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Abstract—This paper considers the problem of interference con-
trol through the use of second-order statistics in massive MIMO
multi-cell networks. We consider both the cases of co-located mas-
sive arrays and large-scale distributed antenna settings. We are in-
terested in characterizing the low-rankness of users’ channel co-
variance matrices, as such a property can be exploited towards
improved channel estimation (so-called pilot decontamination) as
well as interference rejection via spatial filtering. In previous work,
it was shown that massive MIMO channel covariance matrices ex-
hibit a useful finite-rank property that can be modeled via the an-
gular spread of multipath at a MIMO uniform linear array. This
paper extends this result to more general settings including cer-
tain non-uniform arrays, and more surprisingly, to two dimen-
sional distributed large scale arrays. In particular our model ex-
hibits the dependence of the signal subspace’s richness on the scat-
tering radius around the user terminal, through a closed form ex-
pression. The applications of the low-rankness covariance property
to channel estimation’s denoising and low-complexity interference
filtering are highlighted.

Index Terms—Massive MIMO, distributed antennas, channel es-
timation, interference mitigation, covariance matrix.

I. INTRODUCTION

F ULL spatial reuse of the frequency resource across even
neighboring cells is a de facto standard approach in wire-

less network design. The downside of this strategy lies in the
high amount of inter-cell interference, which in turn severely
limits the performance of certain users, especially at cell-edge.
This fact has fueled extensive research on interference manage-
ment, and particularly on methods relying on the use of spa-
tial filtering at the base station side. Recently, two schools of
thought have emerged with conflicting strategies for how to best
exploit the added spatial dimension offered by multiple-input
multiple-output (MIMO) antennas. In the first, the focus is on
strengthening local beamforming capabilities by endowing each
base station with a massive number of antenna elements that
is substantially larger than the number of terminals served in
the same cell on any given spectral resource block. The added
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cost of hardware is compensated by the fact that simple dis-
tributed beamforming schemes that require little inter-cell co-
operation can efficiently mitigate interference [1]–[4]. In the
second school, cooperation between cells is emphasized as the
key towards increasing the spatial degrees of freedom [5]. In
the cooperation approach, so-called network MIMO (or CoMP
in the 3GPP terminology) schemes mimic the transmission over
a virtual MIMO array encompassing the spatially distributed
base station antennas. In contrast with the massive MIMO so-
lution, the cooperative spatial filtering of interference is made
possible with no additional antennas at the base station side, yet
it goes at the expense of fast signaling links over the backhaul, a
need for tight synchronization, and seemingly multi-user detec-
tion schemes that are computationally more demanding than the
simple matched filters advocated in massive MIMO. Addition-
ally, a major hurdle preventing from realizing the full gains of
MIMO multi-cell cooperation lies in the cost of acquiring and
sharing channel estimates using orthogonal training sequences
over large clusters [6].

Despite these differences, a fundamental common feature be-
hind each philosophy lies in the coherent combining of a large
number of antennas in view of interference nulling. Addition-
ally, in both cases, our ability to reject interference is only as
good as our ability to estimate the user channels properly. In the
context of co-located massive MIMO, channel estimation from
pilots that are inevitably reused over space leads to the so-called
pilot contamination effect [7], [8]. Although initially branded as
a fundamental limit of massive MIMO communications, a finer
impact analysis of pilot contamination indicates that it is only
one of several limitations of such systems [9]. When it comes to
improving channel estimation, several possible solutions were
recently proposed in a series of papers [10]–[12]. In [10], an ap-
proach to de-interfere channel estimates was revealed based on
the exploitation of second-order statistical properties of the re-
ceived vector signal. The key enabler is the finite-rankness of
the channels’ covariance matrices which was shown to occur
in the asymptotic massive MIMO regime whenever the angle
spread of incoming/departing paths at the MIMO array is lim-
ited. Independently, a similar finite-rank property was shown
to be useful in the context of low-complexity scheduling and
spatial beamforming for massive MIMO networks [13]. Hence
the low-dimensional property for the signal subspace (i.e., in
which the MIMO channel realizations live) is instrumental to
spatial interference rejection. These results were all reached for
the case of uniform (equi-spaced) calibrated linear arrays. A nat-
ural question then arises as to whether the low-rank property can
be established and exploited in more general large-scale antenna
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settings, such as random and two dimensional antenna place-
ments. This paper is devoted to this problem.

A first examination of [10], [13] indicates that the finite-rank
behavior is rooted in the asymptotic orthogonality between
Fourier transform vectors corresponding to different path
angles, suggesting the property might be restricted to the use
of one-dimensional equi-spaced arrays. However our results
point otherwise, showing low-rankness of channel’s subspace
for large-scale antenna systems is a recurrent trend applying to
random and also distributed antenna placements, hence with a
wider applicability to cooperative networks.

Our specific contributions are as follows: First we consider
a uniform linear massive array scenario yet with several clus-
ters of multipath. In this case we establish a finite-rank model
for the channel’s covariance that directly extends that of [10],
where the rank is shown to be a function of the incoming/de-
parting angular spread of multipath. We then show that a similar
low-rank result holds for a linear array with random placement
of antenna elements. Although in this case, unlike the uniform
array, the finite rank is only characterized by an upper bound.
We show how this property can be used towards, for instance,
pilot decontamination.

In the second part of the paper, we turn to a large-scale
antenna regime where the antenna elements are scattered ran-
domly throughout the (dense) network, yet can still be combined
coherently. Such a setting with spatially distributed antennas
includes remote radio head (RRH) networks, network-MIMO
(CoMP) schemes with large clusters, and cloud-enabled radio
access networks (C-RAN) as particular cases. A channel model
building on the classical one-ring multipath model [14], [15]
is proposed to analyze this scenario. In this setting we show
that, there again surprisingly, the channel covariance exhibits
a low-dimensional signal subspace behavior, in the large
number of base station antenna regime, even discounting path
loss effects. We show the richness of the covariance’s signal
subspace is primarily governed by the scattering radius around
the user terminal. We provide a closed form expression for an
upper-bound of the covariance rank and show by simulation
how this bound closely matches reality. Note that the notion
that the total perimeter occupied by scatterers can govern the
rank of the signal subspace in a distributed MIMO antenna
setting is reminiscent of a previously observed phenomenon
in the different context of compact MIMO arrays. In [16], the
authors establish a physical model for the dimension of the
spatial multipath field of a disk-shaped compact area filled with
MIMO antennas and illuminated by isotropic multipaths.

In the last part of the paper, we turn our attention to the ex-
ploitation of signal-subspace’s low-rankness towards interfer-
ence rejection for a distributed array. We derive a lower bound
on the signal to interference ratio that would be obtained in a two
user setting with a simple matched filter, as a function of the dis-
tance between the users and the number of antennas. We show
how a distance of two scattering radii can be selected as a critical
minimal distance between selected co-channel users in a sched-
uling algorithm so as to facilitate interference nulling. As an ap-
plication of the low-rankness property, a simple subspace-based
interference mitigation scheme is put forward, which exploits
the statistical information of the interference channels. Numer-
ical results are presented in the last section.

The notations adopted in the paper are as follows. We use
boldface to denote matrices and vectors. Specifically, de-
notes the identity matrix. , and denote
the transpose, conjugate, and conjugate transpose of a matrix
respectively. denotes the expectation, denotes the
Frobenius norm. The Kronecker product of two matrices and

is denoted by . is the span of
linear vector space on the basis of for some

is the dimension of a linear space , and
is the null space of matrix . denotes a di-
agonal matrix or a block diagonal matrix with at the
main diagonal. is used for definition.

II. CO-LOCATED MASSIVE LINEAR ARRAYS

We consider the uplink1 of a network of time-synchronized
cells, with full spectrum reuse. Each of the base stations is
equipped with a one-dimensional array of antennas, where

is allowed to grow large (massive MIMO regime). For ease
of exposition, all user terminals are assumed to be equipped with
a single antenna. Furthermore we consider that a single user is
served per cell and per resource block. A classical multipath
model is given by [17]:

(1)

where is the arbitrary number of i.i.d. paths, denotes the
path loss for channel , and is the i.i.d. random phase,
which is independent over channel index and path index .

is the signature (or phase response) vector by the array to
a path originating from the angle . Note that in the case of an
equi-spaced array, has a Fourier structure.

