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Abstract—Thispaper consider sthe problem of inter ference con-
trol through the use of second-order statistics in massive MIMO
multi-cell networks. We consider both the cases of co-located mas-
sivearraysand large-scaledistributed antenna settings. We arein-
terested in characterizing the low-rankness of users channel co-
variance matrices, as such a property can be exploited towards
improved channel estimation (so-called pilot decontamination) as
well asinterferencerejection viaspatial filtering. In previouswork,
it was shown that massive MM O channel covariance matrices ex-
hibit a useful finite-rank property that can be modeled viathe an-
gular spread of multipath at a MIMO uniform linear array. This
paper extends this result to more general settings including cer-
tain non-uniform arrays, and more surprisingly, to two dimen-
sional distributed large scale arrays. In particular our model ex-
hibitsthe dependence of the signal subspace'srichnesson the scat-
tering radius around the user terminal, through a closed form ex-
pression. Theapplicationsof thelow-ranknesscovarianceproperty
to channel estimation’sdenoising and low-complexity interference
filtering are highlighted.

Index Terms—Massive MIM O, distributed antennas, channel es-
timation, interference mitigation, covariance matrix.

|. INTRODUCTION

ULL spatial reuse of the frequency resource across even

neighboring cellsis a de facto standard approach in wire-
less network design. The downside of this strategy lies in the
high amount of inter-cell interference, which in turn severely
limits the performance of certain users, especialy at cell-edge.
Thisfact has fueled extensive research on interference manage-
ment, and particularly on methods relying on the use of spa-
tial filtering at the base station side. Recently, two schools of
thought have emerged with conflicting strategies for how to best
exploit the added spatial dimension offered by multiple-input
multiple-output (MIMO) antennas. In the first, the focusis on
strengthening local beamforming capabilitiesby endowing each
base station with a massive number of antenna elements that
is substantially larger than the number of terminals served in
the same cell on any given spectral resource block. The added
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cost of hardware is compensated by the fact that simple dis-
tributed beamforming schemes that require little inter-cell co-
operation can efficiently mitigate interference [1]-{4]. In the
second school, cooperation between cells is emphasized as the
key towards increasing the spatial degrees of freedom [5]. In
the cooperation approach, so-called network MIMO (or CoOMP
in the 3GPP terminology) schemes mimic the transmission over
a virtua MIMO array encompassing the spatially distributed
base station antennas. In contrast with the massive MIMO so-
lution, the cooperative spatial filtering of interference is made
possible with no additional antennas at the base station side, yet
it goes at the expense of fast signaling links over the backhaul, a
need for tight synchronization, and seemingly multi-user detec-
tion schemesthat are computationally more demanding than the
simple matched filters advocated in massive MIMO. Addition-
ally, amajor hurdle preventing from realizing the full gains of
MIMO multi-cell cooperation lies in the cost of acquiring and
sharing channel estimates using orthogonal training sequences
over large clusters [6].

Despite these differences, afundamental common feature be-
hind each philosophy lies in the coherent combining of alarge
number of antennas in view of interference nulling. Addition-
ally, in both cases, our ability to reject interference is only as
good as our ability to estimate the user channels properly. Inthe
context of co-located massive MIMO, channel estimation from
pilotsthat areinevitably reused over space leadsto the so-called
pilot contamination effect [ 7], [8]. Although initially branded as
afundamental limit of massive MIMO communications, afiner
impact analysis of pilot contamination indicates that it is only
one of several limitations of such systems[9]. When it comesto
improving channel estimation, several possible solutions were
recently proposed in aseries of papers[10]-{12]. In[10], an ap-
proach to de-interfere channel estimates was revealed based on
the exploitation of second-order statistical properties of the re-
ceived vector signal. The key enabler is the finite-rankness of
the channels' covariance matrices which was shown to occur
in the asymptotic massive MIMO regime whenever the angle
spread of incoming/departing paths at the MIMO array is lim-
ited. Independently, a similar finite-rank property was shown
to be useful in the context of low-complexity scheduling and
spatial beamforming for massive MIMO networks [13]. Hence
the low-dimensiona property for the signal subspace (i.e., in
which the MIMO channel realizations live) is instrumental to
spatial interference rejection. These results were all reached for
the case of uniform (equi-spaced) calibrated linear arrays. A nat-
ural question then arisesasto whether thelow-rank property can
be established and exploited in more general large-scale antenna
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settings, such as random and two dimensional antenna place-
ments. This paper is devoted to this problem.

A first examination of [10], [13] indicates that the finite-rank
behavior is rooted in the asymptotic orthogonality between
Fourier transform vectors corresponding to different path
angles, suggesting the property might be restricted to the use
of one-dimensional equi-spaced arrays. However our results
point otherwise, showing low-rankness of channel’s subspace
for large-scale antenna systems is a recurrent trend applying to
random and also distributed antenna placements, hence with a
wider applicability to cooperative networks.

Our specific contributions are as follows: First we consider
a uniform linear massive array scenario yet with several clus-
ters of multipath. In this case we establish a finite-rank model
for the channel’s covariance that directly extends that of [10],
where the rank is shown to be a function of the incoming/de-
parting angular spread of multipath. We then show that asimilar
low-rank result holds for alinear array with random placement
of antenna elements. Although in this case, unlike the uniform
array, the finite rank is only characterized by an upper bound.
We show how this property can be used towards, for instance,
pilot decontamination.

In the second part of the paper, we turn to a large-scale
antenna regime where the antenna elements are scattered ran-
domly throughout the (dense) network, yet can still be combined
coherently. Such a setting with spatially distributed antennas
includes remote radio head (RRH) networks, network-MIMO
(CoMP) schemes with large clusters, and cloud-enabled radio
access networks (C-RAN) as particular cases. A channel model
building on the classical one-ring multipath model [14], [15]
is proposed to analyze this scenario. In this setting we show
that, there again surprisingly, the channel covariance exhibits
a low-dimensional signal subspace behavior, in the large
number of base station antenna regime, even discounting path
loss effects. We show the richness of the covariance's signal
subspace is primarily governed by the scattering radius around
the user terminal. We provide a closed form expression for an
upper-bound of the covariance rank and show by simulation
how this bound closely matches reality. Note that the notion
that the total perimeter occupied by scatterers can govern the
rank of the signal subspace in a distributed MIMO antenna
setting is reminiscent of a previously observed phenomenon
in the different context of compact MIMO arrays. In [16], the
authors establish a physical model for the dimension of the
spatial multipath field of a disk-shaped compact areafilled with
MIMO antennas and illuminated by isotropic multipaths.

In the last part of the paper, we turn our attention to the ex-
ploitation of signal-subspace’s low-rankness towards interfer-
ence rejection for a distributed array. We derive alower bound
onthesignal to interferenceratio that would be obtainedinatwo
user setting with asimple matched filter, asafunction of thedis-
tance between the users and the number of antennas. We show
how adistance of two scattering radii can be selected asacritical
minimal distance between selected co-channel usersin a sched-
uling algorithm so asto facilitate interference nulling. Asan ap-
plication of the low-rankness property, asimple subspace-based
interference mitigation scheme is put forward, which exploits
the statistical information of the interference channels. Numer-
ical results are presented in the last section.
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The notations adopted in the paper are as follows. We use
boldface to denote matrices and vectors. Specifically, I; de-
notesthe M x M identity matrix. (X)7, (X)*,and (X)# denote
the transpose, conjugate, and conjugate transpose of amatrix X
respectively. E{-} denotes the expectation, | - ||» denotes the
Frobenius norm. The Kronecker product of two matrices X and
Y isdenoted by X ® Y. span{vy,vs,...,v,} isthe span of
linear vector space onthebasisof vy, vo, ..., v, for somen >
1, dim{.A} isthe dimension of alinear space A, and null{R}
is the null space of matrix R.. diag{a;,...,an} denotes a di-
agonal matrix or ablock diagonal matrix withaq, ..., an a the
main diagonal. = is used for definition.

II. Co-LOCATED MASSIVE LINEAR ARRAYS

We consider the uplink? of anetwork of B time-synchronized
cells, with full spectrum reuse. Each of the I3 base stations is
equipped with a one-dimensional array of M antennas, where
M isalowed to grow large (massive MIMO regime). For ease
of exposition, all user terminal s are assumed to be equipped with
a single antenna. Furthermore we consider that a single user is
served per cell and per resource block. A classical multipath
model is given by [17]:

[3; & )
h; = %Za(@ip)e]’oi”, )
p=1

where P is the arbitrary number of i.i.d. paths, 3; denotes the
path loss for channel h;, and e?#» is the i.i.d. random phase,
which is independent over channel index ¢ and path index p.
a(f) isthe signature (or phase response) vector by the array to
a path originating from the angle #. Note that in the case of an
equi-spaced array, a(f) has aFourier structure.

A. Channel Estimation

When it comes to channel estimation it is assumed that or-
thogonal pilots are used by users located in the same cell, so
that intra-cell pilot interference can be neglected. Sets of pilot
sequences are however assumed to be fully reused from cell to
cell, causing maximum inter-cell pilot interference. The pilot
sequence is denoted by:

s-]T. 2

The power of the pilot sequence is assumed to be ss = 7.
The channel vector between the b-th cell user and the target
base station is h,. Without loss of generality, we assume the
1st cell isthe target cell. Thus, h; isthe desired channel while
hy, b > 1 areinterference channels. During the pilot phase, the
signal received at the target base station is

B
Y = ZhbsT + N, (3)
b=1

S = [81 59

where N € C**7 isthe spatially and temporally white addi-
tive Gaussian noise (AWGN) with zero-mean and element-wise
variance o2. Assuming the desired and interference covariance
matrices R, = E{h,h/’} can be estimated in a preamble, the

1Similar principleswould apply inthe downlink, which for ease of exposition
isignored here.
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Bayesian (or equivalently MM SE) estimate of the target channel
vector is given by [3], [10], [18]:

-1

h1 ( n I\I + 7 Z Rb) SHY7 (4)

where the training matrix S£s®Iyand y = Vec(Y) An
interesting question is under which conditions h; — h“" int jn
the massive MIMO regime (M > 1), where the superscript no
int refersto the “no interference case.” This question was previ-
oudly addressed in [10], revealing the following sufficient con-
dition for achieving total interference suppression in the large
M regime:

bﬁz span{R;} C null{R,} (5)

where the above condition requires the target channel covari-
ance to exhibit a non-empty null space (aka low-dimensional
subspace) and for al other interference covariances’ signal sub-
spaces to fall within this null space (see the proof in [10]). In
practice, the inclusion condition in (5) can berealized by a user
grouping algorithm [10], [13], as long as the rank of each co-
variance is small enough in relation to M.

B. Low-Rank Properties of General Linear Arrays

In[10], [13], alinear equi-spaced array was considered. The
propagation model also assumed that multipathsimpinge on the
base station array with angles of arrival (AOA) spanning an in-
terval [#™in, 2] € [0, 7]2. Itisthen shown that condition (5)
is satisfied provided AOAs corresponding to interfering users
fall outside [#™i", §™~*], The assumptions of a single cluster
of multipath and of a calibrated equi-spaced array are however
restrictive. Below, we generalize this result to more redlistic
settings.

