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Abstract

Multi-party business applications are computer programs distributed over
the Web implementing collaborative business functions. These applications
are one of the main target of attackers who exploit vulnerabilities in order
to perform malicious activities. The most prevalent classes of vulnerabili-
ties are the consequence of insufficient validation of the user-provided input.
However, the less-known class of logic vulnerabilities recently attracted the
attention of researcher. Unfortunately, the unavailability of the source code
in these kind of applications makes it hard to discover this type of vul-
nerabilities. According to the availability of software documentation, two
further techniques can be used: design verification via model checking, and
black-box security testing. However, the former offers no support to test real
implementations and the latter lacks the sophistication to detect logic flaws.

In this thesis, we present two novel security testing techniques to detect logic
flaws in multi-party business applications that tackle the shortcomings of the
existing techniques. First, we present the design verification via model check-
ing of two security protcools. We then address the challenge of extending the
results of the model checker to automatically test real protocol implemen-
tations. Second, when explicit documentation is not available, we present
a novel black-box security testing technique that combines model inference,
extraction of workflow and data flow patterns, and an attack pattern-based
test case generation algorithm. Finally, we discuss the application of the
technique developed in this thesis in an industrial setting.

We used the techniques presented in this thesis to discover previously-unknown
design errors in the SAML SSO and OpenID security protocols and their
implementations, and ten severe logic vulnerabilities in eCommerce business
applications allowing an attacker to pay less or even shop for free.
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Chapter 1

Introduction

1.1 Multi-party Business Applications

1.1.1 Historical Outline

Business applications are computer programs that are used to perform busi-
ness functions. The way business applications are developed, deployed and
consumed faced fundamental changes over the last decades.

Business applications appeared for the first time in the 1960s. Their ar-
chitecture was monolithic, in which the data management, the application
logic, and the presentation were implemented in the same code. Business
applications were deployed in room-size mainframes and accessed via ter-
minals. In the 1970s, data management was isolated into an independent
component originating two-tier software architectures. Both tiers were still
deployed in mainframes. In the 1980s, three-tier architectures replaced two-
tiers, in which the presentation was separated from the application logic.
The new presentation layer was implemented in independent applications
that were deployed on workstations and personal computers, while the data
and application logic functions remained on the mainframe. Clients and
servers were within the premises of the organization and connected to each
other through local networks. In the 1990s, the architecture of business ap-
plications evolved into a multi-tier architecture in which data management
and application logic were distributed over several servers. Applications were

1



2 CHAPTER 1. INTRODUCTION

still accessed using the client-server paradigm, however servers were located
in different sites of the same organization.

Nowadays, business applications are developed as a composition of ser-
vices. Each service implements a basic business function, and can be de-
ployed over the network. Business applications are accessed via web browsers
or web-enabled client applications running on personal computers, or mobile
devices. While in the past business applications were available within a pri-
vate network, nowadays they can be accessed from public networks such as
the Internet.

1.1.2 Collaboration in Modern Business

Collaboration between organizations is fundamental for modern businesses
to remain competitive [Xu07, KMR05, DHL01]. It can be implemented by
meshing the business processes of an organization with the business processes
of its customers, suppliers, and other business partners [XB05].

Figure 1.1 shows an example of the procurement process. This process
is used throughout this manuscript as a running example. In general, the
term procurement refers to the purchase of goods and services from external
entities for satisfying a need of the buyer. The process involves several
steps, e.g., the identification of the need of the buyer, the identification of
the supplier, ordering, payment, and billing. In our example we consider a
simplified version with three steps: ordering goods, payment, and billing.

The procurement process of Figure 1.1 involves three business partners.
They are Buyer Inc., Seller Inc., and Bank Inc.. The scenario originates
from the need of Buyer to purchase goods and services. Seller is a supplier
specialized in business-to-business provisioning, and Bank Inc. manages the
monetary transaction between Buyer and Seller. The process is described
from the point of view of Buyer Inc. and proceeds as follows. First, the
employee U of Buyer Inc. accesses the store of Seller Inc. and chooses the
good to purchase in the catalogue of Seller Inc.. Then, U authorizes the bank
to transfer the amount of money of the goods to the account of the Seller
Inc. Finally, U receives a notification from Seller confirming the purchase
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Figure 1.1: Reference business scenario: the procurement process

with the details of the delivery.
As shown in Figure 1.1, the procurement process can be implemented

as a collection of services. Seller owns a platform implementing an online
catalog, a virtual shopping cart, and a customer care service. The platform
is available on the Internet as a service, say S. The Bank Inc. offers an online
payment service P for performing monetary transactions and payment via
credit cards. Finally, Buyer uses a web application that composes these
services together implementing the process in Figure 1.1.

The logic of the application in Figure 1.1 can be defined in terms of ex-
pectations of the business partners. For example, at the end of the execution,
the parties involved have the following expectations:

1. Seller Inc. and Buyer Inc. agreed on the goods of the purchase and on
their price;

2. The bank transferred the amount of money from an account of Buyer
Inc. to the account of Seller Inc.;

3. Seller Inc. delivers the goods to Buyer Inc.

Moreover, Buyer Inc. has additional security requirements, i.e., only
authorized employees working for the procurement department can create
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orders at S and authorize payments at P. These type of requirements can be
satisfied by using security protocols.

1.1.3 The Role of Security Protocols

Prior to computer networks, security of business applications was achieved
by restricting physical access to the mainframes [MCJ97]. Physical restric-
tion was then replaced by authentication schemes in which a user provides
username and password over a terminal [MCJ97]. This mechanism was suf-
ficient to access the computer via secure communication channels [MCJ97].
In 1980s, the need of sharing data and computational resources led to the
creation of computer networks in which organizations connected computers
to each other over insecure communication channels. As a result, attack-
ers could intercept and reuse user credentials to gain unauthorized access.
Exchanging credentials in clear-text over these links was no longer a secure
practice [MCJ97]. This led to the development of user authentication proto-
cols and other security protocols based on cryptographic primitives (See the
Security Protocols Open Repository [spo02]).

Security protocols play two roles in modern business applications. First,
they provide the security guarantees that business applications need in order
to carry out the business functions, e.g., user authentication and confidential
message exchange. Second, they are enabling technology for business collab-
orations. For example, security protocols allow business partners to set up
federated identity management, or enable an organization to share resources
with partners keeping the ownership and the access control.

With reference to Figure 1.1, let us consider the following two security-
relevant requirements. First, Buyer Inc. would like that only authorized
employees of the procurement department can create orders at S, and au-
thorize payments at P. Second, Buyer Inc. would like that its employees are
authenticated only once to access the services S and P.

These two requirements are satisfied by security protocols. For example,
Figure 1.2 shows a detailed description of the procurement process that ex-
tends Figure 1.1 by adding two new services IdP and AS. IdP is the identity
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Figure 1.2: A detailed view of the procurement process

management provider in charge of authenticating users of the organization
of Buyer Inc.. AS is the authorization service that grants or denies the ac-
cess to resources to the employees of Buyer Inc.. The user authentication
and authorization are performed upon a request issued by a service called
initiator. Then, IdP, or AS, issues a signed token for the initiator that proves
that the user is authenticated, or authorized, respectively. For the sake of
simplicity, in Figure 1.2 we omit the token generation and exchange.

The process is the following. First, U accesses S for making an order for
the item I. S does not known the identity of U nor whether U is authorized
to make orders. Thus, S asks U to be authenticated by IdP, the identity
provider of his own company, and to be authorized by AS to make an order
at S. U shows to S two messages signed by IdP and AS to prove that she is
authenticated and authorized. Afterwards, U confirms the order and visits P
for transferring money to the account of the store. Similarly as seen before,
P does not know the identity of U nor whether U is authorized to access P.
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So, P asks U to be authenticated at IdP and to get the authorization for
paying S. Afterwards, P pays Seller Inc. the value of I as asked by U. Finally,
U receives a notification from S confirming the purchase with the details of
the delivery.

1.2 Security Risks of Multi-party Business Appli-
cations

Multi-party business applications play a very important role in many areas,
and are currently trusted by billions of users and companies to purchase
goods and services, perform financial transactions, and store confidential
data. Unfortunately, this makes these applications one of the primary targets
for attackers interested in a wide range of malicious activities.

As seen in the previous sections, the surface of business applications
accessible to external entities increased over the years. On the one hand, the
software architecture shifted from monolithic and centralized to multi-tier
and distributed. On the other hand, the IT infrastructure changed from a
mainframe-terminals to a client-server architecture. As a result, software
vulnerabilities are no longer visible only to the member of an organization,
but also to external actors. Therefore, the risk of being attacked by external
actors dramatically increased.

1.2.1 Threats to Multi-party Business Applications and Eco-
nomical Impact

According to the Verizon Data Breach Investigations Report 2013, there are
three types of cyber threats to an organization: internal actors, partners,
and external actors [Ver13]. An internal actor is a person that works for the
organization. For example, the employee U is an internal actor of Buyer Inc.
A partner is a business partner. For example, employees of Buyer Inc. and
employees of Seller Inc. are partners of each other. An external actor is a
person outside of both the organization and partners.

In the last five years the number and frequency of attacks from external
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actors has increased dramatically. According to the Verizon Data Breach
Investigations Report 2013, attacks from external actors increased by 17.8%
over the last 5 years (from 78% in 2008 up to 92% in 2012) [Ver13]. On the
contrary, the attacks from internal actors decreased by 64.1% (from 39% in
2008 to 4% in 2012 ) [Ver13] while attacks from partners have been always
relatively low (5% in 2008 and 1% in 2012 [Ver13]). According to the Cost
of Cyber Crime Study by the Ponemon Institute, the average number of
successful attacks in 2012 is 1.8 per week with an average growth by about
40% each year [Pon12]. Moreover, the Ponemon Institute reported that in
the same year, 64% of the companies experienced at least one attack coming
from the Web [Pon12].

According to the Verizon Data Breach Investigations Report 2013, most
of the external attacks are coming from organized criminal groups, State-
affiliated groups, independent groups, activists, and former employees [Ver13].
About 70% of attacks are performed by criminal and State-affiliated groups
(50% and 20% respectively) [Ver13]. The majority of the attacks have finan-
cial motivations such as payment fraud, and identity theft [Ver13].

The economical impact of web-based attacks is still very high [Pon12]. In
2012, each company had an average cost of $8.9 million due to the cyber at-
tacks with an average increment of about +$0.5 million from 2011 and about
+$2,45 million from 2010 [Pon12]. The total cost is calculated considering
indirect costs such as the costs for the detection, investigation, containment,
and recovery, and direct costs due to the information loss, costs for business
disruption, equipment damage, and revenue loss [Pon12]. The average cost
of web-based attacks is about $1 million per organization in 2012 [Pon12].

1.2.2 The Rise of Logic Flaws

The most prevalent class of web applications vulnerabilities is due to insuf-
ficient validation of user input, e.g., SQL injection (SQLi) and Cross-Site
Scripting (XSS) [MIT]. This type of vulnerabilities has been largely studied
by the scientific community [HVO06, SBK12]. Another, less known, class
of web vulnerabilities that only recently has attracted the attention of re-
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searchers is the one related to logic errors.

Logic vulnerabilities still lack a formal definition but, in general, they
are often the consequence of an improper validation of the business process
of an application. The resulting violations may involve both the control
plane (i.e., the navigation between different pages) and the data plane (i.e.,
the data flow that links together parameters of different pages). In the
first case, the root cause is the fact that the application fails to properly
enforce the sequence of actions performed by the user. For example, it may
not require a user to log in as administrator before changing the database
settings (authentication bypass), or it may not check that all the steps in the
checkout process of a shopping cart are executed in the right order. Logic
errors involving the data flow of the application are instead caused by failing
to enforce that certain values, which are propagated between different HTTP
requests, are not modified by the user. For example, an attacker can try to
replay expired authentication tokens, or mix together the values obtained by
running several parallel sessions of the same web application.

Logic vulnerabilities can be seen also from the perspective of testing.
The goal of security testing is to find an execution of the software under
test that proves the existence of a vulnerability. The ability to find this
particular type of execution depends from two factors. First, the tester must
be able to generate the proper executions and second, the tester must be able
to decide whether an execution is proving the presence of a vulnerability.
Both abilities may or may not need models of the application. For example,
to detect stored XSS, a tester needs a behavioral model for the test case
generation whereas she does not need a model to decide if an execution
detected a flaw. Conversely, to detect logic flaws, the tester may not need
a model for test generation however she needs a model of the application
logic to decide whether the execution proves the existence of a vulnerability.
From this perspective, the importance of models in order to discover logic
vulnerabilities emerges.

In the last years, we have observed an increasing number of security
incidents due to logic flaws. Figure 1.3 shows the number of incidents that
are reported in the Common Vulnerability Enumeration database (CVE-
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Figure 1.3: Security Incidents due to Logic Flaws from 1999 to 2012

DB), and that are caused by logic flaws from the year 1999 till the year
20121. As can be seen in Figure 1.3, the general trend of incidents due to
logic flaws is increasing over the years. The number of these incidents in
2012 is 267, 82 of which in web applications. The highest peak is in 2008
with 384 incidents, 143 of which in web applications.

The increasing importance of logic flaws is supported by other sources.
See for example the OWASP Top 10 Security Risks from 2004 till 2013 [The04,
The07b, The10, The13c], the Trustwave Global Security Report 2013 [Tru13],
and the WhiteHat Website Security Statistics Report 2013 [Whi13]. These
three sources mainly address special classes of logic vulnerabilities such as
improper authentication, improper authorization, and information exposure
vulnerabilities.

1We extracted the data by querying the CVE-DB with a set of known keywords such
as authentication bypass or authorization bypass (we excluded bypasses caused by code
injection vulnerabilities, e.g., SQL injection), and logic flaws. Then, we grouped the entries
by year of disclosure. The number of flaws in web applications is calculated by refining
the search criteria including the following keywords “php”, “asp”, “html”, “web”, “url”, and
by excluding keywords such as “browser”, “firefox”, “chrome”, and “internet explorer”. We
verified the quality of the data by classifying manually a sample of 10% of the population
(we selected the sample randomly). About 75% of the sample is correctly classified.
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OWASP Top 10 Security Risks 2013 ranked the improper authentication
vulnerability as the 2nd most important risk in 2013 [The13c] overtaking
Cross-Site Scripting vulnerabilities. Trustwave Global Security Report 2013
rated the overall logic flaw vulnerabilities 2nd in the top 10 application vul-
nerabilities 2013 [Tru13]. Moreover, it reported that 14 % of applications
contain at least one logic flaw [Tru13]. Finally, WhiteHat Website Security
Statistics Report 2013 reported that in 2012 information exposure vulnera-
bilities overtook Cross-Site Scripting vulnerability [Whi13] ranking it at the
1st position. The report estimated that in 2012 about 55 % of websites have
at least one information exposure vulnerability [Whi13].

1.3 Objectives and Challenges

Researchers have proposed a number of techniques to detect vulnerabilities
that can be used to test multi-party business applications. The choice of
the technique depends on the information available to the tester including
the software itself (e.g., the source codes) and the models describing the
applications (e.g., formal specifications). However, developers of business
application services do not share the source code with other organizations.
As a result, source code-based testing techniques cannot be applied to multi-
party business applications.

When specifications are available, the tester can use model checking tech-
niques to explore the states of a formal model of the specifications to detect
flaws in the logic. However, model checking offers no support to test real
implementations. Finally, when both the source code and the specifications
are not available, black-box testing techniques can be used. However, web
scanners lack of the knowledge that is needed to detect logic flaws. This
thesis aims at tackling these limitations. More specifically, the objectives of
this thesis are the following:

Objective 1:

When a model is available, can we automatically verify whether



1.3. OBJECTIVES AND CHALLENGES 11

real systems expose a flaw discovered by model checking tech-
niques?

To answer this question, we foresee several challenges. The main challenge
are the translations between abstract elements of a model and the concrete
world. The complexity of the translations depends from different factors,
e.g., the choice of the testing interface, the relationship between model and
real systems, and the vulnerabilities to discover.

First, a higher-level testing interface can remove too many details of
the implementation and, as a result, the translation needs more powerful
algorithms to reconstruct the missing information. On the contrary, a lower-
level testing interface may carry too much information to the tester. As a
result, the model may be too detailed making automatic reasoning unfeasible.

Second, the relationship between models and real system may not be nec-
essarily 1-to-1. For example, the specifications of a standardized, security
protocol are an informal model that describes a number of non-identical im-
plementations. When testing different implementations, a rigid translation
would prevent its reuse therefore making testing laborious.

Finally, the abstraction rules must take into account the type of vulner-
ability to be detected. For example, to test for cross-site scripting vulnera-
bilities, the tester sends malicious inputs inside an URL parameter. Then,
the testing checks whether the response contains the same input. If the ab-
stracting rules abstract away the response, then the tester may not be able
to detect when the injection succeeded.

Objective 2

When models are not available, is it still possible to design an
automated technique to detect flaws in the logic of multi-party
business applications?

First, to detect logic flaws we need two types of model. The first type of
model is a behavioral model of the implementation. The second model is a
description of the logic that the application implements. These models can
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be obtained by using model inference algorithms that learn a model with
observations of the application.

The second challenge is related to the performance of the model-based
testing techniques. In order to detect logic flaws, we need algorithms that
are aware of the internal states of the application as well as of the applica-
tion logic. These algorithms can be fully-fledged reasoning techniques such
as model checking. However, most of the model-based testing techniques,
model checking included, poorly scale because of the state explosion prob-
lem [FWA09], in which the state space to be explored could be sufficiently
large to make it impracticable.

1.4 Contribution

The thesis makes the following contributions:

1. We present the design verification and testing via model checking of two
authentication protocols. The analysis takes into account the different
protocol flows as well as the protocol options. We show that given a
formal model, the expected security properties, and a description of the
implementations under test, we can execute the attacks discovered by
the model checker against a number of implementations. Moreover, the
testing techniques bridge the different abstraction layers in a generic
and systematic way;

2. We show that when the specifications and the source code are not
available, it is still possible to detect logic flaws following a black-
box approach. Given a set of network traces and a description of the
business function, our technique infers a model, generates test cases
following an number of attack patterns, and then verifies whether the
tests violated the business logic of the application;

3. We implemented our techniques into two prototypes. The prototypes
demonstrated their effectiveness by discovering previously unknown
logic flaws in real-size implementations;
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4. We migrated the result of this thesis to SAP by (i) developing test-
ing tools and (ii) supporting developers and engineers in assessing the
security of the design and implementations.

1.5 Structure

The reminder of this manuscript is structured as follows.

Chapter 2 presents the related work to detect flaws for each of the following
three categories: code analysis, model checking, and security testing.
This section addresses the limitations and strengths of each category.
First, this chapter shows that the source code analysis enables to detect
input validation and application logic vulnerabilities. Second, it shows
that model checking has been extensively used to detect logic flaws into
security protocol specifications, web services, and business processes.
Finally, it presents works in the area of security testing. This chapter
presents also relevant work in the area of model inference.

Chapter 3 presents the two case studies of this thesis. The first case study
are two web-based user authentication protocols whose specifications
are publicly available, namely SAML Single-Sign On and OpenID pro-
tocols. The second case study is the eCommerce web applications. As
opposed to the first case study, the specifications of web applications
are never available in practice.

Chapter 4 presents the verification of the design of web-based user authen-
tication protocols. This chapter makes the following contributions:

• it presents with great details the formal analysis via model check-
ing of security protocols and their configuration options;

• it presents two logic flaws discovered by the model checking tech-
nique;

• it highlights that the verification of real implementations is still
performed manually;
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Chapter 5 addresses the first core-question. It tackles the problem of bridg-
ing design verification via model checking with the testing of real im-
plementations. This chapter makes the following contributions:

• it presents a technique to bridge the gap between the two abstrac-
tion levels in a systematic way;

• it provides an interpretation of abstract attacks;

• it executes automatically attacks against five security protocol
implementations;

Chapter 6 addresses the second core-question. It presents a novel tech-
nique that enables to test web applications when the specifications are
not available. This chapter makes the following contribution:

• it presents a black-box passive model inference technique;

• it introduces an attack pattern-based test case generation algo-
rithm;

• it demonstrates that real eCommerce web applications suffer from
severe logic vulnerabilities

Chapter 7 presents the two migration activities performed in SAP. First,
it shows an application of the results of Chapter 4 to the SAP im-
plementations of SAML SSO. Second, it presents a tool implementing
the technique of Chapter 5 to support SAP developers, engineers, or
security analyst in verifying the design of protocols and to test them
against putative attacks found by the model checker.

Chapter 8 draws the conclusions and gives an outline of the future work.



Chapter 2

Related Work

In this chapter, we review previous works describing techniques for detect-
ing vulnerabilities in web applications, security protocols, and business pro-
cesses. Furthermore, we present works in the area of model inference.

Researchers have proposed a number of techniques to detect vulnerabil-
ities that can be used to test multi-party business applications. The choice
of the technique depends on the information available to the tester. This in-
formation includes the software itself, in the form of source code or binaries,
and explicit software documentation such as software specifications, and user
manuals. According to the availability of this information, we can identify
four testing scenarios as summarized in Figure 2.1. For each scenario, we
associate the techniques that can be used.

In the scenarios at the top of Figure 2.1, the tester has access to the soft-
ware. The tester can use different white-box security testing techniques such
as static analysis, dynamic analysis, or taint analysis. At the bottom-left
scenario of Figure 2.1, the tester has no information about the application.
The tester can connect to it via the testing interface, and inspect the ap-
plication by providing inputs and observing outputs. The inspection can be
automated by using black-box security testing tools such as black-box web
application scanners. Furthermore, black-box scanners can be combined with
model inference techniques to obtain a model to guide the scanner. In the
bottom-right scenario, the tester has the documentation of the application.
Here, we assume that the documentation is sufficiently detailed to describe

15
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Figure 2.1: Testing Scenarios and Techniques

the behavior of the application. In this case, the tester can write a formal
model and use design verification techniques such as model checking.

A number of causes limit the application of code analysis to multi-party
business applications. First of all, software developers may not share the
source code with the other developers. Second, the binaries of a service
may be only available to the provider that executes them. Developers and
providers may still perform the analysis of their own services. However, this
leaves out of the scope vulnerabilities due to the composition, or caused by
diverging security assumptions. For these reasons, in this thesis we will not
consider white-box security testing techniques. However, to better present a
complete picture of the security testing techniques, in this chapter we review
also white-box techniques.

Structure: The remainder of this chapter is organized as follows. In Sec-
tion 2.1, we present white-box security testing techniques. Then, in Sec-
tion 2.2, we introduce the use of model checking for the design verification,
and its application for supporting testing. Afterwards, in Section 2.3, we
present black-box security testing techniques, and, in Section 2.4, we present
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model inference algorithms and their applications. Finally, we conclude the
chapter with a discussion in Section 2.5.

2.1 White-box Security Testing

In this section, we review relevant white-box testing techniques that can be
applied when the source code of the application is available.

White-box testing tools combine together different code-based analysis
techniques. The analysis begins by creating a model of the source code. The
model can contain different aspects of a software program such as control
flow, data flow, or both. Then, the model is analyzed by using different
techniques. The choice of the technique mainly depends on the class of
vulnerabilities to be detected.

To detect input validation vulnerabilities, white-box tools check whether
the source code contains paths that allow untrusted input to reach databases
or the output for the user. This can be done via model checking or taint-
based analysis. Alternatively, the source code can be scanned to find SQL
queries whose syntactical structure can be modified by the user inputs.

To detect logic flaws, white-box tools use model checking or custom al-
gorithms looking for predefined patterns in the code. When a model checker
is used, the security properties to be checked can be extracted in the form
of code invariants via dynamic code analysis.

2.1.1 Detection of Input Validation Vulnerabilities

Huang et al [HYH+04a, HYH+04b] presented WebSSARI, a tool to dis-
cover injection vulnerabilities in PHP web applications. WebSSARI com-
bines three techniques in one tool: static code analysis, lattice-based safety-
type analysis, and bounded model checking. First, WebSSARI extracts a
model with variable assignments, function calls, conditional structures, in-
puts and the outputs of the program. Second, it uses lattice-based safety-
type analysis to assign a safety type to variables. Finally, the bounded model
checker propagates the safety type of the input parameters to the variables
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until the output is reached. The authors assessed WebSSARI against 230
open source web applications discovering 863 insecure statements. 607 of
them were related to real vulnerabilities. Xie et al. [XA06] improved the
approach of WebSSARI introducing a better support for the PHP language
with inter-procedural analysis, dynamic typing, and conditional branches.

Livshits et al. [LL05] proposed a static analysis tool for detecting injection
vulnerabilities in Java web applications. First, the user defines the vulnera-
bility as a query in PQL [MLL05] (Program Query Language). A PQL query
consists of the source Java objects (e.g. query string), the sink Java objects
(e.g., database objects), and a set of rules to describe the data propagation
between objects. Then, the tool performs a taint object propagation to de-
rive sink objects starting from source objects. The authors assessed the tool
on nine Java web applications searching for XSS, SQLi, and HTTP splitting
vulnerabilities. The tool reported in total 41 vulnerabilities; 12 of them were
false positives.

Jovanovic et al. [JKK10] presented Pixy, a tool based on static taint
and data flow analysis of PHP source code. The tool analyzes the source
code to identify vulnerable points. First, it propagates tainted input data
(e.g., user inputs) into the code. Second, it checks if during the propagation
the code contains special function calls to sanitization functions. Then, it
checks whether the tainted data reached a database, or the user. In the
former case, the tool discovered a SQLi, in the latter a XSS vulnerability.
The tool analyzed seven PHP web applications of in total four million lines
of code, discovering 409 injection vulnerabilities (213 XSS and 193 SQLi
vulnerabilities) and raising 149 false alerts (89 XSS and 60 SQLi).

Wasserman et al. [WS07] proposed a technique to detect SQLi vulnera-
bilities in web applications. The approach takes in input a list of PHP files.
First, it identifies input sources (e.g. URL parameters) and divides them into
direct sources that provide data directly from the user, and indirect sources
that provide data from other sources such as databases. Second, it performs
a string and taint analysis of the query strings for inferring a Context-Free
Grammar (CFG). The CFG is annotated to mark the parts of the grammar
that are direct or indirect sources. Finally, it checks whether the language
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generated by the CFG contains a command injection. The authors devel-
oped a tool and assessed it against five PHP web applications. The tool
discovered 19 SQLi vulnerabilities and generated five false positives.

2.1.2 Detection of Application Logic Vulnerabilities

Balzarotti et al. [BCFV07] proposed MiMoSA (Multi-Module State Ana-
lyzer), a tool that detects workflow and data flows violations in PHP web
applications. MiMoSA analyzes the source code in two phases. First, it
builds a synthesis of the PHP files processing each file in isolation. For each
of them, MiMoSA extracts a set of pre-conditions, post-conditions, sinks,
and links to other PHP resources. The analysis of PHP code is done using
the Pixy static analysis framework [JKK06]. During the second phase, Mi-
MoSA infers the intended workflow and dataflow matching pre- and post-
conditions of two PHP modules. Finally, MiMoSA uses a model checker to
verify whether there are violations of the intended workflow and data flow.
The authors tested the tool against five real-size PHP web applications de-
tecting 32 vulnerabilities (six workflow and 26 data flow violations) with
seven false positives.

Felmetsger et al.[FCKV10] proposed Waler, a tool for detecting logic
flaws through the dynamic analysis of the source codes of J2EE-based web
applications. First, Waler derives likely invariants of the Java servlets by us-
ing Daikon [EPG+07]. Then, it uses a modified version of the Java PathFinder
model checker [NAS05] to detect violations of the invariants. The authors
assessed Waler against 12 web applications, four of which are real-world ap-
plications. In total, Waler discovered 47 previously-unknown vulnerabilities
and generated eight false positives.

Doupé et al. [DBKV11] presented a technique to detect a novel type of
vulnerability called Execution After Redirect (EAR). EARs occur when the
web application does not halt its execution after sending an HTTP redirec-
tion to the web browser. The authors developed a static source code analysis
tool to detect EARs in Ruby on Rails web applications using heuristics to
identify real vulnerabilities. The authors tested 18,127 web applications de-
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tecting 3,944 EARs in 1,173 of them. 855 EARs were classified as exploitable
because they caused unauthorized changes in the database, or information
leakage to unauthorized users.

2.1.3 Discussion

As we have seen in the previous sections, white-box testing techniques have
been used to discover both input validation vulnerabilities and logic flaws in
web applications [BCFV07, FCKV10]. However, the source code of all the
services of a multi-party business application are not available in practice.
Therefore, these techniques cannot be applied to our scenario.

2.2 Design Verification

In this section, we review the relevant works in the area of design verification
via model checking.

Model checking is a technique originally developed by Clarke et al. [CE82]
and Quielle et al. [QS82]. It takes as input a model and a property and it
explores the state-space of the model to verify whether the property is always
satisfied. If the model does not satisfy the property, then the model checker
produces a counterexample as a proof.

Two decades ago, Lowe proposed in a seminal work (See [Low96]) to use
model checking to verify the design of security protocols. Afterwards, model
checking has also been used to verify the design of web services and business
processes. Furthermore, model checking has been used to analyze already
deployed security protocols.

2.2.1 Design Verification

In this section, we first discuss the design verification of security protocols,
starting from the seminal work of Gavin Lowe, and then covering similar
applications to more complex security protocols. In the second part of the
section, we discuss other applications of model checking to web services and
business processes.
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Security Protocols

Lowe was the first to propose the use of model checkers for the design verifica-
tion of security protocols [Low96]. He applied model checking to verify the
correctness of the Needham-Schroeder Public-Key (NSPK) authentication
protocol [NS78] against an active attacker that is able to intercept, overhear,
forge, and decompose messages (under the assumption that the attacker
knows the cryptographic keys). Lowe modeled the honest protocol partici-
pants and the attacker in CSP (Concurrent Sequential Processes [Ros97]).
Moreover, he modeled two parallel protocol executions. The first execution
takes place between honest agents, while in the second, the attacker plays the
role of a participant. The model checker discovered that the NSPK protocol
is vulnerable to a man in the middle attack in which the attacker manages
to be authenticated as one of the protocol participants.

Following this seminal work, model checking has been applied to other,
more complex, security protocols. Donovan et al. [DNL99] reported the
result of the verification of 51 protocols of the Clark-Jakob library [CJ97] by
using the process algebra CSP [Ros97] and the model checker FDR (Failures-
Divergence Refinement [FDR97]). The authors discovered that 16 protocols
of the Clark-Jakob library are flawed.

Panti et al. [PST02] presented a formal analysis of the Kerberos au-
thentication protocol [Ker00] by using NuSMV [CCGR99], a symbolic model
checker. The authors discovered a vulnerability in Kerberos in which an at-
tacker can intercept and reuse authorization tokens to create unrequested
user sessions.

Mitchell et al. [MSS98] analyzed the Secure Socket Layer 3.0 Handshake
Protocol [FKK11] with Murφ [MMS97], a finite-state analysis tool. The
authors performed an incremental analysis of the protocol that they named
rational reconstruction. First, the authors started with a basic version of
the protocol with essential message exchanges and omitting signatures and
hashed data. Then, they added details to the protocol in an incremental
way. At each step, they checked the correctness of the current version of the
protocol with Murφ, and if needed, they corrected adding new parts of SSL
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3.0. At the end of this iterative process, they reached a model that resembles
the SSL 3.0 protocol except for the parts explicitly omitted because of the
perfect cryptography assumption. They authors discovered that a malicious
client can force the server to switch to a lower and weaker version of the
protocol.

