
Server-side code injection attacks:
a historical perspective

Jakob Fritz1, Corrado Leita1, and Michalis Polychronakis2

1 Symantec Research Labs, Sophia Antipolis, France,
{jakob fritz,corrado leita}@symantec.com

2 Columbia University, New York, USA, mikepo@cs.columbia.edu

Abstract. Server-side code injection attacks used to be one of the main
culprits for the spread of malware. A vast amount of research has been
devoted to the problem of effectively detecting and analyzing these at-
tacks. Common belief seems to be that these attacks are now a marginal
threat compared to other attack vectors such as drive-by download and
targeted emails. However, information on the complexity and the evolu-
tion of the threat landscape in recent years is mostly conjectural. This
paper builds upon five years of data collected by a honeypot deployment
that provides a unique, long-term perspective obtained by traffic moni-
toring at the premises of different organizations and networks. Our con-
tributions are twofold: first, we look at the characteristics of the threat
landscape and at the major changes that have happened in the last five
years; second, we observe the impact of these characteristics on the in-
sights provided by various approaches proposed in previous research. The
analysis underlines important findings that are instrumental at driving
best practices and future research directions.

1 Introduction

Remote code injection attacks used to be one of the main vectors used by mal-
ware to propagate. By leveraging unpatched vulnerabilities in the increasingly
large and complex software base in modern computing devices, attackers manage
to divert the control flow towards code of their choice injected into the victim
memory. The injected code, usually called shellcode, is normally constrained in
terms of size and complexity, and is thus typically used to upload to the vic-
tim a second, larger executable file, the malware. This very simple mechanism,
through different variations, has been responsible for the propagation of most
modern threats and the infection with malware of home computers as well as
banks, corporate networks, and even industrial control systems.

Historically, most of the remote code injection attacks used to be carried out
against vulnerable network services easily reachable from the Internet without
any need of user involvement. Many vulnerabilities in Windows SMB proto-
cols, for instance, have been used for this purpose. However, server-side code
injection attacks are now perceived by the community as an outdated problem.
An increasing use of personal firewalls on end user machines (facilitated by the

2

choice of major vendors to ship their OSs with firewall services enabled by de-
fault) has decreased the effectiveness of server-side exploits at breaching security
perimeters. At the same time, modern operating systems have adopted security
mechanisms such as Data Execution Prevention (DEP) that render the task
of successfully hijacking control flow increasingly difficult. In recent years, the
propagation methods of choice have therefore shifted towards client-side vectors
such as drive-by downloads, e-mail, and social engineering attacks.

This work aims at exploring this perception through a quantitative analysis,
by looking at the evolution of the threat landscape in recent years and by eval-
uating the effectiveness of state-of-the-art detection and analysis techniques at
coping with these threats. Is the detection of server-side code injection attacks
a fully understood and solved problem deemed to become irrelevant in the long
term, or are there still significant research or operational problems in the way
we are tackling these threats? The answer to this question is particularly impor-
tant when considering recent advanced threats such as Stuxnet [1] and Duqu [2].
While originally introduced in the target environment through USB sticks or
email attachments, after the initial intrusion these threats needed to expand
their installed base to reach the systems of interest (e.g., a SCADA engineering
station to infect PLC code). This phase could not rely on user involvement and
was carried out through server-side exploits, which were successful while keep-
ing the infection mostly undetected by operators. The problem of detecting and
understanding server-side exploits is therefore still a prominent one, despite the
change in their role.

An analysis of the threat landscape on server-side code injection attacks is
particularly challenging for a variety of reasons.

1. Time evolution. Most security datasets span several months. However,
an understanding of global trends requires access to a stable data collection
source, active and consistent in its observations across longer periods of time.

2. IP space characterization. Different groups have shown already in 2004
that scanning activity is not uniformly distributed across the IP space [3,4].
Former analyses focused mostly on high level attack profiles and packet
volumes and have not gone as far as trying to characterize more in depth
the differences in the observations. However, it is commonly believed that full
visibility over server-side threats is possible only by spreading observation
points across as many networks as possible, a requirement associated with
high maintenance costs.

3. Stability. In order to compare observations and draw conclusions, the col-
lected data needs to be stable, i.e., the data collection infrastructure needs
to behave consistently throughout the observation period. Only in this case
it will be possible to reliably attribute differences in the observations to
changes in the threat landscape.

In this work, we build upon the outcome of the operation of an open dis-
tributed honeynet called SGNET [5]. SGNET was built with the above challenges
in mind and attempts to provide an unbiased and comparable overview over the

3

activities in the IP space. The free partnership schema on top of which the sys-
tem is built (sensors are contributed by volunteering partners on a best-effort
basis) renders the dataset particularly challenging to analyze (the sensor popu-
lation varies widely), but it still represents a unique and previously unexplored
perspective over the IP space. We have been able in fact to reassemble a total
of 5 years of network traces, accounting for a total of 31.7 million TCP flows.

Through the raw data at our disposal, we aim at tackling two core ques-
tions: i) understand the long-term trends and characteristics of the server-side
exploits observable in the wild, and ii) assess the impact of these characteris-
tics on commonly used practices for the detection and analysis of server-side
exploits. Of particular interest is the analysis of the impact of long-term trends
on knowledge-based approaches: we want to explore the practical feasibility of
tackling real-world threats by fully relying on a priori knowledge on their char-
acteristics. To the best of our knowledge, thanks to the unique characteristics of
our dataset, this constitutes the first large scale analysis of the server-side threat
landscape across the two previously mentioned dimensions: visibility over a long
time span, but also visibility across different networks of the IP space. Against
our expectations, we discover a diverse, challenging scenario that is tackled by
different state of the art techniques with a highly diverse level of success.

2 Detecting server-side exploits

An exploit against a server-side vulnerability typically comprises one or more
messages crafted to move the victim into a vulnerable state, followed by the
injection and execution of shellcode. Various approaches have been used to hin-
der shellcode detection through obfuscation, encryption, and polymorphism [6].
Nowadays, return-oriented programming (ROP) [7] payloads represent the high-
est level of sophistication, as the shellcode execution (if any [8]) depends on the
previous execution of code sequences that already exist in the exploited process.

When trying to collect information on server-side exploits, two main direc-
tions have been followed in the security literature. Standard intrusion detection
approaches have attempted to leverage knowledge on known threats to recognize
further instances of these threats in network environments [9,10]. On the other
hand, researchers have tried to develop more generic approaches aiming to de-
tect previously unknown attacks, without requiring detailed knowledge on their
specificities. Honeypots and shellcode detection techniques are two prominent
examples of such approaches, which respectively try to leverage two different
inherent characteristics of code injection exploits: for honeypots, the lack of
knowledge on the network topology and thus on the real nature of the honeypot
host; for shellcode detection techniques, the need to transfer executable code to
the victim to be run as a consequence of an exploit.