1) Multiple Clusters: We now consider a general multipath
model when the AOA s corresponding to the desired channel are
still bounded, but come from several digoint clusters[17]. The
steering vector in (1) is[19]

1
6—j27r% COS(G)
A
a(f) = : ) (6)
e d2w (M_;I)D cos(6)

where D isthe antenna spacing and A isthe signal wavelength.
Let @ denote the number of clusters. Let [42"", §**] denote
theinterval of AOAsfor the ¢-th cluster of desired pathsin the
[0, 7] interval. See anillustration in Fig. 1 for @ = 2.

For auniform linear array, we have the following proposition
in the massive MIMO regime:

Proposition 1: The rank of channel covariance matrix R
satisfies:

rank(R)

M

2Note that a path coming from angle —¢ yields identical steering vector to
that from &. Therefore we can limit ourselves to AOAs within [0, =].

< d, when M is sufficiently large,

Multipath

Glllllll

Fig. 1. Desired channel composed of ¢ = 2 clusters of multipath.

where d is defined as

).

>

Q
= nin(1, Z (cos( 9"““ — cos(8,7%%))
g=1

Proof: The channel can be seen as the sum of elementary
channels each of which corresponds to one separate clusters.
ThenR can bedecomposed into asum of covariancesover these
clusters. Since the clusters are separated, the signal subspaces
of the corresponding covariances are orthogonal and therefore
their dimensionsadd up. Then based on[10] Lemmal, the proof
of Proposition 1 can be readily obtained. O

Now define the total set of AOAS of the desired channel as

O = U107, 03], v

so that the probability density function (PDF) p(6) of the de-
sired AOA satisfies pg(f) > 0if § € 8, and py(8) = 0 if
6 ¢ 6,. Inthe same way, the PDF of all interference AOASs sat-
isfies ps(#) > 0if @ € 6; and p;(6) = 0 otherwise, where 6;
isthe union of al possible interference AOAs. We have thefol-
lowing result for the massive uniform array:

Corollary 1: if D < A/2and 8, N @; = (, then the MMSE
estimate of (4) satisfies:

lim hy = }Afl“)im. 8

M—oc

Proof: It can be shown that from [10] Lemma 2, condition
(5) will be fulfilled as long as interfering AOAs do not overlap
with any of the clusters for the desired channel, in which case
if we analyze the received signal using eigen-value decompo-
sition, we can find the interference disappears asymptotically
because of its orthogonality with the signal space of desired
channel covariance. (8) is obtained in the same way as[10]. As
aresult we omit the detailed proof in this paper.

2) Random Arrays. Tightly calibrated arrays with uniform
spacing are hard to realizein practice. An interesting question is
whether the above results carry on to the setting of linear arrays
with random antenna placement. To study this case, we consider
a set of antennas randomly located over aline, and spanning a
total aperture of D meters. We investigate the extended array
and D is allowed to grow with M.



In this case, an elementary path coming from an angle 8 can
be represented via the corresponding array response vector as:

E,ijW‘ITl cos(#)

a(f) £ : ; 9)

e—i2m d% cos(8)

where the position of the m-th antennad (1 < m < M), d,,,
follows auniform distribution, i.e., d,,, ~ 4(0, D). The PDF of
AOA ¢ for the desired pathsis non-zero only when 6 € 8, asin
Section 11-B1. Define the average antenna spacing D = D/M.
Assuming the aperture of antennaarray D isincreasing linearly
with M, i.e, D is constant, we now have the extended results
on the low-dimensional property:
Proposition 2: Define

o d o d T
A _ 1 M
(l) |:6 A]27Tk£[7,.'.7€ 727 = T]

B 2 span{a(z), z € [b1,bs]}
C £ span{a(z), = € b},

where by, b € [—1,1], b2 U?Zl[b‘q“i“, b;“ax], and b’q“i“, by
are values such that

—LKH < < <O < < < < BT <

then we have
o dim{B} < (bs — b1)MD/X + o(M)
o dim{C} < 32, (b — MM D /N + o(M)

Proof: See Appendix A. O
Proposition 2 indicates the dimensions spanned in massive
MIMO regime by elementary paths for (i) single cluster of
AOA, and (ii) multiple disjoint clusters of AOA, respectively.
The following result now directly generalizes Proposition 1 to
random arrays.

Proposition 3: With abounded support of AOAs#, asin (7),
the rank of channel covariance matrix R satisfies:

@ . MD
rank(R) < ) (cos(65) = cos(0)) —— + o(M),
g=1

(10)

Proof: Wecan readily obtain thisresult by replacing - with
cos(#) in Proposition 2. O
This result above suggests that the low-dimensional feature of
signal subspacesin massive MIMO isnot critically linked to the
Fourier structure of the steering vectors. Furthermore, it should
be noted that the above upper bound is actualy very tight for
large M, as witnessed from the simulation in Fig. 2, where we
take Q@ = 1,D = /2 for example. The AOA spread is 40
degrees, and the closed form model refers to

A S . MD
F(M) = Z (cos(&,;nm) — cos(@flnax)) -

=1

We can observe that rank(R.) iswell approximated by f(M ).
Proposition 3 and Fig. 2 suggest that a property of rank addi-
tivity holdsfor multiple disjoint clustersof AOAsinthe massive

SNote that antenna ordering has no impact on our results.
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Fig. 2. Closed-form rank model for the channel covariance vs. actua rank.

MIMO regime, i.e., for M — +oo. In the following proposi-
tion we extend the results of Corollary 1 to the case of random
arrays under the weaker assumption of rank additivity for the
covariance matrices of the desired and interference channels.
Proposition 4: Let R, be the covariance matrix of desired
channel and R; be the covariance of the sum of all interference
channels. If Ry and R,; satisfy the following rank additivity

property
rank(Rg + R;) = rank(Ry) + rank(R;),

then in the high SNR regime, the linear MM SE estimate of the
desired channel iserror free, or, in other words, its error covari-
ance matrix C. vanishes.

Proof: Inthe case of absence of white Gaussian noiseg, i.e.,
o2 = 0, and rank deficient signal and interference covariance
matrices, the error covariance matrix of linear MM SE estimator
[20] can be generalized as

C.=R,; - RyR,;+R)Ry (12)

where (- )T denotes the Moore-Penrose generalized inverse of
the matrix argument. Let us denote by R, = U, 3, U#, with
z € {d, e}, U, unitary matrix, and ¥,, diagonal matrix, the
eigenvalue decomposition of the Hermitian matrix R..,. Then,
R! = U, 2! U wherethe elementsi, j of the matrix =/, are
given by

-1
o1
i = {0, ’

Additionally, U,. denotes the column space of R, and X, the
corresponding nonzero eigenvaluessuchthat R, = U, X, UX.
Then, under the assumption of rank additivity of the covariance
matrices R; and R;, the theorem on the M oore-Penrose gener-
alized inverse for sum of matricesin [21] yields

ifi =jand X, ;; #0;
otherwise.

(Ry+Ro)! = (I-SHRYI- T +S'RIT!, (12

where S = fJL[NIfI(I — ﬁdﬁf) andT = (I— ﬁdﬁdH)ﬁzﬁF
Let us observe that

and RyST=o0.

TRy =0 (13)
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Fig. 3. Channel estimation performance vs. M, D = A/2, 2-cell network,
angle spread 30 degrees, #; N #; = 0, cell-edge SNR is 20 dB. We compare
the standard Least Squares (L S) to MM SE estimators, in interference and inter-
ference-free scenarios.

We focus on the first equality. The proof of the second equation
follows along the same line. By appealing to the mixed type
reverse order laws of ther x s matrix A and the s x ¢ matrix
B in[22]

(AB) = BF(ATABB)TAH,
TT can be rewritten as
. ~ ~ ~ o~ ~ i w 4
Th = U, U [(I - Ude)UiUﬂ (I- U,UH)
= U, U4THI - U, U}).

The first equality is obtained utilizing the fact that the matrices
U,; U and (I — U,UZT) are orthogonal projectors and thus
idempotent. Then,

T'R, = U,UFTI (1 - U, U U3, U7 = 0.

Finaly, substituting (12) into (11) and accounting for orthogo-
nality in (13)

C. =Ry - Ry [(I ~SHRHT - T+ STRITT] Ry
=R, - R,R/R; = 0.

In the last equality we use one of the fundamental relations
defining the M oore-Penrose generalized inverse. O
According to Proposition 3, therank additivity conditionisin
general satisfied when the AOA support of desired channel and
that of interference channels span disjoint region of spaces, i.e.,
A4 N 6; = 0. This property can be exploited in pilot decontam-
ination or interference rejection. Fig. 3 shows the channel esti-
mation performance in the presence of contaminating pilots. In
the simulation, we consider a 2-cell network. Each cell has one
single-antennauser who usesidentical pilot sequence. Themean
sguared error (M SE) of uplink channel estimationisshown. The
simulation suggests that the MM SE channel estimator isableto
rid itself from pilot contamination effects as the number of an-
tennasis (even moderately) large, which verifies Proposition 4.

BS antennas

Ring of E)/ \l« \l(‘g

Scatterers

Multipath

Scatterers

0
b

Fig. 4. The distributed large-scal e antenna setting with a one-ring model.

I1I. FINITE RANK MODEL IN DISTRIBUTED ARRAYS

We now turn to another popular form of large scale antenna
regime, often referred to in the literature as distributed antenna
systems. In such a setting, a virtual base station is deployed
having its M antennas scattered throughout the cell.4 We con-
sider again the uplink in which joint combining across all BS
antennas is assumed possible. The M base station antennas are
assumed uniformly and randomly located in a fixed size net-
work, serving single-antenna users. M isalowed to grow large
giving rise to a so-called dense network. Our model assumes a
disk-shaped cell of radius I, although simulation and intuition
confirm that the actual shape of the cell’sboundary isirrelevant
to the main result.

A. Channel Model

In order to facilitate the analysis, we adopt the one-ring
model [14], [15] where users are surrounded by a ring of P
local scatterers (see Fig. 4) located » meters away from the
user. The positions of the scatterers are considered to follow
a uniform distribution on the ring. In the one-ring model, the
propagation from user to base is assumed to follow P paths
(hereafter referred to as scattering paths), where each path
p bounces once on the p-th scatterer before reaching all M
destinations.> Hence, the path length from user & to the m-th
antenna via the p-th path is r 4+ dgpm, Where dip,,, is the
distance between the p-th scatterer of the £-th user and the
m-th BS antenna. The path loss of the p-th scattering path is
modeled by:

«
(dkpm + "')’Y 7

4For ease of exposition we temporarily consider a single cell setting in this
section, i.e., B = 1. However simulation is also done later in a multi-cell
scenario.

5Note that this model assumes the BS antennas are high enough above clutter
so that there is no local scattering around the BS antennas.

