
A Minimalist Approach to Remote Attestation
Aurélien Francillon

Networking and Security Department, Eurecom
Sophia-Antipolis, France

aurelien.francillon@eurecom.fr

Quan Nguyen Kasper B. Rasmussen Gene Tsudik
Computer Science Department, UC Irvine

Irvine, CA, USA
quann1@uci.edu, kbrasmus@ics.uci.edu, gts@uci.edu

Abstract—Embedded computing devices increasingly permeate
many aspects of modern life: from medical to automotive, from
building and factory automation to weapons, from critical infras-
tructures to home entertainment. Despite their specialized nature
as well as limited resources and connectivity, these devices are
now becoming an increasingly popular and attractive target for
attacks, especially, malware infections. A number of approaches
have been suggested to detect and/or mitigate such attacks. They
vary greatly in terms of application generality and underlying
assumptions. However, one common theme is the need for Remote
Attestation, a distinct security service that allows a trusted party
(verifier) to check the internal state of a remote untrusted
embedded device (prover). Many prior methods assume some
form of trusted hardware on the prover, which is not a good
option for small and low-end embedded devices. To this end, we
investigate the feasibility of Remote Attestation without trusted
hardware.

This paper provides a systematic treatment of Remote Attes-
tation, starting with a precise definition of the desired service
and proceeding to its systematic deconstruction into necessary
and sufficient properties. Next, these are mapped into a minimal
collection of hardware and software components that result
in secure Remote Attestation. One distinguishing feature of
this line of research is the need to prove (or, at least argue
for) architectural minimality – an aspect rarely encountered in
security research. This work also provides a promising platform
for attaining more advanced security services and guarantees.

I. INTRODUCTION

“Embedded systems” is a broad notion that encompasses
many kinds of specialized computing devices that vary greatly
in terms of resources and intended purposes. Unlike general-
purpose computers that, for decades, have been the primary
attack victims, embedded systems have been targeted only rela-
tively recently. The Stuxnet [8] incident pointedly demonstrated
the impressive scope and impact of malware on embedded
devices. Stuxnet specifically targeted Programmable Logic
Controllers (PLC) in industrial control systems. By modifying
PLC control parameters, it ostensibly caused some serious
physical damage.

Stuxnet should be viewed as both an example, a warning and
a preview of coming attractions. It epitomizes the power and
amplification factor of remote malware attacks, i.e., those not
requiring direct access to victim devices. With growing presence
and proliferation of networked embedded devices into many

Aurélien Francillon was supported by the European Commission within the
STREP TAMPRES project. The views and conclusions contained herein are
those of the authors and should not be interpreted as representing the official
policies or endorsement of this project or the European Commission.

spheres of life, (e.g., automation of homes, factories, office
buildings as well as automotive, aerospace and public utilities
sectors), remote malware attacks have become a clear and
present danger. This motivates the need for countermeasures,
a number of which have been proposed by the research
community and some have been implemented by manufacturers.
One common theme among them is Remote Attestation – a
security service that involves verification of internal state of a
remote embedded device. Although Remote Attestation is not
a panacea, it should ideally allow for efficient and accurate
detection of remote software attacks.

Prior research results have underscored the difficulty of
the problem. We believe that, although ad hoc or specialized
solutions might work in the near term, or for a narrow range of
devices, only systematic approaches to Remote Attestation that
offer concrete security guarantees are likely to prove effective
in the long run. This assertion forms the premise for the work
described in this paper.

We use the term Remote Attestation to denote attestation
performed across a network. In this setting, software attestation
techniques [13], [16], [17], [27]–[31] are not applicable, since
software attestation can be secure only if the verifier commu-
nicates directly to the prover, with no intermediate hops [4].
At the other end of the solution spectrum are techniques based
on secure hardware components, such as TPMs [35] or secure
co-processors [33]. However, they represent a significant cost
barrier for low-end embedded devices. We believe that the
promise lies in a careful analysis of Remote Attestation as a
distinct security service, including systematic identification of
its necessary and sufficient components. This should ideally
result in the design of a generic and practical embedded system
architecture for Remote Attestation.

