
A Tool for Supporting Developers in Analyzing
the Security of Web-based Security Protocols?

Giancarlo Pellegrino1,2, Luca Compagna2, and Thomas Morreggia2

1 Eurecom, Sophia-Antipolis
giancarlo.pellegrino@eurecom.fr

2 SAP AG
giancarlo.pellegrino@sap.com,luca.compagna@sap.com,

thomas@morreggia.fr

Abstract. Security protocols are specified in natural language, are highly-
configurable, and may not match the internal requirements of the devel-
opment company. As a result, developers may misunderstand the speci-
fications, may not grasp the security implications of configurations, and
may deviate from the specifications introducing flaws. However, none of
the existing security testing techniques provides the features, scalability,
and usability to support developers in assessing the security of protocol
configurations and deviations. This paper presents a tool that leverages
on existing design verification and security testing techniques, and ex-
tends them to support developers in analyzing security protocols. We
used the tool for the analysis of prominent security protocols (i.e., SAML
SSO, OpenID, OAuth2), and of six industrial-size implementations.

1 Introduction

Security protocols are communication protocols that aim at providing security
guarantees through the application of cryptographic primitives. Security pro-
tocols are at the core of modern business scenarios and enable partners to set
up business environments. However, their specifications and implementations
can be flawed as witnessed by the many vulnerabilities discovered in the past
years [3,4,9,13]. Security protocols are specified in natural language and, as a
consequence, can be misinterpreted by the developers. Moreover, the design of
modern protocols considers the different deployment landscapes (e.g., mobile, or
cloud scenarios). As a result, protocols feature different flows and a wide range
of options. The number of options combinations makes it difficult for develop-
ers to understand the security implications. In addition, the protocol security
recommendations delivered by the standardization bodies may not match the
internal requirements of the software development company. As a result, imple-
mentations may deviate from the specifications and endanger the overall secu-
rity. E.g., the SAML-based SSO for Google Apps until 2008 neglected few, yet
important, message fields that allowed an attacker to impersonate a user and

? This work has been partially supported by the FP7-ICT Project SPaCIoS
(no. 257876)

giancarlo.pellegrino@eurecom.fr
giancarlo.pellegrino@sap.com, luca.compagna@sap.com
thomas@morreggia.fr


steal her confidential data [3]. To detect vulnerabilities, researchers have pro-
posed several techniques at the different phases of the software life-cycle. Source
code analysis looks for patterns into the source code or analyzes the data flow
of the user-controlled inputs [10]. Black-box input fuzzers probe implementa-
tions with special values and analyze the output for detecting vulnerabilities [8].
Model checking checks whether the protocol design satisfies a given security
property [4,13] and if not, the returned counterexample is used as a test case
for the testing implementations [6,7,9]. However, none of these techniques pro-
vides the features, scalability, and usability to support developers in assessing
the security of protocol options and deviations.

This paper presents a tool that leverages on existing design verification and
security testing techniques, and extends them to support developers in analyz-
ing the security of security protocols. The tool helps developers, software en-
gineers, and security experts making decisions during the development process
and detecting flaws both during the design and the deployment phases. It in-
tegrates existing verification and testing techniques that are described in other
works [1,6,5] and it does not introduce new testing or verification techniques.
The tool is not a product of SAP and it is not our intention to promote any
other SAP product. The focus of this paper is to present a tool that is the result
of three years of experience in applying cutting-edge security analysis techniques
to industrial-size scenarios. We used the tool for the security analysis of promi-
nent standard security protocols (i.e., SAML SSO, OpenID, and OAuth2) and
of six industrial-size implementations.

Case Study :

C IdP SP

1. URI

2. IdP, AReq(ID, . . . )

3. IdP, AReq(ID, . . . )

4. Resp(ID, . . . , {AA}K−1
IdP

)

5. Resp(ID, . . . , {AA}K−1
IdP

)

6. Resource

Fig. 1. SAML SSO SP-initiated flow with-
out ARP.