A. Channel Estimation

When it comes to channel estimation it is assumed that or-
thogonal pilots are used by users located in the same cell, so
that intra-cell pilot interference can be neglected. Sets of pilot
sequences are however assumed to be fully reused from cell to
cell, causing maximum inter-cell pilot interference. The pilot
sequence is denoted by:

(2)

The power of the pilot sequence is assumed to be .
The channel vector between the -th cell user and the target
base station is . Without loss of generality, we assume the
1st cell is the target cell. Thus, is the desired channel while

are interference channels. During the pilot phase, the
signal received at the target base station is

(3)

where is the spatially and temporally white addi-
tive Gaussian noise (AWGN) with zero-mean and element-wise
variance . Assuming the desired and interference covariance
matrices can be estimated in a preamble, the

1Similar principles would apply in the downlink, which for ease of exposition
is ignored here.
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Bayesian (or equivalently MMSE) estimate of the target channel
vector is given by [3], [10], [18]:

(4)

where the training matrix and . An
interesting question is under which conditions in
the massive MIMO regime , where the superscript no
int refers to the “no interference case.” This question was previ-
ously addressed in [10], revealing the following sufficient con-
dition for achieving total interference suppression in the large

regime:

(5)

where the above condition requires the target channel covari-
ance to exhibit a non-empty null space (aka low-dimensional
subspace) and for all other interference covariances’ signal sub-
spaces to fall within this null space (see the proof in [10]). In
practice, the inclusion condition in (5) can be realized by a user
grouping algorithm [10], [13], as long as the rank of each co-
variance is small enough in relation to .

B. Low-Rank Properties of General Linear Arrays

In [10], [13], a linear equi-spaced array was considered. The
propagation model also assumed that multipaths impinge on the
base station array with angles of arrival (AOA) spanning an in-
terval 2. It is then shown that condition (5)
is satisfied provided AOAs corresponding to interfering users
fall outside . The assumptions of a single cluster
of multipath and of a calibrated equi-spaced array are however
restrictive. Below, we generalize this result to more realistic
settings.

1) Multiple Clusters: We now consider a general multipath
model when the AOAs corresponding to the desired channel are
still bounded, but come from several disjoint clusters [17]. The
steering vector in (1) is [19]

...
(6)

where is the antenna spacing and is the signal wavelength.
Let denote the number of clusters. Let denote
the interval of AOAs for the -th cluster of desired paths in the

interval. See an illustration in Fig. 1 for .
For a uniform linear array, we have the following proposition

in the massive MIMO regime:
Proposition 1: The rank of channel covariance matrix

satisfies:

2Note that a path coming from angle yields identical steering vector to
that from . Therefore we can limit ourselves to AOAs within .

Fig. 1. Desired channel composed of clusters of multipath.

where is defined as

Proof: The channel can be seen as the sum of elementary
channels each of which corresponds to one separate clusters.
Then can be decomposed into a sum of covariances over these
clusters. Since the clusters are separated, the signal subspaces
of the corresponding covariances are orthogonal and therefore
their dimensions add up. Then based on [10] Lemma 1, the proof
of Proposition 1 can be readily obtained.

Now define the total set of AOAs of the desired channel as

(7)

so that the probability density function (PDF) of the de-
sired AOA satisfies if and if

. In the same way, the PDF of all interference AOAs sat-
isfies if and otherwise, where
is the union of all possible interference AOAs. We have the fol-
lowing result for the massive uniform array:

Corollary 1: if and , then the MMSE
estimate of (4) satisfies:

(8)

Proof: It can be shown that from [10] Lemma 2, condition
(5) will be fulfilled as long as interfering AOAs do not overlap
with any of the clusters for the desired channel, in which case
if we analyze the received signal using eigen-value decompo-
sition, we can find the interference disappears asymptotically
because of its orthogonality with the signal space of desired
channel covariance. (8) is obtained in the same way as [10]. As
a result we omit the detailed proof in this paper.

2) Random Arrays: Tightly calibrated arrays with uniform
spacing are hard to realize in practice. An interesting question is
whether the above results carry on to the setting of linear arrays
with random antenna placement. To study this case, we consider
a set of antennas randomly located over a line, and spanning a
total aperture of meters. We investigate the extended array
and is allowed to grow with .
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In this case, an elementary path coming from an angle can
be represented via the corresponding array response vector as:

... (9)

where the position of the -th antenna3 ,
follows a uniform distribution, i.e., . The PDF of
AOA for the desired paths is non-zero only when , as in
Section II-B1. Define the average antenna spacing .
Assuming the aperture of antenna array is increasing linearly
with , i.e., is constant, we now have the extended results
on the low-dimensional property:

Proposition 2: Define

where , and
are values such that

then we have
•
•

Proof: See Appendix A.
Proposition 2 indicates the dimensions spanned in massive
MIMO regime by elementary paths for (i) single cluster of
AOA, and (ii) multiple disjoint clusters of AOA, respectively.
The following result now directly generalizes Proposition 1 to
random arrays.

Proposition 3: With a bounded support of AOAs as in (7),
the rank of channel covariance matrix satisfies:

(10)

Proof: We can readily obtain this result by replacing with
in Proposition 2.

This result above suggests that the low-dimensional feature of
signal subspaces in massive MIMO is not critically linked to the
Fourier structure of the steering vectors. Furthermore, it should
be noted that the above upper bound is actually very tight for
large , as witnessed from the simulation in Fig. 2, where we
take for example. The AOA spread is 40
degrees, and the closed form model refers to

We can observe that is well approximated by .
Proposition 3 and Fig. 2 suggest that a property of rank addi-

tivity holds for multiple disjoint clusters of AOAs in the massive

3Note that antenna ordering has no impact on our results.

Fig. 2. Closed-form rank model for the channel covariance vs. actual rank.

MIMO regime, i.e., for . In the following proposi-
tion we extend the results of Corollary 1 to the case of random
arrays under the weaker assumption of rank additivity for the
covariance matrices of the desired and interference channels.

Proposition 4: Let be the covariance matrix of desired
channel and be the covariance of the sum of all interference
channels. If and satisfy the following rank additivity
property

then in the high SNR regime, the linear MMSE estimate of the
desired channel is error free, or, in other words, its error covari-
ance matrix vanishes.

Proof: In the case of absence of white Gaussian noise, i.e.,
, and rank deficient signal and interference covariance

matrices, the error covariance matrix of linear MMSE estimator
[20] can be generalized as

(11)

where denotes the Moore-Penrose generalized inverse of
the matrix argument. Let us denote by , with

unitary matrix, and diagonal matrix, the
eigenvalue decomposition of the Hermitian matrix . Then,

, where the elements of the matrix are
given by

Additionally, denotes the column space of and the
corresponding nonzero eigenvalues such that .
Then, under the assumption of rank additivity of the covariance
matrices and , the theorem on the Moore-Penrose gener-
alized inverse for sum of matrices in [21] yields

(12)

where and .
Let us observe that

(13)
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Fig. 3. Channel estimation performance vs. , 2-cell network,
angle spread 30 degrees, , cell-edge SNR is 20 dB. We compare
the standard Least Squares (LS) to MMSE estimators, in interference and inter-
ference-free scenarios.

We focus on the first equality. The proof of the second equation
follows along the same line. By appealing to the mixed type
reverse order laws of the matrix and the matrix

in [22]

can be rewritten as

The first equality is obtained utilizing the fact that the matrices
and are orthogonal projectors and thus

idempotent. Then,

Finally, substituting (12) into (11) and accounting for orthogo-
nality in (13)

In the last equality we use one of the fundamental relations
defining the Moore-Penrose generalized inverse.

According to Proposition 3, the rank additivity condition is in
general satisfied when the AOA support of desired channel and
that of interference channels span disjoint region of spaces, i.e.,

. This property can be exploited in pilot decontam-
ination or interference rejection. Fig. 3 shows the channel esti-
mation performance in the presence of contaminating pilots. In
the simulation, we consider a 2-cell network. Each cell has one
single-antenna user who uses identical pilot sequence. The mean
squared error (MSE) of uplink channel estimation is shown. The
simulation suggests that the MMSE channel estimator is able to
rid itself from pilot contamination effects as the number of an-
tennas is (even moderately) large, which verifies Proposition 4.

Fig. 4. The distributed large-scale antenna setting with a one-ring model.

III. FINITE RANK MODEL IN DISTRIBUTED ARRAYS

We now turn to another popular form of large scale antenna
regime, often referred to in the literature as distributed antenna
systems. In such a setting, a virtual base station is deployed
having its antennas scattered throughout the cell.4 We con-
sider again the uplink in which joint combining across all BS
antennas is assumed possible. The base station antennas are
assumed uniformly and randomly located in a fixed size net-
work, serving single-antenna users. is allowed to grow large
giving rise to a so-called dense network. Our model assumes a
disk-shaped cell of radius , although simulation and intuition
confirm that the actual shape of the cell’s boundary is irrelevant
to the main result.