In this paper, we follow the above path: starting with the
definition of Remote Attestation, we derive exact properties
needed to attain it. We then translate them into architectural
components, which we then map to a small set of hardware
features that collectively achieve all required properties. We
argue that the set of identified features form the minimal generic
architecture for Remote Attestation. In the process, we remain
agnostic with respect to the underlying hardware by making
fewest possible assumptions about specific devices. We believe
that the outcome of this effort is valuable, as it represents the
first attempt to systematically explore the notion of Remote
Attestation and to produce a light-weight blueprint that can be
realized on wide range of devices, with minimal modifications.



II. RELATED WORK

Software-Based Attestation. One early example of
software-based attestation is Pioneer [30]. which does not
rely on a secure co-processor or any specialized hardware.
Pioneer computes a checksum of device memory using a
function that includes side-effects (e.g., status registers) in its
computation, such that any emulation of this function incurs a
timing overhead sufficiently long to detect cheating. Attestation
that relies on time-based checksums has also been adapted to
embedded devices in [13], [16], [17], [27]–[29], [31]. However,
some assumptions that form the basis for these solutions have
been challenged [32] and several attacks on these (and similar)
schemes have been proposed [4]. Moreover, Kovah et al. [14]
showed that time-based attestation schemes may be vulnerable
to Time Of Check, Time Of Use (TOCTOU) attack.

In general, all prior software-only solutions rely on strong
assumptions on adversarial capabilities and only work if
the verifier communicates directly to the prover, with no
intermediate hops. While applicable to specific settings (e.g.,
attestation of computer peripherals), this approach is not viable
for attestation performed over a network.

Static Root of Trust. An early example of a hardware-based
mechanism is Secure Boot [2], which verifies system integrity
at boot time. The root of trust is an immutable bootloader stored
in ROM along with a public key. It verifies code signature and
executes the code (i.e., boot) only if the signature is valid, thus
authenticating code origin and integrity.

Trusted Platform Modules (TPMs) [35] are present in many
commercial systems and used in several concrete architec-
tures [13], [23]. TPM security is based on two properties: (1)
Platform Configuration Registers (PCRs) are accessible only
via a fixed API, and (2) PCRs that are reset only on boot, and
each new measurement added (extended) to a PCR is added
using a cryptographic hash of the previous PCR value and the
new measurement. A TPM can sign a set PCRs that represent
the load time state of the software that was executed on the
computer. TPM is a static mechanism where the root of trust
is the BIOS that performs the very first extension upon boot.

Dynamic Root of Trust. A dynamic root of trust provides
a mechanism that can be used to perform an attestation dynam-
ically, i.e., on the current state of the software. This requires
additional features present in extended trusted computing
specifications [35] as well as by CPU and chipset support
by major vendors (e.g., Intel TXT [10] and AMD SVM [1]).

Flicker [18] is an architecture that establishes dynamic root
of trust on commodity computers. It uses CPU extensions to
execute a Piece of Application Logic (PAL) on the prover.
Execution of PAL is guaranteed even if the platform’s BIOS,
OS and DMA are all compromised.

There are several techniques for remote trust establish-
ment [12], [19], [20], [22], [36] with underlying platforms
range from Web servers to embedded systems.

Other Hardware-Based Techniques. SPM [34] is a recent
hardware-based mechanism for process isolation that uses a

special vault module bootstrapped from a static root of trust.
The vault bootstraps the SPM-protected programs, which gain
exclusive control over the protection of their own memory
pages. SMART [7] is a hardware-based scheme for establishing
a dynamic root of trust in embedded devices. Its focus is on low-
end microcontrollers (MCUs) that lack sophisticated features,
such as specialized memory management or protection features.
SMART requires small changes to the MCUs with limited
hardware impact. Noorman et al. [21] describe a hardware
architecture that provides a dynamic root of trust as well as
other features, such as application isolation and authentication.
Datta et al. [6] proposed LS2 – a logic for secure systems
relying on a TPM. LS2 is used to describe attestation protocols
standardized by the TCG, without providing a definition of
attestation. In contrast, our goal is to describe the requirements
at a lower level, without assuming the presence of a TPM or
a similar device.