Shmatikov et al. [SM99] and Armando et al. [ACC07] have analyzed
the ASW protocol (Asokan, Shoup, and Waidner [ASW98]), a protocol to
exchange contract signatures to allow the participants to reach mutual, non
repudiable commitment on a previously agreed contract. Shmatikov et al.
discovered two flaws in the protocol by using Murφ [MMS97]. The first
vulnerability lets the attacker replay messages of an old run of the protocol
causing one of the participants to agree on an old version of a contract.
The second vulnerability allows a malicious participant to cause agreement
on inconsistent versions of the contract. Shmatikov et al. proposed a new
version of the protocol fixing the flaws. Armando et al. [ACC07] analyzed
the new version and discovered a further flaw. Armando et al. fed the
SAT-based Model Checker [ACC07] (SATMC) with (i) a transition system
modeling participants and the attacker, (ii) a set of LTL constraints modeling
security properties of the communication channels, and (iii) LTL formulas
as security properties. SATMC discovered an attack in which a malicious
participant can obtain a different contract then the one on which the parties
agreed.

Web Services and Business Processes

With the advent of Service-Oriented Architecture (SOA), researchers inves-
tigated the security issues of this new paradigm.

Salauüm et al. [SBS04] proposed the use of process algebra for modeling
Web Services and verifying that their composition conforms to their require-
ments. The authors checked local properties of a single web service such
as equivalences between processes, safety properties, and liveness properties.
Moreover, they verified service choreography and orchestration for certifying
compatibility. The authors used CWB-NC (Concurrency Workbench of the
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New Century [CLS00]), a model checker for verifying finite-state concurrent
systems. The model checker detected problems such as deadlocks and lack
of synchronization.

Fu et al. [BFHS03, FBS04] analyzed different aspects of Web Services.
First, they studied the relationship between the aggregated behavior of the
composition of web services and the local behavior of single services [BFHS03].
Then, they extended their analysis to BPEL web services considering the
message semantics [FBS04]. The authors proposed to translate BPEL web
services into Promela [Hol04], and to use the SPIN model checker [Hol04].
They assessed the approach on a loan origination process using application-
dependent LTL properties.

Backes et al. [BG05] discussed the risk of using the abstractions typical
to the formal analysis. For example, the perfect cryptography assumption
can leave undetected problems such as leaks due to length of encrypted data,
and the abstraction of the time excludes timing attacks.

Backes et al. [BMPV06] presented a composed analysis of the Secure
WS Reliable Messaging Scenario [DCV+05], a protocol that allows reliable
message exchange between web services. First, the authors studied the pro-
tocol under the assumption of perfect cryptography by using the AVISPA
tools [ABB+05]. Then, they manually analyzed the cryptographic primitives
demonstrating classical cryptographic properties such as indistinguishability
under adaptive chosen ciphertext attack (Ind-CCA2).

Schaad et al. [SLS06] presented an approach for the formal verification
of delegation and revocation functionalities on the loan origination process
in presence of static and dynamic separation of duty policies. The authors
proposed to translate the workflow of the process from BPEL and ERP
objects to NuSMV and then modeled the separation of duty policies as LTL
constraints.

Wolter et al. [WMM09] presented an approach for the verification of
access control security properties of business processes. The authors sug-
gested to translate an augmented BPMN (Business Process Modeling Nota-
tion) with security annotation to Promela [Hol04]. Then, the model checker
SPIN [Hol04] verifies the business process against a set of user-defined prop-
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erties for detecting deadlocks.
Armando et al. [AP09] proposed an approach for modeling security-

sensitive business processes with RBAC access control policies. They built
a model checking problem where the model is a transition system translated
from BPEL, and the property is any LTL formula. The authors discovered
several flaws of the Loan Origination Process providing a corrected version.
Arsac et al. [ACPP11] presented a similar approach in which the translation
is from annotated BPMN models.

2.2.2 Model checking and Testing

In this section, we introduce works that discuss the use of model checking to
generate test cases to test real implementations. We start with works that
use model checking in latter phases of the life-cycle and, finally, we discuss
the use of model checking when the model is not vulnerable.

Model Checking and Security Testing

Recently, model checking has been used to verify the security of already
deployed security protocols. For example, Armando et al. [ACC+08] discov-
ered a severe security flaw in the SAML-based Single Sign-On for Google
Apps [Goo08]. The authors fed SATMC with (i) a transition system for the
behavior of the participants and the attacker, (ii) a set of LTL constraints for
modeling properties on the communication channels, and (iii) a LTL formula
modeling the non-injective agreement property [Low97]. SATMC returned
an attack in which a malicious SAML service provider can impersonate a
legitimate user at any other service provider within the same federated en-
vironment. It is important to point out that the attack has been manually
interpreted and reproduced against the implementation.

Guangdong et al. [GGJ+13] presented AUTHSCAN, a tool that com-
bines a number of different techniques: model inference, static analysis of
client-side script, model checking, and security testing. The first two tech-
niques aim at inferring a model from a protocol implementation and will be
detailed in Section 2.4. After the model inference step, the model is verified
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by the model checker in the classical way. If the model checker returns a
counterexample, AUTHSCAN translates it into a concrete test case. The
translation replaces the abstract values of the counterexample with the real
values learned during the model inference step. Furthermore, AUTHSCAN
uses a user-defined test oracle to produce the test verdict after the test ex-
ecution. The authors evaluated their tool against eight implementations
of BroweserID (now called Persona [The13b]), Facebook Connect [Fac13],
Windows Live ID [Mic13], and custom user authentication protocols. The
authors reported that AUTHSCAN discovered seven security vulnerabilities
of different type e.g. replay attacks, CSRF attacks, secret token leaks, and
guessable tokens.

Model Checking and Mutation-based Security Testing

If the model checker does not find a counterexample in the model, it does not
imply that the implementations are secure as well. In fact, implementations
may be still vulnerable due to errors introduced by the developers. Dadeau
et al. [DHK11] and later Büchler et al. [BOP11, BOP12a, BOP12b] proposed
to apply the mutation-based testing technique to detect vulnerabilities.

Dadeau et al. proposed to mutate the model of a security protocol by
injecting faults. Faults are injected by using the so called mutation oper-
ators. If the model checker finds an attack, the attack is used as a test
case. Büchler et al. [BOP11, BOP12a, BOP12b] went beyond the prelimary
work of Dadeau by proposing SPaCiTE, a tool for mutation-based, semi-
automatic, security testing of web applications. The tool works as follows.
First, the user selects the vulnerability to inject into the model. Then, the
model checker verifies the security property on the mutation. If the model
checker finds a counterexample, then it is concretized and executed against
the real implementation. The concretization is done in two steps. First,
the counterexample is mapped into concrete browser actions. To simplify
the mapping, the authors proposed an intermediate language called WAAL
(Web Application Abstract Language). Then, the counterexample is inter-
preted and executed against the web application. SPaCiTE has been assessed
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against two lessons of WebGoat [The07a], an application vulnerable on pur-
pose for educational purposes. The authors reported that they manage to
detect successfully stored XSS, and lack of authorization vulnerabilities.

2.2.3 Discussion

In this section, we have presented works in the area of design verification via
model checking. Model checking was applied to verify the design of security
protocols, web services, and business processes, discovering previously un-
known design flaws both during the design and at the deployment phases.
Moreover, model checking has been proposed as a tool for supporting testing
and security testing of real implementations.

However, these works showed the following shortcomings. First, the de-
sign verification via model checking focuses on the automatic detection of
flaws in a model of the system under verification and falls short on testing
the real system. In fact, the counterexamples returned by model checkers
prove only that the model is flawed and it does not say whether the real
system is also vulnerable. For example, a real system may solve the security
flaw with additional and undocumented behaviors. As a result, in order to
detect the flaw in implementations, the counterexamples are interpreted and
reproduced against each implementation. To date, this activity is still done
manually. Second, the mutation testing techniques have been assessed only
on small applications to detect known vulnerabilities and there is still a lack
of evidence of the scalability of these approaches to real systems. More-
over, the translations between models and real systems are specific to the
web application domain, and they do not support cryptographic primitives,
message composition and parsing.

In this section, we also presented AUTHSCAN whose authors claim it is
able to automatically execute counterexamples against real implementations.
It must be pointed out that the contribution of this thesis relatively to the
execution of counterexamples is anterior to AUTHSCAN. Furthermore, the
authors did not provide sufficient details about their techniques nor provided
the tool. As a result, we could not perform any comparative analysis.
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2.3 Black-box Security Testing

In this section, we present black-box security testing techniques.

This section is organized as follows. In Section 2.3.1, we present ap-
proaches for detecting input validation vulnerabilities. Then in Section 2.3.2,
we introduce techniques for discovering application logic vulnerabilities.

2.3.1 Detection of Input Validation Vulnerabilities

To detect input validation vulnerabilities, we can use manual testing or
(semi-)automatic black-box web application security scanners.

Black-box web application scanners are tool used for aiding the tester in
detecting automatically or semi-automatically a wide spectrum of vulnera-
bilities. There are plenty of commercial and non-commercial web application
scanners. A rich, yet incomplete, list is available at sectools.org [FF13].

The architecture of web application scanners is composed of three mod-
ules: the crawler, the attacker (or test vector set), and the analysis mod-
ules [BBGM10, DCV10]. The scan begins when the user provides an URL to
the crawler. The crawler retrieves the page, extracts URLs from it, and re-
quests the new pages. The crawler repeats this operations until a user-defined
depth is reached, or until it does not find any new URL. The attacker mod-
ule prepares and executes test cases in which it probes the web application
with special inputs. The way the application is tested, and choice of the
inputs depends from the type of vulnerability. Finally, the analysis module
processes the pages in order to detect the vulnerability.

Bau et al. [BBGM10] and Doupé et al. [DCV10] presented two indepen-
dent and, in a certain sense, complementary studies on black-box web ap-
plication scanners. Bau et al. [BBGM10] studied the distribution of vulner-
abilities into the wild correlating this distribution with the detection power
of the scanners. Doupé et al. [DCV10] extensively benchmarked scanners
against a wide range of vulnerabilities. In both works the authors performed
controlled experiments on custom web applications to measure the coverage,
the vulnerability detection rate, and the false positive rate.
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The coverage of a web application measures the capability of the scan-
ner of extracting URLs [BBGM10, DCV10]. URLs can be static strings in
the HTML code, or generated dynamically by client-side scripts. Experi-
mental results showed that scanners perform fairly well in discovering static
URLs [BBGM10, DCV10]. Doupé et al. observed that the amount of surface
the web application exposes to the scanner change dramatically with their in-
ternal state. Therefore, the coverage can be significantly improved by making
scanners aware of the internal state [DCV10]. The experiments also showed
that scanners perform poorly with dynamic URLs [BBGM10, DCV10]. How-
ever, the coverage slightly improves with text-based client-side scripts such
as JavaScript and SilverLight. Bau et al. argue that this could be caused
by the textual-based URLs extraction technique implemented by the scan-
ners [BBGM10].

The detection rate measures the capability of the scanners in detect-
ing vulnerabilities. Doupé et al. reported that 8 out of 16 vulnerabilities
such as stored XSS/SQLi, logic flaws, and forceful browsing remained unde-
tected [DCV10]. Similarly, Bau et al. also reported that SQLi vulnerabilities
were not detected [BBGM10]. Moreover the detection rate of stored XSS,
open redirects, HTTP response splitting, and flash parameter injection vul-
nerabilities was rather low [BBGM10]. Bau et al. attribute the low detection
rate of advanced forms of XSS to the lack of a deep knowledge of the web
application under test. For example, they reported that few scanners man-
aged to inject a JavaScript code for a stored XSS but they failed in detecting
the vulnerability. By correlating the capability of detecting single classes of
vulnerabilities, Bau et al. observed that the testing emphasis for black-box
web application scanners as a group is reasonably proportional to the verified
vulnerability population in the wild [BBGM10].

The analysis of the false positives showed that the scanners with the
highest detection rate are ranked among the one with the lowest number
false positives [BBGM10]. Conversely, scanners with the lowest detection
rate reported the highest false positive rate [BBGM10]. This indicates that
false positives are rather a problem of the quality of the tools [BBGM10].

The experimental results of Bau et al. and Doupé et al. showed strengths
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and limitations of scanners. First, the results on the coverage rates show
room for improvement. Scanners have no notion of state and have a limited
support for client-side scripts. This limits the capability of a scanner to crawl
a web application. Second, the detection rates show that scanners focus on
discovering the most common vulnerabilities such as reflected XSS. However,
scanners have a low or null detection rate for a wide range of vulnerabilities
such as stored XSS, SQLi, and logic vulnerabilities. Both authors attribute
to the lack of knowledge of the state as the limitation in detecting certain
classes of vulnerabilities.

Doupé et al. [DCKV12] presented a black-box state-aware vulnerability
scanner, a tool containing a novel state-aware crawler and attacker module.
The crawler module aims at inferring a Mealy machine [BJR08] by interact-
ing with the web application. The details of the model inference technique
are given in Section 2.4. During the inference process, the crawler uses the
model for choosing the next link. It gives priority to the links that (i) do
not cause a change of state, and (ii) are rarely or not yet visited. Once the
inference phase is concluded, the attacker module takes as input the model
for testing the application in a state-aware fashion. The test begins by re-
setting the state of the web application. Then it repeats the requests done
by the crawler. If a request does not change the state of the application, the
attacker module identifies inputs for probing the application with special
values. Otherwise the module tries to explore the model looking for a path
that brings to one of the previous state. If such a path does not exist, the
attack module resets the application and repeats the same requests executed
by the crawler. The authors did not developed a new fuzzing component, but
rather integrated the one of the w3af tool [w3a13]. The authors run the tool
against eight popular web applications comparing it with wget[SN12], w3af,
and skipfish [the12]. In the experiments they considered three metrics, they
are the number of discovered vulnerabilities, the number of false positives,
and percentage of code coverage. The baseline for the code coverage is set
to wget. The authors reported that their tool improved the code coverage of
66% in average from the baseline with a peak of 240%. w3af discovered six
vulnerabilities and reported 10 false positives while their tool discovered nine
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vulnerabilities and one false positive. The tool that discovered most vulner-
abilities is skipfish that discovered 20 vulnerabilities (15 in the same web
application) and seven false positives. However, their tool provided better
code coverage than skipfish.

2.3.2 Detection of Application Logic Vulnerabilities

The OWASP Testing Guide v.3.0 [The08] suggests a 4-steps approach to test
for application logic flaws in a black-box settings. First, the tester studies
and understands the web application by playing with it and reading all the
available documentation. Second, she prepares the information required to
design the tests, including the intended workflow and the data flow. Then,
she proceeds with the design of the test cases, e.g., by reordering steps or
skip important operations. Finally, she sets up the testing environment by
creating testing account, runs the tests, and verifies the results.

A number of prevalently manual methodologies have been recently pro-
posed to detects more subtle vulnerabilities. Wang et al. [WCWQ11] pre-
sented a field study of the of Cashier-as-a-Service (CaaS) based web stores
in which they developed a methodology that given a number of HTTP con-
versations of the same length, labels API arguments to show which ones an
attacker could play with. The labeling rules are the following:

• A label can be of three types: S for the store, A for the attacker, and
C for CaaS;

• Fresh values are labeled with the originators. For example, if the value
of a argument order_id is originated by the store, then the argument
is labeled with S;

• If a value is digitally signed, then it is labeled with the signing party.
For example, if the argument order_id is signed by the store, then
the argument is labeled with S.

• Any unsigned value is labeled with A;



2.3. BLACK-BOX SECURITY TESTING 31

• The labels are propagated to the subsequent arguments carrying the
same value;

At the end of the labeling, the tester can design test cases by replacing the
values of the arguments labeled with A. The test cases generation and tests
execution are performed manually. Wang et al. applied their methodology
and manually tested to two web stores, namely NopCommerce [nop13] and
Interspire [Big13], discovering severe logic vulnerabilities in both software
allowing an attacker to shop for free.

Wang et al. presented also a large-scale analysis of Single Sign-On pro-
tocols [WCW12] extending the earlier technique by enriching the labeling
technique. First, the user collects three HTTP conversations between a web
browser and the single sign-on protocol (SSO) implementation. Then, they
label parameters similarly as described before. In this work they introduced
new labels such as syntactic labels (e.g., decimal, boolean, and word), se-
mantic labels (e.g., user-unique values and propagation chains), and read-
write labels. Wang et al. applied this technique to real SSO implementations
such as GoogleID (implementation of OpenID), Facebook Connect, JanRain,
Freelancer.com, Nasdaq.com, and NYSenate.gov discovering 8 previously un-
known flaws allowing the attacker to impersonate a victim at a relying party.

In Section 2.2.2, we presented the tool AUTHSCAN [GGJ+13] that de-
tects logic flaws in SSO implementations. AUTHSCAN does not need the
source code nor an initial model to generate and execute tests. This quali-
fies AUTHSCAN as a black-box security testing technique as the other ap-
proaches in this section.

2.3.3 Discussion

In this section, we have presented existing techniques to detect vulnerabilities
in a black-box setting. Web scanners are tools used to explore the web
application and then to prepare test cases to detect vulnerabilities. These
tools perform well against specific classes of vulnerabilities such as reflected
XSS. However, the lack of a model hampers the detection power of these
tools such as stored XSS, stored SQLi, and logic vulnerabilities.
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In this section we have seen that when black-box web application scanners
are aware of the state of the application under test, then the coverage, and
the detection power increase. However, these recent advances focused on
input validation leaving the problem of detecting logic flaws in a black-box
setting unexplored.

Recently, new ideas have been proposed to the black-box detection of
logic flaws, which offer methodologies that highlight interesting parts of the
data flow. However, these methodologies offer no support for the automatic
generation and execution of tests. Moreover, automatic tools such as AUTH-
SCAN do not focus on vulnerabilities of the application logic of web appli-
cation but on authentication issues of single sign-on protocols. Therefore, to
date, the detection of logic flaws in web application is still done by manual
inspection.

2.4 Model Inference

Model inference refers to a family of algorithms that derive a model from
the observations of the behavior of an application. Model inference can
be divided in two categories: active and passive learning. Active learning
methods interact with the application under inference in order to explore its
behavior whereas passive learning builds a model from a set of observations.

The remaining of this section is organized as follows. In Section 2.4.1,
we present techniques and application of active learning techniques. In Sec-
tion 2.4.2, we review passive learning techniques and their applications.

2.4.1 Active learning

We start off with the seminal paper by Dana Angluin. Angluin [Ang87]
proposed the L* algorithm for learning an unknown regular languages L.
The L* algorithm assumes that the alphabet of L is known and relies on an
oracle to query on the membership of strings in L. The algorithm builds
an internal table of strings called observation table representing the current
knowledge of the algorithm about L. The table is updated by querying the
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oracle about the membership of a string prepared by the algorithm. When
the algorithm cannot decide whether there is a new state to explore and
the table contains enough information to build a language, it proposes a
conjecture S. Then, the oracle verifies S against L. If the two languages
are the same, then the algorithm terminates. Otherwise, the oracle returns
a counterexample that is a string w in the symmetric difference between
L and S. The algorithm extends the table with w and provides a new
conjecture. The L* algorithm has been proposed to infer a DFA from the
implementation by using the implementation as the oracle [PVY01], and
experiments as membership queries.

Hossen et al. [HGR11] proposed to use the L* algorithm to infer a DFA
of web application for security testing. However, the algorithm cannot be
applied directly to web applications for the following reasons. First, web
applications accept parametric inputs (i.e. URL with query strings and/or
POST data). Second, web applications generate dynamically output mes-
sages whose contain part of the inputs for the next communications. As a
result, the assumption that the input alphabet is a priori known is no longer
valid. Hossen et al. [HGOR13] proposed to solve the first issue by model-
ing web application as Extended Finite State Machines (EFSM). Then, they
proposed to use a state-aware crawler for discovering the inputs before the
inference begins [HGOR13].

Doupé et al. [DCKV12] proposed to learn a model of the application while
crawling the web application. We already described the testing technique in
Section 2.3.2 and in this section, we detail the model inference technique.
The inference algorithm is based on three sub-algorithms for page clustering,
state change detection, and state clustering. The authors proposed to model
web applications as Mealy machines [BJR08]. A Mealy machine is an au-
tomaton whose the output is determined by the current state and the input.
The input symbols are the URLs including the query string and POST data.
The output symbols are abstraction of HTML pages. A single web page is
represented as a prefix tree of vectors for anchors and forms. Each vector
contains the DOM path, the URL domain and path, a list of parameters,
and the value of the parameters. A group of pages can be represented in a
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similar way. All the prefix trees are transformed into a vector such that the
i-th element of a page vector contains the list of nodes of the tree at depth
i. These vectors are stored in a further prefix tree called Abstract Page Tree
(APT) whose leaves are HTML page. The page clustering algorithm visits
the APT seeking for internal nodes that satisfy certain properties based on
the number of leaves and depth of the subtrees. The pages belonging to the
subtree rooted in the chosen node are clustered together.

2.4.2 Passive learning

Li et al. [LX11] proposed BLOCK, a black-box tool that learns model by
observing HTTP conversations to block attacks. BLOCK infers a model of
the web application and a set of invariants on the session variables. BLOCK
models a web application as a stateless machine that receives an input and
returns an output. The input of the application is the URL, the parameters
and the session variables. The output is a synthesis of a web page and the
session variables. Web pages are clustered in four steps. The clustering tech-
nique borrows the first 2 steps from TEXT [KS11]. First, the web pages are
transformed in a set of DOM paths. Second, the list of paths are pruned in
order to keep only the essential paths of the page. This is done by calculating
the number of pages in the conversation that contain a path. Third, pages
are clustered by similarity. Two pages are similar if they have similar essen-
tial paths. Finally, each page in the HTTP conversation is compared against
the template it belongs to and the essential paths are removed. The remain-
ing paths are the output parameters. The second part of the training mode
consists in calculating three different types of invariants, they are: invariants
between inputs, between an input and an output, and between consecutive
input/output pairs. Invariants are calculating with Daikon [EPG+07]. The
resulting model and invariants are used by BLOCK to intercept and block
attacks to the web application.

In Section 2.2.2, we presented AUTHSCAN, a black-box tool that use a
number of techniques to test SSO implementations. In this section, we pro-
vide the details on its model inference phase. The model inference algorithm
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takes in input HTTP conversations and extract an initial model in TML
(Target Model Language [WL93]). The model is refined then with static
code analysis of the JavaScript code. In this step, AUTHSCAN looks for
known function calls for arithmetic operations, cryptographic operations,
and concatenations. Furthermore, AUTHSCAN uses a differential fuzzing
analysis for removing redundant data by probing the SSO implementation
with mutated data in order to identify differences in responses. AUTH-
SCAN performs also a type inference on data to identify strings, integers,
and booleans.

Dury et al. [DHP09] described an approach for passively learning a model
of web-based business applications. The authors used Parameterized Finite
Automaton (PFA) for modeling the applications that enriches the classic no-
tion of finite automaton [HMU06] with guards on transitions and parameters
on states. PFA models both control flow and data flow of an application.
The authors consider each input traces as a PFA, then they merge all the
PFAs into a single PFA that in turn is abstracted into a symbolic PFA.
Dury et al. proposed to use data mining algorithms like C4.5 [Qui93] to in-
fer guards of a symbolic PFA from a PFA. The final model is then translated
into Promela [Hol04] and passed to SPIN [Hol04] for verifying application-
dependent properties.

2.4.3 Discussion

In this section, we have presented applications of model inference techniques
to security testing. We have seen that both active and passive techniques
have been used for infering models for different purposes. Model inference has
been used to detect input validation vulnerabilities, to detect attacks against
web applications, to detect flaws specific to the single sign-on domain, and
to test application-dependent properties. To best of our knowledge, there
are no applications of model inference to obtain a model to be used for the
generation of test cases to detect logic flaws.
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2.5 Conclusions

In this chapter, we have reviewed existing techniques to detect vulnerabili-
ties. The choice of the testing technique depends on the availability of the
software source code and documentation.

We have seen that when the source code is available there is great variety
of techniques that can be used. However, in multi-party business application
the source code is not available in practice. Therefore, in this thesis we do
not consider white-box testing techniques.

When the specifications are available, we have seen that design verifica-
tion via model checking is quite effective in detecting logic flaws. However,
model checking falls short when verifying already deployed protocols and the
counterexample proves the existence of a vulnerability at model-level. As a
result, counterexamples are often interpreted and executed manually against
real implementations.

When even models are not available, automated tools such as black-box
web scanners can be used. Black-box security testing tools are very effective
in detecting vulnerabilities such as XSS and SQLi. However, these tools are
not capable of detecting vulnerabilities in the logic of the application. As a
result, logic flaws are still detected by manual inspection.



Chapter 3

Case Studies

In this thesis, we use two case studies to show how the testing techniques we
propose can be applied to real world scenarios. The fundamental aspect that
differentiates these two case studies is the availability of the specifications.

The first case study describes a web-based single sign-on protocol used by
multi-party business applications. In this thesis, we consider the SAML 2.0
Web-based Single Sing-On and the OpenID authentication protocols whose
specifications are publicly available. The design of these protocols is verified
in Chapter 4 via model checking, while their real implementations are tested
in Chapter 5.

The second case study is an eCommerce web application. eCommerce
web applications are multi-party business applications whose specifications
are not available. In this thesis, we use this case study in Chapter 6 to assess
the black-box testing technique we propose to detect logic flaws without a
starting model.

Structure: This chapter is organized as follows. In Section 3.1, we in-
troduce the SAML 2.0 Web-based Single Sing-On and the OpenID authen-
tication protocols. Then, in Section 3.2 we introduce the eCommerce web
applications.

37
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3.1 Case Study 1: Web-based Single Sign-On Pro-
tocols

The OASIS Security Assertion Markup Language 2.0 [OAS08] Web browser
Single Sign-On (hereafter SAML SSO) and the OpenID Authentication Pro-
tocol [Ope07] (hereafter OpenID) are two emerging standards that enable
partners of multi-party business applications to authenticate their users once,
and then access the services of the application without the need to be authen-
ticated again. SAML SSO and OpenID implementations are part of identity
management software such as SAP NetWeaver Identity Manager and IBM
Tivoli Federated Identity Manager, as well as by online services such as the
Google Apps suite (e.g., GMail and Google Calendar). Everyday, millions of
users are authenticated by using these two protocols. For example, Google
claims that more than 5 millions of companies use SAML and OpenID to
login their users at Google Apps1.

3.1.1 The SAML 2.0 Web browser Single Sign-On

SAML SSO is a standardized, open, and interoperable authentication pro-
tocol. In this respect, it offers a significant number of configuration options
allowing it to be applicable in a multitude of environments. It is based on
an XML format for encoding security assertions as well as a number of pro-
tocols and bindings that prescribe how assertions should be exchanged in a
variety of applications and/or deployment scenarios. Three roles take part
in the protocol: a client C, an identity provider IdP and a service provider
SP. The objective of C, typically a web browser guided by a user, is to get
access to a service or a resource provided by SP. IdP authenticates C and
issues corresponding authentication assertions (a special type of assertions
used to authenticate users). The SSO protocol ends when SP consumes
the assertions generated by IdP to grant or deny C access to the requested
resource.

A SAML SSO profile offers two main usages depending on whether the

1See http://www.google.com/enterprise/apps/business/
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Figure 3.1: SAML SSO SP-initiated with front channels

web user requests a resource from an SP by contacting the SP directly (SP-
initiated SSO), or by contacting the IdP that presents a set of SP resources
that web users can consume (IdP-initiated SSO). Both SP-initiated and IdP-
initiated SSO can be used in combination with the artifact resolution pro-
tocol (ARP) that provides a mechanism by which SAML messages can be
transported by reference instead of by value. In addition, SAML SSO offers
many configuration options ranging from optional fields in messages, usage
of SSL/TLS at transport layer, encryption, digital signature, etc.

In the rest of this section we detail both SP-initiated and IdP-initiated
SAML SSO variants with and without ARP. The use of the ARP is often
referred to as back channel, while front channel indicates that the artifact
resolution protocol is not used. In this chapter we use the latter naming.

SAML SSO SP-initiated with front channels

Figure 3.1 shows the reference flow for the SAML SSO SP-initiated vari-
ant with front channels. In step S1, C asks SP to provide the resource
located at the address URI. SP then initiates the protocol by sending C a
redirect response (e.g., HTTP 302 Response message) directed to IdP con-
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S2. Resource

Figure 3.2: SAML SSO IdP-initiated with front channels

taining an authentication request of the form AReq(SP, IdP, ID) where ID is
a string uniquely identifying the request. IdP then challenges C to provide
valid credentials and if the authentication succeeds IdP builds an authen-
tication assertion AA = AuthnAssert(SP, IdP,C, ID) and places it into a
response message AResp(ID, SP, IdP, {AA}K−1

IdP
), where {AA}K−1

IdP
is the as-

sertion digitally signed with K−1IdP, the private key of IdP. SAML does not
prescribe how the IdP authenticates C. This is thus abstracted away from
our formalization. In our analysis we assume that a successful user authen-
tication takes place.

IdP then places AResp into an HTML form and sends it back to C (SAML
POST Binding). The response is forwarded by using a client-side script that
triggers the POST submission to SP. This completes the message exchange
and SP can deliver the requested resource to C.

SAML SSO IdP-initiated with front channels

The message flow is shown in Figure 3.2. As opposed to SP-initiated, C asks
IdP to access SP’s resources (step S1 in Figure 3.2). Once C authenticates
with IdP, IdP initiates the SAML Authentication Protocol by issuing an
authentication assertion. The execution of the protocol continues as seen in
Figure 3.1.
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Figure 3.3: SAML SSO SP-initiated with back channels

Back channels (Artifact Resolution)

In Figure 3.1 and Figure 3.2 SAML messages are directly exchanged by using
C as intermediary. The SAML profiles exposing SAML messages to the web
browsers are called front channel profiles. In addition, SAML defines another
method for exchanging SAML messages. Instead of relaying through the web
browser SAML messages, SPs and IdPs exchange references called artifacts.
Then, they run the ARP to resolve artifacts in SAML messages.

The ARP can be used for exchanging SAML requests as well as SAML
responses. Figure 3.3 shows an SP-initiated SSO in which back channels are
used to resolve only the SAML response.

The protocol flow for exchanging the SAML request is the same as seen
in Figure 3.1. After having authenticated C, in step A3 the IdP prepares the
authentication assertion AA. Additionally, it prepares the artifact Art =
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Figure 3.4: SAML SSO IdP-initiated with back channels

(IdP,Ref) associated to AA. Then IdP stores in a database the AA and
the Art. Finally IdP sends Art to C that in turn forwards to SP (step
A4). Upon receiving Art, SP establish a direct channel with IdP and sends
the ArtifactResolve(IDa, SP, Art) where IDa is a string uniquely identifying
the resolve request (step A5). Then, IdP fetches the assertion associated to
the artifact, encapsulates the SAML response into a ArtifactResponse(IDa,
ArtifactResolve(. . .)), and finally sends it back to SP. The protocol ends
when SP serves the resource to C.

Similarly as seen for the SP-initiated profile, the IdP-initiated profile uses
back channels. Figure 3.4 shows the IdP-initiated profile with back channels.

Security Assumptions

The security of the SAML SSO protocol relies on a number of assumptions
about the trustworthiness of the principals involved as well as the security
of the transport protocols employed.

Protocol Participants Concerning trustworthiness, the protocol assumes
that:
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A1 : IdP is trustworthy for both C and SP;

A2 : SP is not trustworthy.

Secure Transport Layer The SAML 2.0 specifications repeatedly state
the following assumptions of the transport protocols used to carry the pro-
tocol messages:

TP1 : Communication between C and SP can be carried over a unilateral
SSL/TLS channel, established through the exchange of a valid certifi-
cate (from SP to C).

