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ABSTRACT

The purpose of semi-blind channel identi�cation methods is
to exploit the information used by blind methods and the
information coming from known symbols. The main focus
of this paper is the study of deterministic quadratic semi{
blind algorithms which are of particular interest because
of their low computational complexity. The associated cri-
teria are formed as a linear combination of a blind and a
training sequence based criterion. Through the examples
of Subchannel Response Matching and Subspace Fitting
based semi{blind criteria, we study how to construct prop-
erly such semi{blind criteria and how to choose the weights
of the linear combination. We provide a performance study
for these algorithms and give theoretical conditions for the
semi{blind performance to be independent of the weights.

1. INTRODUCTION

Di�erent ways of building semi{blind criteria are possi-
ble. Optimal semi{blind methods can take into account
the knowledge of symbols even arbitrarily dispersed in the
burst: in [1], we proposed optimal methods based on Maxi-
mum Likelihood (ML). This symbol con�guration is in gen-
eral undesirable as the associated semi{blind criteria will
require computationally demanding algorithms because the
structure of the blind problem is lost.

For grouped known symbols (training sequence) com-
putionally low solutions can be built because the structure
of the blind problem is kept. By neglecting some infor-
mation about the known or unknown symbols, ML easily
allows one to construct semi{blind criteria that are a lin-
ear combination of a blind and a training sequence based
criterion, with optimal weights in the ML sense.

A third way to build semi{blind criteria is to linearly
combine a given blind criterion and a TS based criterion.
We study here the Subchannel Response Matching (SRM)
and Subspace Fitting (SF) based semi{blind criteria which
are of particular interest because they are quadratic and
represent closed formed solutions; semi{blind SRM in par-
ticular has a low complexity. We show that the blind SRM
criterion needs �rst to be denoised and then correctly com-
bined to the TS criterion. In [2], the SRM case is treated
but the criterion is neither denoised nor correctly weight-
ed. The SF case is treated in [3, 4]. In [4], the optimal
weights are found by optimizing the theoretical expression

for the performance, which represents an increase in com-
plexity. Here, we provide a simple solution to �nd the cor-
rect weights.

At last, we provide a performance study of determin-
istic quadratic semi{blind criteria. We especially charac-
terize their performance in the case of an asymptotic num-
ber of unknown symbols MU and �nite number of known
symbols MK . In [4], a similar study was conducted for
MK � MU , but with MK ! 1, which does not allow to
draw the conclusions we get. Here, we give theoretically
founded conditions for the semi{blind criteria performance
to be independent of the weights of the linear combination.

2. PROBLEM FORMULATION

Consider a sequence of symbols a(k) received through m
channels of length N with coeÆcients h(i):

y(k) =

N�1X
i=0

h(i)a(k�i) + v(k); (1)

v(k) is an additive independent white Gaussian noise and
rvv(k�i) = Ev(k)v(i)H = �2vIm Æki. Assume we receive
M samples, concatenated in the vector Y M (k):

Y M (k) = TM (h)AM(k) + V M(k) (2)

Y M(k) = [yT (k�M+1) � � �yT (k)]T , similarly for V M (k),

andAM (k) = [a(k�M�N+2) � � � a(k)]T . (:)T denotes trans-
pose and (:)H hermitian transpose. The channel trans-

fer function is H(z) =
PN�1

i=0 h(i)z
�i= [HT1 (z)� � �HTm(z)]T .

TM (h) is a block Toeplitz matrix �lled out with the channel
coeÆcients grouped in h = [hT(N�1) � � �hT(0)]T . We shall
simplify the notation in (2) with k =M�1 to:

Y = T (h)A+ V : (3)

The space spanned by the columns of T (h) will be called
signal subspace and its orthogonal complement, the noise
subspace. We assume that a training sequence ATS located
at the beginning of the burst is present in the input burst.
Y TS = TTS(h)ATS + VTS = ATSh + V TS is the portion
of the output burst containing only known symbols. Y B =
TB(h)AB + VB is the rest of the output burst (it contains
the unknown symbols but also some known symbols which
will be treated as unknown in the paper).



3. SEMI{BLIND SRM

SRM [5] is based on a linear parameterization H?(z) of
the noise subspace which satis�es T (h?)T (h) = 0 where
T (h?) is the convolution matrix built from H?(z) and
spans the entire noise subspace. For m = 2, H?(z) =
[�H2(z) H1(z)]. For m > 2 [6],

H
?

(z) =

2
6664
�H2(z) H1(z) 0 � � � 0

0 �H3(z) H2(z) � � �
...