Finally, [24] is a ROM-based technique that fills the prover’s
entire memory with random data to ensure absence of malicious
code. Although it involves minimal hardware requirements, this
technique is limited to one-hop attestation since it lacks the
means to authenticate a remote prover.

III. REMOTE ATTESTATION

We use the term Remote Attestation to denote a protocol,
whereby a challenger (Chal) verifies the internal state of another
device called a prover (Prov). This protocol is performed
remotely, i.e., over a network. The goal of the protocol is
to allow an honest (not compromised) Prov to create an
authentication token, that convinces Chal that the former is in
some well-defined (expected) state. Whereas, if Prov has been
compromised and its state has been modified, the authentication
token must reflect this. We begin by defining the “remote
attestation protocol”.

Definition 1 (Remote Attestation Protocol): A protocol P
comprised of the following components:
• Setup(1κ) – a probabilistic algorithm that, given a security

parameter 1κ, outputs a long-term key k;
• Attest(k, s) – a deterministic algorithm that, given a key
k and device state s, outputs an attestation token α;

• Verify(k, s, α) – a deterministic algorithm that, given a
key k, a device state s and an attestation token α, outputs
1 iff α corresponds to s, i.e., iff Attest(k, s) = α, and
outputs 0 otherwise.

At the time of attestation, Prov’s state s = (sChal, sProv)
consists of two parts: (1) sChal provided by Chal, e.g., a nonce,
and (2) sProv that reflects the rest of Prov’s state.

Next we define a game between Chal and Prov that leads
to the definition of security for a remote attestation protocol.

Game 1 (Att-ForgeryChal,Prov(κ)): Chal running P interacts
with Prov as follows:

1) Chal runs k ← Setup(1κ) and outputs sChal to Prov.
2) Prov is given oracle access to Attest. Specifically, Prov is

allowed to adaptively submit q device states {s1, . . . , sq}.



For each si 6= (sChal, sProv), Prov receives the correspond-
ing token αi.

3) Eventually, Prov outputs α; the game outputs 1 iff
Verify(k, s, α) = 1, i.e., iff α corresponds to s =
(sChal, sProv).

An honest Prov can trivially create α using Attest(k, s).
Whereas, if Prov has been compromised, its sProv has changed
and it must attempt to simulate the operation of Attest.
This security game bears some resemblance to a MAC-Forge
game [3]. Section VI-A discusses the relationship between
remote attestation and MACs.

We now define our security notion, based on Game 1.

Definition 2 (Att-Forgery security): A remote attestation
protocol P = (Setup,Attest,Verify) is Att-Forgery-secure
if there exist a negligible function negl, such that, for any
probabilistic polynomial time prover Prov and sufficiently large
κ, it holds that: Pr[Att-ForgeryChal,Prov(κ) = 1] ≤ negl(κ)

To simplify the notation, we say that P is a secure remote
attestation protocol if P is Att-Forgery-secure. In Section IV,
we identify properties required for Attest to provide secure
remote attestation.

A. System Model

The central goal of any remote attestation protocol is to verify
Prov’s state. Successful protocol execution does not guarantee
that Prov’s entire system can be trusted or that the adversary
can not modify Prov’s state after attestation is completed.

We assume that Prov is a low-end embedded device with a
single thread of execution, limited storage capacity and a low
general complexity. Although our definition of Att-Forgery-
security is valid for any device, its motivation is strongest for
low-cost platforms where adding secure hardware components
(e.g, a TPM [35]) would be too costly.

We make no assumptions about Chal. In particular, a
malicious Chal can perform a Denial-of-Service (DoS) attack
by forcing Prov to take part in the remote attestation protocol
at will. Our security model is focused on a possibly malicious
Prov and protection of Prov against DoS attacks is not a
primary goal. Chal authentication, as well as replay and DoS
mitigation is discussed in [9]. In the rest of this paper, we
assume that Chal is honest. Note that sChal (the part of Prov’s
state sent by Chal) can contain any information that Chal
wants to be included in the computation of α, e.g., a nonce, a
sequence number or a timestamp.