2.1 Honeypots

Honeypots detect attacks by following a simple paradigm: any interaction carried
out with a honeypot host is suspicious, and very likely to be malicious. Two

4

broad honeypot categories can be identified: high interaction honeypots, where
attackers interact with a full implementation of a vulnerable system, and low
interaction honeypots, where attackers interact with a program that emulates a
vulnerable system by means of scripts or heuristics.

Observing that the state of a honeypot has changed is far from determining
how the honeypot was attacked, or from capturing the precise details of the at-
tack. To aid analysis, systems such as Sebek [11] allow for detailed monitoring of
system events and attacker actions. Still, such an approach requires an operator
to manually analyze the results and manage the honeypot, which is time con-
suming and not without risk. Consequently, several approaches aim to automate
attack detection and analysis through the identification of changes in network
behavior [12] or the file system [13], and facilitate (large scale) deployment and
management of honeypots [14,15,16]. Argos [17] can accurately pinpoint an ex-
ploit and its shellcode by leveraging a CPU emulator modified to include taint
tracking capabilities. Instrumenting a virtual machine in such a way incurs a
performance overhead prohibitive for use in production systems. Shadow hon-
eypots [18] allow the integration of real servers and honeypots through more
heavily instrumented replicas of production systems.

Despite their progress in automated shellcode detection and analysis, high in-
teraction honeypots are often too expensive for large scale deployments. For this
reason, researchers have worked on tools that simulate vulnerable services using
scripts of a lower level of complexity. Honeyd [19] was the first highly customiz-
able framework for the emulation of hosts or even entire networks. Subsequent
systems incorporated (partial) protocol implementations, detailed knowledge of
well-known exploits, shellcode analysis modules, and downloaders for collecting
malware samples. These concepts are implemented in Nepenthes [20], its python
counterpart Amun [21], and more recently Dionaea [22]. Differently from its
predecessors, Dionaea implements a richer protocol stack and relies on a CPU
emulator called libemu [23] for identifying any shellcode contained in an attack.

All these systems rely however on detailed knowledge about the exploita-
tion phase. Additionally, Amun and Nepenthes rely on a set of knowledge-based
heuristics for the emulation of shellcode: they are able to correctly handle only
those decryptors and payloads that are implemented in their shellcode emulation
engine. The coverage of these heuristics with respect to the threat landscape is so
far unexplored. To benefit from the simplicity of low interaction techniques and
the richness of high interaction honeypots, a number of hybrid approaches have
been proposed. Among them is GQ [24], an Internet telescope that combines
high-interaction systems with protocol learning techniques, and SGNET [5,25]
which also leverages protocol learning techniques to monitor server-side exploits
by means of a network of low-complexity sensors (used in this work).

2.2 Shellcode detection

Shellcode detection approaches focus on detecting the presence of malicious ma-
chine code in arbitrary streams. Initial approaches focused on creating signatures
that match specific shellcode features such as NOP sleds or suspicious system

5

call arguments. However, machine instructions can be obfuscated quite easily,
rendering signature-based approaches ineffective [26,27], while the code can be
adjusted to thwart statistical approaches [28,29,30]. Despite this fact, a set of
static signatures for the identification of common shellcode parts is still currently
maintained as part of multiple Snort rulesets.

As it is not feasible to create signatures for the myriad of different shellcode
instances by hand, several approaches have been proposed for automated sig-
nature generation based on invariants extracted from groups of related network
flows [31,32,33]. However, automatic signature generation requires a minimum
number of attacks to work and has difficulties in dealing with polymorphic shell-
code [34]. To counter polymorphic worms, Polygraph [35], PAYL [36], PADS [12],
and Hamsa [37] attempt to capture (sequences of) invariants or statistically
model byte distributions of exploits and polymorphic payloads. However these
are themselves vulnerable to attacks that mimic normal traffic [38,39]. An alter-
native approach to signature matching is vulnerability-based signatures, which
focus on matching invariants that are necessary for successful exploitation, in-
stead of implementation-specific exploit patterns [40,41].

Given the limitations of signature-based approaches in the face of zero-day
attacks and evasion techniques, several research efforts turned to the detection
of shellcode through static analysis. Initial approaches focused on detecting the
NOP sled component [42,43], while later work attempted to detect sequences
ending with system calls [44], or focused on the analysis of control flow graphs
generated through static analysis [45,46,47,48].

Unfortunately, code obfuscation even in its simplest form can prevent code
disassembly from being effective, and obtaining the unobfuscated shellcode en-
tails some form of dynamic analysis. Both nemu [49,50] and libemu [23] im-
plement a x86 cpu emulator for performing dynamic analysis of shellcode. Both
approaches utilize getPC heuristics to identify potential offsets in strings to start
execution from. However, where nemu attempts to identify polymorphic shell-
code by combining the getPC heuristics with detection of self-references during
the encryption phase, libemu focuses on the execution of the entire shellcode in
a minimalistic environment which allows (emulated) execution of system calls.
Both approaches allow the generation of understanding on the payload behav-
ior: nemu is able to identify the plaintext payload generated by the decryption
loop [51]; libemu instead fully executes the shellcode, including the payload,
and allows the identification of the executed system calls. An alternative high-
performance implementation is adopted by ShellOS [52], which uses a separate
virtual machine to monitor and analyze the memory buffers of a virtual machine.

3 Dataset

Our analysis is based on an extensive data set of server-side attacks collected
by the SGNET distributed honeypot deployment [5,25] over a period ranging
from the 12th of September 2007 until the 12th of September 2012, i.e., exactly
5 years.

6

3.1 Raw data

SGNET is an initiative open to any institution willing to access the collected
data, where partners interested in participating are required to contribute by
hosting a honeypot at the premises of their network.

SGNET is a hybrid system that combines high interaction techniques (Ar-
gos [17]) with protocol learning techniques [53,54], allowing SGNET sensors to
gradually learn to autonomously handle well-known activities. Thanks to this
learning process, SGNET honeypots are capable of carrying on rich interactions
with attackers without requiring a-priori knowledge of the type of exploits they
will be subjected to. The implementation of the sensors has changed over the
years, and their logging capabilities have changed as well. This leads to limita-
tions in our ability to compare insights provided by the SGNET internal com-
ponents, whose implementation and characteristics have changed. For instance,
SGNET leveraged different versions of argos [17], a costly but very reliable tech-
nique for the identification of code injection attack by means of memory tainting.
Only certain releases of SGNET stored the Argos output, and the information
is thus available only on a small portion of the dataset. Despite the inability
to leverage this type of information, the SGNET maintainers have decided to
collect since the beginning of the project full packet traces of all the interactions
observed by the active honeypots, which now amount to more than 100GB of raw
data that are made available to all partners. Despite the different capabilities of
the sensors in handling code injection attacks, this raw data can be used as a
benchmarking platform for the analysis of the performance of different analysis
and detection tools.