...
. . .

. . . 0
Hm(z) 0 � � � 0 �H1(z)

3
7775 :
(4)

In the noise free case, T (h?)Y (= T (h?)T (h)A) = 0. Us-
ing the commutativity of convolution T (h?)Y = Yh, where
Y is a structured matrix �lled out with the elements of Y :
the channel coeÆcients can be identi�ed uniquely from this
equation as the minimal left eigenvector of Y. When the
received signal is noisy, h is obtained by solving the least{
squares quadratic criterion minkhk=1 kYhk2.

Consider the following semi{blind cost function:

� h
HYHB YBh+ kY TS � TTS(h)ATSk2 : (5)

Note that other TS based criteria can also be considered [7].
An intuitive way to weigh both TS and blind parts is to as-
sociate them with the number of data they are built from,
as suggested in [3] for the semi{blind subspace �tting. In
the SRM case, the optimal � would then be equal to 1. In
�gure 1, we show the NMSE for the channel averaged over
100 Monte{Carlo realizations of the channel (with i.i.d. co-
eÆcients) the noise and the input symbols. The NMSE is
plotted w.r.t. the value of � in dotted lines. For � = 1,
semi{blind SRM gives worse performance than TS estima-
tion.

The blind SRM criterion gives unbiased estimates on-
ly under a norm constraint for the channel [6]. As the
semi{blind criterion is optimized without constraints, the
blind SRM part gives biased estimates which renders the
performance of the semi{blind algorithm poor. For the
criterion to be unbiased, the term YHB YB needs to be de-
noised. Asymptotically in the number of data, YHB YB !
XH
B XB + EVHB VB , where XB is built from the noise free

signal TB(h)AB and VB from the noise V B ; EVHB VB !
��2v where � is a constant. The minimal eigenvalue of
YHB YB , �min(YHB YB), is an estimate of ��2v and the quan-
tity YHB YB � �min(YHB YB)I is the denoised SRM Hessian.
Once the criterion is denoised, the choice for the constan-
t � remains unsolved. To �nd it, we refer to semi{blind
Deterministic ML for h [7]. The blind DML for h is:

min
h
Y
H
P
?

T (h)Y (6)

where PX is the orthogonal projection on the columns of
X and P?

X = I � PX is the projection on the orthogonal
complement of X. By using the linear parameterization of
the noise subspace, (6) becomes:

min
h
Y
HT H(h?)

�
T (h?)T H(h?)

�+
T (h?)Y

, min
h

h
HYHR+

(h)Yh
(7)
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Figure 1: Semi{blind SRM built as a linear combination of
blind SRM and TS based criteria.

Note that SRM appears as a non{weighted version of DML.
In [7], the following semi{blind criterion based on DML was
proposed:

h
HYHBR+

B(h)YBh+ kY TS � TTS(h)ATSk2 : (8)

Semi{blind DML gives the optimal weights between the
blind and TS part: we build now semi{blind SRM as an ap-
proximation of DML. We approximate RB(h) as a multiple
of the identity matrix with multiple equal to the mean of the
diagonal elements, i.e. m

2
khk2. The norm of the channel can

be estimated thanks to an estimate of the denoised second{
order moment of a data sample tr(ryy(0)) = �2akhk2. After
denoising, the semi{blind SRM criterion is:

min
h
f 2

m

1

[khk2
h
H
�
YHB YB � �min(YHB YB)

�
h+

kY TS � TTS(h)ATSk2 g :
(9)

It can be shown that replacing khk2 by a consistent esti-
mate does not change the asymptotic performance. This
algorithm could also be interpreted as an approximation of
the semi{blind Denoised IQML algorithm presented in [7].
In �gure 1, in solid lines, we show the performance of the
corrected semi{blind criterion. The scalar � scales the blind
part in (9). The value � = 1 gives approximately the op-
timal performance and in the neighborhood of � = 1, the
performance hardly depends on the value of �.

4. SEMI{BLIND SUBSPACE FITTING

Consider the received signal covariance matrix of length L:
RYLYL = �2aTL(h)T HL (h) + �2vI. Let RYLYL = VS�SV

H
S

+
VN�NV

H
N

be the eigendecomposition. �S groups the L+N
�1 (dimension of the signal subspace) largest eigenvalues of
RYLYL and �N = �2vI the smallest ones. The columns of VS
span the signal subspace and the columns of VN the noise
subspace. Signal Subspace Fitting (SSF) �ts the column
space of T (h) to that of VS through the quadratic criterion:

min
khk2=1

kP
bVN
T (h)k2 , min

khk2=1
h
HSHS h (10)

where bVN is an estimate of VN obtained from the sample
covariance matrix.
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Figure 2: Semi{blind SF built as a linear combination of
blind SF and TS based criteria.