We assume a reliable communication channel between Chal
and Prov. We make no assumptions about its security, latency,
packet routing or any other properties.

B. Adversary Model

We do not specify how Prov might be compromised; we
assume that the adversary can do so at any time. Once Prov
is compromised, we use the term prover to mean the device
itself and the term adversary to reflect the adversary’s presence
on the prover. The distinction is relevant because, as we show
below, in order to implement remote attestation securely, there

must exist some secret quantity (i.e., a key) that the adversary
can not access, even though it is in (almost) full control of
Prov.

Once Prov is compromised, the adversary has full control
over the code executing on the CPU. It can schedule interrupts
at will, access all readable storage (including ROM) and modify
to all writable storage. The only behavioral restrictions are
those imposed by the hardware, e.g., the adversary can not
write to ROM or force an interrupt if interrupts are disabled. We
also assume that the adversary can not perform any hardware
modifications to the prover, e.g., tamper with the digital logic,
install a different CPU or add more memory.

Hardware side channels (e.g., measuring power consumption
to infer bits of the key) or fault attacks (e.g., power glitches
leading to incorrect execution of instructions) are very effec-
tive attacks on embedded systems. Such attacks are usually
addressed via dedicated countermeasures (e.g., glitch sensors,
dual rail logic), and are therefore out of the scope of this
paper. Similarly, we assume that Attest is free of software
vulnerabilities, implementation flaws and software (e.g., timing)
side-channels.

IV. PROPERTIES REQUIRED FOR REMOTE ATTESTATION

We now discuss the necessary security properties for Attest
to be used in secure remote attestation.

As follows from definition 2, Attest must satisfy the
following: (1) only Attest can compute a valid token α, and
(2) α accurately captures the device state s, i.e., for any two
states s′ 6= s, Attest(k, s) = Attest(k, s′) with negligible
probability. These observations lead us to two possible attack
types:

Attack type 1: The adversary simulates Attest and cor-
rectly computes α.

Attack type 2: Returned α does not correctly reflect s, i.e.,
the adversary escapes detection.

We now derive the complete set of security properties that
Attest must satisfy to be Att-Forgery secure. Since k is the
only secret held by Prov, access to k allows the adversary to
simulate Attest, i.e., perform a type 1 attack by computing
α without invoking the actual Attest. Therefore, we need the
following property:
• Exclusive Access: Attest has exclusive access to k.

This does not imply that the adversary can not learn some
intermediate value that leaks information about k. Suppose that
Attest(k, s) = HMAC(k, s) = H(k ⊕ opad,H(k ⊕ ipad, s))
and k ⊕ ipad is somehow leaked, e.g., remains in memory
after computation of α. This will allow the adversary to learn
k, and use it to compute α. Therefore, we need the following
property:
• No Leaks: Attest leaks no function of k other than α.

Another way of stating this property is that, after Attest
completes, the entire state of Prov (except for α and k itself)
is statistically independent from k.

If the code comprising Attest is not protected, the adversary
can modify it, e.g., by forcing it to output k, i.e., violate
“exclusive access”. Thus, an additional property is required:



• Immutability: Attest code is immutable.
We stress that this property requires code to be executed in-
place from immutable memory. This is not always the case, e.g.,
when code is loaded from low-speed storage (e.g., FLASH) to
high-speed memory, such as RAM or cache, before execution.
The adversary could modify Attest after it is loaded into RAM,
but before it is executed [26]. This is an instance of the well-
known Time-Of-Check-To-Time-Of-Use (TOCTTOU) attack,
which can be prevented by a hardware signature check of the
code, as in [10].

Taken together, three aforementioned properties are insuf-
ficient to protect Attest. Consider the case where memory
is attested sequentially. As Attest reaches certain region X
containing malicious code, it is interrupted, malicious code
moves to an already verified memory location and original
memory region X is restored before resuming attestation.
Consequently, the adversary escapes detection. This is an
example of a type 2 attack.