ﬁk P — (14)



where « is a constant that can be computed based on desired
cell-edge SNR, and ~ is the path loss exponent. We scale the
amplitude of each path by v/ P. The channel between user % and
al BS antennas is given by:

P
1
h, 2 — E hy,, (15)
VP =

where hy,, is the p-th scattering path vector channel between
user & and all base stations:

deprtr

\V4 /3k’p1€7j27r A
:, dppag+7

where ¢/#*» denotes the random common phase of that scat-
tering path vector due to possible random perturbations of the
user location around the ring center or the phase shift dueto the
reflection on the scatterer. ¢y, is assumed i.i.d. and uniformly
distributed between 0 to 2.

hk,p A ejwzp1 (16)

B. A Low-Rank Model for Distributed Arrays

We have shown in Section 11-B the low-dimension property
for linear antenna array systems. In attacking this problem it is
important to distinguish the rank reduction effect due to path
loss from the intrinsic finite-rank behavior of the large antenna
channel covariance in an equal path loss regime. In fact, in an
extended network (i.e., where some base station antennas can
be arbitrarily far from some users), the signal of any given user
will be received over only alimited number of antennasin its
vicinity, thereby effectively limiting the channel rank to the size
of this neighborhood. To circumvent this problem, we consider
below a (dense) network where the path loss terms are set ar-
tificially to be all equal (to one) and study the finite-rankness
under such conditions. In this model, the channel covarianceis
defined as R 2 E{hh¥ } where the expectation is taken over
the random positions of the scatterers on the ring. Note that our
analysis indicates that a randomization over the user’s location
inside the scattering’s disk would produce an identical upper
bound on the rank.

Theorem 1: The rank of the channel covariance matrix for a
distributed antenna system satisfies:

47r

rank(R) < 5 + o(r). a7)

Proof: See Appendix B. O
In reality we show below that the right hand side of (17) isa
very close approximation of the actual rank, which is defined as
the number of eigenvalues of R, which are greater than a pre-
scribed threshold (in our simulations it is taken to be 10e-5).
Theorem 1 shows alinear dependency of the rank on the size of
the scattering ring. When - increases, the richer scattering envi-
ronment expandsthe dimension of signal space. Fig. 5 showsthe
behavior of the covariance rank with respect to the scattering ra-
diusr. We can see the rank scaleslinearly with the slope 47/ ).
However because of the finite number of antennas the rank will
finally saturate towards M when r keeps increasing.
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IV. SPATIAL INTERFERENCE FILTERING

We are now interested in characterizing the orthogonality (or
correlation) between any two user channel vectors as afunction
of inter-user distance, the wavelength and the scattering radius
r, inthe large M limit, as this will provide a measure of inter-
ference rejection capability for the distributed antenna systems.
In the following we will investigate two interference filtering
schemes: 1) the simplistic matched filtering, 2) a subspace pro-
jection filtering.

A. Performance of Interference Filtering Using Matched Filter

We start with analyzing the channel correlation between
two users who interfere each other. We point out two distinct
regimes, depending on whether the inter-user distance is small
or large.

1) Closely Spaced Users. Closely spaced users are defined
by the fact that the distance between user 1's and user 2's scat-
terersissmall enough compared with the distance between scat-
terers and receiving antennas so that we can consider planar
wavefronts. We first examine the correlation between any two
scattering paths for user 1 and user 2, corresponding to user 1's
p-th scatterer and user 2's g-th scatterer, with a distance D,,,.

Proposition 5: For D,,, small enough that the two scatterers
are located in the same planar wavefront region, we have

hilh 27D,
lim | 29 1p‘ ~ J()< W}\pq>’,

M—oo |h1p| ‘h2q| -

where J; isthe zero-order Bessel function of the first kind.

Proof: See Appendix C. O
Note that the proof is based on an additional assumption that
the path loss between a certain antenna and the two scatterers
are approximately equal, i.e., if user 1 and user 2 are concerned,
then Bagm, = B1,m. Since the two scatterers are very close and
the antenna is much further away, this assumption is reason-
ablein practice. To visualize Proposition 5, we draw the curves

hilhy,|

of i, and |Jo(%)| in Fig. 6. The curves show that
when M grows, |hilhy,|/|hy,| [hs,| gets closer and closer to
the Bessel function. The curve named “Envelope by Krasikov”
isan upper bound of the Bessel function developed by Krasikov

(18)
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Fig. 6. Illustration of Proposition 5.

in [23], which will be used in Proposition 6. The interpretation
of Proposition 5 is as follows: the highest correlation between
two scattering paths is attained when the spacing between the
two scatterers is very small. Since the Bessel function reaches
itsfirst zero around aspacing of Dy = 0.38), itimpliesthat the
users ought to be located at least 2r + Dy =~ 2r away from each
other to allow for areuse of spectral resources (such as pilots).
In practice we would intend to schedule users with additional
spacing than just 2r, according to the side lobes of the Bessel
function. Note that our model is similar to Clarke’s model [24],
which indicates if the AOA is uniformly distributed from 0 to
27, the autocorrelation of a moving mobile is a scaled Bessel
function.

We use Proposition 5 to derive alower bound on the signal to
interference ratio (SIR) under a simplified system setting with
just two users (one desired, one interferer) and a matched filter
receivers, By computing the expectation over the random BS
antenna locations, which is al'so how we derive the expectation
of SIRs and channel correlations in the rest of this section, we
obtain the following bound of SIR:

Proposition 6: Assume perfect channel estimation, closely
located users, whose scattering rings do not overlap. The ex-
pected SIR at the matched filter output satisfies:

W((4(M)2—3)%—3>

2
16( 27r(D>1,,72T) ) 90

E{SIR}= , when M islarge,

where D,, isthe distance between the two users and is assumed
to be larger than /3 + 3% A/(4m) + 2r.

Proof: When applying matched filter, we have
[y [* s |

E{SIR} =E 3
B =

Let usrecall that the envel ope of the Bessel function Jo(@) is
decreasing with D). Thus, thelower bound of SIR is obtained by

Bwith more users, the interference is simply scaled by the number of users.
Additionally more advanced receivers could also be exploited.

considering the shortest D,,,, which gives the worst case corre-
lation. Since D, > D, — 2r, we may obtain when M islarge:

1

E{SIR} = .
JO( Zﬂ(DK—Z'r') )

Finaly we use an upper bound of the envelope of the
Bessel function [23] which has validity when D,, — 2r >
V'3 4 33 \/(4r). The bounding argument of the Bessel func-
tion in [23] can directly apply here. (]
The above proposition quantifies the rate at which the SIR
increases with the inter-user distance, in this case linearly.

2) Distant Users. We consider the regime in which users
are located further away from each other, e.g., many wave-
lengths away. The planar wavefront assumption no longer
holds, making the use of the Bessel function impractical. In this
case we are again interested in characterizing the correlation
between two scattering paths corresponding to two users, then
the correlation between the channel vectors themselves.

We first investigate the behavior of hquhlp forany p, ¢:

M
H _ z *
h2‘1 hlP - (h2qm hlp"t)a

m=1

(19)

where fi,,,, isthe channel between the £-th user and the m-th
BS antenna via the p-th scatterer:

T

o dbpr
hkpm =V /6kpmeij2ﬂ' 5

Since the two phasese’#1» and e/#27 areindependent, we have:

eI kD

(20)

E(h

2qm

hlp'm) = 0*

and the variance of A5_. A1pm 1S

*
2qm.

o’ (qu) 2 Var(h;thMM) = E(ﬂ2qmﬂlpm)~ (21)

Given the random network model with radius ., the path loss
correlation can be found by integration over polar coordinates
giving the location of the BS antennas. Although a closed-form
expression is elusive, we get the following computable expres-
sion:

UZ(D) =
9 L T
o S
40 J0 (p+ 7”)"’(\/D2 + p% = 2pDcos(ip) + 1’)
(22)

One example of the path loss correlation o?(D) is given in
Fig. 7, which shows o2(D) is a decreasing function of D. We
have the following proposition on the distribution of |h§1;h1p |2:

Proposition 7: Let x be arandom variable exponentially dis-
tributed with parameter A = 2. Asymptotically for A — +oo
|h£1hlp|2 d

02(Dyg) M - 3

where % denotes convergence in distribution.
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Fig. 7. Anillustration of ¢?(D) witho = 107, L = 500, » = 15, and
v = 2.5.
!

Proof: Let us consider the random variable Sy, =

H
% By the law of large numbers 5, converges almost
surely to 0 as M — +oc. By appealing to the Central Limit
Theorem (CLT), the random variable /A7 Sy, converges in
distribution to a complex Gaussian distribution with zero mean
and unit variance. Thus, its square, i.e., M |Sy/|%, converges
also in distribution to an exponentially distributed random
variable with parameter A = 2. O
We now derive alower bound of the average SIR for a two-
user system, assuming matched filtering receiver.
Proposition 8: The lower bound is given by

M(C? + o(1))

E{SIR} > ¢ 24
{SIR} o2(D,, — 2r) (24)
where C is aconstant such that hf'h; /M = C + o(1).
Proof: The SIR can be written as:
. H 2
g P BERE ey )
= ‘hHh1’2 - |hgh1|2 Y |h£lh1|2 .
2 e g

Note that ¥p,q, hglhlp/M has zero mean and a variance
of 0*(Dyqe)/M. In addition, the two variables hj hy, /M
and hﬁ{l,hlpr/M are uncorrelated for any p’ # p or ¢ # q,
resulting from the random and independent phasesin (16).

2

L0 VY G I DR o
M2 - p2 ZZ M
g=1p=1
P P H
1 hj, h,
= pQVM(ZZ (71\/_/ =)
q=1p=1 -
P P
1 hs hy,
= —QZZVM< 2}1\41])
g=1p=1
P P
1 UZ(qu)
:ﬁzz M
g=1p=1
o?(D,, — 2r)

IA
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The final step is due to the fact that D,, > D, — 2r,Vp,q.
Finally we get

M(C? + o(1))

E{SIR!} > ,
{ } a?(D, —2r)

and Proposition 8 is proven. O
The above result suggests at which rate the matched filtered in-
terference decays as a function of M and the inter-user spacing
D, which in turn can be exploited to predict system perfor-
mance and also give insights to the tolerable spatial reuse of
pilot resources.

B. Interference Filtering Via Subspace Projection

SIR analysis in previous sections is built upon a simple
matched filter, which still requires an accurate channel es-
timation. In this section, however, we propose a simple
beamforming strategy building on the low-dimensionality of
the signal subspace, which does not require an accurate channel
estimation. We consider a K -user network with the first user
being atarget user and all other users being interference users.
All these users share the same pil ot sequence s. Denote the sum
of interference covariancesas Ry = Ro + Rz + --- + Ry
The eigenvalue decomposition of R; isR; = USU¥X , where
Y isaM x M diagona matrix with the eigenvalues of R.; on
its main diagonal. Suppose the eigenvalues are in descending
order and the first m eigenvalues are non-negligible while the
others can be neglected. We construct the spatial filter at the
BS side for user 1 as:

Wl = [u7n+1|u7n+2| e |qu]H ) (26)

where u,,, is the m-th column of U. We can assume approxi-
mately that:

Wlhk ~ O,Vk ;é 1,
W.Y ~ Wihs? + W,N, (27)

whereN € CM X7 jsthe spatially and temporally white additive
Gaussian noise, Y € C**7 isthe received training signal, and
s € C™! is the shared pilot sequence. Define the effective
channel h, £ W h;. Notethat h, hasareduced size, whichis
(M —m) x 1. An LS estimate of h, is:

h, = W, Ys*(sTs") ", (29)

The key idea is that channel estimate El is coarse, yet it can
be used as a modified MRC beamformer asit liesin a subspace
orthogonal to theinterference and isalso aligned with the signal
subspace of h;. During uplink data transmission phase:

X
y =hys? + Z hs{ +n, (29)

k=2
where s;,s,, -, sx € C™*! are the transmitted signal se-

quence. y,n € CM*™ are the received signal and ngise re-
spectively. The subspace-based MRC beamformer is E1 Wi

K

~H ~H ~H ~H

h) Wiy =h, hys{ +h W1 Y hys{ +h; Win. (30)
k=2

~0
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Fig. 8. Estimation performance vs. distance between two users, A{ = 2000.
r = 15 m, single-cell network.