A. Channel Model

In order to facilitate the analysis, we adopt the one-ring
model [14], [15] where users are surrounded by a ring of
local scatterers (see Fig. 4) located meters away from the
user. The positions of the scatterers are considered to follow
a uniform distribution on the ring. In the one-ring model, the
propagation from user to base is assumed to follow paths
(hereafter referred to as scattering paths), where each path

bounces once on the -th scatterer before reaching all
destinations.5 Hence, the path length from user to the -th
antenna via the -th path is , where is the
distance between the -th scatterer of the -th user and the

-th BS antenna. The path loss of the -th scattering path is
modeled by:

(14)

4For ease of exposition we temporarily consider a single cell setting in this
section, i.e., . However simulation is also done later in a multi-cell
scenario.

5Note that this model assumes the BS antennas are high enough above clutter
so that there is no local scattering around the BS antennas.
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where is a constant that can be computed based on desired
cell-edge SNR, and is the path loss exponent. We scale the
amplitude of each path by . The channel between user and
all BS antennas is given by:

(15)

where is the -th scattering path vector channel between
user and all base stations:

... (16)

where denotes the random common phase of that scat-
tering path vector due to possible random perturbations of the
user location around the ring center or the phase shift due to the
reflection on the scatterer. is assumed i.i.d. and uniformly
distributed between 0 to .

B. A Low-Rank Model for Distributed Arrays

We have shown in Section II-B the low-dimension property
for linear antenna array systems. In attacking this problem it is
important to distinguish the rank reduction effect due to path
loss from the intrinsic finite-rank behavior of the large antenna
channel covariance in an equal path loss regime. In fact, in an
extended network (i.e., where some base station antennas can
be arbitrarily far from some users), the signal of any given user
will be received over only a limited number of antennas in its
vicinity, thereby effectively limiting the channel rank to the size
of this neighborhood. To circumvent this problem, we consider
below a (dense) network where the path loss terms are set ar-
tificially to be all equal (to one) and study the finite-rankness
under such conditions. In this model, the channel covariance is
defined as where the expectation is taken over
the random positions of the scatterers on the ring. Note that our
analysis indicates that a randomization over the user’s location
inside the scattering’s disk would produce an identical upper
bound on the rank.

Theorem 1: The rank of the channel covariance matrix for a
distributed antenna system satisfies:

(17)

Proof: See Appendix B.
In reality we show below that the right hand side of (17) is a
very close approximation of the actual rank, which is defined as
the number of eigenvalues of which are greater than a pre-
scribed threshold (in our simulations it is taken to be 10e-5).
Theorem 1 shows a linear dependency of the rank on the size of
the scattering ring. When increases, the richer scattering envi-
ronment expands the dimension of signal space. Fig. 5 shows the
behavior of the covariance rank with respect to the scattering ra-
dius . We can see the rank scales linearly with the slope .
However because of the finite number of antennas the rank will
finally saturate towards when keeps increasing.

Fig. 5. Rank vs. m, m.

IV. SPATIAL INTERFERENCE FILTERING

We are now interested in characterizing the orthogonality (or
correlation) between any two user channel vectors as a function
of inter-user distance, the wavelength and the scattering radius
, in the large limit, as this will provide a measure of inter-

ference rejection capability for the distributed antenna systems.
In the following we will investigate two interference filtering
schemes: 1) the simplistic matched filtering, 2) a subspace pro-
jection filtering.

A. Performance of Interference Filtering Using Matched Filter

We start with analyzing the channel correlation between
two users who interfere each other. We point out two distinct
regimes, depending on whether the inter-user distance is small
or large.

1) Closely Spaced Users: Closely spaced users are defined
by the fact that the distance between user 1’s and user 2’s scat-
terers is small enough compared with the distance between scat-
terers and receiving antennas so that we can consider planar
wavefronts. We first examine the correlation between any two
scattering paths for user 1 and user 2, corresponding to user 1’s
-th scatterer and user 2’s -th scatterer, with a distance .
Proposition 5: For small enough that the two scatterers

are located in the same planar wavefront region, we have

(18)

where is the zero-order Bessel function of the first kind.
Proof: See Appendix C.

Note that the proof is based on an additional assumption that
the path loss between a certain antenna and the two scatterers
are approximately equal, i.e., if user 1 and user 2 are concerned,
then . Since the two scatterers are very close and
the antenna is much further away, this assumption is reason-
able in practice. To visualize Proposition 5, we draw the curves

of and in Fig. 6. The curves show that

when grows, gets closer and closer to
the Bessel function. The curve named “Envelope by Krasikov”
is an upper bound of the Bessel function developed by Krasikov
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Fig. 6. Illustration of Proposition 5.

in [23], which will be used in Proposition 6. The interpretation
of Proposition 5 is as follows: the highest correlation between
two scattering paths is attained when the spacing between the
two scatterers is very small. Since the Bessel function reaches
its first zero around a spacing of , it implies that the
users ought to be located at least away from each
other to allow for a reuse of spectral resources (such as pilots).
In practice we would intend to schedule users with additional
spacing than just , according to the side lobes of the Bessel
function. Note that our model is similar to Clarke’s model [24],
which indicates if the AOA is uniformly distributed from 0 to

, the autocorrelation of a moving mobile is a scaled Bessel
function.

We use Proposition 5 to derive a lower bound on the signal to
interference ratio (SIR) under a simplified system setting with
just two users (one desired, one interferer) and a matched filter
receiver6. By computing the expectation over the random BS
antenna locations, which is also how we derive the expectation
of SIRs and channel correlations in the rest of this section, we
obtain the following bound of SIR:

Proposition 6: Assume perfect channel estimation, closely
located users, whose scattering rings do not overlap. The ex-
pected SIR at the matched filter output satisfies:

when is large

where is the distance between the two users and is assumed
to be larger than .

Proof: When applying matched filter, we have

Let us recall that the envelope of the Bessel function is
decreasing with . Thus, the lower bound of SIR is obtained by

6With more users, the interference is simply scaled by the number of users.
Additionally more advanced receivers could also be exploited.

considering the shortest , which gives the worst case corre-
lation. Since , we may obtain when is large:

Finally we use an upper bound of the envelope of the
Bessel function [23] which has validity when

. The bounding argument of the Bessel func-
tion in [23] can directly apply here.
The above proposition quantifies the rate at which the SIR
increases with the inter-user distance, in this case linearly.

2) Distant Users: We consider the regime in which users
are located further away from each other, e.g., many wave-
lengths away. The planar wavefront assumption no longer
holds, making the use of the Bessel function impractical. In this
case we are again interested in characterizing the correlation
between two scattering paths corresponding to two users, then
the correlation between the channel vectors themselves.

We first investigate the behavior of for any :

(19)

where is the channel between the -th user and the -th
BS antenna via the -th scatterer:

(20)

Since the two phases and are independent, we have:

and the variance of is

(21)

Given the random network model with radius , the path loss
correlation can be found by integration over polar coordinates
giving the location of the BS antennas. Although a closed-form
expression is elusive, we get the following computable expres-
sion:

(22)

One example of the path loss correlation is given in
Fig. 7, which shows is a decreasing function of . We
have the following proposition on the distribution of :

Proposition 7: Let be a random variable exponentially dis-
tributed with parameter . Asymptotically for

(23)

where denotes convergence in distribution.
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Fig. 7. An illustration of with , and
.

Proof: Let us consider the random variable

. By the law of large numbers converges almost
surely to 0 as . By appealing to the Central Limit
Theorem (CLT), the random variable converges in
distribution to a complex Gaussian distribution with zero mean
and unit variance. Thus, its square, i.e., , converges
also in distribution to an exponentially distributed random
variable with parameter .

We now derive a lower bound of the average SIR for a two-
user system, assuming matched filtering receiver.

Proposition 8: The lower bound is given by

(24)

where is a constant such that .
Proof: The SIR can be written as:

(25)

Note that has zero mean and a variance
of . In addition, the two variables
and are uncorrelated for any or ,
resulting from the random and independent phases in (16).

The final step is due to the fact that .
Finally we get

and Proposition 8 is proven.
The above result suggests at which rate the matched filtered in-
terference decays as a function of and the inter-user spacing

, which in turn can be exploited to predict system perfor-
mance and also give insights to the tolerable spatial reuse of
pilot resources.