Consider now the following semi{blind cost function:

�MU h
HSHB SB h+ kY TS � TTS(h)ATSk2 : (11)

In [3], �MU was chosen equal to the number of data on
which the blind criterion is based, i.e. � = 1. In �gure 2
(left, dashed lines), we plot the NMSE of channel estima-
tion w.r.t. � for di�erent sizes L, for SNR=10dB, 10 known
symbols. For L = N (the solid line and dotted line are
superposed), the semi{blind criterion is relatively insensi-
tive to the value of �. For L larger than N however, it is
visibly very sensitive to its value. The choice � = 1 gives
performance worse than that of training sequence based es-
timation for L > N . These simulations suggest that the
linearly combined semi{blind algorithm is sensitive to the
dimension of the noise subspace which varies when L varies.

We propose to \denoise" the blind part of the SF crite-
rion, i.e. we force the smallest eigenvalue of SHB SB to 0 via
SHB SB��min(SHB SB)I. Note that theoretically we do not
remove any noise contribution here, but clean the matrix
SHB SB. This strategy will be later discussed in section 5.
The performance of the denoised semi{blind SF criterion
w.r.t. � for 500 Monte{Carlo realizations of the channel,
noise and input symbols are shown in �gure 2 (left) in solid
lines. We notice the signi�cant e�ect of the denoising on
the semi{blind algorithm performance, but this algorithm
still does not give suÆciently good performance for � = 1.

We propose here to scale the blind part of the semi{
blind SF criterion by the dimensionN of the noise subspace.
The resulting criterion is:

min
h

�
�
MU

N h
H
�
SHB SB��̂minI

�
h+kY TS�TTS(h)ATSk2

�
:

(12)
In �gure 2 (right), we show the performance of (12) in the
case of random channels with 2 subchannels: the semi{blind
SF criterion (12) gives satisfactory results for � = 1.

5. PERFORMANCE STUDY

Consider the general semi{blind quadratic criterion:

min
h

n
�MUh

H bQBh+ kY TS � TTS(h)ATSk2
o
: (13)

bQB = 2

m[khk2

1
MU

�
YHB YB � �min(YHB YB)I

�
for semi{blind

SRM and bQB = 1
N

h
SHB SB � �̂min(SHB SB)I

i
for semi{blind

SF. When the channel has Nc � 1 zeros (e.g. due to chan-

nel length overestimation), bQB tends asymptotically to QB

which has Nc null eigenvalues. Let bQB = cW1
b�1cWH

1 +cW2
b�2cWH

2 be the eigencomposition of bQB, b�2 ! 0 asymp-

totically. Note that the smallest eigenvalue of bQB is 0 for
the semi{blind criteria proposed. One can show that the

elements of b�2 (not exactly equal to 0) are of order 1=MU

for both SRM and SF.
The solution of (13) is:

ĥ =
�
�MU

bQB +AHTSATS
�
�1

AHTSY TS (14)

We study the performance of the semi{blind criterion
(13) for the asymptotic cases:

� MU and MK in�nite, with condition

p
MU

MK
! 0,

which accounts for the fact that the TS part of the cri-
terion should not be negligible w.r.t. the blind part [8].

� MU in�nite, MK �nite.

A similar analysis exists in [4] for SF where the last asymp-
totic condition is MK �MU , with MK in�nite however.

5.1. MU and MK in�nite

In that case, it can be shown as in [8] that:

C�h�h =
�
�MUQB+AHTSATS

�
�1
�
�2M2

UE( bQBh
ohoH bQH

B )

+ �2vAHTSATS
� �
�MUQB +AHTSATS

�
�1

:

(15)

We do not provide here expressions for E( bQBh
ohoH bQH

B ) for
lack of space. The performance in that case depends on
the value of �. In order to optimize the performance, it
would be necessary to �nd the optimal �, which should be
avoided, because of the additional computational cost.