In case there is no null space for Ry, e.g., the number of users
K islarge or the interference users have rich scattering envi-
ronments, the subspace-based method can still avoid the strong
eigen modes of interference and therefore reject a good amount
of interference.

Note that the subspace projection method has a certain sim-
ilarity with [11] which aso uses eigen-value decomposition in
order to perform blind channel estimation. However there are
two main differences: 1) They address only the case of classical
massive arrays, not distributed antenna arrays; 2) They use the
received power levels domain to separate desired channel and
interfering channels. In our approach, the discrimination agai nst
interference is related to the phases with which the interference
and desired signalsarriveat thearray. Infact, thetwo techniques
could in principle be combined.

V. NUMERICAL RESULTS

We first consider the channel estimation quality in a random
network with radius L = 300 meters. The path loss exponent
v = 2.5. The scattering radius is » = 15 meters. P = 50
scatterers are randomly distributed in the scattering ring, which
is centered at the user. Define the channel estimation M SE of
the k-th user as:

hy, — hy|)?

(31)
In the simulation we average the channel estimation M SE over
different usersin order to obtain MSE curve.

In Fig. 8, we assume the target user is located at the origin
while an interfering user (they share the same pilot sequence)
is moving over the horizontal axis at increasing distances from
user 1. As we can observe, when the MM SE estimator (4) is
used, the channel estimation error is a monotonous decreasing
function of the distance between the desired user and the in-
terference user. One may also notice the constant performance
gap between LS and MM SE estimator in interference-free sce-
nario, which indicatesthat covarianceinformationisstill hel pful
even in a highly distributed antenna system. As shown in the

30 ¢

—&— LS+ MRC
—d— MMSE + MRC
25 || —%— MMSE + MMSE
—&— Subspace MRC

L5
[=]

Sum-rate [bits/sec/Hz]
S &

0 50 100 150 200 250 300 350 400
Distance between two users [m]

Fig. 9. Uplink sum-rate vs. distance between 2 users, M = 500, r = 15 m,

cell-edge SNR 20 dB, single-cell network.

20‘-

—8B— LS+ MRC
—&— MMSE + MRC
—%— MMSE + MMSE
—6— Subspace MRC

Per-cell rate [bits/sec/Hz]

0 5 10 15 20 25 30
Radius of scattering ring [m]

Fig. 10. Uplink per-cell ratevs. r, cell-edge SNR 20 dB, 7-cell network, each
cell has A7 = 500 distributed antennas.

blue curve on the top, an LS estimator is unable to separate
the desired channel and the interference channel. In contrast,
an MM SE estimator has much better performance asits MSE is
decreasing amost linearly with inter-user spacing, hence con-
firming our claims.

Wethen examine the performance of four MRC beamformers
in terms of uplink sum-rate in a single-cell setting (Fig. 9) and
per-cell rate in a multi-cell setting (Fig. 10). The sum-rate is
defined as follows:

"
sum-ratc = Z log,(1 + SINRy),
k=1

(32)

where K is the number of simultaneously served users, and
SINR,, is the uplink signal-to-noise-plus-interference ratio
(SINR) of the k-th user.

In Fig. 9, we show the performance of subspace-based MRC
beamforming in a single-cell network where two users share
the same pilot. The total number of distributed antennasis 500.
In the figure “LS + MRC” denotes the sum-rate performance
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of MRC beamforming using the LS channel estimate, while the
curve “MMSE + MRC” is the performance of MRC beam-
forming using the MMSE estimate (4). “MMSE + MMSE”
denotes the performance curve of MM SE beamforming using
MM SE channel estimate when channel covariances (including
the interference covariances) are assumed known during
both channel estimation and signal detection. The simulation
shows the simple subspace-based method has a very good per-
formance. Due to pilot contamination, the MRC beamformer
using MM SE channel estimateis not as good as subspace-based
method. The reason is that R; and R» generaly have over-
lapping signal subspaces here. We may also notice that the
subspace-based MRC beamformer has some slight performance
gains over the MM SE beamformer.

Fig. 10 depictsthe uplink per-cell rate achieved by the above-
mentioned MRC beamformers as a function of scattering ra-
dius 7. In the smulation we have 7 hexagonal cells with one
center cell and 6 surrounding cells. Each cell has one user. All
the users share the same pilot sequence. The per-cell rateis de-
fined asthe sum-rate (32) divided by the number of cells. Ascan
be seen, the subspace-based beamforming shows performance
gains over other traditional MRC methods especially when the
radius of scattering ring is smaller. It al'so shows more robust-
ness than MM SE beamformer when the radius of the scattering
ring is larger.

V1. CONCLUSION

We investigate low-dimensional properties of covariance
signal subspaces in general topologies of massive arrays. We
extend previous results known in the uniform linear array case
to the case of arrays with random placement, including the case
of scattered antennas over a 2D dense network. A correlation
model is derived which is exploited to gain insight on the
interference rejection capability of low-complexity matched
filter-based receivers in distributed antenna settings.

APPENDIX

A. Proof of Proposition 2

We first consider an /N-antenna ULA with aperture D and
antenna spacing D = D/(N — 1). Define

e
. a e i DN
a(/[‘):li()g JZW/\“L’...TQ e
D o p(n—1) 1T
— [07 B‘JZWA(N—U ‘L7 e @‘-’2” NAN-T) ‘L]

Now wedefine A £ span{a(x),x € [b1, by]}. Recall from[10]
the following result:

IfB(x) 21 e 7™ e T WN-DHT Given by, by €
[-1,1] and b; < bo, define A = span{f(x),x € [b1,b2]},
when N islarge,

(b2 —b1)N
2

(bo — b1)N

dim{A} = 5

+ of

The above conclusion can directly apply: when N islarge,

L ND ND
dim{A} = m(bg —bi)+o (m(bg - bl))

) (33)

IEEE JOURNAL OF SELECTED TOPICSIN SIGNAL PROCESSING, VOL. 0, NO. , 2014

()

@ The m-th
The p-th antenna
scatterer

Fig. 11. Illustration of aline of scatterers.

DN DN
= T(bz — b]_) + o0 <T(b2 — b]_))

MD MD
= \ (1)2 —bl)+0< (bg —])1))

MD

(1)2 _— bl) + O(AM).

We can observe that dim{.A} has no dependency on N.
Imagine for any finite aperture D, we let N — oo so that
D — 0. In this case, al elements of a(«) can be seen as M
(finite) random samplesin the vector & (). Hence

MD

dim{B} < dim{A} = T(bg — b))+ o(M).

Now consider the space C. We define C, = span{a(z),z €
[bmin, pmax] 1. An upper bound of its dimension can be obtained
by considering the extreme case when all ¢} spacesare mutually
orthogonal so that their dimensions can add up:

Q Q MD _
dim{C} <Y dim{C,} =) = (07 = ) + o M),
g=1

g=1
Thus, Proposition 2 is proven. O

B. Proof of Theorem 1

For ease of exposition we omit the user index &£. Imagine a
special case when the scatterers are located in aline which has
the length L, as shown in Fig. 11. Assume the antennas are far
away so that the scatterers are in the same planar wavefront
region. We denote the right end of the scattering line as the
reference point. The m-th antenna is located d,,, meters away
from the reference point, at the angle #,,,. The p-th scatter is
I(p) meters away from the reference point. /(p) follows a uni-
form distribution, i.e., /(p) ~ U(0, L.). The phase shift between
the scatterer p and the reference point is 2mi(p) cos(6,,,)/ A,
1 <m< M.

Define a diagonal phase matrix

The p-th scattering path vector channel is now given by:

i dp1tT o1 [
e—]27r P e—ng (P)C;S( 1)
h, £ eIy = v E
. d +7r o T(p) cos(®
p M o L(p) cos(Opy)
e It PR R L w—
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i(p)cos(0)) . i(p)cos(sM)

If Wedeﬁneh 2 e % ... e 72705 )T we dividing up acake. The BS antennas al fall into one of these
may see that h and h, are unltarlly equivalent, since (WP = sectors. We have

formsaunitary matr|x Ifwevaryl( ), we can obtain two linear N M,
spaces spanned by h,, and/or h,,. The dimensions of the two |hZlh,,| = lim Z (D3 gnanr1pmm )
spaces are equal. Therefore in the following we will find the N=oo | 1
dimension spanned by hp instead of h,. Assume V is alarge N M, ey
integer, we define z,, 2 -1+ 2(” l) n=1,..., N, the set = \liln Z (\/ ﬁ?qn‘mﬁlpnmejzr B ) ‘ 5
X £ {x,}, aswell asthe vector n=1m=1
—jamiem o i2m KR where M,, (could be zero) is the total number of antennas lo-
ﬂ%z(,) - i ﬁ.%ﬂwii—ﬂ cated in the n-th sector, hzgp.m and Ay, are the channel co-
i, ) ] — (327i(p) ¢ efficient between the m-th antenna located in the n-th sector
L i) and the two scatterers. If N islarge, the angle contained by the
o L(p)m Ty 2 — . .
g2 N pirm ) two sides of a sector is small. Therefore BS antennas located
in the same sector share the same difference of distances be-
Sincel(p) ~ U(0, L), we reuse the result shown in (33): tween the two scatterers, i.e., dagnm — d1pnm ONly depends on
the sector index n. Based on the fact that D, is small, we as-
dllll{bpdn{[l.p ( ) [0 L]}} sume /62qnvAn =~ ﬂ.lpnm and (l2qnm - d/lpnm = qu COS(Oén),
4 N 4L N where o, = 2/7{;" isthe AOA from the BS antennas in the n-th
“aaz T\ sector.
ZE N o Dpgcos(an) M,
= T —|— O(IN/) |h h1p| = ]\/IE)I;C Z (3]2” N Z \/ [32qn'rn,31pn7ﬂ
n=1 m=1
Note that the above result holds when N is arbitrarily large. N Dpgcorton) corten) lin.
We again observethat when N — oc, any cos(8,, ) will fall into ~ lim e Z Brpnm
the set X', which indicates n=t w
PO ~ 2]: ~ ~ . 2 = 1 - iy
dim{span{h,,i(p) € [0, L]}} < = +o(l). (34) lhip| [hoy| = |hiy| Alflo Zl z—l,ﬁlpnm

Due to the symmetry of the network, when A/ — oc, theradio

. o .
Recall that the covariance matrix R = E{3 Z Z hyhe'} o aves can arrive from any direction with equal probability.

p=1q=1

Because of the random and independent phases @y ‘and 0y, Thus 30" ) B1pnm isindependent of sector index .

Vp # ¢,E{h,h; } = 0. lim [haghp | N 1 Z ej%nqu”

1 P M—oo |h1]1| ‘hgq| Nooo | N 1

H H n=
R = [E{F Z hphp } = IE{hPhp } 1 27 o Dpg cos(e)
=1 = — AT da
271— Jo

We can see that the number of scatterers has no impact on the 27 D,

rank of channel covariance matrix. Hence according to (34), the = |Jo( T) ’
rank of R is upper bounded by
and Proposition 5 is proven.