The SGNET project has enforced on all participants a number of rules to
ensure the stability and the comparability of the observations. All sensors run
a well-defined and controlled software configuration, and each sensor is always
associated to 3 public IP addresses and to a well defined emulation profile.
The profile of the honeypots has changed only once throughout the observation
period, in February 2011, when the original emulation profile (a Microsoft Win-
dows 2000 SP0 OS running IIS services) was upgraded to Windows XP SP0. It
is clear that, as a side-effect of the partnership schema enforced by the project,
the dataset at our disposal is sparse: the honeypot addresses do not belong to
a single network block but to a variety of organizations (ISPs, academic institu-
tions, but also industry) spread all over the world. This is a very important and
rather unique property that allows us to have visibility on a variety of different
segments of the IP space, and also considerably reduces the concerns associated
to the detectability of the honeypots, and the representativeness of the data it
collected. Each sensor is associated to only three, often non-contiguous, IP ad-
dresses in a monitored network. Differently from larger honeynets, creating a list
of the addresses monitored by SGNET is an extremely costly action that to the
best of our knowledge was never carried out so far. The sparsity of the obser-
vations also introduces important challenges in the analysis. SGNET honeypots
are in fact deployed on a voluntary basis, and this causes significant fluctuations
in the number of active honeypots throughout the deployment lifetime. Over

7

Detector name Description

snort Flags flows as attacks whenever any exploit-specific alert is raised
by Snort.

snort-shellcode Flags flows as attacks whenever any generic shellcode-detection
alert is raised by Snort.

snort-et Flags flows as attacks whenever any exploit-specific alert is raised
by Snort using the Emerging Threats (ETPro) ruleset.

snort-et-shellcode Flags flows as attacks whenever any generic shellcode detection
alert is rasied by Snort using the Emerging Threats (ETPro)
ruleset.

amun Static heuristics for the detection of common packers and pay-
loads used in the Amun honeypot.

libemu Used in this paper to flag flows as attacks by means of a set of
getPC heuristics.

nemu Flags flows as attacks when a polymorphic shellcode is detected,
or a plaintext payload matching certain heuristics.

Table 1. Summary of the detection methods considered in the paper.

these five years, the deployment varies from a total of 10 active sensors to a
maximum of 71, achieved in 2010. In general, as we will see in Figure 3, the
achieved coverage of the IP space varies significantly. This variability needs to
be taken carefully into account throughout the analysis.

3.2 Identifying exploits

Among the different exploit detection techniques proposed in the literature, we
have chosen to focus on three classes of approaches that are used in operational
environments and that are suitable to offline analysis of captured traces. The
three classes are associated with a different level of sophistication and reliance
on a-priori knowledge, as summarized in Table 1.

Signature-based approaches. We include in our study the two most commonly
used rule sets for the Snort IDS [9]:

– The official Snort ruleset, generated by the SourceFire Vulnerability Research
Team (VRT). We have used the rules version 2931 (9 October 2012).

– The ruleset provided by Emerging Threats, that is now maintained in the
context of a commercial offering. While an open version of the ruleset is still
available, we have been granted access to the more complete ETPro ruleset
(May 2013) that was used for the experiments.

For both rulesets we have identified two classes of signatures. Some attempt to
detect specific network threats, and thus incorporate detailed information on the
activity being detected (e.g., a particular vulnerability being exploited through
a specific service). Other signatures are instead more generic, and attempt to
identify byte sequences that are inherent in the transmission of a shellcode in-
dependently from the involved protocol or vulnerability. For each ruleset, we
have defined two separate detectors: a detector flagging any flow triggering one

8

of the generic shellcode detection signatures (with suffix -shellcode) and another
flagging any flow triggering any of the attack-specific signatures.

Shellcode emulation heuristics. Widely used honeypot techniques such as Ne-
penthes [20] and its python counterpart Amun [21] use a set of heuristics to iden-
tify unencrypted payloads, as well as common decryptors. While not designed
specifically for the purpose of attack identification, the shellcode identification
component of these honeypots is particularly critical to their ability to collect
malware: while simple exploit emulation techniques are often sufficient to collect
payloads, the inability of the honeypot to correctly emulate a shellcode will ren-
der it completely blind to the associated malware variant. This is particularly
relevant considering the prominent role these technologies still have nowadays
in contributing fresh samples to common malware repositories.

CPU emulators. Finally, we have included in the study two widely known
CPU emulation approaches for the detection of shellcode, namely libemu [23]
(used in the Dionaea [22] honeypot) and nemu [49]. We have used libemu in its
most common configuration, which uses heuristics for the identification of getPC
code to detect the presence of a valid shellcode. The approach followed by nemu is
instead more sophisticated and applies runtime execution heuristics that match
certain instructions, memory accesses, and other machine-level operations. Nemu
has been extended to also detect plain, non-self-decrypting shellcode using a set
of heuristics that match inherent operations of different plain shellcode types,
such as the process of resolving the base address of a DLL through the Process
Environment Block (PEB) or the Thread Information Block (TIB) [51].

For each detected shellcode, Nemu generates a detailed trace of all executed
instructions and accessed memory locations. For self-decrypting shellcodes, we
extracted the decryption routine from the execution trace by identifying the
seeding instruction of the GetPC code (usually a call or fstenv instruction),
which stores the program counter in a memory location. Nemu also identifies
the execution of loops, so we consider the branch instruction of the loop that
iterates through the encrypted payload as the final instruction of the decryptor.
To account for variations in the operand values of the decryptor’s instructions,
e.g., due to different encryption keys, shellcode lengths, and memory locations,
we categorize each decryptor implementation by considering its sequence of in-
struction opcodes, without their operands [55].

We have chosen to exclude from the analysis the identification of ROP pay-
loads [56] and ShellOS [52]. ROP attack detection requires detailed assumptions
on the configuration and runtime memory of the targeted application. Similarly,
ShellOS is not particularly suitable for offline analysis as it requires replaying
the collected traffic against an instrumented virtualization environment.

4 A historical perspective

The five years of data at our disposal allow us to step back, and critically look at
the evolution of the threat landscape and the impact of its changes on the tools
at our disposal. How is the threat landscape structured across the IP space, and

9

2008 2009 2010 2011 2012
time

0

50

100

150

200

#
 a

tt
a
ck

s
p
e
r

h
o
n
e
y
p
o
t

a
d
d
re

ss
 p

e
r

d
a
y

amun
libemu
nemu
snort
snort_shellcode

snort_et

snort_et_shellcode

Fig. 1. Attacks per day, per honeypot,
detected by different tools.

2008 2009 2010 2011 2012
time

0

10

20

30

40

50

60

#
 a

tt
a
ck

s
p
e
r

h
o
n
e
y
p
o
t

a
d
d
re

ss
 p

e
r

d
a
y

port 139
port 135
port 445
port 2967

Fig. 2. Attacks per day, per honeypot,
for different targeted ports.

how has it evolved over the years? What is the impact of this evolution on the
different intrusion detection practices?