Note that checking memory in a pseudo-random fashion, as
in [30], [31], does not solve the problem since the adversary can
schedule an interrupt every time the next address is computed.
Then, if the next address falls into the memory range occupied
by malware, it moves its code fragment elsewhere and restores
memory to its expected state. To prevent such attacks, we need
another property:
• Uninterruptibility: Execution of Attest must be uninter-

ruptible.
There remains a potential attack, despite all security properties
described so far: the adversary can start execution in the middle
of Attest, skipping important parts of the code. Suppose that,
in the beginning of Attest, there is an instruction to enforce
uninterruptible execution environment. If the adversary can start
execution of Attest just after that instruction, the remainder of
Attest would run in an interruptible manner, which prompts
attacks of types 1 and 2, as shown earlier.

Assuming uninterruptibility of Attest, it might seem that, if
the very first instruction of Attest loads k, even if the adversary
invokes Attest in the middle, no information derived from k
can be learned and a valid α can not be computed. However,
this argument is incorrect, for the following reasons:

First, in some instruction sets (e.g, Intel x86 [11]), skipping
the first byte(s) of an instruction can lead to decoding a
different instruction. Therefore, the adversary can jump into
carefully selected locations in Attest changing its semantics
in an unintended manner. Naturally, we prefer not to rely on
features of a specific instruction set in stating general security
properties. Second, the stated argument assumes that invoking
Attest in the middle precludes the adversary from reading k.
However, the adversary might be able to perform a return-
oriented programming (ROP) [5], [15], [25] attack, as follows:

Jump into the beginning of some function within Attest. Since
the jump instruction does not push a return address onto
the stack, the stack will be “de-synchronized”, i.e., the value
specified in the stack by the adversary will become the return
address of the function. When the function returns, it will jump

to the address chosen by the adversary. This way, the adversary
can cause Attest to jump anywhere within Attest code.

In general, if the adversary can influence control flow of
Attest and alter its behavior, it can induce Attest to leak k by
reading it from restricted memory or by neglecting to erase it
later. To prevent all such attacks, we need one final property:
• Controlled Invocation: Attest must only be invoked from

its intended entry point.
In summary, the first three properties: exclusive access,

immutability and no leaks, are necessary (but not sufficient) to
prevent type 1 attacks. Whereas, the other two (uninterruptibil-
ity and controlled invocation) together enforce a semantically
atomic execution of Attest. Though effective against some type
1 attacks, they mainly prevent type 2 attacks.

Under assumptions made above, we claim that any correctly
implemented attestation protocol satisfying all five properties
listed in this section is Att-Forgery-secure.

A. Minimality of Properties

We now argue that removing any postulated property leads
to an insecure Attest. Note that each property is largely
independent and eliminating any of them will make Attest
vulnerable to the attack(s) described just above that property
in the previous section. Specifically, if we were to omit:
• Exclusive Access to k: the adversary would easily learn k.
• No Leaks: the adversary would learn information about k

that could lead to an advantage in computing a valid α.
• Immutability: the adversary could change the code to

move k to unprotected memory.
• Uninterruptibility: the adversary could move malware

around during attestation, which helps escape detection.
• Controlled Invocation: the adversary could invoke Attest

anywhere, which might cause it to be interruptible and/or
skip sanity checks on input parameters.

It thus becomes clear that any proper subset of the five
properties is insufficient for secure remote attestation.

V. DERIVING FEATURES FROM PROPERTIES

In this section, we describe a combination of platform
features that achieve the five security properties presented
above. Our goal is to obtain a set of features that are both
necessary and sufficient for remote attestation. We examine
each property and identify features needed to attain it.

Exclusive Access to k. This is the most difficult property
to impose on a low-end embedded device. There is no way to
achieve it without some hardware support. If the underlying
processor supports multiple privilege modes and a full-blown
separation of memory for each process, we could use a
privileged process to handle all computations that involve
k. However, low-end processors generally do not offer such
features. Our solution is to add a small hardware-based check
that monitors the address bus and program counter (PC) and
enforces k only being accessible when PC is within Attest.
We believe that this “custom” hardware check is unavoidable.