The SAML [12] SSO is a security
protocol that enables business partner
to authenticate users once and then
let them access their services. The ob-
jective of a client C is to access to a
resource at a service provider SP. An
identity provider IdP authenticates C
and issues authentication assertions
(a signed authentication token). The
protocol ends when SP consumes the
assertions and grants or denies C the
access to the resource. SAML SSO has
two basic flows depending on whether
the user requests the resource to SP
(SP-initiated SSO), or to IdP (IdP-initiated SSO). Both flows can be used in
combination with the Artifact Resolution Protocol (ARP) that allows SAML
messages to be transported by reference rather than by value. In total, SAML
SSO has six protocol flows (ARP can be used at most twice in each basic flow).

Figure 1 shows the SAML SSO SP-initiated without ARP. In step 1, C asks
SP the resource at URI. In step 2, SP redirects C to IdP with the authentication
request AReq(ID, . . .) where ID is uniquely identifying the request. Then SP



stores ID in a table. In step 3, IdP authenticates C, builds the authentication
assertion AA, and signs it with its private key. Then, IdP adds {AA}K−1

IdP
to

Resp and forwards it to SP via C. SP first verifies the signature and then checks
if its table contains ID. Finally, SP delivers the resource to C. At the end of the
protocol run, C and SP are mutually authenticated (goal G1) and the resource
is kept confidential for C (goal G2). The messages 3-4 and 5-6 in Figure 1 are
exchanged over SSL/TLS communication channels.

In this paper we consider only few protocol options3: SP signs AReq, IdP
signs Resp, and use of SSL/TLS in steps 1-2. In addition, developers would like
to assess the security of design decisions. In this paper we consider the following
decisions: SP does not store the ID in steps 1-2, and SP sets an HTTP cookie
at step 2 and check it at step 5.

2 A Security Testing Tool
Our tool is a set of Eclipse plugins implementing existing testing and verification
techniques [1,5,6]. The tool supports the specification of protocol options and
implementation decisions, implements the design verification and model-based
security testing workflows, and supports verification and test campaigns.4

(a) Design verification : The design verification workflow implements the
formal analysis of security protocols via model checking. The process consists
of three steps. First, the user writes the formal model and specify the security
property. Then, the model checker explores the model for violation of the prop-
erty. If a violation is discovered, the model checker returns a counterexample.
Finally, the user inspects the counterexample using graphical viewers.

Our tool implements text editors to write formal models and properties (cur-
rently, it supports ASLan and ASLan++ languages[1]; both languages support
macros for security properties) with features such as syntax highlighting, and
problems highlighting (for syntax and semantic errors). It integrates the SAT-
based Model Checker [2] for the formal verification, and UI components for
displaying counterexamples as message sequence charts.

(b) Configuration and Implementation decisions : Our tool enables
the specification of configuration options and implementation decisions. This
is done through the SPaCIoS navigator. The navigator implements three main
functionalities. First, it allows the specification of single protocol option (or
decision) by means of labels. (A label is a text description and an arbitrary color.)
Second, it allows for the creation of a new model (capturing the option) starting
from an existing one and for marking it with labels. Finally, the navigator keeps
track of all the model generated in a derivation tree in which the roots are the
reference models. The tree and the labels are used later on for the preparation
of the test/verification campaign so to create reports in the form of Figure 4.

3 The other options of the same flow as well as the options of the other five protocol
flows were considered in our analysis, but not shown in this paper.

4 Plugins for the features (a) and (c) are available in the SPaCIoS Tool (http://www.
spacios.eu/platform.php). The remaining features (b) and (d) are available upon
request.

http://www.spacios.eu/platform.php
http://www.spacios.eu/platform.php


Fig. 2. The Navigator

Figure 2 shows the navigator. The up-
per part displays the derivation tree in
which each model (i.e., node tree) is asso-
ciated to labels. A model can have more
than one label. The lower part of the nav-
igator shows the list of labels created dur-
ing the analysis. They capture the config-
uration options of the SAML SSO stan-
dard that we used for supporting the de-
velopers at SAP.