TP2 : Communication between C and IdP is carried over a unilateral SS-
L/TLS channel that becomes bilateral once C authenticates itself on
IdP. This is established through the exchange of a valid certificate
(from IdP to C) and of valid credentials (from C to IdP).

An analysis of the SAML specifications reveals that the standard does
not specify whether the messages exchanged at steps S1 and A4 of Figure 3.1
and of Figure 3.3 must be transported over the same SSL/TLS connection
or whether two different SSL/TLS connections can be used for this purpose.
In other words, there is a certain degree of ambiguity on how assumption
TP1 of Section 3.1.1 can be interpreted.

The reuse of the SSL/TLS connection at step S1 to also transport the
message at step A4 is at first sight the most natural option. However this is
difficult to achieve in practice for a number of reasons:

Resuming SSL/TLS connections The use of a single SSL/TLS connec-
tions for the exchange of different messages cannot be guaranteed as,
e.g., the underlying TCP connection might be terminated (e.g. timeout,
explicitly by one of the end points), an SSL server could not resume
a previously established session, or a client might be using a browser
that very frequently renegotiates its SSL connection.2

2See, for instance, http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/
index.jsp?topic=/com.ibm.itame2.doc_5.1/am51_webseal_guide54.htm

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame2.doc_5.1/am51_webseal_guide54.htm
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp?topic=/com.ibm.itame2.doc_5.1/am51_webseal_guide54.htm
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Software modularity Nowadays, software is designed to be increasingly
modularized, capitalizing on layering and separation of concerns. This
may result in the fact that—within SP implementations—the software
module that handles SAML messages has no access to the internal in-
formation of the transport module that handles SSL/TLS. Thus, the
information on whether the client has used a single SSL/TLS connec-
tion or two different ones may not be available.

Distributed SPs The SAML SP may be distributed over multiple ma-
chines, e.g., for work-balancing reasons. This results in physically dif-
ferent SSL/TLS endpoints, with the inherent impossibility of enforcing
a single session for all communications between SP and C.

3.1.2 The OpenID Authentication Protocol

OpenID is an open and user-centric web browser-based single sign-on pro-
tocol. It provides a way to authenticate a user C by asking her to prove
that she controls a valid user identifier [Ope07]. OpenID is decentralized in
the sense that it does not require relying parties (SPs) and OpenID iden-
tity providers (IdPs) to have a pre-established relationship. It also does not
rely on an existing infrastructure on which a central authority approves or
registers relying parties or OpenID providers. The OpenID Authentication
2.0 specification [Ope07] describes an authentication protocol and an associ-
ation session protocol. It also prescribes how messages are transported over
HTTP messages defining two communication types: direct communication
and indirect communication. The former is established between service and
identity providers, the latter involves the user agent as intermediary. In the
next section, we describe in more details the different protocols.

Authentication Protocol

The protocol is initiated by C who access a resource URI at SP providing
SP an identifier that C has to prove to control. The identifier is used by
SP to identify which IdP C uses for authentication. Then C is redirected to
IdP together with an authentication request. Once C proves to control the
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C IdP SP
A1. URI, identifier(C)

S1. p, g, gxa mod p

S2. gxb mod p, h, H(gxa∗xb mod p⊕KHMAC)

A2. IdP, AReq(C, IdP, h, SP)

A3. IdP, AReq(C, IdP, h, SP)

A4. SP, AResp(IdP, C, SP, n, HMAC)

A5. SP, AResp(IdP, C, SP, n, HMAC)

A6. Resource

Figure 3.5: OpenID authentication protocol with Diffie-Hellman session as-
sociation

identifier, IdP issues and signs a positive assertion and redirects C back to
the SP transporting the response. SP checks the validity of the signature
and it lets C access resources available at its site. The manner in which C
is challenged is out of the scope of the protocol specification.

Association Session Protocol

The association session protocol establishes a shared secret KHMAC between
SP and IdP used to sign and verify authentication responses. SP initializes
this protocol by sending an association session request to IdP right after SP
discovers which IdP C uses to authenticate. IdP returns to SP a shared
secret together with a value h called handle used as a key to refer to as-
sociations. OpenID specifies only two ways to transmit KHMAC , that are:
No-Encryption association sessions and Diffie-Hellman (D-H) association
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session. When No-Encryption is used the IdP sends a response with KHMAC

in plain-text, whereas when D-H association is deployed a D-H shared key
is calculated in order to encrypt KHMAC . No-Encryption is used only over
a secure transport layer.

OpenID Authentication Protocol with Session Association

Figure 3.5 depicts the authentication protocol flow used in combination
with the D-H session association. In step A1, C sends to SP his identi-
fier identifier(C). SP identifies IdP using C’s identifier (this procedure
is not considered here, we just assume that SP has a look-up table) and
then initiates the D-H association session protocol. At the end of its execu-
tion, SP receives an handle for the association h and a shared secret KHMAC

(step S2); then SP issues an authentication request in step A2. C, acting
as intermediary, redirects the request to IdP (step A3), which challenges C
and issues an assertion within an authentication response accordingly. The
information sent to SP is signed calculating an HMAC over IdP, C, SP, a
nonce n and the handle h (step A4). In step A5, C delivers the response to
SP. If SP accepts the response, then it will send a resource back to C.

Security Assumptions

Protocol Participants OpenID works under the assumptions that IdP is
not compromised and that IdP is trusted by SPs to generate authentication
assertions. The latter requires a certain care from SPs as in principle any
entity can claim itself to be an IdP. SPs are assumed to be capable to select
those IdPs that can be considered trustworthy.

Secure Transport Layer The OpenID specifications strongly recommend
the use of SSL connections for all parts of the interaction, including com-
munication with the user. Not following this recommendation would make
the OpenID protocols vulnerable in many trivial aspects that may not fit
relevant business scenarios. In our analysis we follow this recommendation
and we assume that the protocol is working under the assumptions TP1 and
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TP2 as discussed in Figure 3.1.1.

3.1.3 Security Goals

In this section, we introduce the security goals of web-based single sign-on
protocols.

By comparison with multiple credentials web authentication schemes
(one username-password pair per service), it is natural to expect that at
the end of the execution the protocol fulfills the following mutual authenti-
cation goal: SP authenticates C, and C authenticates SP.

Furthermore, when SP uses SSL/TLS to send the resource to C, we
also expect that the protocol offers confidentiality of the resource, i.e., the
resource will remain a secret between C and SP.

3.2 Case Study 2: eCommerce Applications

The term eCommerce refers to the activities of buying and selling goods
and services over electronic communication systems. eCommerce covers a
wide range of forms of commerce including business-to-consumer commerce
(e.g., online stores, marketplace, video streaming platforms, auction sys-
tems, and online gambling), business-to-business commerce (e.g., procure-
ment, producer-wholesaler or wholesaler-retailer transactions, and so on),
and business-to-government commerce. Modern eCommerce is carried on
over the web, and it can be accessed via web applications, typical for online
stores, or via electronic data interchange (EDI) services for the exchanged of
commercial data between business partners. In this thesis, we focus on online
stores for business-to-consumer commerce accessible via web applications.

eCommerce web applications are software solutions for buying and sell-
ing products or services over the web between online stores and consumers.
eCommerce applications implement on-line catalogues and virtual shopping
carts in which customers place the items they would like to buy. An exam-
ple of a workflow of a eCommerce web application is shown in Figure 3.6.
eCommerce web applications have a front-end for the customers, and a back-
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Figure 3.6: The workflow of eCommerce web applications

office interface for the store administrators and employees. Consumers place
orders by using the front-end of the store. While in the back-office of the
store, clerks process the orders by fetching the items from the warehouse and
preparing them for the delivery. Finally, the store ships the items and an
invoice to the customer.

eCommerce web applications integrate the payment into the purchase
process. This is done by using the API provided by online payment services
such as PayPal, Amazon Payments, Google Checkout, or Authorize.NET3.
The integration can be done at different steps of the purchase process and it
depends on the payment system that is integrated. In Figure 3.7, we show
an example of integration that requires two HTTP redirections. In step S1,
U adds the item I into the cart. The store confirms the operation showing
the updated cart in step S2. In step S3, U confirms the order. Then, S
redirects U to P together with the details of the cart such as the name of

3For a rich, yet incomplete, list of payment systems see https://en.wikipedia.org/
wiki/List_of_online_payment_service_providers.

https://en.wikipedia.org/wiki/List_of_online_payment_service_providers
https://en.wikipedia.org/wiki/List_of_online_payment_service_providers


3.2. CASE STUDY 2: ECOMMERCE APPLICATIONS 49

Figure 3.7: eCommerce web application and payment systems

the payee, the amount of the monetary transaction, and so on. In step S6, P
may notify S about the result of the money transfer authorized by U. This
step is optional and it depends on the API provided by the service P. In step
S7, U has authorized the payment for the amount of I and is redirected back
to the store. In step S8, the store may query P for checking the result of the
transaction. The purchase ends with a confirmation of the purchase. The
steps S6 and S9 could be performed offline by the clerk when processing the
order.

3.2.1 Application Logic

At the end of the purchasing process, the parties involved have the following
expectations:

1. the buyer and the seller agreed on the goods of the purchase;
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2. the buyer, the seller, and the bank agreed on the amount of money to
transfer from the buyer to the seller;

3. the bank transferred the amount of money from the account of the
buyer to the one of the seller;

4. the seller delivers the goods to the buyer.

Therefore, we expect that the software fulfills the above requirements.

3.3 Conclusions

In this chapter we introduced two case studies. The first case study consist
of two web-based authentication protocols: SAML SSO and OpenID. On
this two protocols, we will apply a model checking technique for detecting
flaws in their design (See Chapter 4). Then, we will address the question
of whether also real implementations suffer from the flaws identified by the
model checker (See Chapter 5). The second case study is a typical eCom-
merce web application for which no formal specifications are available. In
this case, we will apply a model inference technique in order to extract a
sufficiently expressive model to perform model-based security testing in a
black-box scenario (See Chapter 6).



Chapter 4
Model Checking of Web-based

Authentication Protocols

When the software specifications are available, it is possible to use auto-
mated reasoning techniques such as model checking to detect vulnerabilities
in applications. In this section we present a novel application of model check-
ing for the security analysis of authentication protocols. Our study led to
the discovery of a previously unknown logic flaw into the design of SAML
SSO and OpenID. By exploiting this vulnerability, an attacker can hijack a
client authentication attempt or force the latter to access a resource without
its consent or intention. In this section, we also discuss the manual tests
required to verify the presence of the design flaw in actual protocol imple-
mentations. We tested three SAML SSO implementations and two OpenID
implementations discovering that four out of five are vulnerable to the logic
flaw discovered by the model checker. Moreover, we discovered that the de-
sign flaw can be exploited as a launching pad of Cross-Site Scripting attacks
in the SAML-base SSO for Google Apps. All our findings have been dis-
cussed with members of the OASIS Security Services Technical Committee
and a SAML V2.0 Errata has been redacted and approved [OAS12].

Structure: This chapter is organized as follows. Section 4.1 presents the
formal models of SAML SSO and OpenID. Section 4.2 introduces the pro-
tocol options, the formal analysis, and the results. Section 4.3 presents the

51
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authentication flaw we discovered in SAML SSO and OpenID. Then, Sec-
tion 4.4 discusses the manual tests against real implementations. Finally,
Section 4.5 draws the conclusions.

4.1 Formalization

This section presents the formalization of SAML SSO and OpenID protocols.
This section focuses on four main aspects of the model: messages, behavior
of participants, protocol sessions, and the security goal. For each participant
we differentiate the behavior according to the profile.

The specification language that we use in this section is ASLan++ (the
AVANTSSAR Specification Language [vOM11]), one of the specification lan-
guage of the AVANTSSAR platform [AAA+12]. However, when we analyzed
SAML SSO, the ASLan++ language was still under development and we
used the HLPSL++, another specification language of the AVANTSSAR
platform.

4.1.1 AVANTSSAR Specification Language

In this section we introduce the main concept of ASLan++1. ASLan++
is a formal language for specifying service-oriented architectures, security
policies, and security properties. An ASLan++ specification is a set of en-
capsulated entities. Entities may model web services as processes and their
static compositions. In our case studies, we model the client, the service
provider and the identity provider as entities. The top-level entity is usually
called Environment, and it is used to “glue” together the inner entities. The
definition of an entity contains a list of parameters, the symbol section, and
the body section. The list of parameters represent what the entity knows at
the beginning of its execution. The symbol section contains the declaration
of types, variables, constants, functions, macros, and algebraic equations
that are accessible only from the entity and its inner entities. The body of
an entity contains the logic. For example, an entity modeling a web service

1A detailed explanation, as well as tutorials and software are available at http://www.
avantssar.eu.

http://www.avantssar.eu
http://www.avantssar.eu
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performs message sending and message receiving actions while a composition
of entities instantiates two entities with appropriate parameters. ASLan++
supports common programming language-like statements such as if-then-else
for deterministic conditional branches, select-do for non deterministic condi-
tional branching, while loops, as well as message passing primitives such as
message sending and receiving statements.

The security goals can be expressed in temporal logic [Pnu77, Hol04] or
state formulas, while the policies are expressed as Horn clauses [Hor51].

4.1.2 Formalization of SAML SSO

In this section we present the formal model of the SAML SSO protocols
shown in Figure 3.1, Figure 3.2, Figure 3.3 and Figure 3.4.

Structure of a Specification

The SAML SSO specification is structured as follows:

1 entity Environment {
2 symbols
3 % Protocol Message
4
5 entity Session ( ... ) {
6
7 entity Client ( ... ) {
8 % [...]
9 }

10 entity ServiceProvider ( ... ) {
11 % [...]
12 }
13 entity IdentityProvider ( ... ) {
14 % [...]
15 }
16 body {
17 % Instantiation of a single SAML SSO protocol run
18 }
19
20 } goals:
21 % G1 and G2
22 body {
23 % Instantiation of several SAML SSO protcol run
24 }
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25 }

The innermost entities are the Client entity, ServiceProvider entity,
and IdentityProvider entity. These entities are contained in the Session

entity that model a single protocol run by instantiating the principal and
providing the appropriate parameters. The outermost entity is Environment

that instantiates parallel protocol runs.

Protocol Messages

We model messages, their structure, encapsulation, message encoding and
fields by using ASLan++ function symbols and constants. We declare them
in the symbol section of the Environmant entity as follows:

1 symbols
2 %% HTTP protocol values
3 get , post : method;
4 code_30x , code_200 : code;
5 uri_sp , uri_i : uri;
6 c, sp, idp : agent;
7 id : int;
8 %[...]
9

10 %% HTTP Messages
11 httpReq(method , agent , http_element , http_element : message;
12 httpResp(code , agent , http_element , http_element) : message;
13 %% HTML elements
14 htmlForm(agent , saml_binding) : http_body;
15 %% SAML Messages
16 aReq(agent , agent , int) : saml_message;
17 noninvertible
18 signedAResp(private_key , agent ,
19 agent ,agent , int) : saml_message;
20 %% SAML bindings
21 hBind(saml_message , uri) : saml_binding;
22 pBind(saml_message , uri) : saml_binding;
23
24 % [...]

Symbols for function such as httpReq, httpResp, aReq and authnResponse

model single protocol messages. hBind and pBind represent message bindings.
Constants get, post, code_200 and code_30x model the HTTP GET method,
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the HTTP POST method, HTTP 200 response code, and the HTTP 30x-
family response codes.

We express protocol message encapsulation by composing together sym-
bols. For example, the authentication request aReq(sp,idp,id) transported
over an HTTP message is expressed as follows:

httpResp(code_30x , idp ,
hBind(aReq(sp, idp , id), uri),
nil_http_element)

Communication Channels

ASLan++ supports three different abstractions for communication channels,
they are Abstract Channel Model (ACM), Cryptographic Channel Model
(CCM), and Ideal Channel Model (ICM). In our models, we used the ACM
model. As opposed to the other channel models, ACM explicitly refers to
communication channels by using element of the formal language. We believe
that this feature better suites to the purpose of this thesis that is testing real
implementations. Nevertheless, the other channel models could be used as
well, however the testing technique introduced in Chapter 5 does not support
them yet.

ACM refers to channel by ASLan++ constants of the type channel. An
agent A sends a message M to B over the channel ch by using the following
ASLan++ primitive:

1 A -ch-> B: M;

While A receives a message M from B over the channel ch by using the
following statement:

1 B -ch-> A: M;

In the following section use the following naming convention for chan-
nels. We use the variable name Ch_X2Y of type channel for representing a
communication channel between the agent X and the agent Y in which X is
the sender and Y is the intended recipient. Moreover, we assume that every
time two agents communicate they use a new pair of channels.
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Client Entity

The Client entity takes four parameters called Actor, SP, IdP and URI rep-
resenting, respectively, the agent that plays the entity of Client, the service
provider, the identity provider, and the resource that C wants to access.

1 entity Client (Actor , SP, IdP: agent ,
2 URI : agent ,
3 % [...]
4 ) {
5 symbols
6 AReq : hBind(aReq (agent , agent , int), agent);
7 ARsp : pBind(signedAResp (inv(public_key),
8 agent , agent , agent , int), uri);
9 % [...]

10 }

C is a web browser guided by a user. We model C as a standard browser
unaware of protocols encapsulated in HTTP messages. We model this be-
havior by using ASLan++ compound types2. The ASLan++ code above
shows the declaration of two compound types Areq and ARsp, respectively,
the SAML authentication request and response. We use compound type also
for modeling SAML artifact messages.

SP-initiated with front channels As shown in Figure 3.1, a client par-
ticipating to the SAML SSO SP-initiated profile with front channel performs
the following actions. First, C initiates its run by sending an HTTP request
for a resource and receiving an authentication request over a 30x HTTP re-
sponse (step S1 and A2). Second, C executes the 30x redirection type and
receives from the IdP and authentication response within an HTML form
(step A2 and A3). Finally, C sends the authentication response to the SP
and receives the resource.

The Client entity for the SAML SSO SP-initiated with front channels
takes in input 5 parameters more, they are Ch_C2SP_1, Ch_SP2C_1, Ch_C2IdP,
Ch_IdP2C, Channels, respectively for the communication channel for request-

2The same aspect could have been captured by using the most general ASLan++
message type. However, compound types have the characteristic that they prune the
research space of the model checker.
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ing a resource to SP, for receiving the authentication request from SP, for
forwarding the authentication request to IdP, for receiving the authentica-
tion response from IdP, and a set of pairs of channels for forwarding the
authentication response to SP. We will clarify the use of the set of channels
later.

The Client entity is the following:

1 entity Client ( %[...]
2 Ch_C2SP_1 , Ch_SP2C_1 ,
3 Ch_C2IdP , Ch_IdP2C: channel ,
4 Channels: agent.channel.channel set) {
5 %% Compound types
6 % [...]
7 body {
8 %% S1-A1
9 Actor -Ch_C2SP_1 -> SP : httpReq(get , URI , nil_http_element ,

10 nil_http_element);
11 SP -Ch_SP2C_1 -> Actor : httpResp(code_30x , IdP , ?AReq ,
12 nil_http_element);
13
14 %% A2-A3
15 Actor -Ch_C2IdP -> IdP : httpReq (get , IdP , AReq , nil_http_element

);
16 IdP -Ch_IdP2C -> Actor : httpResp(code_200 , nil_agent ,
17 nil_http_element , htmlForm (?AnySP ,

?ARsp));
18 if(Channels ->contains ((?AnySP , ?Ch_C2SP_2 , ?Ch_SP2C_2))) {
19 %% A4-S2
20 Actor -Ch_C2SP_2 -> AnySP : httpReq (post , AnySP ,
21 nil_http_element , ARsp);
22 AnySP -Ch_SP2C_2 -> Actor : httpResp(code_200 , nil_agent ,
23 nil_http_element , ?

Resource);
24 }
25 }
26 }

Here, the Client entity uses AnySP for fetching the new channels Ch_C2SP_2
and Ch_SP2C_2 respectively for sending the ARsp and receiving the Resource.

IdP-initiated with front channels The Client entity of SAML SSO
IdP-initiated with frond channels does not request the resource to SP. In-
stead, it requests the resource hosted by SP to the IdP and receives the
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authentication response from the IdP (step S1 and A1 of Figure 3.2). The
Client entity’s body begins as follows:

1 body {
2 %% S1-A1
3 Actor -Ch_C2IdP -> IdP : httpReq (get , URI , nil_http_elements ,
4 nil_http_element);
5 IdP -Ch_IdP2C -> Actor : httpResp(code_200 , nil_agent ,
6 nil_http_element , htmlForm (?AnySP , ?

ARsp));
7 %% A2-S2 == A4 -S2 of SP-initiated with front channels
8 %[...]
9 }

The steps A2-S2 of the IdP-initiated profile with front channels are the
same of the steps A4-S2 of the SP-initiated profile with front channels.

Back channels When back channels are used, SP and IdP do not exchange
SAML messages through C. Instead, they use C for redirecting references.
This requires to modify the structure of the messages received by the Client

entity. This is done in two points. First, in the symbol section and then in
the body. For example, let us consider the SP-initiated with back channels
of Figure 3.3. The Client entity is derived from the entity of SAML SSO
SP-initiated with front channel as follows:

1 entity Client (Actor , SP, IdP: agent ,
2 URI : agent ,
3 % [...]
4 ) {
5 symbols
6 AReq : hBind(aReq (agent , agent , int), agent);
7 Art : artBind(artifact(agent , int), agent);
8
9 body {

10 %% S1-A1
11 % [...]
12
13 %% A2-A3
14 Actor -Ch_C2IdP -> IdP: httpReq (get , IdP , AReq , nil_http_element);
15 IdP -Ch_IdP2C -> Actor: httpResp(code_200 , nil_agent ,
16 nil_http_element , htmlForm (?AnySP ,

?Art));
17 if(Channels ->contains ((?AnySP , ?Ch_C2SP_2 , ?Ch_SP2C_2))) {
18 %% A4-S2
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19 Actor -Ch_C2SP_2 -> AnySP: httpReq (post , AnySP ,
20 nil_http_element , Art);
21 AnySP -Ch_SP2C_2 -> Actor: httpResp(code_200 , nil_agent ,
22 nil_http_element , ?

Resource);
23 }
24 }
25 }

ServiceProvider entity

The general ServiceProvider entity has four parameters. They are Actor,
IdP, C and URI representing the agent that plays the entity of ServiceProvider
, the identity provider, the client, and the resource it hosts. The other
parameters are the channels whose number depends from the specific profile.

1 entity ServiceProvider(Actor , IdP , C: agent ,
2 URI : uri ,
3 % [...]
4 ) {
5 % [...]
6 }

SP-initiated with front channels In the SP-initiated profile with front
channels, the service provider, upon receiving a request for a resource, ini-
tiates the protocol by issuing an authentication request (See steps S1-A1
of Figure 3.1). Then, it waits for incoming authentication responses, and
finally it returns the requested resource (steps A4-S2 of Figure 3.1).

The ServiceProvider entity of the SP-initiated profile with front chan-
nels takes four parameters more for the communication channels, they are
Ch_C2SP_1, Ch_SP2C_1, Ch_C2SP_2, and Ch_SP2C_2.

1 entity ServiceProvider(% [...]
2 Ch_C2SP_1 , Ch_SP2C_1 ,
3 Ch_C2SP_2 , Ch_SP2C_2: channel
4 ) {
5 % [...]
6 body {
7 %% A1-S1
8 C -Ch_C2SP_1 -> Actor: httpReq(get , URI , nil_http_element ,
9 nil_http_element);
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10 ID := fresh();
11 Actor -Ch_SP2C_1 -> C: httpResp(code_30x , IdP ,
12 hBind(aReq(Actor , IdP , ID),
13 URI),

nil_http_element
);

14
15 %% A4-S2
16 C -Ch_C2SP_2 -> Actor: httpReq (post , Actor , nil_http_element ,
17 pBind(signedAResp(inv(pk(IdP)),
18 Actor , IdP , C, ID),

URI));
19 Resource := fresh ();
20 Actor -Ch_SP2C_2 -> C : httpResp(code_200 , nil_agent ,
21 nil_http_element , Resource);
22 }
23 }

fresh is a reserved ASLan++ keyword for generating nonces. The ServiceProvider
uses it for both generating the unique ID of the authentication request ID

and for modeling the resource Resource.

SP-initiated with back channels When back channels are used the ser-
vice provider executes the artifact resolution protocol. In Figure 3.2, SP
executes the ARP in step A5 and A6. We model the service provider as
follows:

1 entity ServiceProvider(% [...]
2 Ch_C2SP_1 , Ch_SP2C_1 ,
3 Ch_C2SP_2 , Ch_SP2C_2 ,
4 Ch_SP2IdP , Ch_IdP2SP: channel) {
5 % [...]
6 body {
7 %% S1-A2 of the SP-initiated with front channels
8
9 %% A4

10 C -Ch_C2SP_2 -> Actor: httpReq (get , Actor , nil_http_element ,
11 artBind(artifact(IdP , ?Ref), URI);
12 %% A5
13 Actor -Ch_SP2IdP -> IdP: httpReq(get , IdP , nil_http_element ,
14 artResolve(IDa , SP, artifact(IdP ,Ref

)));
15 %% A6
16 IdP -Ch_IdP2SP -> Actor: httpResp(code_200 , nil_agent ,



4.1. FORMALIZATION 61

17 nil_http_element ,
18 aReq(Actor , IdP , ID));
19 %% S2
20 Resource := fresh ();
21 Actor -Ch_SP2C_2 -> C: httpResp(code_200 , nil_agent ,
22 nil_http_element , Resource);
23 }
24 }

IdP-initiated with front channels In the IdP-initiated profile, the ServiceProvider
entity waits for any incoming authentication response that matches IdP,
Actor, and it is signed with inv(pk(IdP) key own by the identity provider
(step A1 of Figure 3.2) . Then, it returns the resource (step S2) We model
this as follows:

1 entity ServiceProvider(% [...]
2 Ch_C2SP_2 , Ch_SP2C_2: channel) {
3 % [...]
4 body {
5 %% A2-S2
6 C -Ch_C2SP_2 -> Actor: httpReq(post , Actor , nil_http_element ,
7 pBind(signedAResp(inv(pk(IdP)),
8 Actor , IdP , C, ?ID), URI)

);
9 Resource := fresh ();

10 Actor -Ch_SP2C_2 -> C: httpResp(code_200 , nil_agent ,
11 nil_http_element , Resource);
12 }
13 }

IdP-initiated with back channels The ServiceProvider entity of the
IdP-initiated profile with back channels is the following:

1 entity ServiceProvider(% [...]
2 Ch_C2SP_1 , Ch_SP2C_1 ,
3 Ch_C2SP_2 , Ch_SP2C_2 ,
4 Ch_SP2IdP , Ch_IdP2SP: channel) {
5 % [...]
6 body {
7 %% A2
8 C -Ch_C2SP_2 -> Actor: httpReq(get , Actor , nil_http_element ,
9 artBind(artifact(IdP , ?Ref), URI);

10 %% A3
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11 Actor -Ch_SP2IdP -> IdP: httpReq(get , IdP , nil_http_element ,
12 artResolve(IDa , SP,
13 artifact(IdP , Ref)));
14 %% A4
15 IdP -Ch_IdP2SP -> Actor: httpResp(code_200 , nil_agent ,
16 nil_http_element ,
17 signedAResp(inv(pk(IdP)), Actor , IdP ,
18 C, ID));
19 %% S1
20 Resource := fresh ();
21 Actor -Ch_SP2C_2 -> C: httpResp(code_200 , nil_agent ,
22 nil_http_element , Resource);
23 }
24 }

where A3 and A4 are the execution of the ARP.

IdentityProvider entity

The general IdentityProvider entity takes four parameters: Actor, C, SP and
TrustedSPs representing, respectively, the agent that will play the identity
provider entity, the client, the service provider, and a set of trusted service
providers. The general IdentityProvider entity is the following:

1 entity IdentityProvider (Actor , C, SP: agent ,
2 TrustedSPs: agent set ,
3 % [...]
4 ) {
5 % [...]
6 }

SP-initiated with front channels The IdP of the SP-initiated profile
with front channels performs three steps. First, it waits for incoming authen-
tication request from C. Second, it checks if the issuer of the authentication
request is a trusted service provider. Finally, it sends back to the client an
authentication response. This is modeled as follows:

1 body {
2 %% A2
3 C -Ch_C2IdP -> Actor: httpReq (get , Actor ,
4 hBind(aReq(?SP, Actor , ?ID),
5 ?URI), nil_http_element);
6 if (TrustedSPs ->contains(SP)) {
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7 %% A3
8 Actor -Ch_IdP2C -> C: httpResp(code_200 , nil_agent ,
9 nil_http_element ,

10 htmlForm(SP, pBind(
11 signedAResp(inv(pk(Actor)), SP,
12 Actor , C, ID), URI)));
13 }
14 }

SP-initiated with back channels When back channels are used, the
identity provider does not send back the authentication response. Instead,
first it stores the response locally and the service provide associates a refer-
ence to the request. Second, it sends the reference to the client. Finally, it
waits for executing the ARP (steps A5-A6).

1 body {
2 %% A2
3 C -Ch_C2IdP -> Actor: httpReq (get , Actor ,
4 hBind(aReq(?SP, Actor , ?ID),
5 ?URI), nil_http_element);
6 if (TrustedSPs ->contains(SP)) {
7 Ref := fresh();
8 DB->add(Ref , signedAResp(inv(pk(Actor)), SP , Actor , C, ID));
9 %% A3

10 Actor -Ch_IdP2C -> C: httpResp(code_200 , nil_agent ,
11 nil_http_element ,
12 arpBind(artifact(Actor , Ref), URI

));
13 %% A5
14 SP -Ch_SP2IdP -> Actor: httpReq(get , Actor , nil_http_element ,
15 artResolve (?IDa , SP,
16 artifact(Actor , ?AnyRef)));
17 if (DB ->contains (?AnyRef , signedAResp(inv(pk(? AnyIdP)),
18 ?AnySP , ?AnyIdP , ?AnyC , ?AnyID))) {
19 %% A6
20 Actor -Ch_IdP2SP -> SP: httpResp(code_200 , nil_agent ,
21 nil_http_element ,
22 signedAResp(inv(pk(AnyIdP)),
23 AnySP , AnyIdP , AnyC ,

AnyID));
24 }
25 }
26 }
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IdP-initiated with front channels The identity provider of the IdP-
initiated profile wait for a request for a resource from the client (step S1).
Then it sends an authentication response to the client (step A1). We modeled
it as follows:

1 body {
2 %% S1
3 C -Ch_C2IdP -> Actor: httpReq(get , URI , nil_http_element ,
4 nil_http_element);
5 if (TrustedSPs ->contains(SP)) {
6 %% A1
7 Actor -Ch_IdP2C -> C: httpResp(code_200 , nil_agent ,

nil_http_element ,
8 htmlForm(SP, pBind(
9 signedAResp(inv(pk(Actor)), SP,

10 Actor , C, ID), URI)));
11 }
12 }

IdP-initiated with back channels The entity of the identity provider
of the IdP-initiated profile with back channels is the following:

1 body {
2 %A1
3 C -Ch_C2IdP -> Actor: httpReq(get , URI ,
4 nil_http_element , nil_http_element);
5 if (TrustedSPs ->contains(SP)) {
6 Ref := fresh();
7 DB->add(Ref , signedAResp(inv(pk(Actor)), SP, Actor , C, ID));
8 %% A2
9 Actor -Ch_IdP2C -> C: httpResp(code_200 , nil_agent ,

10 nil_http_element ,
11 arpBind(artifact(Actor , Ref), URI));
12 %% A3
13 SP -Ch_SP2IdP -> Actor: httpReq(get , Actor , nil_http_element ,
14 artResolve (?IDa , SP,
15 artifact(Actor , ?AnyRef)));
16 if (TrustedSPs ->contains (?AnyRef ,
17 signedAResp(inv(pk(? AnyIdP)),
18 ?AnySP , ?AnyIdP , ?AnyC , ?AnyID))) {
19 %% A4
20 IdP -Ch_IdP2SP -> Actor: httpResp(code_200 , nil_agent ,
21 nil_http_element ,
22 signedAResp(inv(pk(AnyIdP)),
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23 AnySP , AnyIdP , AnyC , AnyID))
;

24 }
25 }
26 }

Sessions and Environment

The scenarios that we considered involve a trusted identity provider, two
service provides, one of which is malicious, and a client. In our analysis we
suppose that a user asks for two different resources (e.g. by using two in-
stances of a web browser) being authenticated by the same identity provider.
We specified this scenario in the Environment entity that instantiates two pro-
tocol executions. A single protocol execution is defined in the Session entity
that in turns instantiates participants.

