start a new CF-service, to understand the impact of IU
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and RF on the quality of the prediction, so that they can evaluate how much incentive they should
give to initial users. These incentives are part of the cost required to set up an e�cient CF-service.
This is the reason why in the Bootstrap-Case, we compare prediction algorithms for low values of IU
and RF .

3.2 Simulation of the Bootstrap-Case
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Figure 2: The CF-algorithms in the frame of the Bootstrap-Case: Precision.

Figure 2 depicts measurements of the mean absolute prediction error (MAE) for varying parameters
of the Bootstrap-Case for all algorithms under study. In this experiment the database is modeled so
that it satis�ed the varying settings of the parameters for RF and IU . It is notable that the Cluster
and Pearson algorithm perform equally for high values of RF and IU . However, the Cluster algorithm
converges faster to the maximum performance and is therefore more suitable for sparse CF-databases.
These graphs also indicate that, for low RF and IU (small CF-databases), the CF-algorithms under
study generally perform poorly. In such cases the prediction precision becomes very low. In these
examples, the Pearson algorithm, which is commonly used for collaborative �ltering [3, 4, 5], performs
worse than the Base algorithm. These graphs still do not enable a simple comparison of di�erent
algorithms for collaborative �ltering. The next section performs a cost analysis based on the results
of the Bootstrap-Case simulation, which is of more practical interest to determine the best algorithm
to use for providers of CF-services.

3.3 Cost analysis of the Bootstrap-Case

A provider of a CF-service needs to initialize(bootstrap) the CF-database, so that his service can be
attractive to users. A low amount of data in the CF-database leads to a poor prediction precision
and therefore to an unattractive service. The service provider needs to know how much he has to
invest to bootstrap his system in order to provide a desired prediction quality. As has been shown,
CF-databases can be grown in two dimensions, RF and IU . Each direction might involve di�erent
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costs, e.g. for paying people to rate items. We identify the cost for one rating as CR, since the e�ort to
provide ratings with no predictions in return has to be compensated. Also a rater has to be attracted
to provide ratings, e.g. by advertisement. We identify the cost to attract a new rater as CU . The total
cost of a bootstrap can now be expressed as in the following formula:

totalcost(IU;RF;CU ; CR) = IU �RF �CR + IU �CU

Depending on the settings of the parameters CU and CR, the total cost of bootstrapping a CF-
database to a su�ciently performing level can vary. As we have shown previously di�erent CF-
algorithms reach di�ering levels of performance with the same given CF-databases. Generally two
characteristic con�gurations of the cost parameters can be identi�ed:

� CU = 0 and CR > 0: Raters can be attracted easily, for example they are users connecting
from the Internet after having seen an advertisement, but they need to be compensated for each
rating.

� CU � CR > 0: Raters are hard to obtain, for example they are hired by the provider, but the
cost of compensation for each rating is considerably smaller.
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Figure 3: Precision as function of Total-Cost of bootstrapping a CF-Database.

Figures 3 illustrate the performance of the algorithms under study as functions of the total cost for

bootstrapping a CF-database. In both plots the Cluster-algorithm performs better than the others.
That means CF-databases can be bootstrapped more inexpensively if the Cluster algorithm is used.
Also it is notable that the curve of the Cluster-algorithm in the second pricing model has initially
a smaller slope than the other algorithms. This fact indicates that the Cluster-algorithm favors the
increase of RF rather than IU .

3.4 The New-User-Case

New users in a CF-application are characterized by a low amount of rated items, which corresponds
to their RF . Even though the CF-database might be su�ciently �lled, the prediction performance for
new users is expected to be rather poor, since most algorithms rely on the fact that similar users can
be detected in the database. If a new user increased his RF by rating more items, then the prediction
precision, computed based on his ratings, can be expected to increase.

For investigating the New-User-Case, we used a fully-grown CF-database. For some users (new
users) ratings were removed from the database. Later the removed ratings were incrementally added
to the CF-database (new users who rate more and more items). In each step the prediction precision
is measured for di�erent algorithms for the new users.

The graphs of �gure 4 plot the MAE as an indicator for precision for new users as functions of their
RF for di�erent CF-algorithms. Generally, for low amounts of initial votes the prediction precision
is poor for the algorithms under study. As the graphs of �gure 4 indicate, higher precision can be
obtained by using the Cluster algorithm. Especially, for lower RF the precision di�erence between the
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Figure 4: Prediction precision of CF-algorithms in the frame of the New-User-Case.

Pearson and Cluster algorithms notable high. The di�erence diminishes with increasing RF. This result
indicates that for users with few ratings the Cluster algorithm should be used to furnish predictions.
It is also notable that the Cluster and Pearson algorithms become chaotic for very low RF . Then the
MSD or the Base algorithm provide better results.

4 Conclusion

This paper makes three contributions:
First, it presents a new approach to collaborative �ltering, the Cluster algorithm, which is designed

to perform better in case of sparse CF-databases. A heuristic is presented, which is capable of clustering
large dimensional sparse vectors as rating vectors. Further a prediction algorithm is presented.

Second, it describes two cases of sparse CF-databases, which are of importance, the Bootstrap-Case
and the New-User-Case. It identi�es parameters, which allow to model these problematic cases for
simulations. Further it presents a cost analysis, which allows to select the right algorithm for a given
cost and performance requirement.

Third, it experimentally validates the proposed Cluster algorithm by comparing its performance
with classically used algorithms for the described sparsity cases of CF-databases.
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