B. Interference Filtering Via Subspace Projection

SIR analysis in previous sections is built upon a simple
matched filter, which still requires an accurate channel es-
timation. In this section, however, we propose a simple
beamforming strategy building on the low-dimensionality of
the signal subspace, which does not require an accurate channel
estimation. We consider a -user network with the first user
being a target user and all other users being interference users.
All these users share the same pilot sequence . Denote the sum
of interference covariances as .
The eigenvalue decomposition of is , where

is a diagonal matrix with the eigenvalues of on
its main diagonal. Suppose the eigenvalues are in descending
order and the first eigenvalues are non-negligible while the
others can be neglected. We construct the spatial filter at the
BS side for user 1 as:

(26)

where is the -th column of . We can assume approxi-
mately that:

(27)

where is the spatially and temporally white additive
Gaussian noise, is the received training signal, and

is the shared pilot sequence. Define the effective
channel . Note that has a reduced size, which is

. An LS estimate of is:

(28)

The key idea is that channel estimate is coarse, yet it can
be used as a modified MRC beamformer as it lies in a subspace
orthogonal to the interference and is also aligned with the signal
subspace of . During uplink data transmission phase:

(29)

where are the transmitted signal se-
quence. are the received signal and noise re-

spectively. The subspace-based MRC beamformer is :

(30)
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Fig. 8. Estimation performance vs. distance between two users,
m, single-cell network.

In case there is no null space for , e.g., the number of users
is large or the interference users have rich scattering envi-

ronments, the subspace-based method can still avoid the strong
eigen modes of interference and therefore reject a good amount
of interference.

Note that the subspace projection method has a certain sim-
ilarity with [11] which also uses eigen-value decomposition in
order to perform blind channel estimation. However there are
two main differences: 1) They address only the case of classical
massive arrays, not distributed antenna arrays; 2) They use the
received power levels domain to separate desired channel and
interfering channels. In our approach, the discrimination against
interference is related to the phases with which the interference
and desired signals arrive at the array. In fact, the two techniques
could in principle be combined.

V. NUMERICAL RESULTS

We first consider the channel estimation quality in a random
network with radius meters. The path loss exponent

. The scattering radius is meters.
scatterers are randomly distributed in the scattering ring, which
is centered at the user. Define the channel estimation MSE of
the -th user as:

(31)

In the simulation we average the channel estimation MSE over
different users in order to obtain MSE curve.

In Fig. 8, we assume the target user is located at the origin
while an interfering user (they share the same pilot sequence)
is moving over the horizontal axis at increasing distances from
user 1. As we can observe, when the MMSE estimator (4) is
used, the channel estimation error is a monotonous decreasing
function of the distance between the desired user and the in-
terference user. One may also notice the constant performance
gap between LS and MMSE estimator in interference-free sce-
nario, which indicates that covariance information is still helpful
even in a highly distributed antenna system. As shown in the

Fig. 9. Uplink sum-rate vs. distance between 2 users, m,
cell-edge SNR 20 dB, single-cell network.

Fig. 10. Uplink per-cell rate vs. , cell-edge SNR 20 dB, 7-cell network, each
cell has distributed antennas.

blue curve on the top, an LS estimator is unable to separate
the desired channel and the interference channel. In contrast,
an MMSE estimator has much better performance as its MSE is
decreasing almost linearly with inter-user spacing, hence con-
firming our claims.

We then examine the performance of four MRC beamformers
in terms of uplink sum-rate in a single-cell setting (Fig. 9) and
per-cell rate in a multi-cell setting (Fig. 10). The sum-rate is
defined as follows:

(32)

where is the number of simultaneously served users, and
is the uplink signal-to-noise-plus-interference ratio

(SINR) of the -th user.
In Fig. 9, we show the performance of subspace-based MRC

beamforming in a single-cell network where two users share
the same pilot. The total number of distributed antennas is 500.
In the figure “ ” denotes the sum-rate performance
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of MRC beamforming using the LS channel estimate, while the
curve “ ” is the performance of MRC beam-
forming using the MMSE estimate (4). “ ”
denotes the performance curve of MMSE beamforming using
MMSE channel estimate when channel covariances (including
the interference covariances) are assumed known during
both channel estimation and signal detection. The simulation
shows the simple subspace-based method has a very good per-
formance. Due to pilot contamination, the MRC beamformer
using MMSE channel estimate is not as good as subspace-based
method. The reason is that and generally have over-
lapping signal subspaces here. We may also notice that the
subspace-based MRC beamformer has some slight performance
gains over the MMSE beamformer.

Fig. 10 depicts the uplink per-cell rate achieved by the above-
mentioned MRC beamformers as a function of scattering ra-
dius . In the simulation we have 7 hexagonal cells with one
center cell and 6 surrounding cells. Each cell has one user. All
the users share the same pilot sequence. The per-cell rate is de-
fined as the sum-rate (32) divided by the number of cells. As can
be seen, the subspace-based beamforming shows performance
gains over other traditional MRC methods especially when the
radius of scattering ring is smaller. It also shows more robust-
ness than MMSE beamformer when the radius of the scattering
ring is larger.

VI. CONCLUSION

We investigate low-dimensional properties of covariance
signal subspaces in general topologies of massive arrays. We
extend previous results known in the uniform linear array case
to the case of arrays with random placement, including the case
of scattered antennas over a 2D dense network. A correlation
model is derived which is exploited to gain insight on the
interference rejection capability of low-complexity matched
filter-based receivers in distributed antenna settings.

APPENDIX

A. Proof of Proposition 2

We first consider an -antenna ULA with aperture and
antenna spacing . Define

Now we define . Recall from [10]
the following result:

If . Given
and , define ,

when is large,

(33)

The above conclusion can directly apply: when is large,

Fig. 11. Illustration of a line of scatterers.

We can observe that has no dependency on .
Imagine for any finite aperture , we let so that

. In this case, all elements of can be seen as
(finite) random samples in the vector . Hence

Now consider the space . We define
. An upper bound of its dimension can be obtained

by considering the extreme case when all spaces are mutually
orthogonal so that their dimensions can add up:

Thus, Proposition 2 is proven.

B. Proof of Theorem 1

For ease of exposition we omit the user index . Imagine a
special case when the scatterers are located in a line which has
the length , as shown in Fig. 11. Assume the antennas are far
away so that the scatterers are in the same planar wavefront
region. We denote the right end of the scattering line as the
reference point. The -th antenna is located meters away
from the reference point, at the angle . The -th scatter is

meters away from the reference point. follows a uni-
form distribution, i.e., . The phase shift between
the scatterer and the reference point is

.
Define a diagonal phase matrix

The -th scattering path vector channel is now given by:

...
...
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If we define , we
may see that and are unitarily equivalent, since
forms a unitary matrix. If we vary , we can obtain two linear
spaces spanned by and/or . The dimensions of the two
spaces are equal. Therefore in the following we will find the
dimension spanned by instead of . Assume is a large
integer, we define , the set

, as well as the vector

...
...

Since , we reuse the result shown in (33):

Note that the above result holds when is arbitrarily large.
We again observe that when , any will fall into
the set , which indicates

(34)

Recall that the covariance matrix .

Because of the random and independent phases and ,

We can see that the number of scatterers has no impact on the
rank of channel covariance matrix. Hence according to (34), the
rank of is upper bounded by

Returning to the one-ring model, we can interpret the ring as
the sum of lines, with the total length . An extreme case is
when all of the channels corresponding to different pieces of
the ring span orthogonal spaces, i.e., the rank of the covariance
matrix is the sum of the spatial dimensions corresponding to
every pieces of the ring. This is the case when the covariance
rank is maximized. Therefore the rank is upper bounded by:

Thus Theorem 1 is proven.

C. Proof of Proposition 5

We split up the disk centered in the midpoint between the
two scatterers into (a large number) equal-sized sectors like

dividing up a cake. The BS antennas all fall into one of these
sectors. We have

where (could be zero) is the total number of antennas lo-
cated in the -th sector, and are the channel co-
efficient between the -th antenna located in the -th sector
and the two scatterers. If is large, the angle contained by the
two sides of a sector is small. Therefore BS antennas located
in the same sector share the same difference of distances be-
tween the two scatterers, i.e., only depends on
the sector index . Based on the fact that is small, we as-
sume and ,
where is the AOA from the BS antennas in the -th
sector.