The fragment below shows the body of the Environment and Session

entities for the SAML SSO SP-initiated with front channels:
1 entity Environment {
2 % [...]
3 entity Session (C, IdP , SP: agent ,
4 TrustedSPs : agent set ,
5 URI : agent ,
6 Ch_C2SP_1 , Ch_SP2C_1 , Ch_C2SP_2 , Ch_SP2C_2 ,
7 Ch_C2IdP , Ch_IdP2C: channel ,
8 Channels: agent.channel.channel set) {
9

10 entity Client (
11 % [...]
12 } entity IdentityProvider (
13 % [...]
14 } entity ServiceProvider (
15 % [...]
16 } body {
17 %% New protocol run
18 new Client(C, SP , IdP , URI ,
19 Ch_C2SP_1 , Ch_SP2C_1 ,
20 Ch_C2IdP , Ch_IdP2C ,
21 Channels);
22 new ServiceProvider(SP, IdP , C, URI ,
23 Ch_C2SP_1 , Ch_SP2C_1 ,
24 Ch_C2SP_2 , Ch_SP2C_2);
25 new IdentityProvider(IdP , C, SP, TrustedSPs ,
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26 Ch_C2IdP , Ch_IdP2C);
27 } goals
28 %% Mutual authentication goal
29 G1a:(_) C *-> SP;
30 G1b:(_) SP *-> C;
31 %% Confidentiality goal
32 G2:( _) {C, SP};
33
34 }
35 body {
36 TrustedSPs := {sp, i};
37 CChannels := {(sp, ch_c2sp_2s1 , ch_sp2c_2s1),
38 (i, ch_c2i_2s2 , ch_i2c_2s2)};
39 %% Two protocol runs
40 % honest agents
41 new Session(c, idp , sp,
42 TrustedSPs ,
43 uri_sp ,
44 ch_c2sp_1s1 , ch_sp2c_1s1 , ch_c2sp_2s1 , ch_sp2c_2s1 ,
45 ch_c2idp_s1 , ch_idp2c_s1 ,
46 CChannels);
47 % malicious sp (==i)
48 new Session(c, idp , i ,
49 TrustedSPs ,
50 uri_i ,
51 ch_c2i_1s2 , ch_i2c_1s2 , ch_c2i_2s2 , ch_i2c_2s2 ,
52 ch_c2idp_s2 , ch_idp2c_s2 ,
53 CChannels);
54 }
55 }

Security goals

As we said in Chapter 3, we expect that SAML SSO fulfills the mutual
authentication property G1 and the confidentiality of the resource G2.

We specify the G1 and G2 security properties in the goals section of
the Session entity. This is modeled by using ASLan++ labels. The mutual
authentication is modeled with two labels defined in the goal section of the
Session entity: G1a:(_)C *-> SP and G1a:(_)SP *-> C. The labels G1a G1b

are then used to mark the data value upon which the agents SP and C agree
on. For example, when C sends the message S1 to SP, the variable URI is
marked as follows: URI. Similarly, we define the confidentiality property:
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G2( _){C, SP}. In this case, the property states that only C and SP shares a
data value marked by G2.

4.1.3 Formalization of OpenID

In this section we present the formal model of OpenID in Figure 3.5.
In this subsection we present a formalization in ASLan++ of OpenID. It

abstracts away the steps of the protocol considered irrelevant for the analysis
we perform in this case study, more precisely, the IdP discovery phase, and
the association session.

Structure of a Specification

An OpenID formal specification is structured as follows:

26
27 entity Environment {
28 symbols
29 % Protocol Message
30
31 entity Session ( % Parameters
32 ) {
33
34 entity Client ( % Parameters
35 ) {
36 %[...]
37 }
38 entity ServiceProvider ( % Parameters
39 ) {
40 %[...]
41 }
42 entity IdentityProvider ( % Parameters
43 ) {
44 %[...]
45 }
46 body {
47 %Instantiation of a single OpenID protocol run
48 }
49
50 } goals:
51 % G1 and G2
52 body {
53 % Instantiation of several OpenID protocol run
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54 }
55 }

Protocol Messages

We model messages, their structure, encapsulation, message encoding and
fields by using ASLan++ function symbols and constants as follows:

Listing 4.1: Model excerpt.

1
2 symbols
3 %% HTTP protocol values
4 get , post : method;
5 code_30x , code_200 : code;
6 uri_sp , uri_i : uri;
7
8 %% HTTP Messages
9 httpReq(method , agent , http_element , http_element) : message ;

10 httpResp(code , agent , http_element , http_element) : message ;
11 htmlForm(agent , http_element) : http_body;
12
13 %% OpenID Messages
14 aReq( agent , agent , int , agent) :

oid_authn_message;
15 aResp(agent , agent , agent , int , int , hmac) :

oid_authn_message;
16 noninvertible
17 hmac(symmetric_key , agent , agent , agent , int , int) : hmac;
18
19 }

The function symbols aReq and aResp model the structure of a protocol
message. The function symbols httpReq and httpResp describe the structure
of a HTTP message that can be used to transport the previous OpenID
messages. Constants get, post, code_200 and code_30x model the HTTP
GET method, the HTTP POST method, HTTP 200 response code, and the
HTTP 30x-family response codes. The function hmac models the structure
of the shared secret between SP and IdP.
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Communication Channels

We used the ACM model and the same naming convention as seen for SAML
SSO.

Client Entity

The Client entity takes nine parameters. The first three are the agents
involved in a protocol run Actor, IdP, SP, respectively for the agent that
will play the entity of Client, the OpenID provider, and finally, the service
provider. The parameter URI is the address of the resource the end-user
would like to access. The further parameters in the Client entity declaration
refer to the ACM channel pairs used for exchanging messages with the other
protocol entities.

Listing 4.2: Client entity.
1 entity Client (Actor , IdP , SP: agent , URI : uri ,
2 Ch_C2SP_1 , Ch_SP2C_1 , Ch_C2IdP , Ch_IdP2C: channel ,
3 Channels: agent.channel.channel set) {
4 symbols
5 AnySP : agent;
6 Resource : http_element;
7 AReq : aReq( agent , agent , int , agent);
8 AResp : aResp( agent , agent , agent , int , int , hmac);
9 Ch_C2SP_2 : channel;

10 Ch_SP2C_2 : channel;
11
12 % [...]
13 }

The symbol section in Client introduces variables used locally in the
body. The next ASLan++ code fragment will make clear in which context
they are used:

Listing 4.3: Sample interaction.
1 body {
2 %% A1-A2
3 Actor -Ch_C2SP_1 -> SP : httpReq (post , URI , nil_http_element ,
4 identifier(Actor));
5 SP -Ch_SP2C_1 -> Actor : httpResp(code_30x , ?IdP , ?AReq ,

nil_http_element);
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6 %% A3-A4
7 Actor -Ch_C2IdP -> IdP : httpReq(get , IdP , AReq ,

nil_http_element);
8 select {
9 on(IdP -Ch_IdP2C -> Actor : httpResp(code_30x , ?AnySP , ?AResp ,

10 nil_http_element) &
11 Channels ->contains ((?AnySP , ?Ch_C2SP_2 , ?Ch_SP2C_2))): {
12 %% A5-A6
13 Actor -Ch_C2SP_2 -> AnySP: httpReq(get , AnySP , AResp ,

nil_http_element);
14 AnySP -Ch_SP2C_2 -> Actor: httpResp(code_200 , nil_agent ,
15 nil_http_element , ?

Resource);
16 }
17 }
18 }

The first step in the protocol is performed by C who accesses a resource
URI at SP providing it with an identifier, identifier(Actor), that C has
to prove to control. The corresponding HTTP response redirects the user
agent towards IdP, given the HTTP 30x code contained in it. The HTTP
response carries also the authentication request AReq, which contains infor-
mation about the client that is requesting to initialize the protocol.

In the next step, C proves control of the identifier to IdP. Upon the recep-
tion of a positive response from IdP, C is redirected back to SP transporting
the AResp response.

It is important to remark that the configured channels are being checked
to verify the relationship between the service provider and this client (as we
will discuss later). Finally, the contacted SP will provide C with a httpRespCookie
containing the requested resource.

OpenID Provider Entity

The IdentityProvider entity takes as parameters, respectively, the agents
participating to the session Actor, SP, and C. Then, the parameter Shared_key
represents the shared secret key used to sign and to verify assertions. Finally,
the parameter Handle is a value used as a pointer to refer to the Shared_key.
SP is supposed to hold valid credentials in order to issue an authentication
requests to IdP. Additional parameters are the communication channels
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used in the body of the entity. The variable Nonce is a fresh value sent in
the redirection of C to SP. Note that the actual authentication of C towards
IdP is abstracted away.

Listing 4.4: IdentityProvider model.
1 entity IdentityProvider (Actor , SP, C: agent ,
2 Shared_key: symmetric_key ,
3 Handle: int) {
4 symbols
5 Nonce: int;
6 body {
7 select{
8 on(C *->* Actor: httpReq(get , Actor , aReq(C, Actor , Handle , SP)

,
9 nil_http_element)): {

10 Nonce := fresh();
11 Actor *->* C: httpResp(code_30x , SP , aResp(Actor , C, SP, Nonce

, Handle ,
12 hmac(Shared_key , Actor , C, SP , Nonce ,

Handle)),
13 nil_http_element);
14 }
15 }
16 }
17 }

Service Provider Entity

This entity takes the same agent parameters as the identity provider plus
some specific set parameters such as: Discovery, used to abstract the discov-
ery sub-protocol; ConsumedNonces, initially empty, used to check the fresh-
ness of the aResp. Other parameters are Shared_key and Handle, already
explained before. The remaining parameters consist in the communicating
channels used here.

Listing 4.5: ServiceProvider entity.
1 entity ServiceProvider (Actor , IdP , C: agent , URI : uri ,
2 Discovery: agent.agent set ,
3 ConsumedNonces: int set ,
4 Shared_key: symmetric_key ,
5 Handle: int ,
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6 Ch_C2SP_1 , Ch_SP2C_1 , Ch_C2SP_2 , Ch_SP2C_2:
channel) {

7 symbols
8 AnyC : agent;
9 Resource : http_element;

10 Nonce : int;
11 Any : hmac;
12 % [...]
13 }

The behavior of the entity ServiceProvider is shown below. Upon the
reception of the client’s request containing its private identifier identifier

(Actor), the SP will discover towards which OpenID provider IdP it must
request the client to authenticate to by querying the Discovery set for the
pair AnyC, IdP. Next, SP redirects C to authenticate to IdP including in the
httpResp the aReq, embedding SP’s handle. After authenticating to IdP, the
client presents a signed assertion to SP. As only the Shared_key between SP

and IdP can be used to compute the hmac(Shared_key, IdP, ?AnyC, Actor,

?Nonce, Handle) the verification is straightforward. The Nonce is then added
to the set of consumed values. In the last step, provided that all conditions
are satisfied, the resource is delivered to C.

Listing 4.6: Interaction sample.
1 body {
2 select{
3 on(?C -Ch_C2SP_1 -> Actor: httpReq (post , URI , nil_http_element ,
4 identifier (?AnyC)) &
5 Discovery ->contains ((?AnyC , ?IdP))): {
6 Actor -Ch_SP2C_1 -> C: httpResp(code_30x , IdP , aReq(AnyC , IdP ,

Handle ,
7 Actor),

nil_http_element
);

8 select{
9 on(?C -Ch_C2SP_2 -> Actor: httpReq(get , Actor , aResp(IdP , ?AnyC

, Actor ,
10 ?Nonce , Handle , hmac(Shared_key ,

IdP ,
11 ?AnyC , Actor , ?Nonce , Handle)),
12 nil_http_element) &
13 !ConsumedNonces ->contains ((? Nonce))): {
14 ConsumedNonces ->add(Nonce);
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15 Resource := fresh ();
16 Actor -Ch_SP2C_2 -> C: httpResp(code_200 , nil_agent , LID

,
17 nil_http_element , Resource);
18 }
19 }
20 }
21 }
22 }

Sessions and Environment

The scenarios that we considered for the analysis involve a trusted identity
provider, two service providers, one of which malicious, and a client. In our
analysis we suppose two concurrent protocol execution, one with an honest
sp and another where it is instantiated with i. Notice that i shares a valid
secret with idp.

Listing 4.7: Sessions and environment models.
1 entity Environment {
2 symbols
3 % Protocol Message
4
5 entity Session ( % Parameters
6 ) {
7 body {
8 new ServiceProvider (SP, IdP , C, URI ,
9 Discovery , ConsumedNonces , Shared_key , Handle ,

10 Ch_C2SP_1 , Ch_SP2C_1 ,
11 Ch_C2SP_2 , Ch_SP2C_2);
12 new IdentityProvider (IdP , SP, C,
13 Shared_key , Handle ,
14 Ch_C2IdP , Ch_IdP2C);
15 new Client (C, IdP , SP, URI ,
16 Ch_C2SP_1 , Ch_SP2C_1 ,
17 Ch_C2IdP , Ch_IdP2C ,
18 Channels);
19 } goals
20 %% G1 and G2 goals
21 }
22
23 body {
24 Discovery := { (c, idp), (i, idp) };
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25 ConsumedNonces := { };
26 CChannels := {(sp, ch_c2sp_2s1 , ch_sp2c_2s1), (i, ch_c2i_2s2 ,

ch_i2c_2s2)};
27 %% Two protocol runs
28 % honest agents
29 new Session(c, idp , sp, uri_sp ,
30 Discovery , ConsumedNonces , hmac_key_sp , handle_sp_idp ,
31 ch_c2sp_1s1 , ch_sp2c_1s1 ,
32 ch_c2sp_2s1 , ch_sp2c_2s1 ,
33 ch_c2idp_s1 , ch_idp2c_s1 ,
34 CChannels);
35 % malicious sp (==i)
36 new Session(c, idp , i , uri_i ,
37 Discovery , ConsumedNonces , hmac_key_i , handle_i_idp ,
38 ch_c2i_1s2 , ch_i2c_1s2 ,
39 ch_c2i_2s2 , ch_i2c_2s2 ,
40 ch_c2idp_s1 , ch_idp2c_s1 ,
41 CChannels);
42 }
43 }

Security goals

As we discussed in Chapter 3, we expect that OpenID satisfies the the mutual
authentication property G1 and the confidentiality of the resource G2. We
specified the goal as seen for SAML SSO in 4.1.2.

4.2 Formal Analysis

In this section we present the formal analysis of SAML SSO and OpenID.
This section is organized as follows. First, in Section 4.2.1 we give an in-
troduction to the AVANTSSAR platform. Then, in Section 4.2.2 and Sec-
tion 4.2.3 we discuss the options we considered and show the results.

4.2.1 The AVANTSSAR Platform

The architecture of the AVANTSSAR platform is shown in Figure 4.1. The
AVANTSSAR platform takes as input a high-level specification of a secu-
rity protocol, the expected security goals, as well as the scenario in which
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Figure 4.1: The AVANTSSAR Platform

the protocol is employed, and automatically evaluates its security. The
AVANTSSAR platform supports two highlevel speficiation languages, namely
HLPSL++ and ASLan++. The high-level specification is translated by a
connector into an intermediate specification language amenable to formal
analysis. The intermediate specifications feed the validator which automat-
ically checks whether the protocol achieves its security goals. If this is not
the case, then an attack trace is returned and translated back into a user-
friendly format. Currently the AVANTSSAR platform supports three model
checker for security protocols, namely CL-AtSe [Tur06b], OFMC [MV09],
and SATMC [ACC07].

In the experiments reported in this chapter, we used the ASLan++ con-
nector and the SATMC back-end. The ASLan++ connector takes as input
an ASLan++ specification and translates it to ASLan, the intermediate spec-
ification language. In addition, the ASLan++ connector displays attacks (if
any) as message sequence charts (MSC). SATMC takes as input a formal
specification, a scenario to be considered for the analysis, a specification
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of the expected security property, and an integer max. SATMC determines
whether the protocol satisfies the expected security property in the scenario
by considering up to max execution steps. At the core of SATMC lies a
procedure that automatically generates a propositional formula whose satis-
fying assignments (if any) correspond to attack of length bounded by some
integer k ≤ max. Therefore, finding attacks (of length k) on the protocol
boils down to solving propositional satisfiability problems. SATMC relies
on SAT solvers for this task which can handle propositional satisfiability
problems with hundreds of thousands variables and clauses and even more.
SATMC can also be instructed to perform iterative deepening on k. By set-
ting max to infinite (max = −1), SATMC is a semi-decision procedure that
it is guarantee to terminate if there is an attack, but may not terminate if
the protocol is secure. SATMC is a decision procedure for protocols without
loops, i.e. it is guaranteed to terminate with a definitive sound answer. The
security protocols considered in this chapter do not have loops and thus fall
in this decidable class. When run against them, SATMC is thus guaranteed
to either report an attack (if any) or to reach a termination condition that
ensures that enough execution steps, say ksafe, have been explored proving
the safety of the protocol (i.e., absence of attacks).

4.2.2 SAML SSO

Table 4.1 and Table 4.2 show the results of the analysis. Each entry is a
model. The column MID is the unique identifier of the model. The column
from is the MID it derives from. The remaining columns are the options
organized in four areas. The first area is the use of the ARP. As we discussed,
ARP can be used in two distinct phases of SAML SSO for exchanging the
authentication request AReq and for the authentication response AResp. In
the IdP-initiated profile, ARP is used only for the latter. The second area is
the use of secure transport layer. The SAML specification recommends the
use of secure transport layer such as SSL/TLS for carrying authentication
requests and authentication assertions. However, when SSL/TLS is not used
for transmitting AResp, the protocol is trivially vulnerable to the Man-In-
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Figure 4.2: Configurations for the SP-initiated profile

The-Middle attack in which the attacker overhear the assertion and reuses
it to impersonate C. In our analysis we assumed that SSL/TLS is always
used for exchanging AResp and consider optional the use of SSL/TLS for
exchanging AReq. When back channels are used, we assume that SSL/TLS is
always used (columns ARP: AReq-ARP: AResp). However, we explored two
types of SSL/TLS connection; server-side unilateral authenticated SSL/TLS
and bilateral authenticated SSL/TLS channels, respectively identified by “U”,
and “B” in Table 4.1 and Table 4.2. The third area is the use of signature to
digitally sign SAML messages. The SAML SSO profiles we considered count
in total five SAML messages that can be signed: the authentication request,
the authentication response, the assertion, the artifact resolve request, and
artifact response. The SAML specification mandates that the assertion is
always signed leaving the signature for the other 4 messages optional. The
last area is the use of encryption for encrypting portion of messages. In this
analysis we considered the encryption of the authentication assertion in the
the SP-initiated profile.

The last two columns show whether an attack to the properties has been
discovered by the model checker. In Table 4.1 and Table 4.2 we use the
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3bc-U 0fc y y n U U n n n n n y n
1bc-B 1bc-U y n n B - n n n - n y n
2bc-B 2bc-U n y n - B n n - n n y n
3bc-B 3bc-U y y n B B n n n n n y n
4bc-U 1bc-U y n y U - n n n - n y n
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6bc-U 3bc-U y y y U U n n n n n y n
4bc-B 1bc-B y n y B - n n n - n y n
5bc-B 2bc-B n y y - B n n - n n y n
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4fc 2fc n n y - - y n - - n y n
5fc 4fc n n y - - y y - - n y n
6fc 4fc n n y - - y n - - y y n
12fc 0fc n n n - - y n - - n y n

Table 4.1: Results for the SP-initiated profile

symbol “y” when the option is used, “n” when the option is not used, the
symbol “-” for option non applicable, “U” for unilateral server authenticated
SSL/TLS channel, and “B” for bilateral authenticated SSL/TLS channel.

We derived the formal specification as shown in Figure 4.2. We started
from a single, initial configuration for each profile, i.e. 0fc, and we derived
new models by enabling one option per time. The initial configuration is
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Table 4.2: Results for the IdP-initiated profile

taken from the prototypical examples available in the SAML specifications.
In total, we wrote 28 formal models.

In our experiments, we used the ASLan++ connector and the SATMC
validator. Table 4.1 and Table 4.2 shows the following results. First, the
property G1 is achieved by all the model both SP- and IdP-initiated. Second,
the IdP-initiated models achieve the authentication property G1. Third,
the SP-initiated SAML SSO does not satisfy the property G1. Fourth, by
enabling the protocol options G1 is never satisfied.

4.2.3 OpenID

Table 4.3 shows the results of the analysis of OpenID. Each entry is a model.
The column MID is the unique identifier of the model, and the column from
points to the model it derives from. The remaining columns are the options
and the result of the formal analysis. The column C-SP: AReq is the use of
SSL/TLS communication channels in steps A1 and A2, whereas the column
C-SP: AResp refers to the use of SSL/TLS communication channels for the
steps A4 and A5. The last two columns are for the results of the model
checker for the property G1 and G2.

As seen for SAML SSO, we derived the specifications starting from an
initial configuration and then we added incrementally the other options. We
wrote in total 4 models of OpenID. The setup for our tests is the same used
for SAML SSO.



80 CHAPTER 4. MODEL CHECKING

SSL/TLS Attacks
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Table 4.3: Results for OpenID

Table 4.3 shows the following results. First, when SSL/TLS is not used
for delivering the AResp to the SP, then the property G2 is not achieved.
The attack violating the property G2 is trivial: the attacker (i) overhears
the AResp that C sends to SP, (ii) blocks the delivery of the message to SP,
and (iii) sends the AResp at the SP. The second result is that G1 is never
satisfied.

4.3 Logic Flaws

4.3.1 SAML SSO

Table 4.1 shows that the SAML SSO SP-initiated does not satisfy the prop-
erty G1. A closer look at the the counterexamples revealed that them expose
a common attack pattern. The attack pattern is in Figure 4.3.

The attack involves four principals: a client (c), an honest IdP (idp), an
honest SP (sp) and a malicious SP (i). The attack is carried out as follows: c
initiates the protocol by requesting a resource urii at SP i. Now i, pretending
to be c, requests a different resource uri at sp and sp reacts according to the
standard by generating an Authentication Request, which is then returned
to i. Now i maliciously replies to c by sending an HTTP redirect response to
idp containing AReq(id, sp) and uri (instead of AReq(idi, i), and urii as the
standard would mandate). The remaining steps proceed according to the
standard. The attack makes c consume a resource from sp, while c originally
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c idp i sp
S1. GET urii S1. GET uri

A1. HTTP302 idp?
SAMLRequest=AReq(id, sp)
&RelayState=uri

A1. HTTP302 idp?
SAMLRequest=AReq(id, sp)
&RelayState=uri

A2. GET idp?SAMLRequest=AReq(id, sp)&RelayState=uri
idp builds an authenti-
cation assertion AA =
AuthnAssert(id, c, idp, sp)A3. HTTP200 Form(. . .)

A4. POST sp?SAMLResponse=AResp(id, sp, idp, {AA}K−1
idp

)&RelayState=uri

S2. HTTP200 Resource(uri)

Figure 4.3: Authentication Flaw of the SAML 2.0 Web Browser SSO Profile

asked for a resource from i.
The attack in Figure 4.3 does not strictly require a malicious SP in order

to be successful. Any malicious web server i would be able, upon a request
from c, to mount the attack provided that (i) c is a client of sp and (ii) c
has an active authentication context with idp. The attack in Figure 4.3 can
be exploited in a number of ways:

Delivery of an unrequested resource. The most trivial exploitation of
the flaw consists in the attacker forcing the client to receive a protected re-
source different from the one that was initially requested. The same exploita-
tion may also be mounted if a malicious web server redirects the browser to
a legitimate SP before SAML SSO starts. However this attack can be pre-
vented by using well-known browser-side plugins that restrict HTTP redirec-
tions (e.g., the NoRedirect addon for Firefox). By allowing only IdP-to-SP
and SP-to-IdP redirections, the delivery of an unrequested resource upon
redirection outside of the SAML SSO Protocol is prevented, but a malicious
SP can still mount the one depicted in the Figure 4.3.

Launching pad for Cross-Site Request Forgery (CSRF) attacks.
This attack assumes that the URI that was initially requested did not point
to a resource, but rather contained a URL-encoded command, such as a
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request for the change of some settings or user’s preferences, for the deletion
of some resource, or for the annulment of/committing to an action, such
as the purchase of a paid good. Depending on the output provided by the
execution of the command, the client may or may not be able to detect
the attack. This type of attack is even more pernicious than classic CSRF,
because CSRF requires C to have an active session with SP, whereas in
this case, the session is created automatically hijacking C’s authentication
attempt.

Launching pad for Cross-Site Scripting (XSS) attacks. It is straight-
forward to see that this attack also constitutes a launching pad to reflected
XSS attacks, i.e. XSS attacks that can be triggered by visiting a maliciously-
crafted URL. In addition, a vanilla implementation of the SAML SSO pro-
tocol exposes the RelayState field to a possible injection of malicious code
that may be executed at the honest SP side. Although the SAML standard
recommends to protect the integrity of this field, our experience shows that
this often is not the case (see Section 4.4.1).

4.3.2 OpenID

Table 4.3 shows that the property G1 is not satisfied. The counterexamples
returned by the model checker have a common attack pattern. The attack
pattern is shown in Figure 4.4

The attack involves four principals: a client (c), an honest IdP (idp), an
honest SP (sp) and a malicious service provider (i). The client c requests urii
at SP i. Here, the attacker i, impersonating c, requests a different resource
to sp and sp reacts starting OpenID by crafting a proper authentication
request for c. The malicious SP i uses this authentication request in its pro-
tocol session with c. The protocol simply proceeds according to the OpenID
standard resulting in c accessing to a resource of sp, while c originally asked
for a resource from i.

The differences between SAML SSO and OpenID make the exploitations
on SAML SSO not directly applicable to OpenID. For example, OpenID does
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c idp i sp
S1. GET urii S1. GET uri

A1. HTTP302 idp?AReq(c, idp,H, sp)A1. HTTP302 idp?AReq(c, idp,H, sp)

A2. GET idp?AReq(idp,H, sp)
idp builds an authenti-
cation assertion AA =
AuthnAssert(idp, c, sp,H)A3. HTTP200 Form(. . .)

A4. POST sp, {AA}K

S2. HTTP200 Resource(uri)

Figure 4.4: Authentication Flaw of the OpenID SSO Protocol

not prescribe any parameters to let SP recover its previous state (e.g. RelayState
in SAML SSO). Therefore, the CSRF and the XSS attacks described in
Section 4.3.1 are not possible.

4.4 Testing Real Implementations

In the previous sections, we described the application of a model checking
technique to the security analysis of authentication protocols. Our analy-
sis led to the discovery of an attack to the mutual authentication property
G1. Moreover, we discussed possible exploitations of the flaw. However, the
AVANTSSAR tool and, in general, model checking techniques, offer no sup-
port for testing real implementations. As a consequence, we tested manually
protocol implementations for verifying whether the attack returned by the
model checker is applicable. Then, we verified possible exploitations of the
flaw.

This section reports on the results of manual testing SAML SSO and
OpenID implementations.
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4.4.1 Exploitations in SAML SSO

We have analyzed a number of SAML-based SSO solutions available on the
market, including the SAML-based SSO for Google Apps, a deployment of
Novell Access Manager v.3.1, and SimpleSAMLphp as deployed for Foodle
(https://foodl.org). All these deployments support the SAML SSO use
case. As expected, by inspecting the messages exchanged between the par-
ties we verified that SPs accept and process SAML responses carried over
SSL/TLS channels different from that used to deliver the SAML request.

The SAML-based SSO for Google Apps Our analysis of the SAML-
based SSO for Google Apps shows that by exploiting the weakness we dis-
covered with the model checker, a compromised SP can force C to consume
a resource from Google, e.g., by visiting any page of the GMail service. This
trivial attack is however easily detected by the user using C, and does not
bring any real advantage to the attacker. Definitely more serious was the
XSS attack we were able to execute and that allowed the compromised SP
to steal the cookies of C for the Google domain and thus to impersonate C
on any Google application. The abstract flaw of Figure 4.3 served indeed as
launching pad for this XSS. The attack is depicted in Figure 4.5. As we can
see in the figure, c requires a resource from a compromised SP i; i, acting in
turn as a client, receives from sp an Authentication Request, and passes it
back to c, with the malicious code injected into the RelayState. The client’s
browser eventually executes the redirection to the maliciously-crafted URI,
as if coming from the Google domain (thus circumventing the same origin
policy). This redirection leads to the theft of the session cookies by sp. In
other words, the combination of the abstract flaw and the missing saniti-
zation was key to this XSS attack. In response to our vulnerability report
Google patched the issue by properly sanitizing the RelayState value. An
acknowledgement of our contribution can be found in the Google corporate
web pages [Goo09].

https://foodl.org
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c idp i sp

S1. GET urii S1’. GET uri

S2’. HTTP302 sl?continue=uri

S3’. GET sl?continue=uri

A1. HTTP302 idp?
SAMLRequest=AReq(id, sp, acs)
&RelayState=MaliciousCode

A1’. HTTP302 idp?
SAMLRequest=AReq(id, sp, acs)
&RelayState=sl?continue=uri

A2. GET idp?SAMLRequest=AReq(id, sp, acs)&RelayState=MaliciousCode

idp builds an authentication assertion
AA = AuthnAssert(id, c, idp, acs)A3. HTTP200 Form(. . .)

A4. POST acs?SAMLRequest=AResp(id, acs, idp, {AA}K−1
idp

)&RelayState=MaliciousCode

S4. HTTP200 Script(. . . ); SetCookies(HID,HUSR,ASIDAS)

S5. GET i/collect.php?cookies=(HID,HUSR,ASIDAS)

S5’. GET sl?continue=uri;Cookies(HID,HUSR,ASIDAS)

S6. HTTP302 uri?AuthEventSource=SSO&auth=HID&husr=HUSR; SetCookies(HID,HUSR,ASIDAS)

S7. GET uri?AuthEventSource=SSO&auth=HID&husr=HUSR

S8. HTTP302 uri?AuthEventSource=SSO; SetCookies(Session)

S9. GET uri?AuthEventSource=SSO;Cookies(Session)

S10. HTTP200 Resource(uri); SetCookies(. . .)

Legenda: : https

Figure 4.5: XSS Attack on the SAML-based SSO for Google Apps

Novell Access Manager We have also analyzed the SAML SSO solution
of the Novell Access Manager v.3.1 as deployed in a real industrial environ-
ment and even in this case we were able to confirm the authentication flaw.
We have been able to mount a XSS attack similar to the one found in the
Google SSO solution. In this deployment RelayState is not used to store
the URI; instead, a URL-encoded parameter is used to this end and also
in this case, the parameter was not sanitized. In response to our findings
Novell promptly patched their implementation and issued a vulnerability
report [Nov11].
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SimpleSAMLphp SimpleSAMLphp, as deployed in Foodle, is not vulner-
able to the authentication flaw that we discovered with the model checker.
The reason is that SPs running SimpleSAMLphp additionally use cookies
that block the flaw. SimpleSAMLphp stores the initially requested URI into
the URL parameter ReturnTo. Although that field is not sanitized, we have
not been able to mount any XSS.