Figure 1 graphically represents the information at our disposal. Each of the
tools introduced in the previous section has flagged a certain amount of flows as
“attacks.” In order to take into account the varying number of sensors, we have
normalized the number of observed events with the total number of honeypot
sensors known to be active in a specific day. For better readability of the graph,
we have sampled the daily observations into monthly averages. The snort-et
detector is particularly noisy due to its inherent characteristics: intrusion detec-
tion systems go beyond the detection of code injection attacks and focus also on
other threats. For instance, the spike observable in July 2011 is associated to a
large amount of SSH scan activities generated by a misconfigured sensor. But
even factoring these differences, we can see a significant variance in the number
of flows identified by the various detectors, and only libemu and nemu almost
perfectly overlap in the number of detected attacks.

Figure 2 shows the distribution across time of the ports receiving the highest
attack volume. Not surprisingly, the three ports with the highest volume are the
typical Windows ports (445, 139, 135). However, their distribution over time has
changed significantly. Back in 2008, most of the observed attacks were against the
DCE/RPC locator service. While this type of exploits has only slightly dimin-
ished over the years, it has been overtaken in 2009 by a much higher attack load
on the Microsoft-DS port (445). Exploits against port 2967 (only 53 sessions)
have been observed only for a few weeks in 2008, but have never been observed
since then. We have no reason to believe that these trends can be associated
to any kind of change in the level of attack sophistication; rather, these trends
directly reflect the evolution of the vulnerability surface for the different services
over the years. Attacks leveraging vulnerabilities that were left unpatched by
the largest group of users are those who became more successful.

This first high level picture underlines important trends in terms of attack
volume. The attack volume per installed honeypot increases steadily with a
major peak at the end of 2009 (which as we will see coincides with the initial

10

2008 2009 2010 2011 2012
time

69
81
84
85
95

122
128
129
130
131
133
134
136
138
139
141
152
157
158
160
161
192
193
194
195
203
209
212
217

/8
 n

e
tw

o
rk

Low prevalence
of packing

High prevalence
of packing

Fig. 3. Evolution of attacks observed in different \8 networks.

spread of the Conficker worm). The second half of 2011 coincides instead with an
overall decrease of attack activity. A full understanding of this trend is possible
only by going more in depth in the dataset and understanding the distribution
of the attacks across the IP space.

4.1 Characterizing the IP space

The fact that the scanning activity across the IP space is not uniformly spread
is well known, and was documented by different research groups already in
2004 [3,4]. However, due to the intrinsic difficulty associated to dispersing mon-
itoring sensors across the Internet, previous work had leveraged low-interaction
honeypots and had limited the analysis to the identification of different packet
rates [4] across different networks or the identification of different high level
attack profiles [3]. The information at our disposal in this paper is different:
we have visibility on the complete exploitation phase on a variety of identical
honeypots dispersed across the Internet.

Attack volumes. This unique perspective is shown in Figure 3, in which we
have looked at the way the observed events are distributed over the different net-
works the SGNET deployment was monitoring. Every y-coordinate is associated
to a specific \8 network monitored by one or more SGNET sensors. The size of
the circles is proportional to the logarithm of the number of attacks observed in
a given network on a given day. By just looking at the volume of attacks in the
different networks, we can see that the their distribution is not constant over the
IP space: certain sensors receive considerably more attacks on a daily basis than
others. We believe this diversity in attack volume to be the culprit for the appar-
ent decrease in attacks observed in Figures 1 and 2. In May 2011, the SGNET
deployment was upgraded to a new version, but the rollout of new sensors was
slowed down to tackle potential problems or bugs. As a consequence to this, the

11

deployment has lost visibility on several “high-volume networks” consequently
lowering the average number of attacks per honeypot sensor.

Attack complexity. Figure 3 also represents using color codes the level of
complexity of the observed attacks. Specifically, we have leveraged the output
of nemu to identify the presence of a packing routine in the shellcode pushed
by the attackers to the victim. Warmer colors are associated to networks in
which most of the attacks observed on a daily basis leverage shellcode packing,
while colder colors are associated to networks hit by simpler attacks leveraging
plain shellcode. While certain networks expose a clear evolution from a lower
sophistication period to a prevalence of packing, other networks are consistently
characterized by solely low or high sophistication attacks. For instance, network
133.0.0.0/8 has been monitored solely in the last part of 2011 and beginning of
2012 but was consistently affected by only low-sophistication attacks in a period
in which most attacks observed in other networks showed a clear predominance
of shellcode packing practices.

4.2 Packers and payloads

It is clear from the high-level analysis performed so far that the practice of
packing has been widely used for the distribution of shellcode, especially after
2009. In a previous work, a smaller dataset was used to analyze the prevalence of
different packers [55]. The dataset at our disposal provides a wider perspective
that can allow us to identify common practices and long-term trends.

As explained in Section 3.2, nemu analyzes the decryption routine of a packed
shellcode, identifying loops and allowing us to categorize the decryption routines
as a sequence of opcodes [55]. At the same time, the execution of the decryption
routine in nemu’s CPU emulator reveals the unencrypted payload. By applying
heuristics inspired by those used in knowledge-based approaches such as amun
or nepenthes, we can easily classify the different plaintext payloads into different
types. Over the five years, we have identified a total of 37 distinct decryption
loops, which is a result comparable to findings described in previous studies [55],
and 15 plaintext payload implementations. Figure 4 offers a comprehensive view
over all the different ways in which packers and payloads have been combined
together. With packers identified by a numeric ID and payloads by an alphanu-
meric string, we have connected each packer and payload with an edge whenever
the two were associated on a given destination port. The size of the circles is
proportional to the logarithm of the number of occurrences of that packer or
payload, while the width of edges is proportional to the logarithm of the number
of times a packer and payload combination was observed on a given port.

Figure 4 provides a quantification to a well known scenario in the context
of server-side exploits, where both payloads and packers are being freely com-
bined together. Popular payloads such as the HTTP one have been encrypted
with different packers, possibly as part of different malware implementations.
Conversely, specific decryptor routines are used across multiple payloads. For
instance, packer 6 has been used in conjunction with four different payloads
(Mainz bindshell 1, Mainz connectback 1, Mainz connectback 2, HTTP) and was

12

TCP port 139

TCP port 445

TCP port 135

Unnamed
Bindshell 2

37

3

TFTP
IP

7

4

Rothenburg
Connectback

23

Mainz
connectback 2

6

Mainz
connectback 1

Mainz
Bindshell 1

Linday
connectback 3

Linday
connectback 2

Linday
connectback 1

Langenfeld
connectback

21

Koeln
bind

9

HTTP

8

5

36

32

29

24

CMD
FTP hostname

CMD
FTP IP

Adenau
Bind

25

TCP port 2967

Fig. 4. Relationship between shellcode packers and the associated decrypted payloads.

possibly applied by means of a separate packing tool applied to different plain
shellcode payloads. At the same time, most combinations are used across differ-
ent ports, and thus completely different execution environments.

Most importantly, the association between packer, payload and vulnerable
service port can be used to create an approximate definition of “activity type”
that we can use to study their evolution over time. The result is shown in Fig-
ure 5, where each association of port number, payload type and packer identifier
is shown evolving across the five years of data at our disposal. The size of each
circle is proportional to the logarithm of the number of hits per day per honey-
pot address associated to that combination. The coloring is associated instead
to the breadth of the activities, i.e., the percentage of currently active sensors
where the specific combination was observed on that day. Cold and dark colors
are associated to activities that were observed on a small number of sensors, and
are therefore “more targeted.” Figure 5 underlines very important facts.