No Leaks. To make sure that no information related to (or
derived from) k is accessible when Attest completes we need



a way to erase all intermediate values that depend on k, except
the attestation token α, when they are no longer needed.

Immutability. In order to make Attest immutable, we place
it in ROM, which is available on most platforms. We consider
ROM to be an inexpensive way to enforce immutability1. Attest
needs to execute in-place from ROM.

Uninterruptibility. On a platform with a single thread of
execution, the adversary can still regain control after invoking
Attest by scheduling an interrupt. To enforce uninterruptibility,
we need a way to disable (and enable) interrupts such that
Attest will run from beginning to end. Moreover, the instruction
to disable interrupts must itself be atomic. Otherwise, the
adversary could interrupt this instruction and violate atomicity
of Attest.

Controlled Invocation. As discussed earlier, we must
enforce exclusive invocation of Attest from its very first
instruction. Since there is no OS (or protected CPU) mode
that enforces this on low-end devices, custom hardware is
needed. As before, we use a small piece of custom hardware
that implements the following logic: If the program counter
(PC) is an address within the Attest code, other than the first
instruction address, then the previous instruction must also be
within Attest.

Secure Reset. Although Controlled Invocation precludes
the adversary from jumping to the middle of Attest, in practice,
there is no way to prevent this in an embedded system. The
only option is to reset the device, whenever this property, or
any other one, is violated. Such a reset must be triggered in
hardware and, to prevent any sensitive memory contents to
be leaked, all memory must be erased immediately after the
device is reset.

Features described in this section form a set that is necessary
and sufficient to support the security properties described in
Section IV. We summarize them as:
• Custom hardware to enforce exclusive access to k.
• Reliable and secure memory erasure.
• Read-only-memory (ROM).
• Enable-interrupts and atomic disable-interrupts instruc-

tions.
• Custom hardware to enforce Attest being invokable only

at the first instruction.
• Secure reset mechanism.

A. Asymmetric Cryptography

In terms of cryptographic primitives, our discussion has been
focused on symmetric techniques. One interesting question is
whether there are any benefits in using public key cryptography,
i.e., digital signatures.

At the first glance, digital signatures would significantly
complicate Attest code in terms of both size and execution
speed. (Incidentally, the latter would increase the impact of

1There are several ways to achieve a similar goal, e.g., using an EEPROM
or a Flash memory locked by a fuse. However, ROM is usually the simplest
and cheapest to implement.

DoS attacks.) Also, instead of a shared k, the prover would
need to store its private key sk (in a secure location). However,
none of this prompts the need for additional security features
or components. On the other hand, as far as the verifier is
concerned, α produced using a MAC is no less and no more
secure than a digital signature computed over the same state.
(Recall that our adversary model allows prover’s compromise
but not hardware attacks that could extract k or sk.) We believe
that the only potential advantage of digital signatures can be
obtained if the application requirements of Remote Attestation
include public verifiability of attestation tokens.

VI. DISCUSSION

In this section we discuss some issues that were not
adequately addressed earlier.

A. Comparison with MAC

Our definition of Remote Attestation functionality shares
some features with the well-known and well-studied Message
Authentication Code (MAC) primitive. Suppose that the legiti-
mate prover has some secure hardware that can compute both
MACs and attestation tokens. Furthermore, assume that the
adversary can interrupt secure hardware execution. Whenever
the verifier sends the challenge that includes a, n and a
nonce, along with expected memory contents in memory range
[a, a + n), the prover sends replies with: the challenge, its
MAC and α. Suppose that adversarial code resides in memory
region [a + n/2, a + n). When MAC (or Attest) finishes
computation for [a, a+n/2), the adversary interrupts the secure
hardware, moves outside that range and restores all memory
[a + n/2, a + n) to original contents. In this scenario, both
MAC and α are computed correctly, as:
• The verifier believes that MAC is computed by the genuine

prover.
• The verifier can not assert absence of adversarial code in

memory range [a, a+ n) at attestation time.
This situation illustrates that uninterruptibility is not essential
for MAC computation, whereas, it is essential to the security
of remote attestation.