5.2. MU in�nite, MK �nite

Let R1=2RH=2 be the Cholesky decomposition of AHTSATS .�
�MU

bQB +AHTSATS
�
�1

=

R�H=2
�
�MUR�1=2 bQBR�H=2 + I

�
�1

R�1=2 :
(16)

Let the eigendecomposition of R�1=2 bQBR�H=2 = bQ0

B be:

bQ0

B = cW 0b�0cW 0H
= cW 0

1
b�01cW 0H

1 + cW 0

2
b�02cW 0H

2 : (17)

b�02 ! 0 asymptotically in the number of data.�
�MUR�1=2 bQBR�H=2 + I

�
�1

=

cW 0

1

�
�MU

b�01 + I
�
�1 cW 0H

1 + cW 0

2

�
�MU

b�02 + I
�
�1 cW 0H

2 =

cW 0

2

�
�MU

b�02 + I
�
�1 cW 0H

2

(18)

at �rst order in 1=
p
MU . When b�02 6= 0, as the non{zero

element of b�02 are of order 1=MU , �MU
b�02 is of the same

order as I, and the performance depends on �. When b�02 =
0, cW 0

2

�
�MU

b�02 + I
�
�1 cW 0H

2 = cW 0

2
cW 0H
2 and we can show

that the performance are independent of �, and at �rst
order in 1=MU , the covariance matrix of the estimation error

�h = ĥ� ho (ho is the true value of the the channel) is:

C�h�h = �
2
vW2

�
WH

2 AHTSATSW2

�
�1

WH
2 (19)
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Figure 3: Semi{blind SRM: D=1{5 eigenvalues forced to 0.

This expression can be interpreted as the performance of
the estimation of the zeros of the channel by training se-
quence with perfect knowledge of the irreducible part of
the channel.

For b�02 = 0, when considering expression (15), withMK

�nite, we �nd expression (19): the asymptotic expression
(15) in MK and MU is valid when MK is �nite. So there is
a continuity between both expressions (15) and (19) and
expression (15) is valid in any case and should be used
to characterize the performance of the semi{blind criteri-

a. This is not true when the Nc smallest eigenvalues of bQB

are not exactly equal to 0: there is a discontinuity in the
expressions, and both analyses do not coincide. In gener-
al, in this last case, it may not be obvious to know which
analysis between MK in�nite or MK �nite is appropriate.

In practice the performance for small MK is not con-

stant w.r.t. � even when b�02 = 0. For a randomly chosen

channel, in general, the matrix bQB exhibits more than Nc

\small" eigenvalues (the extra small eigenvalues are suÆ-
ciently small to in
uence the performance). We take the
example of semi{blind SRM. To force n smallest eigenval-
ues to 0, we consider the quantity YHB YB � �nI, where �n
is the largest of the n smallest eigenvalues of YHB YB , and
force the negative eigenvalues to 0. For randomly chosen
channels of length 5 (so a priori irreducible channels) we
force 1 to 5 eigenvalues to zero: in �gure 3, we show the re-
sulting NMSE for 100 runs of the channel, noise and input
symbols. For a number of 3 to 5 eigenvalues forced to 0, we
see that the performance are not dependent on the value
of �. The proposed DML, SRM and SF based algorithms
force to zero only 1 eigenvalue and as already stated have
their performance dependent on �. However the algorithms
were constructed (weighted) such that the optimal � is ap-
proximately equal to 1: this solution is preferable because
it is less complex. This analysis shows us the importance

of the eigenvalues of bQB in the behavior of the semi{blind
algorithms.

5.3. Optimal Weighted

Blind SRM and SF criteria are of the form minh h
HUHB UBh.

The optimally weighted version is minh h
HUHBW+

B (h)UBh
withW+

B (h) = EUBhohoHUHB and gives better performance
than the non{weighted version. When MK and MU are
considered in�nite, it can be easily shown that the optimally

weighted semi{blind criterion is:

min
h

�
h
HUHBW+

BUBh+
1

�2v
kY TS � TTS(h)ATSk2

�
(20)

For these asymptotic conditions, �nding the right scale fac-
tor � to optimize the performance of the non{weighted part
of the criterion is diÆcult as w mentioned in section 5.1,
however �nding the right weighting matrix is easier.

In fact, semi{blind DML (6) is built as an optimally
weighted combination of the blind and TS criteria and SRM
can be seen as an approximation of this weighted criterion.
We have not tested the weighted version of the SF criterion:
the introduction of N may perhaps be explained by the
blind weighting matrix.

6. CONCLUSION

In this paper, we have presented two quadratic semi{blind
channel estimation criteria based on a linear combination
of a blind and a TS criterion. We have seen that it may
be diÆcult to construct a semi{blind criterion this way. A
performance analysis has shown the importance of the small
eigenvalues of the Hessian of the blind part of the criterion.
We have studied conditions for the semi{blind performance
to be independent from the weights associated to the blind
and TS parts.
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