Also in this case we promptly informed the developer and maintainer of
the SSO solution, namely UNINETT. UNINETT credited us in the release
notes of a new version of SimpleSAMLphp [UNI10].

4.4.2 Exploitation in OpenID

The authentication flaw on SAML SSO can be exploited in several ways.
However, the differences between SAML SSO and OpenID make the ex-
ploitations on SAML SSO not directly applicable to OpenID. For example,
OpenID does not prescribe any parameters to let SP recover its previous
state (e.g. RelayState in SAML SSO). Therefore, the CSRF and the XSS
attacks described in Section 4.3.1 are not possible. However, the OpenID
specifications enable SP to append customized parameters to the redirection
URLs whose names and values are out of the scope of the OpenID specifica-
tions. Depending on their use, they can be exploited in a similar way as we
have seen for SAML SSO.

We have verified that the Zoho Invoice service provider 3 used with the
OpenID provider by Google or by Yahoo suffers from the logic flaw of Sec-
tion 4.3.2.

4.5 Conclusions

In this chapter, we presented the formal analysis of SAML SSO and OpenID
via model checking. Starting from the protocol specifications, we formal-
ized the seven protocol flows as well as the security-relevant configuration
options. We verified the different configurations discovering a previously

3http://invoice.zoho.com

http://invoice.zoho.com
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unknown logic flaw allowing an attacker to mount CSRF attacks or cause
the delivery of unrequested resources. We tested manually five real protocol
implementation against the counterexample returned by the model checker.
Four out of five implementations suffer from the authentication flaw. More-
over, we discovered that in presence of XSS vulnerabilities, an attacker can
use the logic flaw as a lunching pad for XSS attacks in which the attacker
hijacks the user session by stealing the session cookies.

In this chapter we showed that model checking is a powerful technique
for detecting logic flaws in security protocols specifications. However, the
counterexamples prove that the model does not satisfy a given security pro-
tocol, while nothing is said about the implementations of the protocol. To
this end, the counterexample must be interpreted and executed against the
implementations deployed on the wild. However, reproducing counterexam-
ples not only requires a thorough understanding of both the protocol and
its implementation, but also a substantial amount of manual activity. In
Chapter 5 we present a technique that tackles these difficulties.
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Chapter 5

From Model Checking to
Security Testing

In Chapter 4, we showed that when specifications are available, model check-
ing can be used to detect subtle flaws in the logic of the application. However,
the counterexamples returned by the model checker witness a violation of a
security property in the model, and, which does not necessarily reflect a vul-
nerability in a real implementation. Moreover, the model checker provides
little support for testing the real implementations. As a result, counterexam-
ples are normally interpreted and executed manually against the real system.
In this chapter we propose an automatic model checking-driven approach for
testing security protocols against counterexamples returned by the model
checker. We applied our technique to four SAML SSO and OpenID protocol
implementations. The experiments show that the approach is capable of de-
tecting the logic flaws of SAML SSO and OpenID into real implementations.

Structure: This chapter is organized as follows. Section 5.1 describes
the architecture of the approach. Section 5.2 presents the ASLan language.
Section 5.3 describes the instrumentation techniques. Then, in Section 5.4
we describe the test execution engine. Section 5.5 shows the experiments
and the results of our tests. Finally, Section 5.6 draws some conclusions.

89
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Figure 5.1: Overview of the Approach

5.1 Architecture

An overview of our approach is shown in Figure 5.1. It takes in input a model
amenable for formal analysis, a security property, and the implementation
under test IUT. The IUT is a data structure containing the mapping between
abstract model symbols and real values and the protocol participants that
are under test. Our approach consists of the following steps:

Model Checking Given a formal model of the protocol and a description
of the expected security properties, a model checker systematically
explores the state space of the model looking for counterexamples. Any
counterexample found by the model checker is returned as an abstract
test case.

Instrumentation The instrumentation step automatically calculates and
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provides the Test Execution Engine with a collection of program frag-
ments, encoding how to verify (generate) incoming (outgoing, resp.)
messages, by using the functionalities provided by the adapter in the
IUT input.

Execution The Test Execution Engine (TEE) interprets the abstract test
case and executes the program fragments accordingly. The IUT speci-
fies which principals are part of the system under test (SUT) and which,
instead, are simulated by the TEE. The verdict indicates whether the
TEE succeeded or not in reproducing the attack. Note that if the ver-
dict is negative, the whole approach can be iterated by requesting the
model checker to provide another attack trace (if any).

5.2 Model Checking

In this thesis, we used ASLan++ to model SAML SSO and OpenID. As said
in Section 4.2.1, the ASLan++ connector translates ASLan++ specifications
into ASLan, an intermediate language amenable for formal analysis. In this
section we present a simplified version of ASLan, featuring only the aspects
of the language that are relevant for this work.

Background of the AVANTSSAR Platform

ASLan supports the specification of model checking problems of the form
M |= φ, where M is a labeled transition system modeling the behaviors of
the honest principals and of the Dolev-Yao intruder (DY)1 and their initial
state I, and φ is a Linear Temporal Logic (LTL) formula stating the ex-
pected security properties [ACC+08]. The states of M are sets of ground
(i.e. variable-free) facts, i.e. atomic formulae of the form given in Table 5.1.

Transitions are represented by rewrite rules of the form (L
rn(v1,...,vn)−−−−−−−→ R),

where L and R are finite sets of facts, rn is a rule name, i.e. a function symbol
uniquely associated with the rule, and v1, . . . , vn are the variables occurring

1A Dolev-Yao intruder has complete control over the network and can generate new
messages both from its initial knowledge and the messages exchanged over the network.
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Fact Meaning
stater(j, a, [e1, . . . , ep]) a, playing role r, is ready to execute the pro-

tocol step j,and [e1, . . . , ep], for p ≥ 0 is a list
of expressions representing the internal state
of a.

sent(rs, b, a,m, c) rs sent message m on channel c to a pretend-
ing to be b.

ik(m) The intruder knows message m.

Table 5.1: Facts and their informal meaning

in L. It is required that the variables occurring in R also occur in L. The
rules for honest agents and the intruder are specified in Sections 5.2.1 and
5.2.2. Here and in the sequel we use typewriter font to denote states and
rewrite rules with the additional convention that variables are capitalized
(e.g. Client, URI), while constants and function symbols begin with a lower-
case letter (e.g. client, hReq).

Message modeling Messages are represented as follows. HTTP requests
are represented by expressions httpReq(mtd , addr , qs, body), where mtd is
either the constant get or post, addr and qs are expressions represent-
ing the address and the query string in the URI respectively, and body is
the HTTP body. Similarly, HTTP responses are expressions of the form
hResp(code, loc, qs, body), where the code is either the constant c30x or c200,
loc and qs are (in case of redirection) the location and the query string of
the location header respectively, and body is the HTTP body. In case of
empty parameters, the constant nil is used. For instance, the message A1
in Figure 3.1 is

hResp(c30x, IdP, hBind(aReq(SP, IdP, id(N)), URI), nil)

obtained by composing hResp, hBind and aReq. id(N) is the unique ID of the
request, hBind binds the SAMLRequest aReq and the RelayState URI to the
location header. All the other HTTP fields are abstracted away because they
are either not relevant for the analysis or not used by SAML SSO protocol.
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The above expressions are sufficient to capture the relevant aspects of
SAML SSO. However, it must be noted that it can be adjusted by adding
or removing parameters according to the need. For example, httpReq and
hResp can be extended with further parameters in order to support basic
authentication HTTP headers [FHBH+99] as used by OAuth 2.0 [Har12].

5.2.1 Specification of the rules of the honest agents

The behavior of honest principals is specified by the following rule:

sent(brs, bi, a,mi, ci) � stater (j, a, [e1, . . . , ep])
send

j,k
r (a,...)−−−−−−−−→

sent(a, a, bo,mo, co) � stater (l, a, [e
′
1, . . . , e

′
q]) (5.1)

for all honest principals a and suitable terms brs, bi, bo, ci, co, e1, . . . , ep,
e′1, . . . , e

′
q, mi, mo, and p, q, k ∈ N. Rule (5.1) states that if principal a

playing role r is at step j of the protocol and a message mi has been sent
to a on channel ci (supposedly) by bi, then she can send message mo to
bo on channel co and change her internal state accordingly (preparing for
step l). The parameter k is used to distinguish rules associated to the same
principal, and role. Notice that, in the initial and final rules of the protocol,
the fact sent(. . .) is omitted in the left and right hand sides of the rule (5.1),
respectively. For instance, the rule for receiving the message A1 and sending
message A2 in Figure 3.1 is modeled as follows:

sent (SP1, SP, C, hResp(c30x, IdP, AReq, nil), CSP2C) �

statec(2, C, [SP, IdP, URI, CC2SP, CSP2C, CC2SP2 , CSP2C2 , CC2IdP, CIdP2C])

send
2,1
c (C,IdP,SP,SP1,URI,AReq,CC2SP,CSP2C,CC2SP2 ,CSP2C2 ,CC2IdP,CIdP2C)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

statec(4, C, [SP, IdP, URI, AReq, CC2SP, CSP2C, CC2SP2 , CSP2C2 , CC2IdP, CIdP2C]) �

sent (C, C, IdP, hReq(get, IdP, AReq, nil), CC2IdP) (5.2)



94CHAPTER 5. FROM MODEL CHECKING TO SECURITY TESTING

5.2.2 Specification of the rules of the intruder

The abilities of the DY intruder to intercept and overhear messages are
modeled by the following rules:

sent(A, A, B, M, C)
intercept(A,B,M,C)−−−−−−−−−−−→ ik(M) (5.3)

sent(A, A, B, M, C)
overhear(A,B,M,C)−−−−−−−−−−→ ik(M) �LHS

where LHS is the set of facts occurring in the left hand side of the rule.

We model the inferential capabilities of the intruder restricting our atten-
tion to those intruder knowledge derivations in which all the decomposition
rules are applied before all the composition rules [MCJ97]. The decomposi-
tion capabilities of the intruder are modeled by the following rules:

ik({M}k) � ik(k−1)
decrypt(M,...)−−−−−−−−→ ik(M) �LHS (5.4)

ik({M}sK) � ik(K)
sdecrypt(K,M)−−−−−−−−→ ik(M) �LHS (5.5)

ik(f(M1, . . . , Mn))
decomposef (M1,...,Mn)−−−−−−−−−−−−−→ ik(M1) � . . . � ik(Mn) �LHS (5.6)

where {m}k (or equivalently enc(k,m)) is the result of encrypting message
m with key k and k−1 is the inverse key of k, {m}sk (or senc(k,m)) is the
symmetric encryption, and f is a function symbol of arity n > 0.

For the composition rules we consider an optimisation [JRV00] based
on the observation that most of the messages generated by a DY intruder
are rejected by the receiver as non-expected or ill-formed. Thus we restrict
these rules so that the intruder sends only messages matching the patterns
expected by the receiver [AC02]. For each protocol rule (5.1) in Section 5.2.1
and for each possible least set of messages {m1,l , . . . ,mjl ,l} (let m be the
number of such sets, then l = 1, . . . ,m and jl > 0) from which the DY
intruder would be able to build a message m′ that unifies mi, we add a new
rule of the form:
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ik(m1,l) � . . . � ik(mjl,l) � stater (j, a, [e1, . . . , ep])
impersonate

j,k,l
r (...)−−−−−−−−−−−−→

sent(i, bi, a,m
′, ci) � ik(m

′) �LHS (5.7)

This rule states that if agent a is waiting for a message mi from bi and
the intruder is able to compose a message m′ unifying mi, then the intruder
can impersonate bi and send m′.

5.2.3 Specification of the authentication property

The security goal of 4.1.2 are translated by the ASLan++ translator into
an linear temporal logic formula. ASLan uses facts propositions as atoms of
the formulas, logic operators such as ∧, ⇒), the first-order quantifiers ∀ and
∃, and the temporal operators F (eventually), G (globally), and O (once).
Informally, given a formula φ, Fφ (Oφ) holds if at some time in the future
(past, resp.) φ holds. Gφ holds if φ always holds on the entire subsequent
path. (See [ACC+08] for more details about LTL.) We use ∀(φ) and ∃(φ)
as abbreviations of ∀X1. . . .∀Xn.φ and ∃X1. . . .∃Xn.φ respectively, where
X1, . . . , Xn are the free variables of the formula φ. We base our definition of
authentication on Lowe’s notion of non-injective agreement [Low97]. Thus,
SP authenticates C on URI amounts to saying that whenever SP completes a
run of the protocol apparently with C, then (i) C has previously been running
the protocol apparently with SP, and (ii) the two agents agree on the value
of URI. This property can be specified by the following LTL formula:

G∀(statesp(7, SP, [C, . . . , URI, . . .])⇒
∃O statec(2, C, [SP, . . . , URI, . . .])) (5.8)

stating that, if SP reaches the last step 7 believing to talk with C, who
requested URI, then sometime in the past C must have been in the state 2,
in which he requested URI to SP.
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Since we aim at testing implementations using attack traces as test cases
with the purpose of detecting a violation of the authentication property, we
would like to be sure that at the end of the execution of the attack trace, the
property has been really violated. Thus, we need to take into account the
testing scenario in terms of the observability of channels and of the internal
states of each principal. This can be done by defining a set of observable
facts. For instance, in case the tester can observe the messages passing
through a channel c then, for all rs, b, a, and m, the sent(rs, b, a,m, c)

facts are observable. Similarly, in case the tester can observe the internal
state of an agent a, then for all r, j, e1, . . ., en the stater(j, a, [e1, . . . , en])

facts are observable.
Once defined the set of observable facts according to the testing scenario,

we rewrite the formula using them. For instance, let us suppose that the
internal state of sp is not observable, while the channel cSP2C is observable,
we rewrite the property (5.8) as follows:

G∀(sent(SP, SP, C, res(URI), cSP2C)⇒
∃O statec(2, C, [SP, . . . , URI, . . .])) (5.9)

where res(URI) represents the resource returned by SP in step 7.

5.3 Instrumentation

The model instrumentation aims at calculating program fragments p associ-
ated to each rule of the model. Program fragments are then evaluated and
executed by the TEE (See Section 5.4) in the order established by the attack
trace.

Before providing further details, we define how we relate expressions with
actual messages. As seen in Section 5.2, messages in the formal model are
specified abstractly. For instance, let us consider the following SAML au-
thentication request:

<AuthnRequest ID="IDreq" Version ="2.0" IssueInstant ="IIreq"
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Destination ="DS" AssertionConsumerServiceURL ="ACS"
ProtocolBinding ="HTTP -POST">
<Issuer >IS </Issuer >

</AuthnRequest >

where IDreq is a string uniquely identifying the request, IS is the issuer of the
request, DS is the intended destination of this request, IIreq is a timestamp,
and ACS (Assertion Consumer Service URL) is the end-point of the SP.
The above SAML request is modeled by the expression aReq(SP, IdP, ID)

thereby abstracting IIreq. A further abstraction step is done by modeling
two fields such as IS and ACS with only one variable SP. Let D be the
set of data values the messages exchanged and their fields. For instance, if
AReq(is, ds, ii, acs, id) is an element in D, then also id, ds, ii, acs, and id
are in D. Let E be the set of expressions used to denote data values in D.
An abstraction mapping α maps D into E.

Let D⊥ be an abbreviation for D ∪ {⊥} with ⊥ 6∈ D. Let f be a user
defined function symbol of arity n ≥ 0. Henceforth we consider constants
as functions of arity n = 0. We associate f to a constructor function and a
family of selector functions:

Constructor: f : Dn → D such that α(f(d1, . . . , dn)) = f(α(d1), . . . , α(dn))

for all d1, . . . , dn ∈ D;

Selectors: πif : D → D⊥ such that πif (d) = di if d = f(d1, . . . , dn) and
πif (d) = ⊥ otherwise, for i = 1, . . . , n.

with the following exceptions. With K ⊆ D we denote the set of cryp-
tographic keys. If k ∈ K, then inv(k) is the inverse key of k. If f = enc

(asymmetric encryption), then

1. π1enc is undefined and

2. π2enc : K×D → D⊥, written as decrypt , is such that decrypt(inv(k), d′) =
d if d′ = encrypt(k, d) and decrypt(inv(k), d′) = ⊥ otherwise.

If f = senc, sdecrypt is defined similarly as above, replacing inv(k)

with k. We assume that the Adapter provides constructors and selectors as
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program procedures. The association between symbols and procedures are
specified in the mapping (See Figure 5.1). In the specification of security
protocols, the behavior of the principals is represented in an abstract way,
and thus the operations to check incoming messages and to generate outgo-
ing ones are implicit. For example, in ASLan, message checks are realized
by pattern matching and fields of the received message must match with
some expressions stored in the state of the agent. Outgoing messages are
computed without specifying which operations are performed to compute it.
Therefore, in order to interact with a system under test, we need to make
explicit these procedures. We write these procedures as well as the TEE in
a pseudolanguage composed of statements such as if-then-else, foreach, and
the like. We also assume that the pseudolanguage has a procedure eval(p)

in order to evaluate a program fragment p. Let e be a ground expression in
E. We call `e a memory location in which a data value d ∈ D is stored such
that e = α(d).

A data value d could be the result of the evaluation of a program fragment
p, i.e. d = eval(p). For the sake of simplicity, in the sequel we sometimes
use indifferently the data value notation and the memory location containing
it. We use memory locations to refer to channels as well. Let `ci and `co

be two memory locations for the channel constants ci and co, respectively.
Besides the common operation of reading and writing on channels as memory
locations, we define two operators to access them as pipes in order to send
(i.e. `c >> `m) and to receive data values (i.e. `c << `m). Also, we consider
a further operation to peek the first data value available in the pipe without
removing it (i.e. `c |> `m). The use of the latter operator will be clear to
the reader when we explain the Instrumentation for the intruder’s rules.
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5.3.1 Instrumentation of the rules of the honest agents

Example 5.3.1. Let us consider the following example of ASLan rule:

sent (A, A, B, f({g(A, B, m)}sK, {h(A, K)}Kb), CA2B) �

stateb(1, B, [B, Kb, inv(Kb), m, CA2B, CB2A])
send

1,1
b (B,A,Kb,K,CA2B,CB2A)−−−−−−−−−−−−−−−→

stateb(2, B, [. . . , A, K]) � sent (B, B, A, f(B, m), CB2A) (5.10)

This rule can be executed only if the message received on the channel `CA2B

is f(d1, d2)), where d1 can be decrypted only after having decrypted d2,
containing the data value of the decryption key K. Moreover d1 must be
g(d3, d4, d5)), where d3 is simply stored in `A, while d5 must be equal to
`m, and d4 must be equal to `B, given that the variables B belongs to the
internal state of the agent. As said, these checks are implicit in the ASLan
semantics (pattern matching), as well as the procedure necessary to construct
the message `f(B,m), which is sent on the channel `CB2A

. Nevertheless, for
the testing purpose, we need to explicit these procedures. They only depend
on the structure of the rule and thus can be precomputed.

A program fragment p
send

j,k
r (a,...,ci,co)

encoding a rule (5.1) is as follows:

`′mi
:= `mi

;
`ci >> `mi;
if `′mi

is not empty and `mi
!= `′mi

then: return False;
eval(pmi);
`mo

:= eval(pmo
);

`co << `mo
;

where mi and mo are the incoming and outgoing message respectively.
The fragment pmi checks whether `mi is such that mi = α(`mi) and pmo

computes a message `mo such that mo = α(`mo). In the sequel, we describe
how to generate automatically pmi and pmo for a generic ASLan rule (5.1).

We define an association between an ASLan expression e and the frag-
ment p used to retrieve –accessing directly to memory locations or using
selectors operating on them– the corresponding data value denoted by e.
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We call p : e an associated expression where e ∈ E and p is a program
fragment –containing selectors operating on memory locations– such that
e = α(eval(p)). With reference to the send rule (5.1), just after the recep-
tion of `mi , the knowledge of the principal is represented by the following
set of associated expressions: Ms = {`mi : mi, `e1 : e1, . . . , `en : en}. Given
Ms we need compute the associated expressions of each sub-term of mi.

Closure under decomposition Given a setMs of associated expressions,
the closure of Ms under decomposition, in symbols ↓Ms, is the smallest set
such that:

1. Ms ⊆ ↓Ms,

2. if p1 : enc(k, e) ∈ ↓Ms and p2 : inv(k) ∈ ↓Ms, then (decrypt(p2, p1) :

e) ∈ ↓Ms,

3. if p1 : senc(k, e) ∈ ↓Ms and p2 : k ∈ ↓Ms, then (sdecrypt(p2, p1) :

e) ∈ ↓Ms,

4. if p : f(e1, . . . , en) ∈ ↓Ms, then (πjf (p) : ej) ∈ ↓Ms for j = 1, . . . , n.

Example 5.3.2. Let us provide an example of closure. With reference to
the rule (5.10), the set Ms contains the associated expression for the incom-
ing message `f(senc(...),enc(...)) : f(senc(K, g(A,B, m)), enc(Kb, h(A,K))) and
other expressions known by the agent `B : B, `Kb : Kb, `inv(Kb) : inv(Kb),
`m : m, `CA2B

: CA2B, and `CB2A
: CB2A. By definition ↓Ms contains Ms

and other associated expressions. For example, we have `f(senc(...),enc(... )) :

f(senc(. . .), enc(Kb, h(A,K))) ∈Ms ⊆ ↓Ms then π1f(`f(senc(...),enc(Kb,h(A,K)))) :

senc(. . .) and π2f(`f(senc(...),enc(Kb,h(A,K)))) : enc(Kb, h(A,K)) are in ↓Ms

(case 4 of the definition). Given that `Kb : Kb is in ↓Ms, the case 2 is
applicable, thus decrypt(`inv(Kb), π

2
f(. . .)) : h(A,K) ∈ ↓Ms as well.

Example 5.3.2 can be easily extended to the other sub-terms of the mes-
sage. However, it already clarifies why we need the closure of the knowledge.
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Indeed, the first part of the message f(. . .) is encrypted with K and it can
be decrypted only after having decrypted the second part, containing the
key K. Notice that, for the sake of simplicity, in this section we assume
atomic keys. Nevertheless the approach described can be readily generalized
to support composed keys.

After having computed all the associated expressions, we need to either
check or store the data values, according to the list of expressions represent-
ing the internal state of the principal. With reference to the send rule (5.1),
let kn = {e1, . . . , en}, and Ms′ = ↓Ms− {`e1 : e1, . . . , `en : en}.

Atomic checks The set of atomic checks Pmi for a message mi ∈ E over
a knowledge kn is defined as follows:

1. for each p : e in Ms′, if either e is a constant or e is a variable, and
e ∈ kn then the following fragment is in Pmi :
if eval(p) != `e then: return false;

2. for each p1 : e, . . . , pn : e in Ms′, if e is a variable, and e 6∈ kn then the
following fragment is a member of Pmi :

`e := eval(p1);
if (`e!=eval(p2) or `e!=eval(p3) or . . . or `e!=eval(pn))

then: return false;

For instance, let us consider the rule (5.10), the following checks are in
Pf(...):

1. if eval(π3
g(sdecrypt(π

2
h(. . .), π

1
f(. . .)))) != `m then: return false;

if eval(π2
g(sdecrypt(π

2
h(. . .), π

1
f(. . .)))) != `B then: return false;

2. `A := eval(π1
h(decrypt(`inv(Kb), π

2
f(. . .))));

if (`A!=eval(π1
g(sdecrypt(π

2
h(. . .), π

1
f(. . .)))) ) then: return false; . . .

Program fragment pmi is a sequence of all the items in Pmi .
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Message generation function We call message generation function over
a set of expressions kn a function MsgGen defined as follows:

1. MsgGen(e) = `e if e ∈ kn;

2. MsgGen(f(e1, . . . , en)) = f(MsgGen(e1), . . . ,MsgGen(en))

With reference to the send rule (5.1), the program fragment pmo is cal-
culated by MsgGen(mo) over kn = {e′1, . . . , e′q}.

5.3.2 Instrumentation of the rules of the intruder

Intercept and overhear rules

Let us consider the intercept rule (5.4) in Section 5.2. Let M be the mes-
sage. The fragment pintercept(A,B,M,C) of pseudocode encoding the rule is as
follows:

`′M := `M ;
`c >> `M ;
if `′M is not empty and `M != `′M then: return False;

where `′M contains the previous value (if any) in `M , before the reception
of the new message. The fragment of pseudocode encoding the overhear
rule (5.4) in Section 5.2 is the same as the one defined above, except from
the operator |> in place of >>.

Decomposition rules

Let us consider the rules modeling the ability of decomposing messages (i.e.
decrypt, sdecrypt, and decompose).

The fragment of pseudocode pdecrypt(M,...) encoding the rule (5.4) is as
follows:

`M := eval(decrypt(`inv(K), `{M}K
));

where M and K are two ASLan expressions for the message and the
public key, {M}K is the asymmetric encryption of M with K, and decrypt
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is the selector function associated to enc. Similarly for psdecrypt(...) encoding
the rule (5.5). The fragment pdecomposef (M1,...,Mn) encoding the rule (5.6) is
as follows:

`M1 := eval(π1
f (`f(M1,...,Mn)));

...
`Mn

:= eval(πn
f (`f(M1,...,Mn)));

where f(M1, . . . ,Mn) is the message the intruder decomposes, and πif for
i = 1, . . . , n are the selector functions associated to the user function symbol
f .

Composition rules

Let us consider the impersonate rule (5.7) in Section 5.2. The fragment of
pseudocode p

impersonate
j,k,l
r (...)

encoding this rule is computed byMsgGen(m′)

over the knowledge kn = {m1,l, . . . ,mjl,l}.

5.4 Test Case Execution

The Test Execution Engine (TEE) takes as input a SUT Configuration,
describing which principals are part of the SUT, and an attack trace. The
operations performed by the TEE are as follows:

1 procedure TEE(SUT :Agent Set;[step1, . . . , stepn]:Attack Trace)
2 for i:=1 to n do:
3 if not(stepi == sendj,kr (a, . . .) and a ∈ SUT ) then:
4 while eval(pstepi

) == false do:
5 if handle_error () == false then:
6 printf ("Test failed in step %s", stepi);
7 halt;

The TEE iterates over the attack trace provided as input. During each it-
eration it checks whether the rule stepi must be executed (line (3)). Namely,
if stepi is either an intruder’s rule or a rule concerning an agent that is not
under test, then the program fragment pstepi is executed. If pstepi is executed
without any errors the procedure continues with the next step, otherwise the
TEE executes an error handling procedure. If the error is correctly handled,
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then the test continues, otherwise, (lines (6)–(7)) notifies that an error oc-
curred.

5.4.1 Error Handling

Protocol implementations may differ from the model. For example, SP may
perform addition HTTP 30x redirections between the message S1 and A1.
In general, when a mismatch between the message received and the message
expected is detected, eval(pstepi) returns false. This error is captured by the
TEE that in turn executes an error handling procedure. If the error can be
handled, e.g., by executing the HTTP redirection, the TEE repeats the step
that cause the error until it succeed. If the error cannot be handled, then
the TEE interrupts the execution and reports that the test execution failed.

5.5 Experimental Results

In order to assess the effectiveness of the proposed approach, we have devel-
oped a tool of the architecture depicted in Figure 5.1. A complete description
of the tool is given in Chapter 7. In this section we introduce only the main
aspects. We implemented the instrumentation, the TEE and the adapter
modules in Java. The model checking module is the SATMC model checker
tool [ACC07]. The instrumentation module takes in input an ASLan model
and the mapping, and it returns a Java class where each method is a program
fragment. The TEE instantiates the class and executes the attack trace as
described in Section 5.4. The adapter implements the constructor and selec-
tor functions defined in Section 5.3. For example, constructors and selectors
for the HTTP protocol are available in a Java class called adapter.Http

that is built upon the Apache HttpComponents (http://hc.apache.org/).
These functions are used by program fragments as described in Section 5.3.
We used the attack traces shown in Figure 4.3 and Figure 4.4.

http://hc.apache.org/
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C IdP SP

S1. GET URI

S2. HTTP302 SL?continue=URI

S3. GET SL?continue=URI

A1. HTTP302 IdP?SAMLRequest=AReq(ID, SP,ACS)&RelayState=SL?continue=URI

A2. GET IdP?SAMLRequest=AReq(ID, SP,ACS)&RelayState=SL?continue=URI

IdP builds an authentication assertion
AA = AuthnAssert(ID,C, IdP,ACS)A3. HTTP200 Form(. . .)

A4. POST ACS?SAMLResponse=AResp(ID,ACS, IdP, {AA}K−1
IdP

)&RelayState=SL?continue=URI

S4. HTTP200 Script(. . . ); SetCookies(HID,HUSR,ASIDAS)

S5. GET SL?continue=URI;Cookies(HID,HUSR,ASIDAS)

S6. HTTP302 URI?AuthEventSource=SSO&auth=HID&husr=HUSR; SetCookies(HID,HUSR,ASIDAS)

S7. GET URI?AuthEventSource=SSO&auth=HID&husr=HUSR

S8. HTTP302 URI?AuthEventSource=SSO; SetCookies(Session)

S9. GET URI?AuthEventSource=SSO;Cookies(Session)

S10. HTTP200 Resource(URI); SetCookies(. . .)

Legenda: : https

Figure 5.2: SAML-based Single Sign-On for Google Apps

5.5.1 Protocol Implementations Under Test

In this section we describe two implementations of the profile SP-initiated
of SAML SSO, and one implementation of the OpenID protocol used with
different IdPs. They are the SAML-based SSO for Google Apps, Simple-
SAMLphp, and Zoho Invoice used with Google and Yahoo OpenID identity
provider.

SAML-based SSO for Google Apps

The protocol implemented in the SAML-based SSO for Google Apps in op-
eration until 2009 is depicted in Figure 5.2. The model has been obtained
by carefully inspecting the reference implementation of SAML-based Single
Sign-On for Google Apps and by experimenting with the online service.
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In the implementation offered by Google, when SP receives a request for a
resource URI from C, if the request is accompanied by a valid session cookie,
then the resource is returned right away (step S10 in Figure 5.2). The name of
the session cookie depends on the specific service considered, e.g. it is named
CALH in case of Google Calendar, and GXAS in case of Gmail. If the request is
accompanied by valid values for the parameters auth and husr in the URI,
then SP creates a fresh session cookie and sends it back to C; C then is asked
to resubmit the request by means of an HTTP redirect (steps S8 and S9).
If neither of the above conditions hold, C is redirected to the Service Login
(SL) and the requested URI is passed as the value of the continue URL-
encoded parameter. Upon receipt of this request, SL initiates the SAML
Authentication Protocol (step A1) using SL?continue=URI as the value of
the aforementioned RelayState field. If the SAML Authentication Protocol
completes successfully, then SL sets the cookies HID, HUSR, and ASIDAS and
returns an HTML page of the form (concisely indicated as Script(. . .) in step
S4 of Figure 5.2):

<html >
...
<body >
<script >
var url=URI
. . .

window.setTimeout(
function () {

window.location = url;
},
0);

</script >
. . .

</body >
</html >

This simulates a redirection by setting the value of the browser variable
window.location to URI and forcing the browser to reload the page. Notice
that since the value of URI is embedded into the HTML page, it will be
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C IdP SP

S1. GET URI

S2. HTTP200 Homepage; SetCookies(PHPSESSID,SimpleSAMLSessionID,foodleSession)

S3. GET as_login.php?ReturnTo=URI; Cookies(Session)

A1. HTTP302 IdP?SAMLRequest=AReq(ID, SP,ACS)&RelayState=URI

A2. GET IdP?SAMLRequest=AReq(ID, SP,ACS)&RelayState=URI

IdP builds an authentication assertion
AA = AuthnAssert(ID,C, IdP,ACS)A3. HTTP200 Form(. . .)