Due to the symmetry of the network, when , the radio
waves can arrive from any direction with equal probability.
Thus is independent of sector index .

and Proposition 5 is proven.
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Dealing With Interference in Distributed Large-Scale
MIMO Systems: A Statistical Approach

Haifan Yin, David Gesbert, Fellow, IEEE, and Laura Cottatellucci

Abstract—This paper considers the problem of interference con-
trol through the use of second-order statistics in massive MIMO
multi-cell networks. We consider both the cases of co-located mas-
sive arrays and large-scale distributed antenna settings. We are in-
terested in characterizing the low-rankness of users’ channel co-
variance matrices, as such a property can be exploited towards
improved channel estimation (so-called pilot decontamination) as
well as interference rejection via spatial filtering. In previous work,
it was shown that massive MIMO channel covariance matrices ex-
hibit a useful finite-rank property that can be modeled via the an-
gular spread of multipath at a MIMO uniform linear array. This
paper extends this result to more general settings including cer-
tain non-uniform arrays, and more surprisingly, to two dimen-
sional distributed large scale arrays. In particular our model ex-
hibits the dependence of the signal subspace’s richness on the scat-
tering radius around the user terminal, through a closed form ex-
pression. The applications of the low-rankness covariance property
to channel estimation’s denoising and low-complexity interference
filtering are highlighted.

Index Terms—Massive MIMO, distributed antennas, channel es-
timation, interference mitigation, covariance matrix.

I. INTRODUCTION

F ULL spatial reuse of the frequency resource across even
neighboring cells is a de facto standard approach in wire-

less network design. The downside of this strategy lies in the
high amount of inter-cell interference, which in turn severely
limits the performance of certain users, especially at cell-edge.
This fact has fueled extensive research on interference manage-
ment, and particularly on methods relying on the use of spa-
tial filtering at the base station side. Recently, two schools of
thought have emerged with conflicting strategies for how to best
exploit the added spatial dimension offered by multiple-input
multiple-output (MIMO) antennas. In the first, the focus is on
strengthening local beamforming capabilities by endowing each
base station with a massive number of antenna elements that
is substantially larger than the number of terminals served in
the same cell on any given spectral resource block. The added
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cost of hardware is compensated by the fact that simple dis-
tributed beamforming schemes that require little inter-cell co-
operation can efficiently mitigate interference [1]–[4]. In the
second school, cooperation between cells is emphasized as the
key towards increasing the spatial degrees of freedom [5]. In
the cooperation approach, so-called network MIMO (or CoMP
in the 3GPP terminology) schemes mimic the transmission over
a virtual MIMO array encompassing the spatially distributed
base station antennas. In contrast with the massive MIMO so-
lution, the cooperative spatial filtering of interference is made
possible with no additional antennas at the base station side, yet
it goes at the expense of fast signaling links over the backhaul, a
need for tight synchronization, and seemingly multi-user detec-
tion schemes that are computationally more demanding than the
simple matched filters advocated in massive MIMO. Addition-
ally, a major hurdle preventing from realizing the full gains of
MIMO multi-cell cooperation lies in the cost of acquiring and
sharing channel estimates using orthogonal training sequences
over large clusters [6].

Despite these differences, a fundamental common feature be-
hind each philosophy lies in the coherent combining of a large
number of antennas in view of interference nulling. Addition-
ally, in both cases, our ability to reject interference is only as
good as our ability to estimate the user channels properly. In the
context of co-located massive MIMO, channel estimation from
pilots that are inevitably reused over space leads to the so-called
pilot contamination effect [7], [8]. Although initially branded as
a fundamental limit of massive MIMO communications, a finer
impact analysis of pilot contamination indicates that it is only
one of several limitations of such systems [9]. When it comes to
improving channel estimation, several possible solutions were
recently proposed in a series of papers [10]–[12]. In [10], an ap-
proach to de-interfere channel estimates was revealed based on
the exploitation of second-order statistical properties of the re-
ceived vector signal. The key enabler is the finite-rankness of
the channels’ covariance matrices which was shown to occur
in the asymptotic massive MIMO regime whenever the angle
spread of incoming/departing paths at the MIMO array is lim-
ited. Independently, a similar finite-rank property was shown
to be useful in the context of low-complexity scheduling and
spatial beamforming for massive MIMO networks [13]. Hence
the low-dimensional property for the signal subspace (i.e., in
which the MIMO channel realizations live) is instrumental to
spatial interference rejection. These results were all reached for
the case of uniform (equi-spaced) calibrated linear arrays. A nat-
ural question then arises as to whether the low-rank property can
be established and exploited in more general large-scale antenna

1932-4553 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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settings, such as random and two dimensional antenna place-
ments. This paper is devoted to this problem.

A first examination of [10], [13] indicates that the finite-rank
behavior is rooted in the asymptotic orthogonality between
Fourier transform vectors corresponding to different path
angles, suggesting the property might be restricted to the use
of one-dimensional equi-spaced arrays. However our results
point otherwise, showing low-rankness of channel’s subspace
for large-scale antenna systems is a recurrent trend applying to
random and also distributed antenna placements, hence with a
wider applicability to cooperative networks.

Our specific contributions are as follows: First we consider
a uniform linear massive array scenario yet with several clus-
ters of multipath. In this case we establish a finite-rank model
for the channel’s covariance that directly extends that of [10],
where the rank is shown to be a function of the incoming/de-
parting angular spread of multipath. We then show that a similar
low-rank result holds for a linear array with random placement
of antenna elements. Although in this case, unlike the uniform
array, the finite rank is only characterized by an upper bound.
We show how this property can be used towards, for instance,
pilot decontamination.

In the second part of the paper, we turn to a large-scale
antenna regime where the antenna elements are scattered ran-
domly throughout the (dense) network, yet can still be combined
coherently. Such a setting with spatially distributed antennas
includes remote radio head (RRH) networks, network-MIMO
(CoMP) schemes with large clusters, and cloud-enabled radio
access networks (C-RAN) as particular cases. A channel model
building on the classical one-ring multipath model [14], [15]
is proposed to analyze this scenario. In this setting we show
that, there again surprisingly, the channel covariance exhibits
a low-dimensional signal subspace behavior, in the large
number of base station antenna regime, even discounting path
loss effects. We show the richness of the covariance’s signal
subspace is primarily governed by the scattering radius around
the user terminal. We provide a closed form expression for an
upper-bound of the covariance rank and show by simulation
how this bound closely matches reality. Note that the notion
that the total perimeter occupied by scatterers can govern the
rank of the signal subspace in a distributed MIMO antenna
setting is reminiscent of a previously observed phenomenon
in the different context of compact MIMO arrays. In [16], the
authors establish a physical model for the dimension of the
spatial multipath field of a disk-shaped compact area filled with
MIMO antennas and illuminated by isotropic multipaths.

In the last part of the paper, we turn our attention to the ex-
ploitation of signal-subspace’s low-rankness towards interfer-
ence rejection for a distributed array. We derive a lower bound
on the signal to interference ratio that would be obtained in a two
user setting with a simple matched filter, as a function of the dis-
tance between the users and the number of antennas. We show
how a distance of two scattering radii can be selected as a critical
minimal distance between selected co-channel users in a sched-
uling algorithm so as to facilitate interference nulling. As an ap-
plication of the low-rankness property, a simple subspace-based
interference mitigation scheme is put forward, which exploits
the statistical information of the interference channels. Numer-
ical results are presented in the last section.

The notations adopted in the paper are as follows. We use
boldface to denote matrices and vectors. Specifically, de-
notes the identity matrix. , and denote
the transpose, conjugate, and conjugate transpose of a matrix
respectively. denotes the expectation, denotes the
Frobenius norm. The Kronecker product of two matrices and

is denoted by . is the span of
linear vector space on the basis of for some

is the dimension of a linear space , and
is the null space of matrix . denotes a di-
agonal matrix or a block diagonal matrix with at the
main diagonal. is used for definition.

II. CO-LOCATED MASSIVE LINEAR ARRAYS

We consider the uplink1 of a network of time-synchronized
cells, with full spectrum reuse. Each of the base stations is
equipped with a one-dimensional array of antennas, where

is allowed to grow large (massive MIMO regime). For ease
of exposition, all user terminals are assumed to be equipped with
a single antenna. Furthermore we consider that a single user is
served per cell and per resource block. A classical multipath
model is given by [17]:

(1)

where is the arbitrary number of i.i.d. paths, denotes the
path loss for channel , and is the i.i.d. random phase,
which is independent over channel index and path index .

is the signature (or phase response) vector by the array to
a path originating from the angle . Note that in the case of an
equi-spaced array, has a Fourier structure.