Long-lived activities. Some packer-payload combinations are extremely long-
lived, and span the entire five years of the dataset. This includes several old
exploits against the RPC DCOM service, one of which (port 135, payload “Ade-

13

2008 2009 2010 2011 2012
time

135,Adenau Bind,25
135,CMD FTP IP,7

135,HTTP
135,Linday connectback 1,4
135,Linday connectback 2,4
135,Linday connectback 3,4

135,Mainz Bindshell 1,6
135,Mainz connectback 1,6

135,Rothenburg Connectback,37
135,TFTP IP,4
135,TFTP IP,7

135,Unnamed Bindshell 2,3
135,Unnamed Bindshell 2,37

139,CMD FTP IP,7
139,CMD FTP hostname,7

139,HTTP
139,HTTP,24
139,HTTP,29

139,HTTP,3
139,HTTP,32
139,HTTP,5
139,HTTP,6
139,HTTP,7

139,Linday connectback 2,4
139,Mainz Bindshell 1,6

139,Unnamed Bindshell 2,3
139,Unnamed Bindshell 2,37

2967,Langenfeld connectback,21
2967,Unnamed Bindshell 2,37

445,CMD FTP IP,7
445,CMD FTP hostname,7

445,HTTP
445,HTTP,24
445,HTTP,29
445,HTTP,36

445,HTTP,5
445,HTTP,6
445,HTTP,7
445,HTTP,8

445,Koeln bind,37
445,Koeln bind,9

445,Linday connectback 1,4
445,Linday connectback 2,4
445,Linday connectback 3,4

445,Mainz Bindshell 1,6
445,Mainz connectback 2,6

445,Rothenburg Connectback,23
445,Rothenburg Connectback,3

445,TFTP IP,7
445,Unnamed Bindshell 2,3

445,Unnamed Bindshell 2,37

Targeted activity

Globally spread
activity

Fig. 5. Evolution of different activity types (identified by specific combinations of
port,payload and packer) over time.

nau bind”, packer 25) we believe to be associated to the almost 10-year-old
Blaster worm. Similar considerations hold also for more recent threats: for in-
stance, one of the most visible activities (port 445, payload “HTTP”, packer
5) appears for the first time in November 2008 and persists since then, and is
associated to the spread of the Conficker worm. Assuming a constant propaga-
tion strategy, the population of hosts infected by these specific malware families
has not changed significantly over a very long period of time. This fact is, per
se, rather alarming: little or nothing seems to have been done to reach out to
infected victims, and well-known threats can survive undisturbed across years
by breeding within populations of users with low security hygiene.

Targeted activities. We can identify a different type of activities in our dataset:
certain cases have been observed by a limited number of sensors and for rather
limited timeframes. Some packer-payload combinations have appeared for a sin-
gle day, and have been observed by a single honeypot sensor. The dataset has
been generated only by monitoring a few dozens of networks, and shows that the
task of having a comprehensive view and understanding of these extremely short
lived, sparse activities is extremely challenging. This opens important questions
with respect to knowledge-based approaches to intrusion detection, and on their
ability to successfully detect activities that are clearly costly to observe.

4.3 Defenses

We have pictured in the previous section a scenario that involves a combination of
long-lived activities associated to old, but still active, self-propagating malware.

14

2008 2009 2010 2011 2012
time

0.0

0.2

0.4

0.6

0.8

1.0

p
re

ci
si

o
n

2008 2009 2010 2011 2012
time

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

amun
libemu
snort
snort_shellcode

snort_et

snort_et_shellcode

Fig. 6. Precision and recall of the detection tools using Nemu as ground truth.

Shorter, bursty activities are also present, which probably are associated with
botnets, instructed by the bot herder to scan only specific ranges of the IP space
for their self-propagation. This scenario is a challenging one: only by being in
the right “place” at the right moment will it be possible to identify the activity.
Detectors relying on a priori knowledge of all possible attack vectors are likely
to face considerable challenges at dealing with these cases.

We have defined in Section 3.2 a number of different detectors characterized
by varying level of complexity and reliance on knowledge of the attack vector. We
range from detectors such as snort and snort-et that fully rely on such knowledge,
detectors such as snort-shellcode, snort-et-shellcode that attempt static heuristics
for the detection of shellcode, to amun that includes dynamic unpackers for
common shellcodes, to nemu and libemu that leverage CPU emulation for the
detection of inherent characteristics of a shellcode and avoid any assumption on
the characteristics of the exploit that is injecting the shellcode itself. In order
to evaluate their performance, we elect nemu as most generic approach for the
identification of a shellcode. By not relying on sole getPC heuristics and by
trying to identify self-reference, implicit in any unpacking routine, nemu is likely
to be the most reliable source of information at our disposal.

We have thus evaluated all the tools performance against the nemu ground
truth and computed precision and recall. Commonly used in information retrieval
and classification, the precision of a tool expresses the fraction of retrieved in-
stances that are relevant, i.e., the fraction of events flagged by a tool as malicious
that are considered malicious by Argos. The recall expresses instead the fraction
of relevant instances that are retrieved, i.e., the fraction of malicious instances
identified by nemu that have also been identified by the tool. For a given period
of time, defining tp as the number of true positives, fp as the number of false
positives, and fn as the number of false negatives, the precision and recall are
computed as:

precision =
tp

tp + fp
recall =

tp
tp + fn

(1)

Figure 6 shows the evolution of each tool’s performance in terms of precision
and recall over time. We can observe the following:

15

1
3

5
,A

d
e
n
a
u
 B

in
d
,2

5

1
3

5
,C

M
D

 F
T
P
 I
P
,7

1
3

5
,H

T
T
P

1
3

5
,L

in
d
a
y
 c

o
n
n
e
ct

b
a
ck

 1
,4

1
3

5
,L

in
d
a
y
 c

o
n
n
e
ct

b
a
ck

 2
,4

1
3

5
,L

in
d
a
y
 c

o
n
n
e
ct

b
a
ck

 3
,4

1
3

5
,M

a
in

z
B

in
d
sh

e
ll

1
,6

1
3

5
,M

a
in

z
co

n
n
e
ct

b
a
ck

 1
,6

1
3

5
,R

o
th

e
n
b
u
rg

 C
o
n
n
e
ct

b
a
ck

,3
7

1
3

5
,T

FT
P
 I
P
,4

1
3

5
,T

FT
P
 I
P
,7

1
3

5
,U

n
n
a
m

e
d
 B

in
d
sh

e
ll

2
,3

1
3

5
,U

n
n
a
m

e
d
 B

in
d
sh

e
ll

2
,3

7

1
3

9
,C

M
D

 F
T
P
 I
P
,7

1
3

9
,C

M
D

 F
T
P
 h

o
st

n
a
m

e
,7

1
3

9
,H

T
T
P

1
3

9
,H

T
T
P
,2

4

1
3

9
,H

T
T
P
,2

9

1
3

9
,H

T
T
P
,3

1
3

9
,H

T
T
P
,3

2

1
3

9
,H

T
T
P
,5

1
3

9
,H

T
T
P
,6

1
3

9
,H

T
T
P
,7

1
3

9
,L

in
d
a
y
 c

o
n
n
e
ct

b
a
ck

 2
,4

1
3

9
,M

a
in

z
B

in
d
sh

e
ll

1
,6

1
3

9
,U

n
n
a
m

e
d
 B

in
d
sh

e
ll

2
,3

1
3

9
,U

n
n
a
m

e
d
 B

in
d
sh

e
ll

2
,3

7

2
9

6
7

,L
a
n
g
e
n
fe

ld
 c

o
n
n
e
ct

b
a
ck

,2
1

2
9

6
7

,U
n
n
a
m

e
d
 B

in
d
sh

e
ll

2
,3

7

4
4

5
,C

M
D

 F
T
P
 I
P
,7

4
4

5
,C

M
D

 F
T
P
 h

o
st

n
a
m

e
,7

4
4

5
,H

T
T
P

4
4

5
,H

T
T
P
,2

4

4
4

5
,H

T
T
P
,2

9

4
4

5
,H

T
T
P
,3

6

4
4

5
,H

T
T
P
,5

4
4

5
,H

T
T
P
,6

4
4

5
,H

T
T
P
,7

4
4

5
,H

T
T
P
,8

4
4

5
,K

o
e
ln

 b
in

d
,3

7

4
4

5
,K

o
e
ln

 b
in

d
,9

4
4

5
,L

in
d
a
y
 c

o
n
n
e
ct

b
a
ck

 1
,4

4
4

5
,L

in
d
a
y
 c

o
n
n
e
ct

b
a
ck

 2
,4

4
4

5
,L

in
d
a
y
 c

o
n
n
e
ct

b
a
ck

 3
,4

4
4

5
,M

a
in

z
B

in
d
sh

e
ll

1
,6

4
4

5
,M

a
in

z
co

n
n
e
ct

b
a
ck

 2
,6

4
4

5
,R

o
th

e
n
b
u
rg

 C
o
n
n
e
ct

b
a
ck

,2
3

4
4

5
,R

o
th

e
n
b
u
rg

 C
o
n
n
e
ct

b
a
ck

,3

4
4

5
,T

FT
P
 I
P
,7

4
4

5
,U

n
n
a
m

e
d
 B

in
d
sh

e
ll

2
,3

4
4

5
,U

n
n
a
m

e
d
 B

in
d
sh

e
ll

2
,3

70

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f
su

cc
e
ss

fu
l
d
e
te

ct
io

n
s

snort snort_shellcode snort_et snort_et_shellcode

Fig. 7. Detection performance of the various tools when dealing with different combi-
nations of packers and payloads, using nemu as ground truth.

Simple shellcode identification heuristics are unreliable. Detectors attempt-
ing to identify the presence of a shellcode in a completely static fashion (snort-
shellcode and snort-et-shellcode) or through unpacking heuristics (amun) con-
sistently decrease in performance across the years. From a precision standpoint,
the degradation seems to be associated to an increasing false positive rate. From
a recall standpoint, the heuristics leveraged by amun and the snort-et-shellcode
achieved acceptable performance in 2008, detecting around 70% of the attacks,
but have quickly dropped until 10% or below in recent years.

Nemu vs libemu: the importance of comparative studies. We have identified
some discrepancies in the performance of the two most generic detection method-
ologies. Upon manual inspection, we have seen that libemu (which relies on the
identification of getPC code and on the presence of valid x86 instructions) flagged
the transfer of some executables (malware being downloaded by the honeypots)
as exploits, leading to a drop in recall. However, we have also identified some
cases that were correctly marked as exploits by libemu but were missed by nemu.
Nemu could not correctly execute the decryption loop due to due to lack of sup-
port of a CPU instruction in the emulator code.3

The cost of knowledge. We observe a surprising difference between the two
knowledge-based approaches, namely snort and snort-et. In both cases, it is
difficult to reason about precision: given the nature of the dataset, we expect a
considerable amount of network traffic to trigger IDS alerts without constituting
an exploitation attempt (as we have seen already in Figure 1). When looking at
the recall, instead, we see that the snort detector consistently detects only around
50% of the observed exploits, confirming the community perception regarding the
challenges associated with the use of knowledge-based approaches at dealing with
the complexity of the threat landscape. However, the snort-et dataset reveals a

3 The issue has been reported to the developers and has now been fixed.

16

completely different picture. The ruleset has consistently achieved a coverage of
more than 90% and its performance has increased since 2010. Interestingly, 2010
also coincides with the time the commercial version of the ruleset was launched,
probably with an increase in resources allocated to the collection of information
on threats and to the generation of signatures. The lower recall in the years
before 2010 could be conjectured as being due to a lower amount of resources
devoted to the collection of intelligence in those years. These facts show that
full coverage over the threat landscape is a costly, but not impossible operation:
community-driven approaches can only go up to a certain point at addressing
a problem whose solution requires an amount of resources achievable only by
commercial entities.

Signature robustness. Figure 7 explores more in depth the recall performance
of the signature-based detectors on a per-activity basis. Static shellcode detec-
tion heuristics detect a limited range of activities, but in many cases are rather
consistent: for instance, both snort-shellcode and snort-et-shellcode detect all
occurrences of packer 37 and packer 3 regardless of the payload or the service
being exploited. This is however not true in other cases: snort-et-shellcode has
inconsistent performance at dealing for instance with packer 4, that evades de-
tection when combined with specific services or specific payloads. When looking
at exploit detection signatures we also detect a varying degree of inconsistent
behavior: the snort detector, and to a much lesser degree also the snort-et one,
often flag only a percentage of an activity as malicious. This is an indication
that, despite the extensive research work on the topic [35,36,12,37], the correct
identification of invariants is often a manual process.

4.4 The limitations of knowledge

Figure 7 underlines an important limitation of knowledge-based approaches. The
two activities associated to port 2967 have been observed at the very beginning
of the dataset, and for a very limited amount of time. In that case, only shellcode
detection heuristics and the snort-et detector have been capable of identifying
a threat. Knowledge-based approaches seem to struggle at coping with stealthy
or highly targeted activities.

Figure 8 delves into the correlation between the difficulty of detecting an
event and its global scale. We analyze the different activity types according to the
spread of the attacking population over the IP space (X axis), the spread of the
victim population (i.e., the honeypots being hit, Y axis) and the average number
of detectors capable of identifying the activity. Colder colors represent activities
that are difficult to detect, while warm colors represent well-detectable activities.
Most well-detectable activities are associated to a widely spread attacker and
victim base (e.g., worm-like behavior), although we do identify a few cases where
well-detectable activities involve a small number of attackers and victims. When
moving away from the graph diagonal, we see how more localized, “botnet-like”
activities target a very small number of sensors (small Y coordinates), while
being spread across the IP space (large X coordinates).