2L
rank(R) < = + o(L).
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Dealing With Interference in Distributed Large-Scale
MIMO Systems: A Statistical Approach

Haifan Yin, David Gesbert, Fellow, IEEE, and Laura Cottatellucci

Abstract—Thispaper consider sthe problem of interference con-
trol through the use of second-order statistics in massive MIMO
multi-cell networks. We consider both the cases of co-located mas-
sivearraysand large-scaledistributed antenna settings. Wearein-
terested in characterizing the low-rankness of users channel co-
variance matrices, as such a property can be exploited towards
improved channel estimation (so-called pilot decontamination) as
well asinterferencergection viaspatial filtering. In previouswork,
it was shown that massive MIM O channel covariance matrices ex-
hibit a useful finite-rank property that can be modeled via the an-
gular spread of multipath at a MIMO uniform linear array. This
paper extends this result to more general settings including cer-
tain non-uniform arrays, and more surprisingly, to two dimen-
sional distributed large scale arrays. In particular our model ex-
hibitsthe dependence of the signal subspace’srichnesson the scat-
tering radius around the user terminal, through a closed form ex-
pression. Theapplicationsof thelow-ranknesscovarianceproperty
to channel estimation’s denoising and low-complexity interference
filtering are highlighted.

Index Terms—MassiveM IM O, distributed antennas, channel es-
timation, interference mitigation, covariance matrix.

|I. INTRODUCTION

ULL spatial reuse of the frequency resource across even

neighboring cellsis a de facto standard approach in wire-
less network design. The downside of this strategy lies in the
high amount of inter-cell interference, which in turn severely
limits the performance of certain users, especially at cell-edge.
Thisfact has fueled extensive research on interference manage-
ment, and particularly on methods relying on the use of spa-
tial filtering at the base station side. Recently, two schoals of
thought have emerged with conflicting strategiesfor how to best
exploit the added spatial dimension offered by multiple-input
multiple-output (MIMO) antennas. In the first, the focus is on
strengthening local beamforming capabilitiesby endowing each
base station with a massive number of antenna elements that
is substantially larger than the number of terminals served in
the same cell on any given spectral resource block. The added
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cost of hardware is compensated by the fact that smple dis-
tributed beamforming schemes that require little inter-cell co-
operation can efficiently mitigate interference [1]-{4]. In the
second school, cooperation between cells is emphasized as the
key towards increasing the spatial degrees of freedom [5]. In
the cooperation approach, so-called network MIMO (or CoMP
in the 3GPP terminol ogy) schemes mimic the transmission over
avirtual MIMO array encompassing the spatially distributed
base station antennas. In contrast with the massive MIMO so-
lution, the cooperative spatial filtering of interference is made
possible with no additional antennas at the base station side, yet
it goes at the expense of fast signaling links over the backhaul, a
need for tight synchronization, and seemingly multi-user detec-
tion schemesthat are computationally more demanding than the
simple matched filters advocated in massive MIMO. Addition-
aly, amagjor hurdle preventing from realizing the full gains of
MIMO multi-cell cooperation lies in the cost of acquiring and
sharing channel estimates using orthogonal training sequences
over large clusters [6].

Degspite these differences, afundamental common feature be-
hind each philosophy lies in the coherent combining of alarge
number of antennas in view of interference nulling. Addition-
aly, in both cases, our ability to reject interference is only as
good asour ability to estimate the user channels properly. Inthe
context of co-located massive MIMO, channel estimation from
pilotsthat areinevitably reused over spaceleadsto the so-called
pilot contamination effect [ 7], [8]. Although initially branded as
afundamental limit of massive MIMO communications, afiner
impact analysis of pilot contamination indicates that it is only
one of several limitations of such systems[9]. When it comesto
improving channel estimation, several possible solutions were
recently proposed in a series of papers[10]-{12]. In[10], an ap-
proach to de-interfere channel estimates was revealed based on
the exploitation of second-order statistical properties of the re-
ceived vector signal. The key enabler is the finite-rankness of
the channels' covariance matrices which was shown to occur
in the asymptotic massive MIMO regime whenever the angle
spread of incoming/departing paths at the MIMO array is lim-
ited. Independently, a similar finite-rank property was shown
to be useful in the context of low-complexity scheduling and
spatial beamforming for massive MIMO networks [13]. Hence
the low-dimensiona property for the signal subspace (i.e., in
which the MIMO channel realizations live) is instrumental to
spatia interference rejection. These resultswere all reached for
the case of uniform (equi-spaced) calibrated linear arrays. A nat-
ural question then arisesasto whether the low-rank property can
be established and exploited in more general large-scale antenna

1932-4553 © 2014 |EEE. Personal use is permitted, but republication/redistribution requires |EEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



settings, such as random and two dimensional antenna place-
ments. This paper is devoted to this problem.

A first examination of [10], [13] indicates that the finite-rank
behavior is rooted in the asymptotic orthogonality between
Fourier transform vectors corresponding to different path
angles, suggesting the property might be restricted to the use
of one-dimensional equi-spaced arrays. However our results
point otherwise, showing low-rankness of channel’s subspace
for large-scale antenna systems is a recurrent trend applying to
random and also distributed antenna placements, hence with a
wider applicability to cooperative networks.

Our specific contributions are as follows: First we consider
a uniform linear massive array scenario yet with several clus-
ters of multipath. In this case we establish a finite-rank model
for the channel’s covariance that directly extends that of [10],
where the rank is shown to be a function of the incoming/de-
parting angular spread of multipath. We then show that asimilar
low-rank result holds for alinear array with random placement
of antenna elements. Although in this case, unlike the uniform
array, the finite rank is only characterized by an upper bound.
We show how this property can be used towards, for instance,
pilot decontamination.

In the second part of the paper, we turn to a large-scale
antenna regime where the antenna elements are scattered ran-
domly throughout the (dense) network, yet can still be combined
coherently. Such a setting with spatially distributed antennas
includes remote radio head (RRH) networks, network-MIMO
(CoMP) schemes with large clusters, and cloud-enabled radio
access networks (C-RAN) as particular cases. A channel model
building on the classical one-ring multipath model [14], [15]
is proposed to analyze this scenario. In this setting we show
that, there again surprisingly, the channel covariance exhibits
a low-dimensional signal subspace behavior, in the large
number of base station antenna regime, even discounting path
loss effects. We show the richness of the covariance's signal
subspace is primarily governed by the scattering radius around
the user terminal. We provide a closed form expression for an
upper-bound of the covariance rank and show by simulation
how this bound closely matches reality. Note that the notion
that the total perimeter occupied by scatterers can govern the
rank of the signal subspace in a distributed MIMO antenna
setting is reminiscent of a previously observed phenomenon
in the different context of compact MIMO arrays. In [16], the
authors establish a physical model for the dimension of the
spatial multipath field of a disk-shaped compact areafilled with
MIMO antennas and illuminated by isotropic multipaths.

In the last part of the paper, we turn our attention to the ex-
ploitation of signal-subspace’s low-rankness towards interfer-
ence rejection for a distributed array. We derive a lower bound
onthesignal tointerferenceratio that would be obtained in atwo
user setting with asimple matched filter, asafunction of thedis-
tance between the users and the number of antennas. We show
how adistance of two scattering radii can be selected asacritical
minimal distance between selected co-channel usersin a sched-
uling algorithm so asto facilitate interference nulling. Asan ap-
plication of thelow-rankness property, asimple subspace-based
interference mitigation scheme is put forward, which exploits
the statistical information of the interference channels. Numer-
ical results are presented in the last section.
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The notations adopted in the paper are as follows. We use
boldface to denote matrices and vectors. Specificaly, I, de-
notesthe M x M identity matrix. (X)7, (X)*, and (X)# denote
the transpose, conjugate, and conjugate transpose of amatrix X
respectively. E{-} denotes the expectation, || - || denotes the
Frobenius norm. The Kronecker product of two matrices X and
Y isdenoted by X ® Y. span{vi, va,..., v, } isthe span of
linear vector space on the basis of vy, vs, ..., v, for somen >
1, dim{A} isthe dimension of alinear space A, and null{R }
is the null space of matrix R.. diag{as,...,an} denotes a di-
agonal matrix or ablock diagonal matrix withay, ..., an atthe
main diagonal. £ is used for definition.

II. Co-LOCATED MASSIVE LINEAR ARRAYS

We consider the uplink? of anetwork of B time-synchronized
cells, with full spectrum reuse. Each of the B base stations is
equipped with a one-dimensional array of A{ antennas, where
M isallowed to grow large (massive MIMO regime). For ease
of exposition, al user terminal sare assumed to be equipped with
a single antenna. Furthermore we consider that a single user is
served per cell and per resource block. A classical multipath
model is given by [17]:

fi v A
h; = \/; I; a(fp)el 7, 1)

where P is the arbitrary number of i.i.d. paths, 8; denotes the
path loss for channel h;, and 7% is the i.i.d. random phase,
which is independent over channel index i and path index p.
a(#) isthe signature (or phase response) vector by the array to
a path originating from the angle §. Note that in the case of an
equi-spaced array, a(f) has a Fourier structure.

A. Channel Estimation

When it comes to channel estimation it is assumed that or-
thogonal pilots are used by users located in the same cell, so
that intra-cell pilot interference can be neglected. Sets of pilot
sequences are however assumed to be fully reused from cell to
cell, causing maximum inter-cell pilot interference. The pilot
sequence is denoted by:

5.7 2

The power of the pilot sequence is assumed to be sfls = 7.
The channel vector between the b-th cell user and the target
base station is hy,. Without loss of generality, we assume the
1st cell isthetarget cell. Thus, h; isthe desired channel while
h;, b > 1 are interference channels. During the pilot phase, the
signal received at the target base station is

B
Y = ZhbST + N, 3
b=1

S = [81 59

where N € CM*7 isthe spatially and temporally white addi-
tive Gaussian noise (AWGN) with zero-mean and element-wise
variance o2 . Assuming the desired and interference covariance
matrices R, £ E{h,h/’} can be estimated in a preamble, the

1Similar principleswould apply in the downlink, which for ease of exposition
isignored here.
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Bayesian (or equivalently MM SE) estimate of thetarget channel
vector is given by [3], [10], [18]:

B -1
lAn =R, (UiIM +T ZRb> Sfy, (4)
b=1

where the training matrix § £ s © Iy andy 2 vec(Y). An
interesting question is under which conditionsh; — hj° it jn
the massive MIMO regime (M >> 1), where the superscript no
int refersto the “no interference case.” This question was previ-
oudly addressed in [10], revealing the following sufficient con-
dition for achieving total interference suppression in the large
M regime:

bﬁz span{Rs} C null{R;} )

where the above condition requires the target channel covari-
ance to exhibit a non-empty null space (aka low-dimensional
subspace) and for all other interference covariances signal sub-
spaces to fall within this null space (see the proof in [10]). In
practice, the inclusion conditionin (5) can berealized by a user
grouping algorithm [10Q], [13], as long as the rank of each co-
variance is small enough in relation to M.

B. Low-Rank Properties of General Linear Arrays

In[10], [13], alinear equi-spaced array was considered. The
propagation model also assumed that multipaths impinge on the
base station array with angles of arrival (AOA) spanning an in-
terval [#min, gmax] ¢ [0, 7]2. It isthen shown that condition (5)
is satisfied provided AOASs corresponding to interfering users
fall outside [#™*, #™2x], The assumptions of a single cluster
of multipath and of a calibrated equi-spaced array are however
restrictive. Below, we generalize this result to more realistic
settings.