A. Channel Estimation

When it comes to channel estimation it is assumed that or-
thogonal pilots are used by users located in the same cell, so
that intra-cell pilot interference can be neglected. Sets of pilot
sequences are however assumed to be fully reused from cell to
cell, causing maximum inter-cell pilot interference. The pilot
sequence is denoted by:

(2)

The power of the pilot sequence is assumed to be .
The channel vector between the -th cell user and the target
base station is . Without loss of generality, we assume the
1st cell is the target cell. Thus, is the desired channel while

are interference channels. During the pilot phase, the
signal received at the target base station is

(3)

where is the spatially and temporally white addi-
tive Gaussian noise (AWGN) with zero-mean and element-wise
variance . Assuming the desired and interference covariance
matrices can be estimated in a preamble, the

1Similar principles would apply in the downlink, which for ease of exposition
is ignored here.
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Bayesian (or equivalently MMSE) estimate of the target channel
vector is given by [3], [10], [18]:

(4)

where the training matrix and . An
interesting question is under which conditions in
the massive MIMO regime , where the superscript no
int refers to the “no interference case.” This question was previ-
ously addressed in [10], revealing the following sufficient con-
dition for achieving total interference suppression in the large

regime:

(5)

where the above condition requires the target channel covari-
ance to exhibit a non-empty null space (aka low-dimensional
subspace) and for all other interference covariances’ signal sub-
spaces to fall within this null space (see the proof in [10]). In
practice, the inclusion condition in (5) can be realized by a user
grouping algorithm [10], [13], as long as the rank of each co-
variance is small enough in relation to .

B. Low-Rank Properties of General Linear Arrays

In [10], [13], a linear equi-spaced array was considered. The
propagation model also assumed that multipaths impinge on the
base station array with angles of arrival (AOA) spanning an in-
terval 2. It is then shown that condition (5)
is satisfied provided AOAs corresponding to interfering users
fall outside . The assumptions of a single cluster
of multipath and of a calibrated equi-spaced array are however
restrictive. Below, we generalize this result to more realistic
settings.

1) Multiple Clusters: We now consider a general multipath
model when the AOAs corresponding to the desired channel are
still bounded, but come from several disjoint clusters [17]. The
steering vector in (1) is [19]

...
(6)

where is the antenna spacing and is the signal wavelength.
Let denote the number of clusters. Let denote
the interval of AOAs for the -th cluster of desired paths in the

interval. See an illustration in Fig. 1 for .
For a uniform linear array, we have the following proposition

in the massive MIMO regime:
Proposition 1: The rank of channel covariance matrix

satisfies:

2Note that a path coming from angle yields identical steering vector to
that from . Therefore we can limit ourselves to AOAs within .

Fig. 1. Desired channel composed of clusters of multipath.

where is defined as

Proof: The channel can be seen as the sum of elementary
channels each of which corresponds to one separate clusters.
Then can be decomposed into a sum of covariances over these
clusters. Since the clusters are separated, the signal subspaces
of the corresponding covariances are orthogonal and therefore
their dimensions add up. Then based on [10] Lemma 1, the proof
of Proposition 1 can be readily obtained.

Now define the total set of AOAs of the desired channel as

(7)

so that the probability density function (PDF) of the de-
sired AOA satisfies if and if

. In the same way, the PDF of all interference AOAs sat-
isfies if and otherwise, where
is the union of all possible interference AOAs. We have the fol-
lowing result for the massive uniform array:

Corollary 1: if and , then the MMSE
estimate of (4) satisfies:

(8)

Proof: It can be shown that from [10] Lemma 2, condition
(5) will be fulfilled as long as interfering AOAs do not overlap
with any of the clusters for the desired channel, in which case
if we analyze the received signal using eigen-value decompo-
sition, we can find the interference disappears asymptotically
because of its orthogonality with the signal space of desired
channel covariance. (8) is obtained in the same way as [10]. As
a result we omit the detailed proof in this paper.

2) Random Arrays: Tightly calibrated arrays with uniform
spacing are hard to realize in practice. An interesting question is
whether the above results carry on to the setting of linear arrays
with random antenna placement. To study this case, we consider
a set of antennas randomly located over a line, and spanning a
total aperture of meters. We investigate the extended array
and is allowed to grow with .
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In this case, an elementary path coming from an angle can
be represented via the corresponding array response vector as:

... (9)

where the position of the -th antenna3 ,
follows a uniform distribution, i.e., . The PDF of
AOA for the desired paths is non-zero only when , as in
Section II-B1. Define the average antenna spacing .
Assuming the aperture of antenna array is increasing linearly
with , i.e., is constant, we now have the extended results
on the low-dimensional property:

Proposition 2: Define

where , and
are values such that

then we have
•
•

Proof: See Appendix A.
Proposition 2 indicates the dimensions spanned in massive
MIMO regime by elementary paths for (i) single cluster of
AOA, and (ii) multiple disjoint clusters of AOA, respectively.
The following result now directly generalizes Proposition 1 to
random arrays.

Proposition 3: With a bounded support of AOAs as in (7),
the rank of channel covariance matrix satisfies:

(10)

Proof: We can readily obtain this result by replacing with
in Proposition 2.

This result above suggests that the low-dimensional feature of
signal subspaces in massive MIMO is not critically linked to the
Fourier structure of the steering vectors. Furthermore, it should
be noted that the above upper bound is actually very tight for
large , as witnessed from the simulation in Fig. 2, where we
take for example. The AOA spread is 40
degrees, and the closed form model refers to

We can observe that is well approximated by .
Proposition 3 and Fig. 2 suggest that a property of rank addi-

tivity holds for multiple disjoint clusters of AOAs in the massive

3Note that antenna ordering has no impact on our results.

Fig. 2. Closed-form rank model for the channel covariance vs. actual rank.

MIMO regime, i.e., for . In the following proposi-
tion we extend the results of Corollary 1 to the case of random
arrays under the weaker assumption of rank additivity for the
covariance matrices of the desired and interference channels.

Proposition 4: Let be the covariance matrix of desired
channel and be the covariance of the sum of all interference
channels. If and satisfy the following rank additivity
property

then in the high SNR regime, the linear MMSE estimate of the
desired channel is error free, or, in other words, its error covari-
ance matrix vanishes.

Proof: In the case of absence of white Gaussian noise, i.e.,
, and rank deficient signal and interference covariance

matrices, the error covariance matrix of linear MMSE estimator
[20] can be generalized as

(11)

where denotes the Moore-Penrose generalized inverse of
the matrix argument. Let us denote by , with

unitary matrix, and diagonal matrix, the
eigenvalue decomposition of the Hermitian matrix . Then,

, where the elements of the matrix are
given by

Additionally, denotes the column space of and the
corresponding nonzero eigenvalues such that .
Then, under the assumption of rank additivity of the covariance
matrices and , the theorem on the Moore-Penrose gener-
alized inverse for sum of matrices in [21] yields

(12)

where and .
Let us observe that

(13)
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Fig. 3. Channel estimation performance vs. , 2-cell network,
angle spread 30 degrees, , cell-edge SNR is 20 dB. We compare
the standard Least Squares (LS) to MMSE estimators, in interference and inter-
ference-free scenarios.

We focus on the first equality. The proof of the second equation
follows along the same line. By appealing to the mixed type
reverse order laws of the matrix and the matrix

in [22]

can be rewritten as

The first equality is obtained utilizing the fact that the matrices
and are orthogonal projectors and thus

idempotent. Then,

Finally, substituting (12) into (11) and accounting for orthogo-
nality in (13)

In the last equality we use one of the fundamental relations
defining the Moore-Penrose generalized inverse.

According to Proposition 3, the rank additivity condition is in
general satisfied when the AOA support of desired channel and
that of interference channels span disjoint region of spaces, i.e.,

. This property can be exploited in pilot decontam-
ination or interference rejection. Fig. 3 shows the channel esti-
mation performance in the presence of contaminating pilots. In
the simulation, we consider a 2-cell network. Each cell has one
single-antenna user who uses identical pilot sequence. The mean
squared error (MSE) of uplink channel estimation is shown. The
simulation suggests that the MMSE channel estimator is able to
rid itself from pilot contamination effects as the number of an-
tennas is (even moderately) large, which verifies Proposition 4.

Fig. 4. The distributed large-scale antenna setting with a one-ring model.

III. FINITE RANK MODEL IN DISTRIBUTED ARRAYS

We now turn to another popular form of large scale antenna
regime, often referred to in the literature as distributed antenna
systems. In such a setting, a virtual base station is deployed
having its antennas scattered throughout the cell.4 We con-
sider again the uplink in which joint combining across all BS
antennas is assumed possible. The base station antennas are
assumed uniformly and randomly located in a fixed size net-
work, serving single-antenna users. is allowed to grow large
giving rise to a so-called dense network. Our model assumes a
disk-shaped cell of radius , although simulation and intuition
confirm that the actual shape of the cell’s boundary is irrelevant
to the main result.