A4. POST ACS?SAMLResponse=AResp(ID,ACS, IdP, {AA}K−1
IdP

), &RelayState=URI; Cookies(Session)

S4. HTTP200 Resource(URI); SetCookies(SimpleSAMLAuthToken)

Legenda: : https

Figure 5.3: SimpleSAMLphp as deployed in Foodle

evaluated by the JavaScript interpreter.

SimpleSAMLphp

The protocol implemented by SimpleSAMLphp is depicted in Figure 5.3
where SP is the Foodle service offered by Uninett and available at http:

//foodl.org, while IdP is the OpenIdP provided by Uninett and available
at https://openidp.feide.no/.

The protocol execution starts with C asking for the resource URI to SP.
In step 2, SP redirects C to an internal login service of SP. Here, between
step S3 and A1 takes place the identity provider discovery protocol. The
identity provider discovery protocol aims at identitifying the last IdP used
by C by inspecting the cookies of C. In all our experiments, we assume that
when C starts the protocol, C does not have any cookie installed. As a result
the identity provider discovery protocol fails and SP shows to C a list of IdP.
C selects IdP, and the SAML protocol begins. In step A1, SP redirects C to
the IdP with an authentication request. The IdP challenges C and redirects
C to the SP. The protocol ends with SP providing the resource to C.

http://foodl.org
http://foodl.org
https://openidp.feide.no/
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C IdP SP

S1. GET URI

S2. HTTP302 SP/login?serviceurl=URI

S3. GET SP/login?serviceurl=URI;

S4. HTTP200 LoginForm;

S5. POST SP/openid; identifier=IdP&servicename=ZohoInvoice

S6. HTTP302 IdP?oidAuthnRequest(C, IdP, h, SP)

S7. GET IdP?oidAuthnRequest(C, IdP, h, SP)

S8. HTTP302 SP?oidAuthnResponse(IdP, C, SP, n, h)

S9. GET SP?oidAuthnResponse(IdP, C, SP, n, h)

S10. HTTP200 Resource(URI)

Legenda: : https

Figure 5.4: Zoho Invoice relaying party service

Zoho Invoice Relying Party

Our experiments focused on the relying party provided by Zoho Invoice.
Zoho Invoice is an online billing solution for small business https://www.

zoho.com/invoice developed by Zoho. Zoho Invoice service allows users to
be registered and log in at their domain. Alternatively, users can login by
using SSO protocols such as OpenID, or other protocols such as OAuth2.0.
Zoho Invoice supports only two OpenID identity providers, they are Google
OpenID and Yahoo OpenID. In our experiments we have focussed only on
Zoho Invoice service when used with both OpenID identity providers.

Figure 5.4 shows the HTTP messages exchanged between a web browser
guided by an user C, the identity provider IdP, and the Zoho Invoice service
SP for accessing the front page URI=https://invoice.zoho.com/view/ZB_

Main/ZB_Invoice.

In step S1, C requests the resource URI. Then, SP redirects C to the local
login service SP/login with a parameter serviceurl carrying the original
resource asked by C. In step S4, the login service of SP returns the login page

https://www.zoho.com/invoice
https://www.zoho.com/invoice
https://invoice.zoho.com/view/ZB_Main/ZB_Invoice
https://invoice.zoho.com/view/ZB_Main/ZB_Invoice
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Figure 5.5: User login at Zoho Invoice

of Figure 5.5. Afterwards, C selects to login with Google or Yahoo OpenID
identity provider. As a result, SP prepares the authentication requests and
redirects C to the IdP selected for being authenticated. The user is then
authenticated and, in turn IdP prepares an authentication response. In step
S8, IdP redirects C to SP together with the authentication response. Once
SP receives the authentication response, SP provides the resource to C.

5.5.2 Experiments

General setup

The first step of the experiments involves the setup the testing environment,
in which we registered a user account at each of the identity provider that
we tested.

SAML SSO We registered the domain ai-lab.it at Google Apps2. Then,
we deployed our own SAML identity provider in our servers3. In the config-
uration panel of Google Apps, we added our identity provider in the list of
trusted identity providers. Moreover, we uploaded the public key for verify-
ing the signature of the assertions. Finally, we created two user accounts for
testing; the first one at our identity provider, the second at the OpenIdP by
Uninett.

2When we set up the environment, the service was free of charge. See http://www.
google.com/apps

3For security reasons, we intentionally omit the URL of our identity provider service.

http://www.google.com/apps
http://www.google.com/apps
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Model adjustment

As we said in Section 5.4, the protocol implementations may differ from
the model due to HTTP 30x redirections. However, there are other differ-
ences that must be considered in order to execute tests. For example, both
the SAML SSO and the OpenID specifications explicitly abstract away the
user authentication, leaving to the implementation the choice of a particular
mechanism. As a result, the counterexamples returned by the model checker
do not specify how to pass the user authentication phase at the IdP. In order
to support implementation-specific steps, we added the support for execut-
ing arbitrary user code at specific point of the protocol. This is done by
adding a user-defined symbol into the model, and then by adding a mapping
between the user-defined symbol and the code implementing the logic of the
step.

SAML SSO We added userlogin into the Client and IdentyProvider

entities between the step A2 and step A3 of Figure 3.1. For example, the
Client has been modified as follows:

1 Actor -Ch_C2IdP -> IdP : httpRequest (get , IdP , AReq ,
2 nil_http_element);
3 userlogin;
4 IdP -Ch_IdP2C -> Actor: httpResponse(code_200 , nil_agent ,
5 nil_http_element ,
6 htmlForm (?SP , ?ARsp));

Listing 5.1: Modification of the Client

The IdentyProvider has been modified as follows:

1 C -Ch_C2IdP -> Actor : httpRequest (get , Actor , httpBinding(
2 authnRequest (?SP, Actor , ?ID), ?URI),
3 nil_http_element);
4 if (TrustedSPs ->contains(SP)) {
5 userlogin;
6 Actor -Ch_IdP2C -> C : httpResponse(code_200 , nil_agent ,
7 nil_http_element ,
8 htmlForm(SP, postBinding(
9 signedAuthnResponse(inv(pk(Actor)),

10 SP, Actor , C, ID), URI)));
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11 }

Listing 5.2: Modification of the IdentyProvider

OpenID We added userlogin into the client and OpenID provider entities
between the step A3 and step A4 of Figure 3.5.

IUTs

We specified four IUTs, one for each implementation under test. For example,
Listing 5.3 shows the mapping for testing SAML-based SSO for Google Apps.

1 <iut model ="SAML_SSO -SP_init.aslan">
2 <map name="c" type=" String" value =" client"/>
3 <map name=" code_200" type=" Integer" value ="200"/ >
4 <map name=" code_30x" type="Multiple -Value" value ="302 ,301 ,303 ,304"/ >
5 <map name="get" type=" String" value="get"/>
6 <map name="i" type=" String" value =" intruder"/>
7 <map name="nil" type="Wild -Card" value =""/>
8 <map name=" nil_agent" type="Wild -Card" value =""/>
9 <map name=" nil_http_element" type="Wild -Card" value =""/>

10 <map name="post" type=" String" value="post"/>
11 <map name=" uri_i" type="URL" value ="http :// localhost :8081/ resource"/>
12 <map name=" uri_sp" type="URL" value="http ://www.google.com/calendar/

hosted/ai-lab.it"/>
13 <map name=" userlogin" type=" String" value =" gmail.UserLogin "/>
14 <map name=" htmlForm" type=" Adapter" value =" adapters.Html"/>
15 <map name=" httpReq" type=" Adapter" value=" adapters.Http"/>
16 <map name=" httpResp" type=" Adapter" value =" adapters.Http"/>
17 <map name="idp" type="URL" value="http ://i/sso/IdP/process_response.

php"/>
18 <map name="sp" type="URL" value="https ://www.google.com/a/ai -lab.it/

acs"/>
19 <map name=" httpBinding" type=" Adapter" value=" adapters.Saml"/>
20 <map name=" authnRequest" type=" Adapter" value =" adapters.Saml"/>
21 </iut >

Listing 5.3: Mapping for SAML SSO

Each entry of Listing 5.3 has a name, a type and a value. The name is
an ASLan symbol. The type can be one of the following: Java string, Java
integer, URL, adapter (i.e., Java class name), and multi-value. A multi-
value type is a special type where all the values within the same multi-value
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elements are equals. For example, the symbol code_30x is mapped with
a multi-value whose values are 301, 302, 303, and 304. For generating a
message, the constructors picks the first element of the list, while for parsing,
the real values 301, 302, 303 and 304 are abstracted to code_30x.

It is worth noticing that the user-defined symbol userlogin is mapped
with a Java class gmail.UserLogin. The class gmail.UserLogin implements
the logic for executing the user login, e.g., submitting an HTTP form with
the user name and the password of the user account used for our tests.

In our experiments, we tested the honest service provider sp and the
identity provider idp. The client c and the attacker i are simulated by the
instrumented model.

Test Case Execution

We run the prototype against the SAML-based SSO for Google Apps. The
TEE automatically executed the attack traces till the message S2 of Fig-
ure 4.3 and, as expected, the message S2 contains the mailbox of the user.
The tests against SimpleSAMLphp failed when message S2 was received.
The analysis of the HTTP conversation has revealed that SimpleSAMLphp
returns an error message instead of the message S2. We identified the cause
of this error in a set of additional checks that were introduced in the code to
reinforce the binding between authentication requests and responses. These
checks are based on cookies and, since the authentication request is never
routed through c, no cookies are installed in c. Therefore, when c presents
an authentication response at sp, it fails in restoring the local user session
for c.

Finally, we run the attack trace of Figure 4.4 against Zoho Invoice relying
party with Google OpenID identity provider and Yahoo OpenID identity
provider. In both cases, the TEE reached the step S2, that, as expected,
contains the resource requested in S1.
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5.6 Conclusions

In this chapter we have shown that starting from the specifications of a
protocol, it is possible to generate test cases by using a model checker and
to automatically execute them against different protocol implementations.
We developed a tool and used it to test the SAML-based SSO for Google
Apps, the Foodle service, and the Zoho Invoice service against the flaw of
Chapter 4. Our results show that the prototype is able to detect the logic
flaw on the Google service and the Zoho service. Moreover, the prototype
was not able to automatically confirm the authentication flaw on Foodle
due to specific implementation mechanisms used by SimpleSAMLphp that
mitigate the flaw.

The formal analysis of security protocols relies on the assumption that
the specifications of a protocol are available. This assumption is still valid
for the approach that we presented. However, the specification of a web
application are almost never available in practice. Chapter 6 presents a
technique for detecting logic flaws without the specifications of the system
under test. The approach first infers a model from a number of HTTP
conversations, then it generates and executes test cases that are likely to
tamper with the application logic.
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Chapter 6

Black-Box Detection of Logic
Flaws

In the previous chapters, we saw how, starting from the formal specification
of a protocol it is possible to automate the testing of real applications. How-
ever, specifications describing the evolution of the internal state and of the
expected user behavior are almost never available for web applications. This
lack of documentation makes it very hard to find logic vulnerabilities. In this
chapter we propose a technique for detecting logic flaws when the specifica-
tions are not available. We applied our technique to seven large eCommerce
applications executing more than 3100 test cases, 900 of which violated the
expected behavior of the application. We discovered ten previously unknown
logic flaws among which five of them allow an attacker to pay less or even
shop for free.

Structure: This chapter is structured as follows. Section 6.1 gives an
overview of the proposed approach. Section 6.2 and Section 6.3 present,
respectively, the inference technique and the behavioral patterns. Section 6.4
presents the pattern-based test case generation, while Section 6.5 describes
the test execution engine. Section 6.6 presents the test oracle that verifies
for violation of the application logic. Section 6.7 discusses the setup for
the experiments and Section 6.8 shows the results. Finally, Section 6.9 and
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Section 6.10 respectively discuss the limitation of the approach, and draw
the conclusions.

6.1 Overview

The OWASP Testing Guide v.3.0 [The08] suggests a 4-steps approach to
test for business logic flaws in a black-box settings. First, the tester studies
and understands the web application by playing with it and reading all the
available documentation. Second, she prepares the information required to
design the tests, including the intended workflow and the data flow. Then,
she proceeds with the design of the test cases, e.g., by reordering steps or
skip important operations. Finally, she sets up the testing environment by
creating testing account, runs the tests, and verifies the results.

Our approach aims at automating the previous steps in a single black-
box tool. First, starting from a list of network traces containing HTTP
conversations, our system infers an application model and clusters resources
related to the same workflow “step” (Section 6.2). Second, our technique
analyzes the model and extracts a set of behavioral patterns (Section 6.3)
modeling both the workflow and dataflow of the application. Third, we apply
a set of attack patterns to automatically generate test cases (Section 6.4).
Finally, we execute them against the web application (Section 6.5), and we
use an oracle to verify whether the logic of the application has been violated
(Section 6.6).

In the rest of the section we describe each phase in details using eCom-
merce web applications of Chapter 3 as a running example.

6.2 Model inference

The technique we present in this chapter is passive and black-box. This means
that we do not require any access to the application source code (both on
the client and on the server-side), and that we do not actively crawl the
application pages or generate any traffic to probe its internal state. Instead,
we take as input a list of traces containing sequences of HTTP requests and
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responses. These traces can be manually generated by the tester, or just
collected by logging real user interactions.

For simplicity, we consider only network traces that exercise a specific
functionality of the web application. For example, if the web application
under test is a shopping cart, we will use traces in which users log in, add
items into the cart, and check out to buy the products. Nothing prevents the
tester from generating traces that also contain other functionalities, such as
browsing the online catalog or posting product reviews. However, focusing
only on one aspect of the business logic helps our system to find the relevant
operations with a minimum number of input traces.

Web applications often involve multiple parties. For instance eCommerce
web applications typically involve the client, the eCommerce website, and the
payment service. However, the communication between them is normally
channeled through the user browser and, therefore, we focus on this point
for the collection of our traces. In addition, it is useful to collect traces from
different deployments of the same web applications, to allow our inference
method to identify parameter values hard-coded in a certain installation.

Once the input traces have been collected, the first phase of our analysis
consists of building the navigation graph of the application, enriched with
the syntactic and semantic types for each parameter. The model inference
is done in three steps: resource abstraction, resource clustering, and model
refinement.

6.2.1 Resource abstraction

Input traces are sequences of pairs of HTTP requests and responses to re-
quest and fetch resources. Our approach currently supports the following
resources: JSON data objects [Cro06] and HTML pages. However, it can be
easily extended to other types such as SOAP messages [Wor07].

An HTML page is a resource that is displayed to the user within the
web browser. It contains link and form tags that the user uses to request
other resources. An HTML page can also contain client-side scripts such as
JavaScript (JS) for generating AJAX requests for fetching asynchronously
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Figure 6.1: Resource abstraction and syntactic type inference of HTML page

other resources. As opposed to an HTML page, a JSON data object is
not directly displayed to the user. It is an associative tree-like data struc-
ture that associates keys to data values. A JSON data object is requested
asynchronously by client-side scripts and, once fetched, it is processed and
inserted into the HTML page by using the DOM API [Wor05]. The JSON
data object supports different data types such as numbers, strings, booleans,
arrays, and objects [Cro06]. For example, the data values of a shopping cart
can be sent to the web browser with the following JSON object:

{‘items’:
{‘item1’: [’price’: 19.9,

‘tax’ : 1.6],
‘item2’: [ ... ]

}
}

The example above shows five keys: ’items’, ’item1’, ’item2’, ’price’, and
’tax’. Each key is associated to data types. The keys ’price’ and ’tax’ are
associated to data values of type number. The key ’item1’ and ’item2’ are
associated to one array each. Finally, the key ’items’ is associated to a data
value of type object.

At this step of the inference, we aim at extracting from the resources
information related to the dataflow and the workflow of the web application.
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The information related to the dataflow are the data values exchanged
between the web application and the web browser. These data values are
placed by the web application inside the HTML page in the form of HTML
forms, HTML links, or inside the JSON data objects. For example, the left-
hand side of Figure 6.1 and Figure 6.2 shows the tree-representation of an
HTML page and a JSON data object. The leaves are the URLs of the input
fields carrying data values that may be used to submit new HTTP requests
to the web application. The leaves as well as the URL, the POST data,
and HTTP redirections are used in Section 6.3 to extract the data values
propagation patterns.

As opposed to the dataflow, the information specific to the workflow
cannot be directly identified in HTML tags or JSON keys. In our approach,
we extract the workflow information by first clustering together resources
that share similarities, and then by inferring behavioral patterns such as the
occurrences in the trace. The clustering is detailed in Section 6.2.2 and the
behavioral patterns are explained in Section 6.3. At this stage of the inference
technique, the resource abstraction extracts from the HTML code and JSON
data object the DOM path of HTML tags that would allow a comparison
between the resources. With reference to Figure 6.1 and Figure 6.2, the
paths from the roots till the leaves are the position of the leaves inside the
resource. The comparison between JSON data object, and in a similar way
between HTML pages, is done via the comparison of the paths.

We call abstract HTML page the collection of (i) its URL, (ii) the POST
data (iii) the anchors and forms contained in the HTML code and their DOM
paths, (iv) the URL in the meta refresh tag, and (v) the HTTP redirection
location header.

Figure 6.1 shows the tree-representation of the DOM paths of all the
anchor and form elements. We treat HTTP redirections as special HTML
resources.

We call abstract JSON object a collection of (i) its URL, (ii) the POST
data, (iii) the pairs of value and path in the object and (iv) the HTML links
if any HTML code is contained.

From each abstract resource we extract a set of elements corresponding
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Figure 6.2: Resource abstraction and syntactic type inference of a JSON
data object

to all possible parameters that appear in the URLs, in the POST data, and
in all the links. Each element is characterized by a name, a value, a path,
and an inferred syntactic type. Our approach supports the integer type,
decimal type, URL type, email address type, word type (alphabetical strings
e.g. “add”, “remove”, . . . ), string type, list type (comma-separated values),
and unknown type for everything else. The type is automatically associated
to each element by inspecting the values that the element had in the input
traces. Obvious priority rules are applied in case of ambiguity – e.g. id=20
can be both a number and a string, but being the first a subset of the second,
it is considered to be a number.

6.2.2 Resource clustering

Modern web applications map application logic operations to different re-
sources. For instance, the operation of displaying the shopping cart could
involve an initial HTML page containing the skeleton of the web page and
then a collection of AJAX requests for populating the page with the list of
items, tax, available vouchers, and so on. Given a list of network traces we
would like to cluster the resources when they are likely to encode the same
operation of the application logic. We cluster resources in three phases.
First, we relate AJAX requests to the resource that originated them. Then



6.2. MODEL INFERENCE 121

Figure 6.3: (a) Application-level actions, (b) URLs requested, and (c) ab-
stract resources with list of originators

we group together resources considering their similarity and the originators.
Third, we split a cluster if a parameter of its resources encodes a command
rather than carrying a value.

During the first phase, we preprocess input traces to identify AJAX re-
quests. This can be done by checking the “X-Requested-With" HTTP re-
quest header [The13a] or by detecting JSON responses. After that, we asso-
ciate each resource to its originators. Figure 6.3 provides an example of this
first phase. In Figure 6.3.a we have a segment of input trace in which the user
logs in, checks the status of the shopping cart, and finally accesses the details
of a product. These application-level actions are mapped to the resources
shown in Figure 6.3.b, that are abstracted in Figure 6.3.c. In Figure 6.3.c
we have the HTML page r1 followed by the page r2. Then, r2 requests r3
by using AJAX that enriches r2 with new HTML code, or new client-side
scripts. The example then ends with r4 that we assume to be caused by a
link in r2 or added by r3. Figure 6.3.c shows also the list of originators of
each resource. r1, r2, and r4 have no originators, while r3 was originated by
r2.

In the second phase, we cluster resources. In general, two resources are
in the same cluster if they have the same URL, the same POST parameters,
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and, if any, the same redirection URL. When comparing URLs we do not
take into account the values of the parameters, but only their syntactic types.
For example, the following three URLs are equivalent:

store.com/do.php?action=add&id=3
store.com/do.php?action=add&id=7
store.com/do.php?action=show&id=3

We compare first synchronous resources as explained before. For in-
stance, the resources r2 and r4 of Figure 6.3 are in the same cluster. Then,
we compare asynchronous resources. Two asynchronous resource are in the
same cluster if they have the same URL, POST data, redirection URL, and
originators. For instance, let us suppose to compare r3 with another asyn-
chronous resource r′ (not shown in Figure 6.3). After comparing the URLs
and POST data, we compare whether the originators of and r′ are in the
same cluster.

During the last phase, we visit each cluster and we try to identify the
parameters that are encoding a command rather than just transporting a
value. For each parameter we take the sub-group in which pages have the
same value for that parameter. For example, the parameter action divides
the gray cluster of Figure 6.4.a in two sub-groups, one for the cart value
and one for the show value. We then compute the page similarity between
pages in the same sub-group and between pages in different sub-groups. The
comparison is done by looking at the DOM path of HTML forms, their
action attribute (URL domain and parameter names), and the name of the
nested input elements. The function is applied to sub-groups by calculating
the percentage of pages that are similar. If the similarity inside the same
sub-groups is high (more than 55%), and between different sub-groups is
low (less than 45%), then we assume the parameter is used to specify an
operation and we create a different node for each value. Otherwise we leave
the cluster unmodified. The result of this phase is shown in Figure 6.4.b.

Once we have grouped all the resources in clusters, we can build the nav-
igation graph. The navigation graph is a directed graph G = (C ∪{I, F}, E)

where C the set of clusters, I the source node, F the final node, and E the



6.2. MODEL INFERENCE 123

Figure 6.4: (a) Clusters after comparing all the resources (b) Clusters after
having identified parameters encoding a command

set of edges initially empty. We place the edge (u, v) if there exists one input
trace π in which a resource r′ ∈ u immediately precedes a resource r′′ ∈ v.
Then, for each rj at the beginning of each trace (i.e. π = 〈rj , . . .〉), we place
the edge (i, u) where rj ∈ u and for each rj at the end of each trace, (i.e.
π = 〈. . . , rj〉) we place the edge (u, f) where rj ∈ u. Finally, we associate to
each node u the set of all the elements for every r ∈ u.

Model Refinement

In the final step of the model inference, elements associated to nodes are
enriched with semantic types. In [WCWQ11, WCW12] Wang et al. proposed
to label URL parameters with syntactic and semantic attributes. Our work
borrows few of their types (Server- and Client- generated attributes) and
add new ones. The list of semantic types supported is the following:

Unique type - for parameters whose values is different in each page within
the same node

Constant type - for parameters that have always the same value in all
resources within the same node

Server-generated type - for parameters whose values appear in HTTP
responses before appearing in any HTTP request

Client-generated type - for parameters whose values appear in an HTTP
request before appearing in any HTTP response.
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Figure 6.5: Example of behavioral patterns using π1 = 〈a, b, a, c, d, e, f, e〉
and π2 = 〈a, c, d, e, f, e〉

Intuitively, the first two types describe properties of parameters that are
true inside a node, while the last two describe properties of parameters that
are true in the same input trace.

6.3 Behavioral Patterns

During the second phase of our approach, we analyze the navigation graph
and the input traces looking for patterns that are likely related to the under-
lying application logic. We divide workflow patterns in Execution Patterns,
that model what users normally do in our input traces, and Model Patterns
that model what the navigation graph allows to be done. Finally, Data Prop-
agation Patterns model how data is propagated throughout the navigation
graph.

6.3.1 Execution Patterns

Execution patterns model the actions performed by the user in the input
traces. In particular, we focus on three patterns:

Singleton Nodes
A node is a singleton if it is never visited more than once by any input
trace. Some of the users may visit these nodes, and some may not - but
no one visit them twice. For example, submitting a discount voucher
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can be an operation observed in some of input traces but none of them
is submitting a voucher twice.

Multi-Step Operations
A Multi-Step Operation is a sequence of nodes always visited in the
same order. This is very common in many functionalities in web appli-
cations. For example payment procedures or user registrations often
consist of precise sequences of steps, and all traces going through those
processes always execute them in the same exact order.

Trace Waypoints
We use the concept of waypoints to identify nodes that play an impor-
tant role in the interaction between the user and the web application.
In particular, trace waypoints are those nodes that appear in all the in-
put traces. For example, if all our traces contains a purchase, then the
redirection to the payment website (e.g., PayPal) is a trace waypoint.

6.3.2 Model Patterns

Model patterns model the sequences of actions that are allowed according to
the navigation graph:

Repeatable Operations
Nodes that are part of a loop in the navigation graph are operations
that can potentially be repeated multiple times.

Model Waypoints
Model waypoints are those nodes that belong to every paths in the
navigation graph that go from the source node to the final node. In
other words, these nodes are not only visited in all input traces, but
there is no way in the navigation graph to bypass them. Therefore,
every model waypoint is by definition also a trace waypoint but not
vice versa.

Figure 6.5 shows a little example to better describe the difference between
model and execution patterns. The example shows the behavioral patterns of
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Figure 6.6: Propagation Chains: from traces to the navigation graph

a navigation graph extracted from two input traces π1 = 〈a, b, a, c, d, e, f, e〉
and π2 = 〈a, c, d, e, f, e〉. The symbols St, TrWP, Rp, and MWP stand
for, respectively, singleton nodes, trace waypoints, repeatable nodes, and
model waypoints. The thick dotted line delimits an example of multi-step
operation. The way in which these patterns are combined together to test
the web application is presented in Section 6.4.

6.3.3 Data Propagation Patterns

Propagation chains identify those cases in which the same variable is sent
back and forth between the client and the web application. Our approach
uses the propagation chains in two phases. First, it uses them during the
test case generation in order to replay values of propagation chains across
different user sessions. Second, it uses the propagation chains during the test
execution in order to fetch the data value to submit it to the web application.

From an operational point of view, a propagation chain is a set of elements
associated to nodes that have the same values. Two parameters in the model
carry the same value if there are some input traces in which they hold the
same value, and there are no traces in which the values are different (since the
user does not perform the same actions in all the traces, a certain parameter
may not be present in all of them).
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We compute this in two steps. First we identify the propagation chain
of each value within a trace. For example let us consider the example in
Figure 6.6. Here, in the input trace π1, the element w of the node c has
the same value of the elements z, q, and r of the nodes d, e, and f respec-
tively. Looking at trace π2, the elements w of the node c is still equal to the
parameters z and q respectively in d and e, but it is now different from q.

By comparing these relationships, we obtain the propagation chain de-
picted in the right side of Figure 6.6. A value propagates between two nodes,
linking together the variables w and z. Note that the relationship between
r and q in π1 has been invalidated by π2 and therefore is not included in the
final model.

We say that the chain is client generated if the initial value is chosen by
the user, and server generated otherwise. A similar classification is used by
Wang et al. [WCW12]. However, their notion is limited to input traces of
the same length while ours is extended to traces of different lengths and to
the application models.

6.4 Test Case Generation

In this section we describe how we generate test cases to stress the logic of
the web application. This is done by using attack patterns that simulate
an attacker that tries to use the application in an unconventional way. In
particular, we focused on a set of actions an attacker could perform: repeat-
ing operations, skipping operations, subverting the order of operations, and
mixing parameter values across user sessions. For each action we designed
a pattern. An example of these attack patterns is presented in Figure 6.7.
These examples are based on the navigation graph of Figure 6.5. We en-
riched the graphs with numbers for showing the order in which the nodes
are visited. For simplicity, we are omitting the source node I and the final
node F , respectively connected to a and e.
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6.4.1 Multiple execution of repeatable singletons

This attack pattern is obtained by comparing execution patterns with model
patterns. If the model identifies a node as “repeatable” but the traces mark
it as “singleton”, it means that even though there seems to be a way to
execute an operation multiple times, this was never observed in our normal
training set. Therefore, it may be interesting to see what happens when
these operation are repeated.

Figure 6.7.a shows the sequence of steps in the test case. If b is a repeat-
able singleton node, we select an input trace that visits b (e.g. 〈a, b, a, c, d, e, f, e〉).
This path is then cut into two parts at the node before the singleton, that
is 〈a〉 and 〈b, a, c, d, e〉. We call these two parts test case prefix and suffix.
Second, we compute the shortest loop on the navigation graph that brings
from the singleton node to itself, that is 〈b, a〉 in our example. Finally, the
test case is obtained by concatenating the prefix, the loop, and the suffix
paths.

6.4.2 Breaking Multi-Steps Operations

There are several ways of subverting the order of multi-steps operations.
We distinguish two types. The first approach is to give a different order to
the steps composing the operation. For example, let us suppose that the
nodes a, c, d, e, and f in Figure 6.7.b compose a multi-steps operation in
the given order, we can try to execute the sequence as 〈a, d, c, e, f〉. The
second approach is to break the sequence by interleaving one of the already
performed operations. For example, between d and e we could go back and
visit again c (e.g., executing 〈a, c, d, c, e, f〉). For instance, after adding the
taxes to a checkout process, we could go back and change the number of
items in the shopping cart. Our approach currently support the latter type,
however it could be extended to support the former type or other types of
reordering.
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6.4.3 Breaking server-generated propagation chains

The goal of this attack pattern is to execute two user sessions and then
replace a value generated by the server in one session with the one of the other
session. As shown in Figure 6.7.c, the corresponding test case is composed
of two parts. The first part has the goal of interacting with the application
and capturing the value of a server generated propagation chain. The second
part starts another session and interrupts the propagation chain replacing
the value of z with the value v previously captured.

This attack pattern can potentially generate a very large number of test
cases. In fact, each web application can contains a lot of identifiers generated
by the server (for instance, all the product or message IDs). Therefore, we
focus our test case generation only on two types of propagation chains: the
ones containing unique values (i.e., that differ in all the input traces and are
therefore related to the session) and the ones containing installation-specific
values (i.e., values that are constant only within the same installation).

The test case generation algorithm operates as follows. First, we select
the parameters belonging to the chain that appear inside an HTTP request.
These parameters are called injection points and model the point in which
an attacker can replace the value generated by the server. For example, in
Figure 6.7.c the parameter z of the node d is an injection point. Second,
we select two traces from different user sessions that are visiting the node
associated to the injection points. The first is truncated at the injection
point and the second, unmodified path, is appended to the first one. With
reference to Figure 6.7.c, the two paths are respectively at the left- and
right-hand side.

In general, our approach only requires input traces that exercise a busi-
ness function of the web application. However, depending on the type of
attack pattern used, the input traces should satisfy further requirements.
For example, in order to apply this attack patterns, the tester must provide
input traces from different users and, optionally, from different web applica-
tion installations.
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6.4.4 Waypoints Detour

Waypoints are operations that are executed always by all the input traces.
When these operations happen only once per input trace, they seem to in-
dicate some sort of milestone in the execution of the business process of the
web application. In this case, the attacker can try to skip one or more of
these operations.

We consider two attack patterns that skip waypoints. The first is shown
in Figure 6.7.d in which the attacker skips an individual waypoint, e.g. d.
The second is depicted in Figure 6.7.f in which the attacker skips two oper-
ations, e.g. 〈c, d〉.

The generation of test cases following the pattern in Figure 6.7.d is
straight forward. First, we select an input trace that visits the waypoint
d, e.g., 〈a, b, a, d, e, f, e〉 and then we remove the node d. The result is
〈a, b, a, e, f, e〉.