1) Multiple Clusters: We now consider a general multipath
model when the AOASs corresponding to the desired channel are
still bounded, but come from several digjoint clusters[17]. The
steering vector in (1) is[19]

1
e—J2m 2 cos(9)
a(6) = : : (6)

e—jZﬂ' (M_/\DD cos(8)

where D is the antenna spacing and A isthe signal wavelength.
Let Q denote the number of clusters. Let [/, §2*<] denote
the interval of AOAsfor the ¢-th cluster of desired pathsin the
[0, #] interval. See anillustration in Fig. 1 for @ = 2.

For auniform linear array, we have the following proposition
in the massive MIMO regime:

Proposition 1: The rank of channel covariance matrix R
satisfies:

rank(R)
M

2Note that a path coming from angle —é yields identical steering vector to
that from ¢. Therefore we can limit ourselves to AOAs within [0, 7).

< d, when M is sufficiently large,

Multipath

Fig. 1. Desired channel composed of (2 = 2 clusters of multipath.

where d is defined as

Q
d £ min(1, Z (cos(ﬁ}lni“) — cos(0™))

g=1

D
A )

Proof: The channel can be seen as the sum of elementary
channels each of which corresponds to one separate clusters.
Then R can be decomposed into asum of covariancesover these
clusters. Since the clusters are separated, the signal subspaces
of the corresponding covariances are orthogonal and therefore
their dimensionsadd up. Then based on[10] Lemma 1, the proof
of Proposition 1 can be readily obtained. O

Now define the total set of AOASs of the desired channel as

gd A UqQ:1 [gglin7 9‘11113)(]7 (7)

so that the probability density function (PDF) p4(#) of the de-
sired AOA satisfies pg(8) > 0if § € 84 and pg(d) = 0O if
6 ¢ 04. In the same way, the PDF of all interference AOASs sat-
isfies p;(#) > 0if § € §; and p;(#) = 0 otherwise, where 6;
isthe union of all possible interference AOAs. We have the fol-
lowing result for the massive uniform array:

Corollary 1: if D < A/2 and 84 N d; = {), then the MMSE
estimate of (4) satisfies:

: 1. _ 7.noint
‘}133)0 h; = hjo™. (8

Proof: It can be shown that from [10] Lemma 2, condition
(5) will befulfilled as long as interfering AOAs do not overlap
with any of the clusters for the desired channel, in which case
if we analyze the received signal using eigen-value decompo-
sition, we can find the interference disappears asymptotically
because of its orthogonality with the signal space of desired
channel covariance. (8) is obtained in the same way as[10]. As
aresult we omit the detailed proof in this paper.

2) Random Arrays: Tightly calibrated arrays with uniform
spacing arehard to realizein practice. Aninteresting questionis
whether the above results carry on to the setting of linear arrays
with random antenna placement. To study this case, we consider
a set of antennas randomly located over aline, and spanning a
total aperture of D meters. We investigate the extended array
and D is allowed to grow with M.



In this case, an elementary path coming from an angle 6 can
be represented via the corresponding array response vector as.

P—jQWdTl cos(8)

a(d) £ : : ©)
e—jZWd% cos(8)
where the position of the m-th antenna® (1 < m < M), d,n,
follows auniform distribution, i.e., d,,, ~ (0, D). The PDF of
AOA ¢ for the desired pathsis non-zero only when 6 € f,, asin
Section |1-B1. Define the average antenna spacing D = D/M.
Assuming the aperture of antennaarray D isincreasing linearly
with M, i.e., D is constant, we now have the extended results
on the low-dimensional property:
Proposition 2: Define

( )é [ —327r L e—jQT(—MB]T
B £ span{a(z ) € [b1, 2]}
C £ span{a(z),z € b},
LA @ min pmax min jmax
where by, by € [—1,1], b = U [, 5], and b, by

are values such that

_1 < billln <billa.X < . < b;lllll <b1qlla.X < . < 111111 <b1113.X 1
then we have

o dim{B} < (b 2 bi)MD/X+ o(M)

o dim{C} < Zq_ (2> — p2in ) MD /X + o(M)

Proof: SeeAppend|x A. (I
Proposition 2 indicates the dimensions spanned in massive
MIMO regime by elementary paths for (i) single cluster of
AOA, and (ii) multiple digjoint clusters of AOA, respectively.
The following result now directly generalizes Proposition 1 to
random arrays.

Proposition 3: With abounded support of AOAsf, asin (7),
the rank of channel covariance matrix R. satisfies:

Q
< Z (cos(65™)
q=1

MD
— cos(6,"*)) — o(M),

rank(R)

(10)

Proof: Wecan readily obtainthisresult by replacing « with
cos(#) in Proposition 2. O
This result above suggests that the low-dimensional feature of
signal subspacesin massive MIMO isnoat critically linked to the
Fourier structure of the steering vectors. Furthermore, it should
be noted that the above upper bound is actually very tight for
large M, as witnessed from the simulation in Fig. 2, where we
take @ = 1,D = \/2 for example. The AOA spread is 40
degrees, and the closed form model refersto

, ,
. MD
FM) 23 (cos(B™) — cos(85%)) =~

q=1

We can observe that rank(R) is well approximated by f(A1).
Proposition 3 and Fig. 2 suggest that a property of rank addi-
tivity holdsfor multipledisjoint clustersof AOAsinthe massive

3Note that antenna ordering has no impact on our results.
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Fig. 2. Closed-form rank model for the channel covariance vs. actual rank.

MIMO regime, i.e., for A{ — 4oc. In the following proposi-
tion we extend the results of Corollary 1 to the case of random
arrays under the weaker assumption of rank additivity for the
covariance matrices of the desired and interference channels.
Proposition 4. Let R, be the covariance matrix of desired
channel and R;; be the covariance of the sum of all interference
channels. If Ry and R, satisfy the following rank additivity

property
rank(R4 + R;) = rank(Ry) + rank(R,;),

then in the high SNR regime, the linear MM SE estimate of the
desired channel iserror free, or, in other words, its error covari-
ance matrix C. vanishes.

Proof: In the case of absence of white Gaussian noisg, i.e.,
o2 = 0, and rank deficient signal and interference covariance
matrices, the error covariance matrix of linear MM SE estimator
[20] can be generalized as

C.=R,— Rd(Rd + R,j)TRd (1)

where (- )T denotes the Moore-Penrose generalized inverse of
the matrix argument. Let us denote by R, = U, X, U with
x € {d,e}, U, unitary matrix, and X, d|agonal matrix, the
eigenvalue decomposition of the Hermitian matrix R.;. Then,

R! = U,XI U wherethe elementsi, j of the matrix X}, are
given by
st _ [oh, ifi=jand S, £0;
=i 0, otherwise.

Additionally, U, denotes the column space of R, and 2 the
corresponding nonzero eigenvaluessuchthat R, =U,%, UH
Then, under the assumption of rank additivity of the covariance
matrices R, and R;, the theorem on the M oore-Penrose gener-
alized inverse for sum of matricesin [21] yields

(Rg+R,) = (I-SHRI(T - ThH + STRITI, (12
whereS = U, UH (I

Let us observe that

U, U and T = (I- U, U U, UA.

T'R;=0 and RyST=o0. (13)
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Fig. 3. Channel estimation performance vs. M, D = \/2, 2-cell network,

angle spread 30 degrees, 8, N 8; = §, cell-edge SNR is 20 dB. We compare

the standard L east Squares (L S) to MM SE estimators, in interference and inter-

ference-free scenarios.

We focus on thefirst equality. The proof of the second equation
follows along the same line. By appealing to the mixed type
reverse order laws of ther x s matrix A and the s x ¢ matrix
B in[22]

(AB)' = BE(AHABBH)T A,
T¥ can be rewritten as
PP PO Ny
T = U, U4 [(I - Ude)UiU{I] (1- U UH)
= U, UfTHI - U, Uf).

The first equality is obtained utilizing the fact that the matrices
U, U# and (I — U,U4) are orthogona projectors and thus
idempotent. Then,

T-‘-Rd = ﬁZﬁZHT'(I — ﬁdﬁf)ﬁdidﬁf =0.

Finally, substituting (12) into (11) and accounting for orthogo-
nality in (13)

C.=R,- Ry [(I — SHR(@ - TH + STRITT] R,
=R, - R,R/R;=0.

In the last equality we use one of the fundamental relations
defining the Moore-Penrose generalized inverse. O
According to Proposition 3, therank additivity conditionisin
general satisfied when the AOA support of desired channel and
that of interference channels span disjoint region of spaces, i.e.,
f4 N 8@; = 0. This property can be exploited in pilot decontam-
ination or interference rejection. Fig. 3 shows the channel esti-
mation performance in the presence of contaminating pilots. In
the simulation, we consider a 2-cell network. Each cell has one
single-antennauser who usesidentical pilot sequence. The mean
squared error (M SE) of uplink channel estimation isshown. The
simulation suggests that the MM SE channel estimator is able to
rid itself from pilot contamination effects as the number of an-
tennasis (even moderately) large, which verifies Proposition 4.

BS antennas

()

b 1\
Ring of @
Scatterers (g

Multipath

O = —

Scatterers

(B)}

Fig. 4. Thedistributed large-scale antenna setting with a one-ring model.

I1l. FINITE RANK MODEL IN DISTRIBUTED ARRAYS

We now turn to another popular form of large scale antenna
regime, often referred to in the literature as distributed antenna
systems. In such a setting, a virtual base station is deployed
having its M antennas scattered throughout the cell .4 We con-
sider again the uplink in which joint combining across all BS
antennas is assumed possible. The A base station antennas are
assumed uniformly and randomly located in a fixed size net-
work, serving single-antenna users. A{ isallowed to grow large
giving rise to a so-called dense network. Our model assumes a
disk-shaped cell of radius L, athough simulation and intuition
confirm that the actual shape of the cell’sboundary isirrelevant
to the main result.

A. Channel Model

In order to facilitate the analysis, we adopt the one-ring
model [14], [15] where users are surrounded by a ring of P
local scatterers (see Fig. 4) located  meters away from the
user. The positions of the scatterers are considered to follow
a uniform distribution on the ring. In the one-ring model, the
propagation from user to base is assumed to follow P paths
(hereafter referred to as scattering paths), where each path
p bounces once on the p-th scatterer before reaching all M
destinations.5 Hence, the path length from user & to the m-th
antenna via the p-th path is r + dyppm,, Where dip,,, is the
distance between the p-th scatterer of the k-th user and the
m-th BS antenna. The path loss of the p-th scattering path is
modeled by:

a
(dkpm + T’)’y ’
4For ease of exposition we temporarily consider a single cell setting in this

section, i.e,, B = 1. However simulation is aso done later in a multi-cell
scenario.

,5 kpm — (14)

5Note that this model assumes the BS antennas are high enough above clutter
so that there is no local scattering around the BS antennas.



where « is a constant that can be computed based on desired
cell-edge SNR, and « is the path loss exponent. We scale the
amplitude of each path by /P. The channel between user k and
al BS antennas is given by:

) L ihk
P
VP

where hy,, is the p-th scattering path vector channel between
user £ and all base stations:

\//Bk—ltﬂ j2m
:A Ay s
Me—ﬂw%

where e/#*» denotes the random common phase of that scat-
tering path vector due to possible random perturbations of the
user location around the ring center or the phase shift due to the
reflection on the scatterer. ¢, is assumed i.i.d. and uniformly
distributed between 0 to 27.