17

50 100 150
Number of attacking /8 networks

5

0

5

10

15

20

25

30

N
u
m

b
e
r

o
f

v
ic

ti
m

 /
8
 n

e
tw

o
rk

s

Low detections

High detections

Fig. 8. Influence of the activity size on its detectability.

In general, searching for intrinsic properties of a threat instead of attempt-
ing to fully model its characteristics is a much more promising direction. Indeed,
the previously mentioned activities targeting port 2967 have been detected by
the shellcode heuristics for both of the rulesets under examination. However,
these detectors have underlined the limitation of signatures: only a few activ-
ity types have been successfully detected, and due to the very small amount of
invariants present in packed shellcode (most of the associated signatures search
for very short byte patterns in the entire payload) they are prone to false pos-
itives or even squealing attacks [57]. Only sophisticated—and costly—dynamic
approaches such as nemu and libemu have proven to be robust against the chal-
lenges posed by the threat landscape.

5 Conclusion

This paper has provided a comprehensive overview of the threat landscape on
server-side code injection attacks. We have leveraged a privileged observation
point, that of a distributed honeypot deployment that for five years has mon-
itored a variety of networks across the IP space. The collected data, available
to any institution interested in participating, has allowed us to provide a his-
torical perspective on the characteristics of the attacks over the years, and on
the performance of common state-of-the-art tools at detecting them. We have
been able to substantiate with experimental data a number of key observations
that should drive future work on threat monitoring and research in intrusion
detection, the most important of which are the following:

Full visibility on Internet threats is difficult to achieve. Malicious activities
are diverse over time and across the IP space. Different networks observe attacks
of different complexity, and several threats appear as highly targeted, short-lived
activities that are particularly challenging and costly to identify.

Threat persistence. In parallel to targeted, short-lived activities we can clearly
identify in the dataset long-lived activities associated to well known worms and

18

botnets. Despite these threats being very old and well understood, we do not
identify any significant decrease in their attack volume over a period of five
years. This underlines an important divergence between state of the art prac-
tices and the scarce security hygiene that seems to be associated to certain user
populations. Simple, known threats persist undisturbed across the years.

Limitations of knowledge. Knowledge-based intrusion detection approaches
have shown clear limitations. The achievement of an acceptable visibility on the
threat landscape is possible but is likely to require the investment of a non-
negligible amount of resources for the creation of a comprehensive perspective
on current threats. And even in such case, the generation of robust signatures for
the detection of threats is hard. Server-side exploits are likely to be used more
and more in the context of targeted, long-term intrusions to propagate within
the target environments. The challenges observed in this work are likely to be
amply amplified in these contexts. More generic—but costly—approaches seem
to be the only promising research direction for the detection of these threats.

Acknowledgements

This work has been partially supported by the European Commission through project
FP7-SEC-285477-CRISALIS and FP7-PEOPLE-254116-MALCODE funded by the 7th
Framework Program. Michalis Polychronakis is also with FORTH-ICS. We also thank
EmergingThreats for having granted us free access to the ETPro ruleset.

References

1. Symantec: W32.Stuxnet Dossier version 1.4. http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf (Febru-
ary 2011) [last downloaded October 2012].

2. Symantec: W32.Duqu The precursor to the next Stuxnet. http://www.symantec.
com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_
the_precursor_to_the_next_stuxnet_research.pdf (November 2011) [last downloaded
October 2012].

3. Dacier, M., Pouget, F., Debar, H.: Honeypots: Practical means to validate malicious
fault assumptions. In: Dependable Computing, 2004. Proceedings. 10th IEEE Pacific Rim
International Symposium on, IEEE (2004) 383–388

4. Cooke, E., Bailey, M., Mao, Z., Watson, D., Jahanian, F., McPherson, D.: Toward under-
standing distributed blackhole placement. In: Proceedings of the 2004 ACM workshop on
Rapid malcode, ACM (2004) 54–64

5. Leita, C., Dacier, M.: SGNET: a worldwide deployable framework to support the analysis
of malware threat models. In: 7th European Dependable Computing Conference (EDCC
2008). (May 2008)

6. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo, S.J.: On the infeasibility
of modeling polymorphic shellcode. In: Proceedings of the 14th ACM conference on
Computer and communications security (CCS). (2007) 541–551

7. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without func-
tion calls (on the x86). In: Proceedings of the 14th ACM conference on Computer and
Communications Security (CCS). (2007)

8. Bennett, J., Lin, Y., Haq, T.: The Number of the Beast (2013) http://blog.fireeye.
com/research/2013/02/the-number-of-the-beast.html.

9. Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proceedings of
USENIX LISA ’99. (November 1999) (software available from http://www.snort.org/).

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_stuxnet_dossier.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet_research.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet_research.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/w32_duqu_the_precursor_to_the_next_stuxnet_research.pdf
http://blog.fireeye.com/research/2013/02/the-number-of-the-beast.html
http://blog.fireeye.com/research/2013/02/the-number-of-the-beast.html

19

10. Paxson, V.: Bro: A system for detecting network intruders in real-time. In: Proceedings
of the 7th USENIX Security Symposium. (January 1998)

11. honeynet.org: Sebek (2012) https://projects.honeynet.org/sebek/.

12. Tang, Y., Chen, S.: Defending against internet worms: A signature-based approach. In:
INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. Proceedings IEEE. Volume 2., IEEE (2005) 1384–1394

13. Zhuge, J., Holz, T., Han, X., Song, C., Zou, W.: Collecting autonomous spreading malware
using high-interaction honeypots. Information and Communications Security (2007) 438–
451

14. Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A.C., Voelker, G.M.,
Savage, S.: Scalability, fidelity, and containment in the potemkin virtual honeyfarm. In:
Proceedings of the twentieth ACM symposium on Operating systems principles (SOSP).
(2005) 148–162

15. Jiang, X., Xu, D.: Collapsar: A vm-based architecture for network attack detention center.
In: Proceedings of the 13th USENIX Security Symposium. (2004)

16. Dagon, D., Qin, X., Gu, G., Lee, W., Grizzard, J., Levine, J., Owen, H.: Honeystat: Local
worm detection using honeypots. In: Recent Advances in Intrusion Detection, Springer
(2004) 39–58

17. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an emulator for fingerprinting zero-day
attacks for advertised honeypots with automatic signature generation. SIGOPS Oper.
Syst. Rev. 40(4) (2006) 15–27

18. Anagnostakis, K.G., Sidiroglou, S., Akritidis, P., Xinidis, K., Markatos, E.P., Keromytis,
A.D.: Detecting Targeted Attacks Using Shadow Honeypots. In: Proceedings of the 14th

USENIX Security Symposium. (August 2005) 129–144

19. Provos, N.: Honeyd: a virtual honeypot daemon. In: 10th DFN-CERT Workshop, Ham-
burg, Germany. Volume 2. (2003)

20. Baecher, P., Koetter, M., Holz, T., Dornseif, M., Freiling, F.C.: The nepenthes plat-
form: An efficient approach to collect malware. In: Proceedings of the 9th International
Symposium on Recent Advanced in Intrusion Detection (RAID). (2006)

21. : Amun: Python honeypot (2009) http://amunhoney.sourceforge.net/.