B. Comparison with Secure Hardware

While deconstructing our definition of remote attestation
into properties, and mapping them to features, we described
a mixed hardware-software system. Another option would be
to design a purely hardware component that computes Attest
atomically. This prompts the questions: Would a design based
on a single piece of secure hardware require fewer security
properties?

First, we only claim minimality of security properties that
are quite independent of the specific architecture, rather than
minimality of security features that are architecture-specific.

Second, we need to consider what security properties must be
satisfied by the secure hardware component itself. In particular,
this component would still have to satisfy all five security
properties described earlier.



C. Untampered Execution Environment

Attest does not automatically set up an untampered execution
environment. However, it runs uninterrupted and authenticity
of α guarantees absence of adversarial code in state s, at
attestation time. We can take advantage of these properties to
set up an untampered execution environment as follows.

Suppose that Attest disables interrupts during execution,
as in Section V. First, the verifier sends the challenge that
includes the nonce, the code to be executed, and (optionally)
the expected dynamic environment state, i.e., stack memory
location, global configuration variables, etc. Then, prover runs
Attest uninterrupted: it computes α, returns it to verifier, checks
that the start address of the code is outside Attest and, if so,
Attest immediately hands over control to the received code.
Thus, when verifier receives a valid α, it learns that the code
it sent was executed uninterrupted in an untampered execution
environment. This approach is similar to SMART [7].

VII. CONCLUSIONS AND FUTURE WORK

This paper provided an in-depth systematic treatment of
Remote Attestation and defined a new security notion for
remote attestation protocols. Using this notion, we identified
the necessary and sufficient properties needed for a device
to support secure remote attestation. We then mapped these
properties into a minimal collection of hardware and software
components that collectively yield a secure attestation primitive.

Due to space limitations, this paper omits many interesting
aspects of our work. The extended version of this paper [9]
presents a protocol that uses the primitive derived above to
achieve secure remote attestation. It also includes an analysis of
a recent technique (SMART [7]) and identifies some surprising
vulnerabilities. [9] also extensively discusses issues surrounding
verifier authentication and DoS mitigation.

This work represents the first step towards a systematic
study of Remote Attestation. There remain some important
issues and questions for future work. Although we argued
that identified properties and derived components collectively
represent a minimal architecture for Remote Attestation, there
could be other sets of components that also achieve minimality.
We plan to further investigate this and implement the proposed
architecture on several commodity platforms, possibly using
public key signatures as an alternative to MACs. Finally, future
work will include methods for automated verification of such
properties on actual implementations.

REFERENCES

[1] Advanced Micro Devices. AMD, Secure Virtual Machine Architecture
Reference Manual. Publication No. 33047, Revision 3.01, May 2005.

[2] W. A. Arbaugh, D. J. Farbert, and J. M. Smith. A secure and reliable
bootstrap architecture. IEEE S&P, 1997.

[3] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block
chaining message authentication code. Journal of Computer and System,
839:1–36, 2000.

[4] C. Castelluccia, A. Francillon, D. Perito, and C. Soriente. On the difficulty
of software-based attestation of embedded devices. ACM CCS, 2009.

[5] S. Checkoway, L. Davi, A. Dmitrienko, and A.-r. Sadeghi. Return-
Oriented Programming without Returns. ACM CCS, 2010.

[6] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A logic of secure systems
and its application to trusted computing. In IEEE S&P, 2009.

[7] K. E. Defrawy, A. Francillon, D. Perito, and G. Tsudik. SMART: Secure
and Minimal Architecture for (Establishing Dynamic) Root of Trust. In
NDSS, 2012.

[8] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet Dossier. Symantec,
October 2010.