(15)

L[1+

A .
h/ﬂp = e.]‘rkp}

(16)

B. A Low-Rank Modél for Distributed Arrays

We have shown in Section 11-B the low-dimension property
for linear antenna array systems. In attacking this problem it is
important to distinguish the rank reduction effect due to path
loss from the intrinsic finite-rank behavior of the large antenna
channel covariance in an equal path loss regime. In fact, in an
extended network (i.e., where some base station antennas can
be arbitrarily far from some users), the signal of any given user
will be received over only a limited number of antennas in its
vicinity, thereby effectively limiting the channel rank to the size
of this neighborhood. To circumvent this problem, we consider
below a (dense) network where the path loss terms are set ar-
tificially to be al egual (to one) and study the finite-rankness
under such conditions. In this model, the channel covarianceis
defined as R 2 E{hh"} where the expectation is taken over
the random positions of the scatterers on the ring. Note that our
analysis indicates that a randomization over the user’s location
inside the scattering’s disk would produce an identical upper
bound on the rank.

Theorem 1. The rank of the channel covariance matrix for a
distributed antenna system satisfies:

rank(R) < 4%7? + o(r).
Proof: See Appendix B. [l
In reality we show below that the right hand side of (17) isa
very close approximation of the actual rank, which isdefined as
the number of eigenvalues of R which are greater than a pre-
scribed threshold (in our simulations it is taken to be 10e-5).
Theorem 1 shows alinear dependency of the rank on the size of
the scattering ring. When r increases, the richer scattering envi-
ronment expandsthe dimension of signal space. Fig. 5 showsthe
behavior of the covariance rank with respect to the scattering ra-
diusr. We can see the rank scales linearly with the slope 47/ A.
However because of the finite number of antennas the rank will
finally saturate towards A when r keeps increasing.

(17
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Fig.5. Rankvs.r. A = 2000, A = 0.15 m, L = 500 m.

IV. SPATIAL INTERFERENCE FILTERING

We are now interested in characterizing the orthogonality (or
correlation) between any two user channel vectorsas afunction
of inter-user distance, the wavelength and the scattering radius
r, in the large A/ limit, as this will provide a measure of inter-
ference rejection capability for the distributed antenna systems.
In the following we will investigate two interference filtering
schemes: 1) the simplistic matched filtering, 2) a subspace pro-
jection filtering.

A. Performance of Interference Filtering Using Matched Filter

We start with analyzing the channel correlation between
two users who interfere each other. We point out two distinct
regimes, depending on whether the inter-user distance is small
or large.

1) Closely Spaced Users: Closely spaced users are defined
by the fact that the distance between user 1's and user 2's scat-
terersissmall enough compared with the distance between scat-
terers and receiving antennas so that we can consider planar
wavefronts. We first examine the correlation between any two
scattering paths for user 1 and user 2, corresponding to user 1's
p-th scatterer and user 2's ¢-th scatterer, with adistance D, .

Proposition 5: For D,, small enough that the two scatterers
are located in the same planar wavefront region, we have

lim | h1p| = |.Jy (QW?M)

M—o0 |h1p| ‘h2q‘

where .J; isthe zero-order Bessel function of the first kind.

Proof: See Appendix C. O
Note that the proof is based on an additional assumption that
the path loss between a certain antenna and the two scatterers
are approximately equal, i.e., if user 1 and user 2 are concerned,
then Bagm = B1pm. Since the two scatterers are very close and
the antenna is much further away, this assumption is reason-
ablein practice. To visualize Proposition 5, we draw the curves

2q

of % d |Jo(¥5222)| in Fig. 6. The curves show that
when M grows, [h hy,|/[hy, | [he,| gets closer and closer to

the Bessel function. The curve named “Envelope by Krasikov”
isan upper bound of the Bessel function devel oped by Krasikov

; (18)
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Fig. 6. lllustration of Proposition 5.

in [23], which will be used in Proposition 6. The interpretation
of Proposition 5 is as follows: the highest correlation between
two scattering paths is attained when the spacing between the
two scatterers is very small. Since the Bessel function reaches
itsfirst zero around aspacing of Dy = 0.38), it impliesthat the
users ought to belocated at least 21 + Dy = 2r away from each
other to allow for areuse of spectral resources (such as pilots).
In practice we would intend to schedule users with additional
spacing than just 2r, according to the side lobes of the Bessel
function. Note that our model is similar to Clarke’s model [24],
which indicates if the AOA is uniformly distributed from O to
27, the autocorrelation of a moving mobile is a scaled Bessel
function.

We use Proposition 5 to derive alower bound on the signal to
interference ratio (SIR) under a simplified system setting with
just two users (one desired, one interferer) and a matched filter
receiveré. By computing the expectation over the random BS
antenna locations, which is also how we derive the expectation
of SIRs and channel correlations in the rest of this section, we
obtain the following bound of SIR:

Proposition 6: Assume perfect channel estimation, closely
located users, whose scattering rings do not overlap. The ex-
pected SIR at the matched filter output satisfies:

- <<4( 27T(D;—2r) )2 _3)

P 2
16( Qﬁ(D;_ZT) ) —920

3
-3

E{SIR} = > , when M islarge,

where D,, isthe distance between the two users and is assumed
to be larger than v/3 + 33 \/(4x) + 2r.
Proof: When applying matched filter, we have

by [*[hy|?

E{SIR} =E :
{SIR} k|

Let usrecall that the envelope of the Bessel function Jo (252) is
decreasing with 1. Thus, thelower bound of SIR is obtained by

6With more users, the interference is simply scaled by the number of users.
Additionally more advanced receivers could also be exploited.

considering the shortest I),,,, which gives the worst case corre-
lation. Since D, > D,, — 2r, we may obtain when M islarge:
1
E{SIR} = 5
T ( ZW(DX —2r) )

Finally we use an upper bound of the envelope of the
Bessel function [23] which has validity when D, — 2r >
V/3 4 335)\/(4x). The bounding argument of the Bessel func-
tionin [23] can directly apply here. O
The above proposition quantifies the rate at which the SIR
increases with the inter-user distance, in this case linearly.

2) Distant Users. We consider the regime in which users
are located further away from each other, e.g., many wave-
lengths away. The planar wavefront assumption no longer
holds, making the use of the Bessel functionimpractical. In this
case we are again interested in characterizing the correlation
between two scattering paths corresponding to two users, then
the correlation between the channel vectors themselves.

We first investigate the behavior of hquhlp forany p, ¢:

M
ththp = Z (hzthlp‘m);

m=1

(19)

where Ay, 1S the channel between the k-th user and the m-th
BS antenna via the p-th scatterer:

A 7

—72
hkpm =\ ,‘kam6 & A

Sincethe two phasese/#1r and e7#2« areindependent, we have:

ej‘Pva i

(20)

E(hyzgthlpm) = 07
and the variance of 3, h1pm IS
a* (Dpg) 2 Var(h;thlpm) = E(B2gmBipm)-

Given the random network model with radius L, the path loss
correlation can be found by integration over polar coordinates
giving the location of the BS antennas. Although a closed-form
expression is elusive, we get the following computable expres-
sion:

(21)

o*(D) =
2
wl?

) Yl p
'A v /0 (p+r) (\/D2 + p? —2pDcos(yp) + r)

7 dep

(22)

One example of the path loss correlation o2(D) is given in
Fig. 7, which shows o2( D) is a decreasing function of D. We
have the following proposition on the distribution of |hi! hy ,|*:

Proposition 7: Let y bearandom variable exponentially dis-
tributed with parameter A = 2. Asymptotically for M — +o0
|h§{1h1p|2 d

0*(Dypg)M @

where % denotes convergence in distribution.
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Fig. 7. Anillustration of o2(D) witha = 107, L = 300, » = 15, and
v = 2.5,

!

. Proof: Let us consider the random variable Sy =
hilhy,

S Do By the law of large numbers S, converges almost
surely to 0 as M/ — +oo. By appealing to the Central Limit
Theorem (CLT), the random variable /A1Sy; converges in
distribution to a complex Gaussian distribution with zero mean
and unit variance. Thus, its square, i.e., M|Sy|?, converges
also in distribution to an exponentially distributed random
variable with parameter A = 2. (I

We now derive alower bound of the average SIR for atwo-
user system, assuming matched filtering receiver.

Proposition 8: The lower bound is given by

M(C? + o(1))

E{SIR} > , 24
{SIR} o?(Dy —2r)’ (24)
where C isaconstant such that hf'h; /M = C + o(1).
Proof: The SIR can be written as:
Hy |2
hfih 2 |h1 hl' 2 1
sip < Bl O roll) o)
|h§h1| | h1| [Bi'h
M?2 M2

Note that Vp,q, hﬁfthp/M has zero mean and a variance
of 0(Dype)/M. In addition, the two variables hilhy, /M
and hffq,hlp/ /M are uncorrelated for any p' # p or ¢ # g,
resulting from the random and independent phasesin (16).

J

P P
il hy,

bfn ") ] 1
E{W RNV S) Sy

1
= ﬁ\/ar(z Z
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The final step is due to the fact that D,, > D, — 2r,Vp,q.
Finally we get

E{SIR} > %,

and Proposition 8 is proven. (I
The above result suggests at which rate the matched filtered in-
terference decays as afunction of A/ and the inter-user spacing
D, which in turn can be exploited to predict system perfor-
mance and also give insights to the tolerable spatial reuse of
pilot resources.

B. Interference Filtering Via Subspace Projection

SIR analysis in previous sections is built upon a simple
matched filter, which till requires an accurate channel es-
timation. In this section, however, we propose a simple
beamforming strategy building on the low-dimensionality of
the signal subspace, which does not require an accurate channel
estimation. We consider a K -user network with the first user
being atarget user and all other users being interference users.
All these users share the same pilot sequence s. Denote the sum
of interference covariancesas R; = Ro + R3 + --- + Rk.
The eigenvalue decomposition of R; isR; = UXUH , where
Y isalM x M diagonal matrix with the eigenvalues of Ry on
its main diagonal. Suppose the eigenvalues are in descending
order and the first m eigenvalues are non-negligible while the
others can be neglected. We construct the spatial filter at the
BS side for user 1 as:

Wi = [Wnst [Umra) . [un] (26)

where u,, is the m-th column of U. We can assume approxi-
mately that:

Wlhk ~ O,Vk 75 1,
W,Y =~ W h;s?” + W|N, (27)
whereN € C¥*7 jsthespatially and temporally white additive
Gaussian noise, Y € CM*7 isthe received training signal, and
s € C™! is the shared pilot sequence. Define the effective
channel h, £ Wih,. Notethat h, hasareduced size, whichis
(M —m) x 1. AnLSestimate of h, is:

h, = W, Ys*(s7s%) ", (28)
The key idea is that channel estimate El is coarse, yet it can
be used as a modified MRC beamformer asit liesin a subspace
orthogonal to theinterference and is also aligned with the signal
subspace of h; . During uplink data transmission phase:

K
y=his{ +> hsi +n, (29)
k=2
where sq,s9,---,sxg € C™*! are the transmitted signal se-

quence. y,n € CM*™ are the received signal and ngise re-
spectively. The subspace-based MRC beamformer isﬁ1 Wi

K

~H ~H ~H ~H

h, Wiy=h, h;sT +h' W, E:hkskT. +h, Win. (30)
k=2

~0
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Fig. 8. Estimation performance vs. distance between two users, A/ = 2000,
r = 15 m, single-cell network.