A. Channel Model

In order to facilitate the analysis, we adopt the one-ring
model [14], [15] where users are surrounded by a ring of
local scatterers (see Fig. 4) located meters away from the
user. The positions of the scatterers are considered to follow
a uniform distribution on the ring. In the one-ring model, the
propagation from user to base is assumed to follow paths
(hereafter referred to as scattering paths), where each path

bounces once on the -th scatterer before reaching all
destinations.5 Hence, the path length from user to the -th
antenna via the -th path is , where is the
distance between the -th scatterer of the -th user and the

-th BS antenna. The path loss of the -th scattering path is
modeled by:

(14)

4For ease of exposition we temporarily consider a single cell setting in this
section, i.e., . However simulation is also done later in a multi-cell
scenario.

5Note that this model assumes the BS antennas are high enough above clutter
so that there is no local scattering around the BS antennas.
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where is a constant that can be computed based on desired
cell-edge SNR, and is the path loss exponent. We scale the
amplitude of each path by . The channel between user and
all BS antennas is given by:

(15)

where is the -th scattering path vector channel between
user and all base stations:

... (16)

where denotes the random common phase of that scat-
tering path vector due to possible random perturbations of the
user location around the ring center or the phase shift due to the
reflection on the scatterer. is assumed i.i.d. and uniformly
distributed between 0 to .

B. A Low-Rank Model for Distributed Arrays

We have shown in Section II-B the low-dimension property
for linear antenna array systems. In attacking this problem it is
important to distinguish the rank reduction effect due to path
loss from the intrinsic finite-rank behavior of the large antenna
channel covariance in an equal path loss regime. In fact, in an
extended network (i.e., where some base station antennas can
be arbitrarily far from some users), the signal of any given user
will be received over only a limited number of antennas in its
vicinity, thereby effectively limiting the channel rank to the size
of this neighborhood. To circumvent this problem, we consider
below a (dense) network where the path loss terms are set ar-
tificially to be all equal (to one) and study the finite-rankness
under such conditions. In this model, the channel covariance is
defined as where the expectation is taken over
the random positions of the scatterers on the ring. Note that our
analysis indicates that a randomization over the user’s location
inside the scattering’s disk would produce an identical upper
bound on the rank.

Theorem 1: The rank of the channel covariance matrix for a
distributed antenna system satisfies:

(17)

Proof: See Appendix B.
In reality we show below that the right hand side of (17) is a
very close approximation of the actual rank, which is defined as
the number of eigenvalues of which are greater than a pre-
scribed threshold (in our simulations it is taken to be 10e-5).
Theorem 1 shows a linear dependency of the rank on the size of
the scattering ring. When increases, the richer scattering envi-
ronment expands the dimension of signal space. Fig. 5 shows the
behavior of the covariance rank with respect to the scattering ra-
dius . We can see the rank scales linearly with the slope .
However because of the finite number of antennas the rank will
finally saturate towards when keeps increasing.

Fig. 5. Rank vs. m, m.

IV. SPATIAL INTERFERENCE FILTERING

We are now interested in characterizing the orthogonality (or
correlation) between any two user channel vectors as a function
of inter-user distance, the wavelength and the scattering radius
, in the large limit, as this will provide a measure of inter-

ference rejection capability for the distributed antenna systems.
In the following we will investigate two interference filtering
schemes: 1) the simplistic matched filtering, 2) a subspace pro-
jection filtering.

A. Performance of Interference Filtering Using Matched Filter

We start with analyzing the channel correlation between
two users who interfere each other. We point out two distinct
regimes, depending on whether the inter-user distance is small
or large.

1) Closely Spaced Users: Closely spaced users are defined
by the fact that the distance between user 1’s and user 2’s scat-
terers is small enough compared with the distance between scat-
terers and receiving antennas so that we can consider planar
wavefronts. We first examine the correlation between any two
scattering paths for user 1 and user 2, corresponding to user 1’s
-th scatterer and user 2’s -th scatterer, with a distance .
Proposition 5: For small enough that the two scatterers

are located in the same planar wavefront region, we have

(18)

where is the zero-order Bessel function of the first kind.
Proof: See Appendix C.

Note that the proof is based on an additional assumption that
the path loss between a certain antenna and the two scatterers
are approximately equal, i.e., if user 1 and user 2 are concerned,
then . Since the two scatterers are very close and
the antenna is much further away, this assumption is reason-
able in practice. To visualize Proposition 5, we draw the curves

of and in Fig. 6. The curves show that

when grows, gets closer and closer to
the Bessel function. The curve named “Envelope by Krasikov”
is an upper bound of the Bessel function developed by Krasikov
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Fig. 6. Illustration of Proposition 5.

in [23], which will be used in Proposition 6. The interpretation
of Proposition 5 is as follows: the highest correlation between
two scattering paths is attained when the spacing between the
two scatterers is very small. Since the Bessel function reaches
its first zero around a spacing of , it implies that the
users ought to be located at least away from each
other to allow for a reuse of spectral resources (such as pilots).
In practice we would intend to schedule users with additional
spacing than just , according to the side lobes of the Bessel
function. Note that our model is similar to Clarke’s model [24],
which indicates if the AOA is uniformly distributed from 0 to

, the autocorrelation of a moving mobile is a scaled Bessel
function.

We use Proposition 5 to derive a lower bound on the signal to
interference ratio (SIR) under a simplified system setting with
just two users (one desired, one interferer) and a matched filter
receiver6. By computing the expectation over the random BS
antenna locations, which is also how we derive the expectation
of SIRs and channel correlations in the rest of this section, we
obtain the following bound of SIR:

Proposition 6: Assume perfect channel estimation, closely
located users, whose scattering rings do not overlap. The ex-
pected SIR at the matched filter output satisfies:

when is large

where is the distance between the two users and is assumed
to be larger than .

Proof: When applying matched filter, we have

Let us recall that the envelope of the Bessel function is
decreasing with . Thus, the lower bound of SIR is obtained by

6With more users, the interference is simply scaled by the number of users.
Additionally more advanced receivers could also be exploited.

considering the shortest , which gives the worst case corre-
lation. Since , we may obtain when is large:

Finally we use an upper bound of the envelope of the
Bessel function [23] which has validity when

. The bounding argument of the Bessel func-
tion in [23] can directly apply here.
The above proposition quantifies the rate at which the SIR
increases with the inter-user distance, in this case linearly.

2) Distant Users: We consider the regime in which users
are located further away from each other, e.g., many wave-
lengths away. The planar wavefront assumption no longer
holds, making the use of the Bessel function impractical. In this
case we are again interested in characterizing the correlation
between two scattering paths corresponding to two users, then
the correlation between the channel vectors themselves.

We first investigate the behavior of for any :

(19)

where is the channel between the -th user and the -th
BS antenna via the -th scatterer:

(20)

Since the two phases and are independent, we have:

and the variance of is

(21)

Given the random network model with radius , the path loss
correlation can be found by integration over polar coordinates
giving the location of the BS antennas. Although a closed-form
expression is elusive, we get the following computable expres-
sion:

(22)

One example of the path loss correlation is given in
Fig. 7, which shows is a decreasing function of . We
have the following proposition on the distribution of :

Proposition 7: Let be a random variable exponentially dis-
tributed with parameter . Asymptotically for

(23)

where denotes convergence in distribution.
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Fig. 7. An illustration of with , and
.

Proof: Let us consider the random variable

. By the law of large numbers converges almost
surely to 0 as . By appealing to the Central Limit
Theorem (CLT), the random variable converges in
distribution to a complex Gaussian distribution with zero mean
and unit variance. Thus, its square, i.e., , converges
also in distribution to an exponentially distributed random
variable with parameter .

We now derive a lower bound of the average SIR for a two-
user system, assuming matched filtering receiver.

Proposition 8: The lower bound is given by

(24)

where is a constant such that .
Proof: The SIR can be written as:

(25)

Note that has zero mean and a variance
of . In addition, the two variables
and are uncorrelated for any or ,
resulting from the random and independent phases in (16).

The final step is due to the fact that .
Finally we get

and Proposition 8 is proven.
The above result suggests at which rate the matched filtered in-
terference decays as a function of and the inter-user spacing

, which in turn can be exploited to predict system perfor-
mance and also give insights to the tolerable spatial reuse of
pilot resources.