[9] A. Francillon, K. Rasmussen, Q. Nguyen, and G. Tsudik. Systematic
treatment of remote attestation. In Cryptology ePrint Archive: Report
2012/713, 2012.

[10] Intel Corporation. Intel Trusted Execution Technology (Intel TXT) –
Software Development Guide, 2009. doc: 315168-006.

[11] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual, March 2012.

[12] R. Kennell and L. H. Jamieson. Establishing the Genuinity of Remote
Computer Systems. In USENIX Security Symposium, 2003.

[13] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang. Remote
attestation to dynamic system properties: Towards providing complete
system integrity evidence. IEEE/IFIP DSN, 2009.

[14] X. Kovah, C. Kallenberg, C. Weathers, A. Herzog, M. Albin, and
J. Butterworth. New Results for Timing-Based Attestation. In IEEE
S&P, 2011.

[15] S. Krahmer. x86-64 buffer overflow exploits and the borrowed code
chunks exploitation technique. Technical report, SUSE, September 2005.

[16] Y. Li, J. M. McCune, and A. Perrig. SBAP: Software-Based Attestation
for Peripherals. TRUST, 2010.

[17] Y. Li, J. M. McCune, and A. Perrig. VIPER: Verifying the Integrity of
PERipherals Firmware. In ACM CCS, 2011.

[18] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: An Execution Infrastructure for TCB Minimization. In EuroSys,
2008.

[19] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and A. Seshadri.
How low can you go?: recommendations for hardware-supported minimal
TCB code execution. ACM ASPLOS, 2008.

[20] C. Nie. Dynamic root of trust in trusted computing. TKK T1105290
Seminar on Network Security, 2007.

[21] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens. Sancus:
Low-cost trustworthy extensible networked devices with a zero-software
trusted computing base. In 22nd USENIX Security symposium. USENIX
Association, August 2013.

[22] B. J. Parno, J. M. McCune, and A. Perrig. Bootstrapping Trust in
Commodity Computers. In IEEE S&P, 2010.

[23] S. Pearson, M. C. Mont, and S. Crane. Persistent and Dynamic Trust:
Analysis and the Related Impact of Trusted Platforms. Security, 3477,
2005.

[24] D. Perito and G. Tsudik. Secure Code Update for Embedded Devices
via Proofs of Secure Erasure. In Proceedings of the 15th European
conference on Research in computer security (ESORICS), 2010.

[25] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented
programming: Systems, languages, and applications. Manuscript, V,
2009.

[26] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a TCG-based integrity measurement architecture. In
USENIX Security Symposium, 2004.

[27] A. Seshadri, M. Luk, and A. Perrig. SAKE: Software attestation for key
establishment in sensor networks. Ad Hoc Networks, 9(6), 2008.

[28] A. Seshadri, M. Luk, A. Perrig, L. V. Doorn, and P. Khosla. SCUBA:
Secure Code Update By Attestation in sensor networks. In ACM WiSec,
2006.

[29] A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. Using FIRE
& ICE for Detecting and Recovering Compromised Nodes in Sensor
Networks. Technical Report December 2004, DTIC Document.

[30] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and P. Khosla. Pi-
oneer: verifying code integrity and enforcing untampered code execution
on legacy systems. ACM SIGOPS OSRw, 39(5), 2005.

[31] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla. SWATT: software-
based attestation for embedded devices. In IEEE S&P, 2004.

[32] U. Shankar, M. Chew, and J. D. Tygar. Side effects are not sufficient to
authenticate software. USENIX Security Symposium, 8(3), May 2004.

[33] S. W. Smith. Outbound Authentication for Programmable Secure
Coprocessors. International Journal of Information Security, 3(1), 2004.

[34] R. Strackx, F. Piessens, and B. Preneel. Efficient Isolation of Trusted
Subsystems in Embedded Systems. SecureComm, 2010.

[35] Trusted Computing Group. TPM Main Specification Level 2 Version 1.2.
[36] Q. Yan, J. Han, Y. Li, and R. Deng. A software-based root-of-trust

primitive on multicore platforms. In ACM ASIACCS, 2011.