(c) Model-based security testing
: The model-based security testing work-
flow is used for testing implementations
for detecting security flaws. It consists of five steps. First, the user writes
the model and properties by using the text editor as explained in the de-
sign verification workflow. Second, the tool generates test cases using an
external model checker (a test case is a counterexample). Third, the user
defines the implementation under test adapter (IUTA). The IUTA is a
data structure containing the mapping between model symbols and real val-
ues, the protocol participants under test, and a list of message adapters.
IUTAs are created by using the IUTA editor. Fourth, the test cases are executed
against the IUTA and, finally, the user inspects the results. Our tool supports
HTTP conversation and message inspection. Moreover, the tool has a built-in
web browser to visualize the content of HTTP responses.

Fig. 3. The Test Campaign Manager

This workflow implements the
technique devised by Armando et
al. [6] in which the formal model is
compiled into a set of Java program
fragments that are executed in the or-
der of the abstract test case.

(d) Verification and Test
Campaign: A verification campaign
is the verification of several models.
Similarly, the test campaign consists
of the executions of several test cases.

Figure 3 shows the editor for the
test campaign manager. It displays
the list of test cases generated, and
the IUTAs available. The user selects
the test cases and the IUTAs, and she
runs the campaign. At the end of the
execution, the tool displays the HTTP conversations for off-line analysis. The
result of a campaign is organized into tables. In addition, the tool logs the results
and HTTP messages of all the test for future inspections.



3 Application to the Case Study

Opt. Dec. Res.
SSL Sign

M
ID

fr
o
m

C
-S

P
:A

R
eq

A
R

eq
A

R
es

p

S
P

se
t

co
o
k
ie

S
P

st
o
re

s
ID

G
1

G
2

0fc - n n n n y y n
2fc 0fc y n n n y y n
4fc 2fc y y n n y y n
5fc 4fc y y y n y y n
. . .

6fc 0fc y n n y y n n
. . .

7fc 5fc y y y y n n n
. . .

Fig. 4. Results for the SP-initiated
protocol

We modeled the flow of Figure 1 in ASLan++.
For each option and decision, we created a
label with the UI of Figure 2 and derived
a model. We adjusted each new model for
reflecting the option (resp. decision). After-
wards, we created and launched a verification
campaign. Figure 4 shows an excerpt of the re-
sult of the campaign. The table is structured
as follows. Each row is a model with unique
identifier MID. The column from is a pointer
to the model from which MID has been de-
rived. The remaining columns are grouped by
Opt, Dec, and Res respectively for options,
decisions and results. We use y when the op-
tion (resp. decision) is used or when the model
checker found a violation; we use n otherwise.
For example, the model 2fc derives from 0fc
(depicted in Figure 1) by adding the SSL/TLS
channel in steps 1-2.

Figure 4 shows the following results. First,
the protocol suffers from a flaw in which G1 is not satisfied. Second, the protocol
options are not sufficient for fixing the flaw. Third, the use of cookies solves the
vulnerability. Fourth, the two implementation decisions do not endanger the
security with respect to the properties G1 and G2. Finally, the security goal G2
is always reached.

Developers can use the results of Figure 4 to make decisions about the de-
sign and the implementations. For example, in security-sensitive scenarios, they
may enforce the use of cookie and avoid storing the ID as a Denial-of-Service
countermeasure.

The counterexamples returned by the model checker are used as test cases
for probing the implementations. For example, we used the counterexample of
0fc to test SAML-based SSO for Google Apps and SimpleSAMLphp as reported
by Armando et al. [4]. The former implements the configuration of 0fc while
the latter 6fc. The test against SAML-based SSO for Google Apps succeeded
proving that also the implementation suffers from the flaw [4]. The test against
SimpleSAMLphp failed due to the use of the cookie [4]. We applied the same
approach on the OpenID protocol and its implementations. The tests detected a
flaw in both the specifications and implementations (Zoho Invoice with Google
OpenID or Yahoo OpenID). In addition, we used the tool at SAP to assist
developers during the development of the NGSSO and OAuth2. In the former,
we analyzed all the six SAML SSO flows considering in total 15 protocol options,
and seven implementation decisions. In total we verified 85 formal models. In
the latter, we considered so far one protocol flow and seven protocol options.