The generation of test cases for the attack pattern in Figure 6.7.e requires
further care. In this case, we consider also the interference of the attack
pattern to the propagation chain. For example, it may happen that skipping
a waypoint can interrupt a propagation chain of a data value that is needed
for the subsequent actions. For example, let us suppose that the URL of the
node e requires the parameter q whose value appear in the resource d. In
this case, we use a similar approach as seen in breaking of server-generated
propagation chain in which the values of q is taken from another user session.

The generation of the test case is the following. First, we select a pair
of waypoints c and d. Then, we select two input traces from two users. The
first input trace is truncated at the first occurrence of e, i.e., 〈a, b, a, c, d, e〉.
The second skips the steps c and d, i.e., 〈a, b, a, e, f, e〉. The result is the
following test case 〈a, b, a, c, d, e〉.〈a, b, a, e, f, e〉.

6.5 Test Case Execution

The test cases described in Section 6.4 are abstract representations that
still miss details required to be properly executed. For example, the values
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of some parameters cannot be determined from the model and needs to
be collected during the test case execution. The execution engine has to
treat different parameters in different ways, taking the constant from the
models, others from the values observed in the input traces, and preserving
the propagation of the ones that are generated by the application at runtime.

In addition, it is important that after each test the application is reset
to its initial state to avoid interferences between consecutive executions. For
example, a test may leave a number of items in the shopping cart, thus
affecting every following experiment performed with the same user account.
In general, it is often enough to delete the cookies and empty the shopping
cart at the end of each test.

The execution engine iterates over each page in the test case and turns
them into an abstract HTTP request. Constant values and propagation
chains are then assigned to the request parameters to generate a concrete
request that is executed by the engine. The response is parsed in order to
extract server generated parameters and update their current values. If the
execution engine is not able to properly reconstruct a chain (e.g., because the
page that was supposed to generate its value returned an error) the execution
engine abort the execution and report the exception.

We say that a test is correctly executed, if the test execution engine ends
with no exception. Otherwise, we say that it is not correctly executed.

6.6 Test Oracle

The approach we propose in this chapter is completely independent from
the business logic of the web application. Our technique can automatically
identify behavioral patterns, and then generate test cases to break those pat-
terns in a number of different ways. The system can also determine if a given
test was executed correctly, but this is as far as it is possible to go with an
application-agnostic approach. For example, replacing the value of a secu-
rity token in a payment workflow would probably make the entire process
fail. Unfortunately, without any knowledge about the underlying business
logic, the test verdict could only say whether the pattern was applied suc-
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cessfully, but it can not draw any conclusion about the possible implications.
Therefore, if we want our tool to be able to report possible violations of the
application logic, we need to extract the sequence of events that occur during
a test case execution and compare them with the logic property that we want
to violate.

A simple way to express a logic property for shopping carts could be
the following: if an order is approved for a user, then the user must have
completed a payment for the corresponding amount. In this formulation two
events play a central role: the fact that an order is placed, and the fact that a
user has paid a certain amount. Another important aspect of this property
is the time dependency between the two events. Since propositional logic
can only express truth regardless of the time, in our approach, we model
logic properties as Linear Temporal Logic (LTL) formulas [Pnu77, Hol04].
LTL adds temporal connectives like O (once in the past) to traditional logical
operators like ∧ (and), and =⇒ (implies). This enables to verify whether
one event will eventually happen in the future or it already happened in
the past. For example, the above logic property can be written in an LTL
formula as follows:

ordplaced ∧ onStore(S) =⇒ O(paid(U, I)) (6.1)

where ordplaced, onStore(S), and paid(U, I) are respectively the events order
placed, operation performed on the store S, and user U paid the price of item
I. Now, the problem of identifying violation of the logic property is recast
into the problem of checking whether the LTL formula is satisfied or not by
a given test case.

In our approach, the Test Oracle is the component that given an ex-
ecution of a test case returns true if a certain predefined logic property is
violated, and false otherwise. The oracle is composed of two parts: an events
extractor and an LTL formula checker. The extractor collects from the exe-
cuted test a partially ordered set of events (events can happen in sequence
or in parallel) grouped by user sessions. The second part verifies whether all
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sequences satisfies or not the provided LTL formula.

It is important to note that both the events and the LTL formula depend
on the type of applications under test and on the type of vulnerabilities
that we are interested to find. For example, to find authentication bypass
vulnerabilities it would be interesting to observe events related to the user
login and to the access of private pages. However, since in this chapter
we focus on the test of eCommerce applications, we are more interested in
monitoring the money transfer and the value of the purchased items, as
described in more details in the next section.

6.7 Experiments

In this section we describe the experiments we performed on a number of
popular shopping cart applications. We first introduce the web applications
under test, then we discuss the extracted models and the results of our
automated analysis.

6.7.1 Shopping carts

We tested our technique on a number of popular shopping carts available for
offline testing. Our tool can be used also to test online eCommerce appli-
cations (such as the Amazon store). However, our tests require to attempt
malformed operations and to complete a large number of checkout processes.
This would be both unethical, since the application can malfunction as a re-
sult of our tests, and very expensive, since it would have required to buy
at least one product for each test case. Therefore, we opted for seven well
known open source applications, as reported in Table 6.1. The table also
shows the applications popularity measured according to the search results
obtained by performing a number of googledorks [Hac13]. Each Google query
was built by combining both the URL structure (e.g., the path of one of the
cart’s operation) and some static HTML content extracted from the appli-
cation’s pages (e.g., the “powered by. . . ” text in the footer). As such, the
numbers reported in the table are only a lower bound of the number of
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Table 6.1: Popularity index
WebApp Installations WebApp Installations
OpenCart 9,710,000 TomatoCart 119,000
Magento 3,130,000 osCommerce 80,500
PrestaShop 650,000 AbanteCart 21,200
CS-Cart 260,000

Total 13,970,700

publicly-accessible installations available on the Internet.
This conservative measurement shows that these seven applications are

used by almost 14 million eCommerce installations. As a comparison, the
two applications tested by Wang et al. [WCW12] returned less than 40,000
hits using similar Google dorks.

General setup

We installed two instances of each web application on our own servers. We
will refer to them as the Store A and Store B. All installations except for
AbanteCart and PrestaShop were then configured to use both the PayPal
Express Checkout [Pay12a] and the PayPal Payments Standard [Pay12b]
methods. In total we obtained 12 different configurations to test1. We left
the other configuration options to the default ones.

We configured all the e-shopping applications in SandBox mode. In this
configuration, each application performs transactions by using the PayPal
SandBox payment gateway. These payments do not involve real money as
they are performed between the seller and buyer testing accounts.

To generate the input traces we created two user accounts, U1 and U2,
each controlling a PayPal buyer testing account. For each web application
we captured in total six HTTP conversations, three for each store: one with
U1 buying one item, one with U2 buying another item, and one with U1

buying two different items. These input traces were sufficient to stimulate

1When we did the experiments AbanteCart and PrestaShop were providing only one of
the two payment flows above, respectively PayPal Payments Standard for AbanteCart and
PayPal Express Checkout for PrestaShop.
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the main shopping cart functionality, but a better training could be used in
the future to expose also more subtle features or configurations.

6.7.2 Testing Oracle

In their experiments, Wang et al. [WCWQ11] used the following logic prop-
erty to describe shopping cart applications:

“The store S changes the status of an item I to “paid” with regard to a
purchase being made by user U if and only if (i) S owns I; (ii) a payment is
guaranteed to be transferred from an account of U to that of S in the CaaS;
(iii) the payment is for the purchase of I, and is valid for only one piece of
I; (iv) the amount of this payment is equal to the price of I.”

However, this property is not entirely verifiable in a black-box setting.
For instance, it is not possible to test the truth of the predicate “S owns I”
nor to check whether the due amount has been transferred to the merchant’s
account. According to that, we simplified the above invariant by removing
the non-verifiable clauses. The new property that can be used for automated
black-box testing becomes:

When the store S confirms the user U that an order has been placed,
then in the past U paid S the amount equal to the price of I and U agreed
on purchasing I from S.

We modeled the invariant using the following events extracted during
each test case execution:

• ordplaced when the shop confirms that the order has been placed;

• onStore(S) when an operation has been performed on the store S;

• paid(U, I) when the user U authorizes the payment gateway to pay the
price of I;

• toStore(S) when the payment is meant for the store S;

• ack(I), when the user acknowledges to buy I.
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These events are combined together in the following LTL formula mod-
eling the logic property of the shopping cart applications:

ordplaced ∧ onStore(S) =⇒
O(paid(U, I) ∧ toStore(S) ∧

O(ack(U, I) ∧ onStore(S))) (6.2)

6.7.3 Test Case Execution

By applying our attack patterns to the models extracted from the input
traces, we generated around 3100 test cases, an average of 262 per appli-
cation. The number of test generated in each category is summarized in
Table 6.2.

Table 6.2 also shows the portion of test cases that were successfully ex-
ecuted. An execution failed when, by applying one of the attack template,
the resulting test case brought the application in a state in which it was
impossible to proceed with the rest of the test (e.g., because of an error page
was returned in an intermediate step). This is a common result, since by
definition our tests try to stress the application to expose some unexpected
behavior. The number of test cases violating our LTL formula is reported in
Table 6.3. As mentioned before, there are events that are not visible to the
oracle. Therefore, a violation to the LTL formula does not always correspond
to a vulnerability. In fact, it is possible that further checks performed in the
back end of the application would detect the fraud and cancel the order. In
order to distinguish real vulnerabilities from other forms of bugs (e.g. erro-
neously reporting to the user a failed transaction as successful) we manually
inspected the balance sheets of the merchant, the list of orders, and their
status. Whenever the result was not confirmed by our manual inspection,
we discarded it as a non-vulnerable case. The remaining cases correspond
instead to anomalous behaviors associated to real software vulnerabilities, as
explained in the next Section. It is important to note that over 28.9% of the
test cases generated by our approach brought the application in a state that
violated our oracle test, and 1 test out of 52 exposed a previously unknown
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Table 6.3: Results
WebApp Viol. Bugs Vuln.
AbanteCart Std 17 16 1
Magento Exp 65 65 -

Std 126 126 -
OpenCart Exp 58 46 12

Std 30 30 -
osCommerce Exp 42 22 20

Std 35 34 1
PrestaShop Exp - - -
TomatoCart Exp 90 65 25

Std 24 24 -
CS-Cart Exp 313 313 -

Std 109 108 1
Total 909 849 60

100% 93.4% 6.6%

logic vulnerability.
Test case generation does not require much resources, while the execu-

tion phase can be quite time consuming (max 16h for the Magento). This is
largely due to the lack of parallelization in our experiments, and to the fact
that the PayPal sandbox environment is much slower than its live counter-
part. The model inference – omitted from Table 6.2 – required an average of
9 minutes per application for building the navigation graphs that, in average,
contained 34 nodes and 48 edges.

6.8 Results

In this section we discuss the results of our experiments. 6.6% of the problems
identified by our tests correspond to vulnerabilities. They were confirmed
manually by inspecting the merchant/buyer balance sheets in the merchant
PayPal account, and the status of the orders available in the back-office of
the online store. The remaining 93.4% are bugs in the presentation in the
eCommerce application. In these cases, the tests were executed until the
final page in which the store congratulates the customer for the purchase.
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This caused the generation of the events ordplaced ∧ onStore(S). However,
a manual inspection revealed that all the orders in the database were “not
present”, “not complete”, or “unpaid”.

6.8.1 Vulnerabilities

Table 6.3 shows that 60 of our test cases (1.9% of the total) exposed a logic
vulnerability in the target applications. We discovered the following flaws:

• In osCommerce v.2.3.1, CS-Cart v.3.0.4, and AbanteCart v.1.0.4 with
PayPal Payments Standard a malicious customer can shop for free
(exploitable)

• In OpenCart v.1.5.3.1 and TomatoCart v.1.1.7 with PayPal Express
Checkout a malicious customer can pay less (exploitable)

• In TomatoCart v.1.1.7 with PayPal Express Checkout a malicious cus-
tomer can shop for free (exploitable)

• OpenCart v.1.5.3.1, TomatoCart v.1.1.7 and osCommerce v.2.3.1 with
PayPal Express Checkout a customer can pay an amount different from
what she authorized (not exploitable)

• TomatoCart v.1.1.7 with PayPal Express Checkout a customer pays
another customer’s cart (not exploitable)

All the exploitable flaws have been already responsibly disclosed. When
the developers did not answered within two weeks of our notification, we
reported the vulnerabilities also to the US Cert2. In the following we describe
each class of vulnerability we discovered in our experiments.

osCommerce, CS-Cart, and AbanteCart with PayPal Payments
Standard - shopping for free

These flaws have been discovered by test cases that interrupted the server-
generated propagation chain transporting the PayPal account of the mer-

2http://www.kb.cert.org/vuls/id/459446, http://www.kb.cert.org/vuls/id/
207540, http://www.kb.cert.org/vuls/id/583564

http://www.kb.cert.org/vuls/id/459446
http://www.kb.cert.org/vuls/id/207540
http://www.kb.cert.org/vuls/id/207540
http://www.kb.cert.org/vuls/id/583564
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Figure 6.8: Shopping for free with osCommerce v.2.3.1 and Abante-
Cart v.1.0.4

chant.
An example is shown in Figure 6.8. The left-hand side of the Figure

shows the message sequence chart while the right-hand side shows events
grouped by user session. Each user session begins with a login message. The
events show how the violation was detected. At the end of the execution,
the clause ordplaced ∧ onStore(“Store B”) is satisfied as all the events in it
were observed. However, the formula O(paid(U, I) ∧ toStore(“Store B”) ∧
O(ack(U, I)∧onStore(“Store B”))) is not satisfied because none of the events
in it were observed in the past.

The manual inspection verified that (i) no payment was made to the
Store B, (ii) the status of the order in the back office of Store B was marked
as “completed”, and (iii) the invoice resulted paid.

It is straightforward to turn the above test case into a real attack. Indeed,
when redirected to PayPal, an attacker can replace the seller PayPal account
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Figure 6.9: Paying less with OpenCart v.1.5.3.1 and TomatoCart v.1.1.7

with another PayPal account the attacker controls. This results in placing
an order and by paying herself instead of the real shop.

OpenCart and TomatoCart with PayPal Express Checkout - pay
less

In OpenCart and TomatoCart with PayPal Express Checkout an attacker
can pay less than the value of the goods she is purchasing. The flaw has been
detected by using the waypoints detour pattern. The test case generator
produced 11 test cases for OpenCart and 11 for TomatoCart in which the
user U2 skips the nodes of the redirection to PayPal for the payment and
reconstructs the URL with values taken from the user session of U2. A
representative test case is shown in Figure 6.9.

The events in Figure 6.9 shows that during the second user session the
clause ordplaced∧onStore(“Store A”) is satisfied. However, the other clauses
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of the formula are not satisfied because neither the user acknowledgment nor
the payment were observed.

The manual inspection found two distinct orders in the list of orders, one
for I and for I ′. Both orders were in the state “paid” and ready for shipping.
However, the balance sheet of the merchant contains only the transaction
for I, while nothing is recorded for I ′.

This test case can be turned into an attack by first buying a cheap item
and intercept the redirection URL from PayPal to the store. Then, the
attacker can login again, add an expensive item to the cart and replay the
URL captured before. The store responds with a confirmation page. Even
worse, we verified that the attacker (or any other user) can reuse the same
TokenID and PayerID to complete an arbitrary number of additional fake
transactions. This process is only bounded by the timeout set by PayPal on
the token.

TomatoCart with PayPal Express Checkout - shopping for free

This problem has been identified by 11 different test cases generated with the
waypoint detour pattern. A representative test case is shown in Figure 6.10.
The events in Figure 6.10 shows that during the second user session the
clause ordplaced∧onStore(“Store A”) is satisfied. However, the other clauses
of the formula are not satisfied because neither user acknowledgment nor the
payment were observed.

The manual inspection verified that no payment for I and for I ′ were
done. However, the list of orders contained the order for I ′ in a “paid” state
and ready for shipping.

This test case can be turned into an attack as shown before with the
difference that the attacker ends the first user session at step 7.

osCommerce, OpenCart and TomatoCart with PayPal Express
Checkout - pay less

In osCommerce the test was generated by the waypoints detour, while in
OpenCart and TomatoCart the discovery was done by breaking server-generated
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Figure 6.10: Shopping for free with TomatoCart v.1.1.7

propagation chains.

For osCommerce, the test case is similar to the one shown in Figure 6.10.
The events show that the order made by U2 was placed but no payment
was observed. For OpenCart and TomatoCart, the tests are similar to the
one in Figure 6.8. However, the difference is the chain that is interrupted.
When PayPal Express Checkout is selected, as opposed to PayPal Payments
Standard, the store and PayPal are exchanging the Token via redirections.
Here, the pattern interrupted the chain of Token when the user is redirected
to PayPal for the payment. In both cases the oracle verified that the user U2

has a confirmation and that the clause paid(U2, I
′)∧ toStore(A) is satisfied.

However, the oracle could not verify O(ack(U2, I
′)∧onStore(A)) because the

events observed in the past were O(ack(U2, I) ∧ onStore(A)).
For these cases, the manual inspection confirmed that the order for the

item I ′ was in the list of the orders in status “paid”. However, the balance
sheet of the merchant shows that the payment for I ′ was done by U1, the
user used for the first user session, and not by U2. In this case, U1 authorized
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Figure 6.11: Session fixation in TomatoCart v.1.1.7

PayPal to pay for the amount of I while his/her credit card was charged for
the amount of I ′.

TomatoCart with PayPal Express Checkout - Session Fixation

Our prototype discovered a flaw in which a user could be authenticated
as another user. The test cases were created by breaking the propagation
chain of the parameter sid in two distinct points. Figure 6.11 shows one of
them. The events of Figure 6.11 did not satisfy the logic formula because the
payment I ′ was of a different amount than the one the user acknowledged I.

We investigated the problem and found out that sid carries the same
value of the cookies and breaking it causes a Session Fixation in which, in
our case, U2 results logged in as U1. From that point on U2 can access U1

data. As a consequence of the previous point, U2 (now logged as U1) pays
the cart of U1. However, we couldn’t find any realistic exploitation of this
vulnerability. Supposing that the victim (i.e. U2) “clicks” on an URL crafted
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by the attacker (U1), then the victim could notice the fraud in three different
moments (i) when checking the summary of order, (ii) when providing the
shipping address (it shows the attacker’s one), and (iii) during the payment
because the amount is different.

6.9 Limitations

Our approach uses attack patterns that tamper with the observed dataflow
and workflow. However, it does not test for other types of logic vulnerabilities
such as unauthorized access to resources. Moreover, we did not consider
cases in which the attacker can also play the role of a malicious store, or
the cases in which the attacker can intercept and tamper with the messages
between the application and the payment service. Nevertheless, the approach
could be extended for detecting other types of logic vulnerabilities as well
as supporting other types of attacks. This could be done by adding input
traces of privileged user (e.g., admin), by adding other behavioral patterns,
or by adding new attack patterns.

Second, the test generation favors efficiency over coverage. This means
that only few values are used for each test category, to maximize the possi-
bility to find bugs in a limited amount of time. A more thorough exploration
of the attack space could be used to discover more vulnerabilities, however
this could require a considerable amount of execution time. The focus of
this chapter is to show how an automated approach can be used to find logic
vulnerabilities in many real-word applications, and not to analyze in dept a
single application (a scenario that would also require more input traces to
better explore the application’s logic).

Finally, we modeled logic properties in LTL. The use of LTL enables us
to verify events with time dependency. However, LTL do not support algebra
whose terms appears at different moment of the execution. For example, our
oracles cannot verify whether the payment is the sum of the items the user
added into the cart at some point in the past. There are works that extend
LTL with constraints on integer numbers [BCF+10], and they could be used
by our oracle for checking more fine-grained properties.
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6.10 Conclusions

In this chapter we showed that it is possible to automatically extract a
simplified model of a web application, and that this model is sufficient to
generate test cases that are likely to detect flaws in the logic of the web
application.

The technique we presented aims at automating the manual testing in a
single black-box tool. Our approach does not require the source code nor the
specifications of the web application. It is based on two key concepts: model
inference and an attack pattern-based test case generation. Our approach
starting from a number of network traces infers a model, and then, it extracts
a set of work flow and data flow patterns. Finally, it generates test cases
following a number of attack patterns. The attack patterns reproduce the
behavior of an attacker who intends to tamper with the data flow and the
work flow of the application. We used our prototype to test seven eCommerce
applications executing more than 3100 test cases, 900 of which violated the
expected behavior of the application. As a result, our tool detected ten
previously unknown logic vulnerabilities in the applications under test. Five
of them allow an attacker to pay less or even shop for free.
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Chapter 7

From Academia to Industry

This thesis was carried out within an industrial context. This allowed me to
balance the design of novel security testing techniques with their pragmatic
application to modern industrial-size scenarios. For example, we applied the
methodology presented in Chapter 4 to support SAP engineers in the design
and implementation of security protocols in SAP products. In this activity,
we formally verified their design and implementation decision of the SAML
SSO. Moreover, we developed a tool to automatize this type of analysis
implementing the model checking-based security testing of Chapter 5. The
tool has been used for the formal analysis and security testing of the SAP
implementation of OAuth2.0 protocol.

Structure: This chapter is organized as follows. Section 7.1 introduces
an excerpt of the formal analysis of the SAP implementation of SAML.
Then, Section 7.2 presents the design verification and security testing tool
implementing the techniques in Chapter 5 that was used for the SAP imple-
mentation of OAuth2 [Har12]. This tool was also used for the experiments
in Chapter 5 and Chapter 4.
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7.1 Formal Analysis of SAP NetWeaver New Gen-
eration Single Sign-On

Implementations of security protocols may deviate from the protocol speci-
fications. However, deviations may endanger the overall security goals. For
example, SAML-based SSO for Google Apps until 2008 neglected few but
important message fields that allowed a malicious service provider to imper-
sonate a user at any other service provider.

In Chapter 4, we showed that model checking can be used to analyze
the security of authentication protocols by taking into account the different
protocol flows and the different option configurations. In this section, we
show how the technique of Chapter 4 can be further extended to include
the design and implementation decisions. We applied this technique to the
SAP implementation of SAML SSO supporting development units in taking
decisions of the design.

7.1.1 SAP NetWeaver New Generation Single Sign-On

SAP NetWeaver New Generation Single Sign-On (hereafter NGSSO) is a
component of the SAP software ecosystem implementing SAML SSO. The
implementation provides software components to integrate services into the
federated environment of a SAP customer.

NGSSO offers a configuration environment in which the administrator
sets up SAML federated environments. The configuration of a SAML en-
vironment includes the list of identity and service providers, the supported
profiles, as well as the entity configuration per single profile. For instance,
the administrator could set up an identity provider that accepts signed mes-
sages in the SAML SSO. The configuration environment allows to establish
the trust relationship between entities by setting up the certificate manager
with entities’ certificates. Moreover, the administrator can specify whether
to use SSL/TLS or plain-text TCP sockets. The default values for all these
configuration options reflect the recommendations and requirements of the
SAML standard. However, administrators can change them according to the
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requirements of the deployment landscape.

NGSSO implements the main SAML SSO flows and features the SAML
SSO configuration options ranging from optional message fields, use of SS-
L/TLS at transport layer, and application of encryption and digital signa-
ture. We discussed these options in Chapter 4. In addition to these options,
developers may consider additional features or deviations from the protocol
specifications. In this thesis we describe two of them.

The first is a deviation from the SAML SSO specification in which the
SP is stateless. SAML SSO prescribes that SPs must verify whether the ID
of a response is equal to the ID they issue in the request. As a result, SPs
keep an internal table where to store the authentication requests. We call
this type of SP stateful SPs. However, stateful SPs may be vulnerable to
Denial-of-Service attacks. For example, the attacker can request resources
to the SP until the table is full or the SP runs out of memory. In security-
sensitive scenarios, stateless SPs are preferred to stateful as more resistant
to this type of denial of service.

The second feature is whether the SP uses session cookies during the
protocol execution. SAML SSO does not use HTTP cookies at any step
of the protocol. However, SP may use them to enforce particular policies.
For example, SP would like to enforce that the client forwarding a SAML
response is the same client that asked for the SAML request.

Our analysis included other features, however in this thesis we will not
present all of them.

7.1.2 Analysis

Table 7.1 shows the options, the deviations, and the results of our analysis.
Table 7.1 is structured as follows. Each row is a model with unique identifier
MID. The column from is a pointer to the model from which MID is de-
rived. The remaining columns are grouped in SAML SSO options, Dec., and
Attacks respectively for the options described in Chapter 4, the implemen-
tation decisions, and the result of the analysis. We use y when the option
(resp. decision) is used or when the model checker found a violation; we use
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Table 7.1: Results for the SP-initiated profile

n otherwise.

We used the AVANTSSAR platform for the analysis with the HLPSL++
connector and SATMC validator. We wrote in total 85 formal specifications
in HLPSL++ capturing the standard configuration options of Section 4.2.2,
and the SAP internal design and implementation choices. Our analysis con-
sidered two execution scenarios. The first scenario involved only SAP par-
ticipants, while the second considered an IdP by SAP and a standard SP.
The security properties as well as the security assumptions are the same of
Chapter 4.

Table 7.1 contains part of the results our analysis. It shows only the SP-
initiated models and 2 out of 8 implementation decisions we considered. The
first group of models, e.g. 0fc, 2fc, 4fc, and 5fc are the same in Chapter 4.
The second group of models are new models and they are variation of the
SAML SSO protocol. For example, the model 0a-fc derives from the model
0fc by adding the use of cookies.

Table 7.1 shows the following results. First, the protocol does not satisfy
the property G1. Second, the standard protocol options are not sufficient
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for fixing the flaw. Third, the use of cookies solves the vulnerability. Fourth,
the two implementation decisions do not endanger the security with respect
to the properties G1 and G2. Finally, the security goal G2 is always reached.

Developers can use the results of Table 7.1 for taking decisions about the
design and the implementation. For example, in security-sensitive scenarios,
they may enforce the use of cookie and avoid storing the ID as a Denial-of-
Service countermeasure.

7.2 A Formal Analysis and Security Testing Tool

This section presents a tool that leverages on the design verification and
security testing techniques of Chapter 4 and Chapter 5, and extends them to
support developers in analyzing the security of security protocols. The tool
helps developers, software engineers, and security experts in taking decisions
during the development process and to detect flaws both at the design and
deployment phases.

The current version of the tool targets web-based security protocol. How-
ever, we plan to extend it with the technique of Chapter 6. Our tool is a
set of Eclipse plugins that supports (i) the specification of protocol options
and implementation decisions, (ii) implements the design verification and
model-based security testing, and (iii) supports the verification of multiple
models and the execution of different tests.

Our tool was used for the experiments of Chapter 5 and it is currently
used for supporting SAP developers and engineers in assessing the security
of SAP implementation of OAuth2.

7.2.1 Design Verification

The design verification implements the formal analysis of security protocols
via model checking. The process consists of three steps. First, the user
writes the formal model and specify the security properties. Then, the model
checker explores the model looking for violation of the property. If a violation
is discovered, the model checker returns a counterexample witnessing the
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Figure 7.1: ASLan++ Editor

violation. Finally, the user inspects the counterexample and interprets it.

The tool supports these three steps by integrating parts of the AVANTSSAR
platform. The AVANTSSAR platform offers as well a user interface for this
workflow. However, it is available only as a web application or a set of com-
mand line tools. Our tool aims at integrating AVANTSSAR tools into a
development environment familiar to engineers and developers.

Modeling

Our tool supports the ASLan and ASLan++ formal languages. However,
it can be extended to support other languages such as HLPSL [CCC+04],
Promela [Hol97], or ProVerif [Bla01]. The ASLan and ASLan++ editors
implement features that are typical of an IDE, such as syntax highlighting
and error highlighting. Figure 7.1 shows the ASLan++ editor and the syntax
highlighting features.
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Figure 7.2: The Event Sequence Chart viewer

Verification

Our tool verifies formal models against the security properties via model
checking. The tool currently integrates the SAT-based Model Checker (SATMC [ACC07])
that is executed within the Eclipse workspace. The integration is done via
a programming interface that can be extended to support the other model
checkers such as OFMC [BMV03] and ClAtSe [Tur06a], and SPIN [Hol97].

Visualization

If the model checker discovers a violation, it returns a counterexample. A
counterexample is a sequence of messages that are sent and received by the
protocol principals. Our tool offers a viewer called Event Sequence Chart
viewer (ESC), to show a graphical representation of the counterexample
similarly as seen in Chapter 4. Figure 7.2 shows the ESC viewer. The
viewer displays a timeline for each of the principal, e.g., sp, c, idp, and the
attacker i. Then, it places messages and arrows to show the direction of the
communication. The viewer uses a dashed arrow when the message has been
sent but not received yet.

The viewer offers other features that are not showed in Figure 7.2 such
as attack trace inspection. In particular, it allows the user to inspect the
original output returned by the model checker by simply clicking on the
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messages displayed in the ESC.

7.2.2 Model-based Security Testing

The model-based security testing enables the user to generate and execute
test cases for detecting vulnerabilities in real implementations. This process
consists of five steps. First, the user models the protocol. Second, it uses
specific algorithms for generating test cases. In the third step, the user
defines the implementations under test. Finally, the test cases are executed
and the results are shown to the user.

Modeling

The user develops the models as seen before for the design verification. More-
over, we plan to integrate the inference technique of Chapter 6.

Test Case Generation

The current version of the tools use SATMC for generating test cases as
showed in Chapter 5. However, we plan to add the attack pattern-based test
case generation algorithm of Chapter 6.

Implementation Under Test

The user specifies the implementations under test (IUTs) by using the IUT
editor (see, e.g., Figure 7.3). The IUT is a data structure containing the
mapping between model symbols and concrete values, and the set of protocol
participants under test. Figure 7.3 shows the main parts of the UI in which
the user inputs the mapping, and lists the participants under test.

The list of adapters to be used is included into the mapping table. For
example, in Figure 7.3 we marked the Java classes mapping the abstract
ASLan symbols. Our tool allows the user to implement customized adapters.

Adapter As said in Section 5.3, the ASLan symbol used for modeling pro-
tocol messages are associated to a set of program functions called constructor
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Figure 7.3: The IUT for testing the SAML-based SSO for Google Apps

and selectors. These functions are implemented into the adapter module of
Figure 5.1.

Our tool enables user to develop custom adapters. An adapter is a Java
class that comply with the following convention. First, the class is a public
static Java class. Second, the constructor and parsers functions are static
Java method of the same arity n of the ASLan symbol. Finally, the name
of constructor methods is constr_sym and the name for parser is pij_sym

where sym is the name of the ASLan symbol and 0 ≤ j ≤ n is the position
of the parameter. For example, let us consider the user-specified symbol
httpReq in Section 4.1.2. The adapter for generating and parsing HTTP
requests is the following:

1 public static Http {
2

3 // CONSTRUCTOR
4 public static HttpRequest constr_httpReq(
5 Object methodStr , Object hostPortStr ,
6 Object urlParamStr , Object bodyUrlEncFormEnt) {
7 // [...]
8 }
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9

10 // PARSERS
11 public static String pi1_httpReq(Object request){
12 // [...]
13 }
14

15 public static String pi2_httpReq(Object request){
16 // [...]
17 }
18

19 public static String pi3_httpReq(Object request){
20 // [...]
21 }
22

23

24 public static String pi4_httpReq(Object request){
25 // [...]
26 }
27 }

Test Case Execution

Our tool implements the instrumentation technique described in Chapter 5
for the concretization and execution of test cases. Given a model and a IUT,
the instrumentation technique generates a set of Java program fragments
encoding how to generate and parse protocol messages. A concrete test
case is defined as an abstract counterexample and the set of corresponding
program fragments.

Given a concrete test case and an IUT, the test execution engine inter-
prets the counterexamples and executes the program fragments accordingly.
Moreover, the test execution engine logs the HTTP messages exchanged with
the protocol participants under test. The algorithm is shown in Section 6.5.