22. : Dionaea: catches bugs (2012) http://dionaea.carnivore.it/.

23. Baecher, P., Koetter, M.: libemu (2009) http://libemu.carnivore.it/.

24. Kreibich, C., Weaver, N., Kanich, C., Cui, W., Paxson, V.: [gq]: Practical containment for
measuring modern malware systems. In: Proceedings of the ACM Internet Measurement
Conference (IMC), Berlin, Germany (November 2011)

25. Leita, C.: SGNET: automated protocol learning for the observation of malicious threats.
PhD thesis, University of Nice-Sophia Antipolis (December 2008)

26. K2: ADMmutate (2001) http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz.

27. Detristan, T., Ulenspiegel, T., Malcom, Y., Underduk, M.: Polymorphic shellcode engine
using spectrum analysis. Phrack 11(61) (August 2003)

28. Obscou: Building ia32 ’unicode-proof’ shellcodes. Phrack 11(61) (August 2003)

29. Rix: Writing IA32 alphanumeric shellcodes. Phrack 11(57) (August 2001)

30. Mason, J., Small, S., Monrose, F., MacManus, G.: English shellcode. In: Proceedings of
the 16th ACM conference on Computer and communications security (CCS). (2009)

31. Kreibich, C., Crowcroft, J.: Honeycomb – creating intrusion detection signatures using
honeypots. In: Proceedings of the Second Workshop on Hot Topics in Networks (HotNets-
II). (November 2003)

32. Kim, H.A., Karp, B.: Autograph: Toward automated, distributed worm signature detec-
tion. In: Proceedings of the 13th USENIX Security Symposium. (2004) 271–286

33. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In: Pro-
ceedings of the 6th Symposium on Operating Systems Design & Implementation (OSDI).
(December 2004)

34. Kolesnikov, O., Dagon, D., Lee, W.: Advanced polymorphic worms: Evading IDS by
blending in with normal traffic (2004) http://www.cc.gatech.edu/~ok/w/ok_pw.pdf.

35. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically Generating Signatures for
Polymorphic Worms. In: Proceedings of the IEEE Symposium on Security & Privacy.
(May 2005) 226–241

36. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In: Pro-
ceedings of the 7th International Symposium on Recent Advanced in Intrusion Detection

https://projects.honeynet.org/sebek/
http://amunhoney.sourceforge.net/
http://dionaea.carnivore.it/
http://libemu.carnivore.it/
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz
http://www.cc.gatech.edu/~ok/w/ok_pw.pdf

20

(RAID). (September 2004) 201–222

37. Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: Fast signature generation
for zero-day polymorphic worms with provable attack resilience. In: Proceedings of the
IEEE Symposium on Security & Privacy. (2006) 32–47

38. Newsome, J., Karp, B., Song, D.: Paragraph: Thwarting signature learning by training
maliciously. In: Proceedings of the 9th International Symposium on Recent Advances in
Intrusion Detection (RAID). (September 2006)

39. Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Polymorphic blending attacks.
In: Proceedings of the 15th USENIX Security Symposium. (2006)

40. Wang, H.J., Guo, C., Simon, D.R., Zugenmaier, A.: Shield: Vulnerability-driven network
filters for preventing known vulnerability exploits. In: Proceedings of the ACM SIGCOMM
Conference. (August 2004) 193–204

41. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards automatic generation of
vulnerability-based signatures. In: Proceedings of the IEEE Symposium on Security and
Privacy. (2006)

42. Toth, T., Kruegel, C.: Accurate Buffer Overflow Detection via Abstract Payload Execu-
tion. In: Proceedings of the 5th Symposium on Recent Advances in Intrusion Detection
(RAID). (October 2002)

43. Akritidis, P., Markatos, E.P., Polychronakis, M., Anagnostakis, K.: STRIDE: Polymorphic
sled detection through instruction sequence analysis. In: Proceedings of the 20th IFIP
International Information Security Conference (IFIP/SEC). (June 2005)

44. Andersson, S., Clark, A., Mohay, G.: Network-based buffer overflow detection by ex-
ploit code analysis. In: Proceedings of the Asia Pacific Information Technology Security
Conference (AusCERT). (2004)

45. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm detection
using structural information of executables. In: Proceedings of the International Sympo-
sium on Recent Advances in Intrusion Detection (RAID). (September 2005)

46. Payer, U., Teufl, P., Lamberger, M.: Hybrid engine for polymorphic shellcode detection.
In: Proceedings of the Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA). (July 2005) 19–31

47. Chinchani, R., Berg, E.V.D.: A fast static analysis approach to detect exploit code inside
network flows. In: Proceedings of the International Symposium on Recent Advances in
Intrusion Detection (RAID). (September 2005)

48. Wang, X., Pan, C.C., Liu, P., Zhu, S.: Sigfree: A signature-free buffer overflow attack
blocker. In: Proceedings of the USENIX Security Symposium. (August 2006)

49. Polychronakis, M., Markatos, E.P., Anagnostakis, K.G.: Network-level polymorphic shell-
code detection using emulation. In: Proceedings of the Third Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA). (July 2006) 54–73

50. Polychronakis, M., Markatos, E.P., Anagnostakis, K.G.: Emulation-based detection of
non-self-contained polymorphic shellcode. In: Proceedings of the 10th International Sym-
posium on Recent Advances in Intrusion Detection (RAID). (September 2007)

51. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Comprehensive shellcode detec-
tion using runtime heuristics. In: Proceedings of the 26th Annual Computer Security
Applications Conference (ACSAC). (December 2010)

52. Snow, K.Z., Krishnan, S., Monrose, F., Provos, N.: ShellOS: Enabling fast detection and
forensic analysis of code injection attacks. In: Proceedings of the 20th USENIX Security
Symposium. (2011)

53. Leita, C., Mermoud, K., Dacier, M.: Scriptgen: an automated script generation tool for
honeyd. In: 21st Annual Computer Security Applications Conference. (December 2005)

54. Leita, C., Dacier, M., Massicotte, F.: Automatic handling of protocol dependencies and re-
action to 0-day attacks with ScriptGen based honeypots. In: 9th International Symposium
on Recent Advances in Intrusion Detection (RAID). (September 2006)

55. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: An empirical study of real-world
polymorphic code injection attacks. In: Proceedings of the 2nd USENIX Workshop on
Large-scale Exploits and Emergent Threats (LEET). (April 2009)

56. Polychronakis, M., Keromytis, A.D.: ROP payload detection using speculative code exe-
cution. In: Proceedings of the 6th International Conference on Malicious and Unwanted
Software (MALWARE). (October 2011) 58–65

57. Patton, S., Yurcik, W., Doss, D.: An achilles heel in signature-based ids: Squealing false
positives in snort. Proceedings of RAID 2001 (2001)

	Server-side code injection attacks: a historical perspective