4 Future work and Conclusion

We plan to support other modeling languages more suitable for developers, e.g.,
the Alice-and-Bob notation [11] or UML sequence diagrams. In addition, we
plan to integrate inference techniques for creating models from traces [9] and to
integrate other test case generation techniques [7]. In conclusion, we presented a
model-driven security analysis and testing tool. It supports the evaluation of the
impact of implementation decisions and protocol configurations. The tool was
used for the security analysis of SAML SSO, OpenID, and OAuth2, and of six
industrial-size protocol implementations.

References

1. A. Armando, W. Arsac, T. Avanesov, M. Barletta, A. Calvi, A. Cappai, R. Car-
bone, Y. Chevalier, L. Compagna, J. Cuéllar, G. Erzse, S. Frau, M. Minea,
S. Mödersheim, D. von Oheimb, G. Pellegrino, S. E. Ponta, M. Rocchetto, M. Rusi-
nowitch, M. T. Dashti, M. Turuani, and L. Viganò. The AVANTSSAR Platform
for the Automated Validation of Trust and Security of SOA. In TACAS2012.

2. A. Armando, R. Carbone, and L. Compagna. Ltl model checking for security
protocols. In CSF ’07. 20th IEEE, July.

3. A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. T. Abad. Formal
Analysis of SAML 2.0 Web Browser Single Sign-On: Breaking the SAML-based
Single Sign-On for Google Apps. In Proc. of ACM FMSE08.

4. A. Armando, R. Carbone, L. Compagna, J. Cuéllar, G. Pellegrino, and A. Sorniotti.
An authentication flaw in browser-based single sign-on protocols: Impact and re-
mediations. Computers and Security, 33, 2013.

5. A. Armando, R. Carbone, L. Compagna, and G. Pellegrino. Automatic security
analysis of SAML-based single sign-on protocols. Chapter 10 in ”Digital Identity
and Access Management: Technologies and Framework”, 2011.

6. A. Armando, G. Pellegrino, R. Carbone, A. Merlo, and D. Balzarotti. From model-
checking to automated testing of security protocols: Bridging the gap. In TAP2012.

7. M. Büchler, J. Oudinet, and A. Pretschner. Semi-automatic security testing of web
applications from a secure model. In SERE2012.

8. A. Doupé, M. Cova, and G. Vigna. Why johnny can’t pentest: An analysis of black-
box web vulnerability scanners. In C. Kreibich and M. Jahnke, editors, DIMVA,
volume 6201 of LNCS. Springer, 2010.

9. B. Guangdong, M. Guozhu, L. Jike, S. V. Sai, S. Prateek, S. Jun, L. Yang, and
D. Jinsong. Authscan: Automatic extraction of web authentication protocols from
implementations.

10. N. Jovanovic, C. Krügel, and E. Kirda. Pixy: A static analysis tool for detecting
web application vulnerabilities (short paper). In IEEE Symposium on Security and
Privacy, pages 258–263. IEEE Computer Society, 2006.

11. S. Mödersheim and L. Viganò. The open-source fixed-point model checker for
symbolic analysis of security protocols. In FOSAD 2009.

12. OASIS Consortium. Security Assertion Markup Language V2.0 Tech. Overview.
http://wiki.oasis-open.org/security/Saml2TechOverview, Mar. 2008.

13. V. Shmatikov and J. C. Mitchell. Finite-state analysis of two contract signing
protocols. Theoretical Computer Science, 283(2):419–450, June 2002.

http://wiki.oasis-open.org/security/Saml2TechOverview

	A Tool for Supporting Developers in Analyzing the Security of Web-based Security Protocols