In case there is no null space for Ry, e.g., the number of users
K islarge or the interference users have rich scattering envi-
ronments, the subspace-based method can still avoid the strong
eigen modes of interference and therefore reject agood amount
of interference.

Note that the subspace projection method has a certain sim-
ilarity with [11] which also uses eigen-value decomposition in
order to perform blind channel estimation. However there are
two main differences: 1) They address only the case of classical
massive arrays, not distributed antenna arrays; 2) They use the
received power levels domain to separate desired channel and
interfering channels. In our approach, the discrimination agai nst
interference isrelated to the phases with which the interference
and desired signalsarriveat thearray. In fact, thetwo techniques
could in principle be combined.

V. NUMERICAL RESULTS

We first consider the channel estimation quality in arandom
network with radius L = 500 meters. The path loss exponent
~ = 2.5. The scattering radius isr = 15 meters. P = 50
scatterers are randomly distributed in the scattering ring, which
is centered at the user. Define the channel estimation MSE of
the k-th user as:

hy, — hy|?

(31)
In the simulation we average the channel estimation M SE over
different usersin order to obtain MSE curve.

In Fig. 8, we assume the target user is located at the origin
while an interfering user (they share the same pilot sequence)
is moving over the horizontal axis at increasing distances from
user 1. As we can observe, when the MM SE estimator (4) is
used, the channel estimation error is a monotonous decreasing
function of the distance between the desired user and the in-
terference user. One may also notice the constant performance
gap between LS and MM SE estimator in interference-free sce-
nario, whichindicatesthat covarianceinformationisstill helpful
even in a highly distributed antenna system. As shown in the

30 ¢

—B— LS+ MRC
—— MMSE + MRC
25 || —F— MMSE + MMSE
—&— Subspace MRC

h
[=]

Sum-rate [bits/sec/Hz]
- -
o ]

0 50 100 150 200 250 300 350 400
Distance between two users [m]

Fig. 9. Uplink sum-rate vs. distance between 2 users, 4/ = 500, » = 15 m,

cell-edge SNR 20 dB, single-cell network.
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Fig. 10. Uplink per-cell rate vs. r, cell-edge SNR 20 dB, 7-cell network, each
cell has M = 500 distributed antennas.

blue curve on the top, an LS estimator is unable to separate
the desired channel and the interference channel. In contrast,
an MM SE estimator has much better performanceasitsMSE is
decreasing almost linearly with inter-user spacing, hence con-
firming our claims.

We then examine the performance of four MRC beamformers
in terms of uplink sum-rate in a single-cell setting (Fig. 9) and
per-cell rate in a multi-cell setting (Fig. 10). The sum-rate is
defined as follows:

K

sum-rate 2 ZlogQ(l + SINRy), (32)
k=1

where K is the number of simultaneously served users, and
SINR,, is the uplink signal-to-noise-plus-interference ratio
(SINR) of the k-th user.

In Fig. 9, we show the performance of subspace-based MRC
beamforming in a single-cell network where two users share
the same pilot. The total number of distributed antennas is 500.
In the figure “LS + MRC” denotes the sum-rate performance
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of MRC beamforming using the LS channel estimate, while the
curve “MMSE + MRC” is the performance of MRC beam-
forming using the MM SE estimate (4). “MMSE + MMSE”
denotes the performance curve of MM SE beamforming using
MM SE channel estimate when channel covariances (including
the interference covariances) are assumed known during
both channel estimation and signal detection. The simulation
shows the simpl e subspace-based method has a very good per-
formance. Due to pilot contamination, the MRC beamformer
using MM SE channel estimateis not as good as subspace-based
method. The reason is that R; and Ry generally have over-
lapping signal subspaces here. We may also notice that the
subspace-based MRC beamformer has some dight performance
gains over the MM SE beamformer.

Fig. 10 depictsthe uplink per-cell rate achieved by the above-
mentioned MRC beamformers as a function of scattering ra-
dius r. In the simulation we have 7 hexagonal cells with one
center cell and 6 surrounding cells. Each cell has one user. All
the users share the same pilot sequence. The per-cell rateis de-
fined asthe sum-rate (32) divided by the number of cells. Ascan
be seen, the subspace-based beamforming shows performance
gains over other traditional MRC methods especially when the
radius of scattering ring is smaller. It also shows more robust-
ness than MM SE beamformer when the radius of the scattering
ring is larger.

VI. CONCLUSION

We investigate low-dimensional properties of covariance
signal subspaces in general topologies of massive arrays. We
extend previous results known in the uniform linear array case
to the case of arrays with random placement, including the case
of scattered antennas over a 2D dense network. A correlation
model is derived which is exploited to gain insight on the
interference rejection capability of low-complexity matched
filter-based receivers in distributed antenna settings.

APPENDIX

A. Proof of Proposition 2

We first consider an /NV-antenna ULA with aperture D and
antenna spacing D = D/(N — 1). Define

T
B A 0 D, 5. D(N-1)_
a(l?): [076 JZW)"B,"'jE J2r ———=
; D o Din-1) 1T
— [07 6—]27r MN—I)J:’ D, 6—]277 XIN=D) .r]

Now wedefine A £ span{&(z),z € [by,b2]}. Recall from [10]
the following result:

If ﬂ(X) 4 [1 e—JT e—jﬂ(N—l)Jr]T
[-1,1] and b; < by, define A £ span{B(x),x €
when N islarge,

. Given by, by €
[bth]}’

dim{ A} = 20N (b~ BN

3 of——5—") (3

The above conclusion can directly apply: when N islarge,

dim{ A} = %@2 b 4o (%(52 - b1)>
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We can observe that dim{.A} has no dependency on N.
Imagine for any finite aperture D, we let N — oo so that
D — 0. In this case, al elements of a(x) can be seen as M
(finite) random samples in the vector &(z). Hence

MD

dim{B} < dim{A} = 3

(bz — bl) + 0(17\[)

Now consider the space C. We define C, = span{a(z),z €
[, 5]} An upper bound of its dimension can be obtained
by considering the extreme case when all ¢} spacesare mutually
orthogonal so that their dimensions can add up:

MD ~
dim{C} < Zdun{C B Z (b = by"") + o(M).

g=1

Thus, Proposition 2 is proven. O

B. Proof of Theorem 1

For ease of exposition we omit the user index k. Imagine a
special case when the scatterers are located in aline which has
thelength L, as shown in Fig. 11. Assume the antennas are far
away so that the scatterers are in the same planar wavefront
region. We denote the right end of the scattering line as the
reference point. The m-th antenna is located d,,, meters away
from the reference point, at the angle 4,,,. The p-th scatter is
I(p) meters away from the reference poi nt. I I(p) follows a uni-
form distribution, i.e., I(p) ~ 14(0, L). The phase shift between
the scatterer p and the reference point is 27l(p) cos(f,,)/ A,
1<m< M.

Define adiagonal phase matrix

—jogdamtr rlM+7

diag{e ™" = e 1.

S

—
=
—

The p-th scattering path vector channel is now given by:

pl +7

s L(p) cos(dq)
—j27 —j2w ==

(>

h, eIPr = pl¥r = :
o ApnitT o 1(p) cos(¥ )
o—i2m M o—i2m (») rA( M)
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1(p) ¢ ‘rs((-’l)

If we defi neh -,
may see that h and h, are un|tar|Iy equivalent, since ¢/¥» =
formsaunitary matnx Ifwevaryl( }, we can obtain two linear

[ —j2=

spaces spanned by h,, and/or h,,. The dimensions of the two |h2 h1p| =
spaces are equal. Therefore in the following we will find the
dimension spanned by hp instead of h,. Assume N is alarge

2(11 1)

mteger we define z,, 2 —1 + ~ = 1,...,N, the set
X 2 {2,}, aswell as the vector
€—j2 1(1,)m1 —]271'](’)(“)
o z(mm } _jQﬂ,I(‘””T)
p2 | _ pi2ep) | € ’
P : - :
e_jzﬂ.il'p;\»uzv e—jZWI([)(—ZlN 1)
Sincel(p) ~ U(0, L), we reuse the result shown in (33):

dim{span{g,, I(p) € [0,L]}}

_MN (AN
N 2 T2
2L .

Note that the above result holds when NV is arbitrarily large.
We again observethat when N — oo, any cos(#,,,) will fall into
the set X', which indicates
2L .

dim{span{h,,I(p) € [0, L]}} < 5T o(L). (34

Recall that the covariance matrix R = E{% E E h,h}.
1
Because of the random and independent phaseﬁp ©p qand Pg»

Vp # ¢,E{h,h]"} = 0.

P
1
R=E{; > hyh["} =E{h,h/}.
p=1

We can see that the number of scatterers has no impact on the
rank of channel covariance matrix. Hence according to (34), the
rank of R. is upper bounded by

rank(R) < ~ Tt o(L).

Returning to the one-ring model, we can interpret the ring as
the sum of lines, with the total length 27r. An extreme caseis
when al of the channels corresponding to different pieces of
the ring span orthogonal spaces, i.e., the rank of the covariance
matrix is the sum of the spatial dimensions corresponding to
every pieces of the ring. This is the case when the covariance
rank is maximized. Therefore the rank is upper bounded by:

rank(R) < 4% + o(r).
Thus Theorem 1 is proven.

C. Proof of Proposition 5

We split up the disk centered in the midpoint between the
two scatterersinto N (a large number) equal-sized sectors like

e—i2m M]T we dividing up a cake. The BS antennas al fall into one of these

sectors. We have

N M,

Z Z (B3 gnm 1 pnm )

n=1m=1
N M, ‘

limn

N—oo

= 11111

n=1m=1

where A, (could be zero) is the total number of antennas lo-
cated in the n-th sector, hiagnm and ki pp., are the channel co-
efficient between the m-th antenna located in the n-th sector
and the two scatterers. If N islarge, the angle contained by the
two sides of a sector is small. Therefore BS antennas located
in the same sector share the same difference of distances be-
tween the two scatterers, i.e., dagnm — dipnm ONly depends on
the sector index n. Based on the fact that D), is small, we as-

sume ﬁzanL ~ /31pnm and dzqnm 2 dlpnm = qu COS(CU,I),
where ¢v,, = zjfT" isthe AOA from the BS antennas in the n-th
sector.
N Dpg cos(an) M,
1 jQﬁM \/7
lh h1P| ~X ]\}E}éo Zl (6 > Z f82q11‘n1f81pnm
n= m=1
N M,,
I Z jom Bpacosten) 3
~ lm (@ ;
Nooo / 1pnm 3
n=1 m=1
AT

|h1P| |h2q| ~ |h1p| — hIIl Z Z /31pnm

nlml

Due to the symmetry of the network, when M — oo, theradio
waves can arrive from any direction with equal probability.

Thus S-M" . 81, isindependent of sector index 7.
lim | ghlp‘ Z 327r Dpg conlom) (5(0"
M—oo |h1p| ‘hgq‘ V—>oo N

1
T on

- ‘Jo(

27
.o Dpg cos(a)
/ PR do
0

27Dy, )
A

?

and Proposition 5 is proven.
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