B. Interference Filtering Via Subspace Projection

SIR analysis in previous sections is built upon a simple
matched filter, which still requires an accurate channel es-
timation. In this section, however, we propose a simple
beamforming strategy building on the low-dimensionality of
the signal subspace, which does not require an accurate channel
estimation. We consider a -user network with the first user
being a target user and all other users being interference users.
All these users share the same pilot sequence . Denote the sum
of interference covariances as .
The eigenvalue decomposition of is , where

is a diagonal matrix with the eigenvalues of on
its main diagonal. Suppose the eigenvalues are in descending
order and the first eigenvalues are non-negligible while the
others can be neglected. We construct the spatial filter at the
BS side for user 1 as:

(26)

where is the -th column of . We can assume approxi-
mately that:

(27)

where is the spatially and temporally white additive
Gaussian noise, is the received training signal, and

is the shared pilot sequence. Define the effective
channel . Note that has a reduced size, which is

. An LS estimate of is:

(28)

The key idea is that channel estimate is coarse, yet it can
be used as a modified MRC beamformer as it lies in a subspace
orthogonal to the interference and is also aligned with the signal
subspace of . During uplink data transmission phase:

(29)

where are the transmitted signal se-
quence. are the received signal and noise re-

spectively. The subspace-based MRC beamformer is :

(30)
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Fig. 8. Estimation performance vs. distance between two users,
m, single-cell network.

In case there is no null space for , e.g., the number of users
is large or the interference users have rich scattering envi-

ronments, the subspace-based method can still avoid the strong
eigen modes of interference and therefore reject a good amount
of interference.

Note that the subspace projection method has a certain sim-
ilarity with [11] which also uses eigen-value decomposition in
order to perform blind channel estimation. However there are
two main differences: 1) They address only the case of classical
massive arrays, not distributed antenna arrays; 2) They use the
received power levels domain to separate desired channel and
interfering channels. In our approach, the discrimination against
interference is related to the phases with which the interference
and desired signals arrive at the array. In fact, the two techniques
could in principle be combined.

V. NUMERICAL RESULTS

We first consider the channel estimation quality in a random
network with radius meters. The path loss exponent

. The scattering radius is meters.
scatterers are randomly distributed in the scattering ring, which
is centered at the user. Define the channel estimation MSE of
the -th user as:

(31)

In the simulation we average the channel estimation MSE over
different users in order to obtain MSE curve.

In Fig. 8, we assume the target user is located at the origin
while an interfering user (they share the same pilot sequence)
is moving over the horizontal axis at increasing distances from
user 1. As we can observe, when the MMSE estimator (4) is
used, the channel estimation error is a monotonous decreasing
function of the distance between the desired user and the in-
terference user. One may also notice the constant performance
gap between LS and MMSE estimator in interference-free sce-
nario, which indicates that covariance information is still helpful
even in a highly distributed antenna system. As shown in the

Fig. 9. Uplink sum-rate vs. distance between 2 users, m,
cell-edge SNR 20 dB, single-cell network.

Fig. 10. Uplink per-cell rate vs. , cell-edge SNR 20 dB, 7-cell network, each
cell has distributed antennas.

blue curve on the top, an LS estimator is unable to separate
the desired channel and the interference channel. In contrast,
an MMSE estimator has much better performance as its MSE is
decreasing almost linearly with inter-user spacing, hence con-
firming our claims.

We then examine the performance of four MRC beamformers
in terms of uplink sum-rate in a single-cell setting (Fig. 9) and
per-cell rate in a multi-cell setting (Fig. 10). The sum-rate is
defined as follows:

(32)

where is the number of simultaneously served users, and
is the uplink signal-to-noise-plus-interference ratio

(SINR) of the -th user.
In Fig. 9, we show the performance of subspace-based MRC

beamforming in a single-cell network where two users share
the same pilot. The total number of distributed antennas is 500.
In the figure “ ” denotes the sum-rate performance
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of MRC beamforming using the LS channel estimate, while the
curve “ ” is the performance of MRC beam-
forming using the MMSE estimate (4). “ ”
denotes the performance curve of MMSE beamforming using
MMSE channel estimate when channel covariances (including
the interference covariances) are assumed known during
both channel estimation and signal detection. The simulation
shows the simple subspace-based method has a very good per-
formance. Due to pilot contamination, the MRC beamformer
using MMSE channel estimate is not as good as subspace-based
method. The reason is that and generally have over-
lapping signal subspaces here. We may also notice that the
subspace-based MRC beamformer has some slight performance
gains over the MMSE beamformer.

Fig. 10 depicts the uplink per-cell rate achieved by the above-
mentioned MRC beamformers as a function of scattering ra-
dius . In the simulation we have 7 hexagonal cells with one
center cell and 6 surrounding cells. Each cell has one user. All
the users share the same pilot sequence. The per-cell rate is de-
fined as the sum-rate (32) divided by the number of cells. As can
be seen, the subspace-based beamforming shows performance
gains over other traditional MRC methods especially when the
radius of scattering ring is smaller. It also shows more robust-
ness than MMSE beamformer when the radius of the scattering
ring is larger.

VI. CONCLUSION

We investigate low-dimensional properties of covariance
signal subspaces in general topologies of massive arrays. We
extend previous results known in the uniform linear array case
to the case of arrays with random placement, including the case
of scattered antennas over a 2D dense network. A correlation
model is derived which is exploited to gain insight on the
interference rejection capability of low-complexity matched
filter-based receivers in distributed antenna settings.

APPENDIX

A. Proof of Proposition 2

We first consider an -antenna ULA with aperture and
antenna spacing . Define

Now we define . Recall from [10]
the following result:

If . Given
and , define ,

when is large,

(33)

The above conclusion can directly apply: when is large,

Fig. 11. Illustration of a line of scatterers.

We can observe that has no dependency on .
Imagine for any finite aperture , we let so that

. In this case, all elements of can be seen as
(finite) random samples in the vector . Hence

Now consider the space . We define
. An upper bound of its dimension can be obtained

by considering the extreme case when all spaces are mutually
orthogonal so that their dimensions can add up:

Thus, Proposition 2 is proven.

B. Proof of Theorem 1

For ease of exposition we omit the user index . Imagine a
special case when the scatterers are located in a line which has
the length , as shown in Fig. 11. Assume the antennas are far
away so that the scatterers are in the same planar wavefront
region. We denote the right end of the scattering line as the
reference point. The -th antenna is located meters away
from the reference point, at the angle . The -th scatter is

meters away from the reference point. follows a uni-
form distribution, i.e., . The phase shift between
the scatterer and the reference point is

.
Define a diagonal phase matrix

The -th scattering path vector channel is now given by:

...
...
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If we define , we
may see that and are unitarily equivalent, since
forms a unitary matrix. If we vary , we can obtain two linear
spaces spanned by and/or . The dimensions of the two
spaces are equal. Therefore in the following we will find the
dimension spanned by instead of . Assume is a large
integer, we define , the set

, as well as the vector

...
...

Since , we reuse the result shown in (33):

Note that the above result holds when is arbitrarily large.
We again observe that when , any will fall into
the set , which indicates

(34)

Recall that the covariance matrix .

Because of the random and independent phases and ,

We can see that the number of scatterers has no impact on the
rank of channel covariance matrix. Hence according to (34), the
rank of is upper bounded by

Returning to the one-ring model, we can interpret the ring as
the sum of lines, with the total length . An extreme case is
when all of the channels corresponding to different pieces of
the ring span orthogonal spaces, i.e., the rank of the covariance
matrix is the sum of the spatial dimensions corresponding to
every pieces of the ring. This is the case when the covariance
rank is maximized. Therefore the rank is upper bounded by:

Thus Theorem 1 is proven.

C. Proof of Proposition 5

We split up the disk centered in the midpoint between the
two scatterers into (a large number) equal-sized sectors like

dividing up a cake. The BS antennas all fall into one of these
sectors. We have

where (could be zero) is the total number of antennas lo-
cated in the -th sector, and are the channel co-
efficient between the -th antenna located in the -th sector
and the two scatterers. If is large, the angle contained by the
two sides of a sector is small. Therefore BS antennas located
in the same sector share the same difference of distances be-
tween the two scatterers, i.e., only depends on
the sector index . Based on the fact that is small, we as-
sume and ,
where is the AOA from the BS antennas in the -th
sector.

Due to the symmetry of the network, when , the radio
waves can arrive from any direction with equal probability.
Thus is independent of sector index .

and Proposition 5 is proven.
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