Visualization

Our tool allows the user to inspect the messages exchanged between the test
execution engine and the implementation under test. In particular, it im-
plements a view of the HTTP conversations and an HTTP messages viewer.
The former offers a synthesis of the conversation listing the HTTP messages
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Figure 7.4: The Navigator

exchanged. Moreover, it links real HTTP messages with the abstract coun-
terexample, allowing the user to deeply inspect the fields of the message. Our
tool has a built-in web browser to visualize the content of HTTP responses.

7.2.3 Configuration and Implementation decisions

Our tool enables the specification of configuration options and implementa-
tion decisions. This is done through the SPaCIoS navigator. The navigator
implements three main functionalities. First, it allows the specification of
single protocol option (or decision) by means of labels. A label is a text
description and a arbitrary color. Second, it allows for the creation of a
new model (capturing the option) starting from an existing one. Finally, the
navigator keeps track of all the model generated in a derivation tree in which
the roots are the reference models. The tree and the labels are used later on
for the preparation of the test/verification campaign.

The left-hand side of Figure 7.4 is the navigator. The upper part displays
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Figure 7.5: The Test Campaign Manager

the derivation tree in which each model (i.e., node tree) is associated to
labels. A model can have more than one label. The lower part of the
navigator shows the list of labels created during the analysis. They capture
the configuration options of the SAML SSO standard. For comparison, the
right-hand side of Figure 7.4 shows the standard view of Eclipse projects.

7.2.4 Verification and Test Campaign

A verification campaign is a multiple execution of the verification workflow.
This solves the practical problem of verifying several models. Similarly, the
test campaign consists of the executions of several test cases.

Figure 7.5 shows the editor for the test campaign manager. On the left-
hand side, the editor displays the available models. Models are shown in
a tree-like form. On the right-hand side, the editor shows the list of test
cases generated and the IUTs available. The user selects the test cases and
the IUTs, and she runs the campaign. At the end of the execution, the
tool displays the HTTP conversations for off-line analysis. The result of a
campaign is organized into tables. In addition, the tool logs the results and
HTTP messages of all the test for future inspections.



7.3. CONCLUSIONS 161

The result of a verification and/or test campaign is organized into tables
together with the result and/or test verdict as well as the labels (if any).

7.3 Conclusions

In this chapter we showed how some of the techniques presented in this dis-
sertation have been transferred to SAP. We described the security analysis
of the SAP implementation of SAML SSO, supporting developers in taking
design and implementation decisions. In addition, we presented the design
of a tool that eases the security analysis of protocol design, the assessment
of protocol configuration, and the analysis of protocol deviation. In addi-
tion, the tool enables to test real implementations using counterexamples as
abstract test cases.
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Chapter 8
Conclusions and Future Work

In this chapter we summarize the contribution of this thesis with respect to
the objectives that we have set in Section 1.1. Then, we give an overview of
possible future work that could be carried out based on the results presented
in this thesis.

8.1 Contributions

State-of-the-art security testing technologies do not provide automated sup-
port to the discovery of logic vulnerabilities in multi-party business applica-
tions. In this thesis, we have addressed the shortcomings of these technolo-
gies in order to support the automated detection of logic flaws.

We started in Chapter 4 with the design verification via model checking
of the SAML SSO and OpenID authentication protocols. Starting from the
specifications written in natural language, we wrote formal models captur-
ing the behavior of the protocol participants, message structure, and com-
position of participants. We showed that when formal models are available,
model checking can automatically discover flaws into the logic of the protocol
design. However, the discoveries are not directly applicable to the real im-
plementations. Moreover, we showed that there is still a substantial amount
of manual work required to confirm the presence of the flaw in real imple-
mentations. Finally, we discovered that the design flaw can be exploited as
a launching pad of XSS attacks in the SAML-base SSO for Google Apps.
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All our findings have been discussed with members of the OASIS Security
Services Technical Committee and a SAML V2.0 Errata has been redacted
and approved [OAS12].

In Chapter 5 we tackled the first objective of this thesis that is testing
real implementations starting from the attacks returned by a model checker.
We proposed an approach that fills the gap between formal model and real
implementations by the means of model instrumentation. The model instru-
mentation calculates a set of program fragments that encode the message
generation, message parsing, and the check of the incoming messages against
the current state of the participants. The fragments are then executed in
the order established by the counterexample.

The approach of Chapter 4 and Chapter 5 is applicable when the speci-
fications are available. In Chapter 6, we proposed an automated black-box
approach that does not require a model as input. Our approach infers a
model from a set of network traces. Afterwards, the model is used to gen-
erate test cases following a number of attack patterns. Finally, tests are
executed against the real implementation and an oracle decides whether a
property of the application has been violated.

This thesis has been carried out in an industrial context. This allowed us
to balance the design of testing techniques with their pragmatical application
to real world applications. The techniques of Chapter 4 and Chapter 5 have
been implemented in an industrial tool, while the black-box testing technique
of Chapter 6 is implemented as a proof-of-concept. The former tool has
been used to test three implementations of SAML SSO and two of OpenID
detecting the logic flaws discovered by the model checker. Moreover, this tool
has been used to support SAP engineers to evaluate the security of the design
of their SAML SSO implementation. Furthermore, it is currently used to
test the SAP implementation of OAuth 2.0. The second tool implements the
black-box testing approach described in Chapter 6. The tool has been used to
test 12 eCommerce web application deployments discovering ten previously
unknown critical vulnerabilities and about 900 presentations bugs. All the
critical vulnerabilities that our techniques discovered have been responsibly
disclosed.
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8.2 Future Work

The results of this thesis corroborate the claim that model-based testing
can improve the effectiveness of existing security testing methodologies. As
a future work, we would suggest to strengthen the basis of the claim in
two ways. First, the techniques of this thesis could be extended to detect
newer vulnerability classes that are still discovered by manual inspection,
e.g., improper authentication and authorization, and session management
vulnerabilities. Second, it would be interesting to explore how our approach
could be applied to other types of business applications, e.g., billing and
invoicing applications.

In this thesis, we argued that the capability of detecting vulnerabilities
relies on two factors. First, the ability to generate good tests and second,
the ability to decide whether the test execution proves the presence of a
vulnerability. This dissertation mainly focused on the former, while the latter
is implemented by the means of satisfiability of a user-provided LTL formula
modeling the expected behavior. However, the development of LTL formula
can be error-prone. In addition, the development of the LTL formula may
require application-specific knowledge for the extraction of symbols from the
test executions. As a future direction, it would be interesting to investigate
on the automatic generation of the expected behavior. For example, this
could be achieved by using Daikon [EPG+07] to generate likely invariants
or by inferring LTL formulas from the dataflow and workflow behavioral
patterns.

In this thesis, we showed the use of model checking to detect logic flaws
in protocol implementations. As opposed to model checking, the attack
pattern-based approach uses heuristics instead of exhaustive search. The
experimental results in Chapter 6 indicate that this technique is efficient.
However, the empirical evidence should be supported with theoretical argu-
ments. In particular, it would be interesting to compare quantitatively the
two test generation approaches.

Furthermore, it would be interesting to apply the attack pattern-based
approach to generate test cases to test security protocol implementations.



166 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

This may require to extend the set of attack patterns targeting security
protocol attacks and session management vulnerabilities. Similarly, it would
be interesting to extend the application of model checking techniques to the
black-box testing scenario to detect violations in eCommerce applications.
This could be done by translating the navigation graph and the behavioral
pattern in a formal language (e.g., ASLan or ASLan++) and then by using
a model checker in the classical sense in order to generate test cases.
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Appendix A
Résumé en Français

Résumé

Le logiciel d’entreprise multi-partis sont des logiciels distribués sur le Web
qui mettant en œuvre des fonctions collaboratives d’entreprise. Ces types de
logiciels sont les principaux objectifs des attaquants qui exploitent les vul-
nérabilités de logiciels pour les activités malveillantes. La principale classe
de vulnérabilités logicielles sont la conséquence de insuffisante validation
d’entrée fournie par les utilisateurs. Récemment, un type moins connu de
la vulnérabilité, les anomalies logiques, ont attiré l’attention des chercheurs.
Sur la base de la disponibilité des documents, peut être utilisé deux tech-
niques de testing: le model checking, les tests de sécurité de type “boîte
noire”. Malheureusement, le model checking ne prend pas en charge le test
des implémentations actuelles, tandis que de tests de type boîte noire n’est
pas assez sophistiquée pour découvrir les vulnérabilités logique. Dans cette
thèse, nous présentons deux techniques d’analyse modernes visant à résoudre
les inconvénients de état de l’art. Pour commencer, nous présentons la véri-
fication de deux protocoles de sécurité modernes utilisant le model check-
ing. Ensuite, nous nous concentrons sur l’extension du model checking pour
soutenir les tests automatisés d’implémentations. La seconde technique con-
siste en un test de sécurité de boîte noire qui combine l’inférence du modèle,
l’extraction du workflow et des data flow, et, à la fin, une technique de
generatione des tests basés sur les modèles d’attaque. En conclusion, nous
discutons l’application dans un contexte industriel des techniques dévelop-
pées dans cette thèse.
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A.1 Introduction

Le logiciel d’entreprise multi-partis sont des programmes informatiques
qui sont utilisés pour effectuer des fonctions commerciales. Aujourd’hui, les
logiciels d’entreprise sont développées comme une composition de services
de réseau. Chaque service implémente une fonction élémentaire qui est mis
à disposition sur un réseau d’ordinateurs. Ces logiciels sont utilisés par bro-
wesers web, ou par les applications clientes qui s’exécutent sur des ordina-
teurs personnels, ou sur des appareils mobiles. A l’origine, les applications de
l’entreprise étaient accessibles via des réseaux privés, mais sont aujourd’hui
accessibles à travers les réseaux publics tels que, par exemple, l’Internet.

A.1.1 Security Risks of Multi-party Business Applications

La logiciels d’entreprise jouent un rôle important dans de nombreux do-
maines, et sont actuellement utilisés par des millions d’utilisateurs et orga-
nisations pour acheter des biens et services, effectuer des transactions moné-
taires, et de stocker des données confidentielles. Pour cette raison, les logiciels
d’entreprise sont un objectif principale pour les attaquants cyber qui ont un
intérêt à faire un large éventail d’activités criminelles.

A.1.2 The Rise of Logic Flaws

Les vulnérabilités les plus courantes sont causées par une validation in-
suffisante des entrées utilisateur, comme l’injection SQL (SQLI) et Cross-Site
Scripting (XSS). Ces vulnérabilités logicielles ont été largement étudiés par
la communauté scientifique. Un autre type de vulnérabilité qui sont mal étu-
dié a récemment attiré l’attention des chercheurs. Ce type est provoqué par
des erreurs logiques dans le logiciel.

La tendance générale d’incidents cyber qui sont causés par des erreurs
logique, a augmenté ces dernières années. Le nombre de ces incidents en 2012
s’élève à 267, dont 82 dans les applications web de soleil. Le pic a été en 2008
avec 384 cas, dont 143 cas dans les applications web.
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A.1.3 Objectives and Challenges

Les chercheurs ont proposé plusieurs techniques pour découvrir des vulné-
rabilités dans les logiciels d’entreprise multi-partis. Le choix de la technique
dépend de l’information qui est disponible pour l’analyste. Cette information
peut être le code source ou des modèles qui décrivent le comportement du
logiciel. Cependant, les développeurs ne distribuent pas le code source à des
sociétés tierces. Par conséquent, les techniques basées sur la disponibilité du
code source ne peuvent pas être utilisés dans ce domaine particulier.

Lorsque les spécifications du logiciel sont disponibles, l’analyste peut uti-
liser la technique de vérification de modèle pour explorer les états d’un mo-
dèle formel et découvrir erreurs logiques. Cependant, la technique de vérifi-
cation de modèle fournit pas de support pour la présence d’erreurs dans le
logiciel. Enfin, à la fois comme le code source et les logiciels spécifications
ne sont pas disponibles, vous pouvez utiliser les techniques de vérification
de «boîte noire». Cependant, ces techniques n’ont pas la sophistication né-
cessaire pour trouver des erreurs logiques. Cette thèse vise à trouver une
solution aux limitations ci-dessus. Plus précisément, les objectifs de cette
thèse sont les suivants :

Objectif 1 :

Lorsque les modèles de logiciels sont disponibles, nous pouvons
vérifier automatiquement si un logiciel souffre d’une faille logique
qui a été découvert en utilisant la technique de la vérification de
modèle ?

Pour répondre à cette question, nous nous attendons à des défis. Le princi-
pal défi réside dans la traduction entre les éléments abstraits dans un modèle
avec les éléments concrets du monde physique. La complexité de la traduc-
tion dépend de plusieurs facteurs, par exemple par le choix de l’interface
pour interaggire avec le logiciel, à partir de la relation entre le modèle et le
logiciel, et le type de vulnérabilités qui sont découverts.
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Une interface au niveau trop élevé du logiciel peut enlever trop de dé-
tails dell’implementatione. Par conséquent, la traduction nécessite des algo-
rithmes plus puissants pour reconstituer l’information manquante. D’autre
part, une interface de bas niveau peut plus transmettre trop d’informations
et en conséquence le modèle peut être trop détaillée, rendant les techniques
modèle de contrôle inefficace.

La relation entre les modèles et les logiciels peuvent ne pas être néces-
sairement un-à-un. Par exemple, les spécifications d’un protocole standard
de sécurité sont un modèle informel qui décrivent un nombre indéterminé
de mises en œuvre qui ne sont pas nécessairement identiques. Dans la réa-
lisation des essais, une traduction stricte empêcherait sa réutilisation sur
d’autres logiciels en augmentant l’effort pour réaliser les tests.

En fin de compte, les règles de l’abstraction doivent prendre en considé-
ration le type de vulnérabilité que vous souhaitez découvrir. Par exemple,
pour trouver des vulnérabilités XSS, l’analyste insère les paramètres d’entrée
de malveillance dans une URL. Par la suite, l’analyste vérifie si la réponse du
logiciel contient la même entrée. Si les règles de l’abstraction ignorent cette
information dans la réponse, l’analyste peut ne pas être en mesure de juger
si le logiciel est vulnérable.

Objectif 2 :

Lorsque les modèles ne sont pas disponibles, il est possible de
découvrir des vulnérabilités dans la logique du logiciel automati-
quement

Pour découvrir des vulnérabilités dans la logique de logiciels, nous avons
besoin de deux types de modèle. Le premier type de modèle et d’un modèle
de comportement du logiciel. Le deuxième modèle est une description de la
logique qui met en oeuvre le logiciel. Ce modèle peut être obtenu par le mo-
dèle inférence algorithmes déduire un tel modèle en utilisant les observations
sur le logiciel.

La deuxième difficulté est lié à la performance des techniques de tech-
niques de test avec le modèle. Pour découvrir les vulnérabilités logique, nous
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avons besoin des algorithmes qui sont conscients des états internes du logiciel
et de la logique mise en œuvre. Ces algorithmes peuvent être automatisées
techniques de raisonnement, comme la technique de vérification de modèle.
Cependant, les techniques basées sur des modèles comme le model checking
souffrent du problème connu comme l’explosion d’états, dans lequel l’espace
d’état à explorer pourrait etre assez grande pour rendre la tache impossible.

A.2 Case Studies

Cette thèse utilise deux études de cas pour présenter deux nouvelles tech-
niques de test automatique. La première classe concerne les protocoles d’au-
thentification unique. Deux protocoles, OASIS Security Assertion Markup
Language 2.0 Web browser Single Sign-On (SAML SSO) et OpenID Authen-
tication Protocol (OpenID) serviront d’exemples pour illustrer la détection
de failles lorsqu’une spécification de l’application est disponible publique-
ment. La seconde classe concerne les applications de commerce en ligne.
Ces applications seront utilisées pour illustrer les techniques de détection de
failles selon une approche “boite noire”, envisageable lorsque les spécifications
des applications à analyser ne sont pas disponibles.

A.2.1 Case Study 1 : Web-based Single Sign-On Protocols

SSO SAML et OpenID sont deux protocoles de sécurité qui permettent
aux partenaires commerciaux d’identifier leurs utilisateurs à la fois, puis de
leur permettre d’accéder aux services du logiciel de l’entreprise sans avoir be-
soin de les identifier à nouveau. Les implémentations de SAML SSO et Ope-
nID font partie de la célèbre des logiciels tels que SAP NetWeaver Identity
Manager, IBM Tivoli Federated Identity Manager, et Google Apps (Gmail
et Google Calendar). Chaque jour, des millions d’utilisateurs sont identifiés
à l’aide de ces deux protocoles. Par exemple, Google affirme que plus de 5
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millions organisations utilisent OpenID et SAML SSO pour identifier leurs
employés.

OpenID et SAML SSO fournissent trois rôles : un client C, un IdP de
fournisseur d’identité, et un SP de fournisseur de services. Le but de C,
typiquement un navigateur web entraînée par un utilisateur, est d’accéder à
un service ou une ressource offerte par SP. IdP authentifie C et de créer une
affirmation d’authentification (un message spécial utilisé pour identifier les
utilisateurs). Les protocoles d’identification finissent quand SP consomme
l’affirmation généré par l’IdP, et fournit C la ressource demandée.

Á travers une comparaison entre l’identification unique avec les sché-
mas classiques basées sur de multiples mots de passe, il devient naturel de
s’attendre à ce que le SSO SAML et OpenID offrent une propriété de l’au-
thentification mutuelle entre C et SP.

A.2.2 Case Study 2 : eCommerce Applications

Applications Web de commerce électronique sont des produits logiciels
conçus pour vendre et acheter des biens et des services sur le Web. Applica-
tions Web mettent en œuvre des catalogues virtuels et des caddies virtuels
grace à laquelle les clients choisissent les produits qu’ils envisagent d’ache-
ter. Ces logiciels ont un front-end pour les clients et un back-end pour les
employés et les administrateurs. Les clients de créer des commandes via le
front-end. Les employés utilisent le back-end pour traiter les commandes,
collecter les marchandises du magazin, et préparer l’expédition.

Les applications Web à intégrer les systèmes de paiement de commerce
électronique offerts par des tiers. Ceci est mis en pratique par le biais des
interfaces de programmation (API) offerts par des services tels que PayPal,
Amazon Payments, Google Checkout, ou Authorize.NET. L’intégration des
services peut être effectuée à différents points dans le processus d’achat et
dépend également du type de système de paiement choisi.
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A.3 Model Checking

Lorsque les spécifications du logiciel sont disponibles, l’analyste peut uti-
liser des techniques de raisonnement automatisés, comme, par exemple, la
technique de la vérification de modèle. Dans cette thèse, nous avons utilisé
la technique de la vérification de modèle pour l’analyse de la sécurité de
OpenID et SAML SSO. Notre analyse a également examiné les options et
configurations possibles de protocoles. Nos études ont conduit à la décou-
verte d’une logique de vulnérabilité jusqu’alors inconnue. Cette vulnérabilité
pourrait être utilisé par un attaquant d’exploiter l’authentification d’un utili-
sateur ou forcer l’utilisateur à accéder à une ressource sans son consentement
explicite. Nous avons vérifié manuellement que la vulnérabilité existe dans
les implémentations des protocoles disponibles sur Internet. Nous avons testé
trois implémentations de SAML SSO, et deux implémentations de OpenID.
Nous avons découvert que les implémentations quatre sur cinq souffrent de
vulnérabilités que nous avons découvert grace à la vérification de modèle.
En outre, nous avons constaté que la vulnérabilité logique peut être utilisé
comme une rampe de lancement pour les attaques contre les XSS services
SAML de Google. Tous nos résultats ont été discutés avec les membres de
l’organe de normalisation de SAML qui ont élaboré errata.

A.3.1 Formal Analysis

L’analyse formelle de SAML SSO et OpenID a été menée par la plate-
forme AVANTSSAR. Nous avons modélisé protocoles utilisant un langage
formel appelé Aslan + +, un langage formel pour spécifier les architectures
orientées services, les politiques de sécurité et de propriétés de sécurité. En
outre, nous avons utilisé SATMC (un vérificateur de modèle basé sur le
problème de satisfiabilité SAT) pour découvrir les violations de la propriété
de l’authentification mutuelle.
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SAML SSO SATMC découvert une attaque à SAML SSO prouver qu’il
ne pas satisfaire la propriété d’authentification mutuelle. L’attaque est re-
présentée sur la Figure 1.

c idp i sp
S1. GET urii S1. GET uri

A1. HTTP302 idp?
SAMLRequest=AReq(id, sp)
&RelayState=uri

A1. HTTP302 idp?
SAMLRequest=AReq(id, sp)
&RelayState=uri

A2. GET idp?SAMLRequest=AReq(id, sp)&RelayState=uri
idp builds an authenti-
cation assertion AA =
AuthnAssert(id, c, idp, sp)A3. HTTP200 Form(. . .)

A4. POST sp?SAMLResponse=AResp(id, sp, idp, {AA}K−1
idp

)&RelayState=uri

S2. HTTP200 Resource(uri)

Figure 1 – Authentication Flaw of the SAML 2.0 Web Browser SSO Profile

L’attaque se déroule en quatre participants : un client, un IdP honnêtes,
un SP honnête et SP malveillante. L’attaque est la suivante : C commence
le protocole en demandant la ressource à SP malveillante. A ce stade, l’atta-
quant se fait passer pour C et nécessite une ressource différente de SP. SP se
comporte selon le protocole et génère une demande d’authentification, qui est
renvoyé à l’attaquant. Maintenant, l’attaquant répond au client par l’envoi
d’une redirection vers l’IdP contenant AReq(id, sp) et uri au lieu AReq(idi, i)
et urii comme le protocole l’exige. Les étapes restantes sont effectuées selon
le standard. L’attaque provoque le client de consommer une ressource de SP,
mais le client à l’origine demandé des ressources à la SP malveillante.

OpenID SATMC découvert une attaque à OpenID prouver qu’il ne pas
satisfaire la propriété d’authentification mutuelle. L’attaque est représentée
sur la Figure 2



Appx. VIII

c idp i sp
S1. GET urii S1. GET uri

A1. HTTP302 idp?AReq(c, idp,H, sp)A1. HTTP302 idp?AReq(c, idp,H, sp)

A2. GET idp?AReq(idp,H, sp)
idp builds an authenti-
cation assertion AA =
AuthnAssert(idp, c, sp,H)A3. HTTP200 Form(. . .)

A4. POST sp, {AA}K

S2. HTTP200 Resource(uri)

Figure 2 – Authentication Flaw of the OpenID SSO Protocol

A.4 From Model Checking to Security Testing

Dans le section A.3, nous avons montré que lorsque les spécifications
du logiciel sont disponibles, la technique de la vérification de modèle peut
être utilisé pour la découverte de vulnérabilités dans la logique. Cependant,
les attaques détectées par le vérificateur de modèle démontrent la présence
d’une vulnérabilité dans les modèles qui ne sont pas nécessairement reflété
dans une vulnérabilité de logiciel. En outre, le vérificateur de modèle n’offre
pas de support pour les implémentations de test. Par conséquent, les attaques
sont normalement interprétées et exécutées sur le système réel manuellement.
Dans ce section, nous proposons une technique pour les tests automatisés
qui est entraîné par la vérification de modèle, et est en mesure de vérifier la
présence de vulnérabilités dans les implémentations de protocoles de sécurité.
Nous avons appliqué notre technique sur deux implémentations de SAML
SSO, et deux implémentations de OpenID. Les expériences montrent que
notre technique de test est capable de détecter les vulnérabilités SAML SSO
et OpenID dans les systèmes réels.

Architecture Un aperçu de notre approche est illustrée à la Figure 3.
Notre approche prend en entrée un modèle, une propriété de sécurité, et un
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Figure 3 – Aperçu de notre approche

implementatione sous test (IUT). L’IUT est une structure de données qui
contient une correspondance entre les symboles du modèle théorique et les
valeurs réelles. En outre, il contient également les participants du protocole
qui sont en cours de test. Notre approche comprend les étapes suivantes :

Model Checking A partir d’un modèle formel du protocole et une descrip-
tion des propriétés de sécurité prévu, le model checker explore systéma-
tiquement les états du modèle à constater des violations de propriété.
Les violations sont identifiées par des contre-exemples qui sont utilisés
comme des cas de test abstrait (abstract test case).

Instrumentation L’instrumentation calcule automatiquement et fournit
l’exécuteur de tests (Test Execution Engine) un ensemble de fragments
de programme qui codent la procédure de vérification (ou générer) les
messages entrants (ou sortant) grâce à l’utilisation des fonctionnalités
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offertes par l’adaptateur (Adapter) spécifiée dans l’IUT.

Execution L’exécuteur de tests (TEE) exécute des fragments de programme
dans l’ordre établi par le cas de test abstrait. IUT spécifie ou les parti-
cipants sont en cours de test (SUT) et qui, au contraire, seront simulées
par TEE. Le verdetetto indique si le TEE a réussi à reproduire le scé-
nario de test. Il est important de noter que si le verdict est négatif,
notre approche peut être répété en exigeant le model checker un autre
cas de test.

A.5 Black-Box Detection of Logic Flaws

Dans les sections précédents, nous avons vu que, à partir de la spéci-
fication formelle d’un protocole, il est possible d’automatiser le test de la
sécurité d’une application réelle. Cependant, les spécifications qui décrivent
l’évolution de l’état interne et le comportement attendu de l’utilisateur dans
les applications Web, sont rarement disponibles. Le manque de documenta-
tion augmente la difficulté de la découverte de vulnérabilités logiques. Dans
ce section, on propose une technique pour la découverte de vulnérabilité
logique dans le cas ou les spécifications du logiciel ne sont pas disponibles.
Nous avons appliqué notre technique sur sept applications de commerce élec-
tronique, exécutant plus de 3100 cas de tests, dont 900 ont violé le compor-
tement attendu. Nos tests ont découvert 10 vulnérabilités logiques inconnus,
dont cinq auraient permis à un attaquant de payer un montant inférieur ou
même d’acheter en ligne gratuitement.

Le “OWASP Testing Guide v.3.0” propose une approche composée de
4 étapes manuelles pour vérifier la présence de vulnérabilités logiques dans
les applications web en tenant compte de l’application comme une «boîte
noire». Tout d’abord, le testeur étudie l’application à travers l’exploration
des pages, et lisant la documentation disponible (comme l’aide en ligne). Par
la suite, le testeur prépare les informations nécessaires à la conception des
tests, y compris le flux de travail et le flux de données que le testeur a observé
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dans la première phase. Après cela, le testeur procède à la conception des
tests. Par exemple, les testeurs ont créé les tests qui subvertissent l’ordre
de quelques étapes de de l’application, ou des tests qui permettent d’éviter
certaines étapes de de l’application. Enfin, le testeur prépare l’environnement
de test, exécute les tests, et évalue le résultat.

L’approche présentée dans ce section vise à automatiser les étapes ci-
dessus dans un seul outil pour les tests de boîte noire. Tout d’abord, l’ap-
proche, à partir d’un ensemble des conversations HTTP, déduit un modèle
de l’application en regroupant les ressources HTTP qui se réfèrent à la même
"étape" dans le flux de travail. Ensuite, notre technique analyse le modèle
et en extrait un ensemble de comportements liés à flux de travail et l’ap-
plication de flux de données. Après, notre approche utilise un ensemble de
schémas d’attaque pour générer les cas de test. L’approche se termine par
l’exécution de cas de test contre une application web et utilise un oracle de
décider si la logique de l’application a été violé.

Dans cette section, nous nous sommes concentrés sur un ensemble d’ac-
tions que l’attaquant peut exécuter contre l’application : Répétez les opéra-
tions, éviter les opérations, renverser l’ordre des opérations, et, enfin, d’échan-
ger des valeurs entre les sessions utilisateurs. Pour chaque type d’attaque,
nous avons conçu un schéma d’attaque. Un exemple de ces schémas d’attaque
sont présentées dans la Figure 4.

Nous avons effectué des tests sur des applications de commerce électro-
nique indiquées dans le Tableau 1. Notre outil peut également être utilisé
pour tester l’application de commerce électronique en ligne (comme la bou-
tique Amazon). Cependant, ces tests n’auraient pas été éthique et pourraient
nuire à Amazon, les concessionnaires et les clients.

L’application de nos modes de schémas d’attaque extraites des traces
d’entrée, notre outil a généré environ 3100 cas de test, une moyenne de 262
par application. Le nombre de cas de test générés pour l’application est
résumée dans le Tableau 2.

6,6% de nos cas de test qui ont été exécutées avec succès correspond
aux vulnérabilités. Ces cas ont été confirmés manuellement par l’inspection
des registres du marchand et l’acheteur. 93,4% des cas de test ont trouvé
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Table 1 – Popularity index
WebApp Installations WebApp Installations
OpenCart 9,710,000 TomatoCart 119,000
Magento 3,130,000 osCommerce 80,500
PrestaShop 650,000 AbanteCart 21,200
CS-Cart 260,000

Total 13,970,700

des bugs dans la mise en oeuvre d’applications web. Dans tous ces cas, les
tests ont été effectués jusqu’à la dernière ressource contenant un message de
félicitations pour l’achat de produits.

A.6 Migration to SAP

Cette thèse a été principalement développée dans les laboratoires de
SAP. Cela m’a permis de équilibrer le développement de nouvelles techniques
d’analyse de leur application de scénarios industriels modernes. D’une part,
j’ai appliqué les techniques de tests de protocoles de sécurité et des applica-
tions Web réelles découverte de nouvelles vulnérabilités logique. Deuxième-
ment, les résultats ont migré vers SAP afin de soutenir les ingénieurs de SAP
dans (i) d’analyser la sécurité des configurations de protocoles de sécurité et
(ii) de tester les implémentations pour trouver des vulnérabilités logiques.

SAP NetWeaver New Generation Single Sign-On SAP NetWea-
ver New Generation Single Sign-On (ci-apres NGSSO) met en oeuvre les
principaux flux de SAML SSO, ses options, l’utilisation de SSL/TLS, et le
décodage de messages cryptés et vérification de la signature digitale. En
outre, les ingénieurs ont considéré SAP autres caractéristiques et les écarts
par rapport aux spécifications du protocole. Dans ce section, nous allons
décrire brièvement deux de ces.

La première différence par rapport à SAML SSO est l’utilisation de SPs
sans état. SAML SSO fournit que les SPs convient de vérifier si l’ID des
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Table 3 – Results
WebApp Viol. Bugs Vuln.
AbanteCart Std 17 16 1
Magento Exp 65 65 -

Std 126 126 -
OpenCart Exp 58 46 12

Std 30 30 -
osCommerce Exp 42 22 20

Std 35 34 1
PrestaShop Exp - - -
TomatoCart Exp 90 65 25

Std 24 24 -
CS-Cart Exp 313 313 -

Std 109 108 1
Total 909 849 60

100% 93.4% 6.6%

réponses sont égaux à l’ID de la demande. Par conséquent, les SPs maintenir
une table interne où stocker ces informations. Ces types de SPs sont appelés
SPs qui ont l’état interne. Toutefois, les SPs avec l’etat peuvent être vul-
nérables à des attaques par déni de service dans laquelle un attaquant peut
consommer la mémoire de la SPs envoyant des requêtes faux. Par conséquent,
dans certains scénarios, les SPs qui sont sans état interne, sont préférés en
raison de leur résistance à ces types d’attaques.

La deuxième différence est le contrôle des cookies de session au cours
de l’exécution du protocole. SAML SSO ne nécessite pas l’utilisation des
cookies dans aucune partie du protocole. Cependant, la SP peut utiliser des
cookies pour mettre en œuvre des politiques particulières. Par exemple, le
SP voudrait s’assurer que le navigateur Web qui transmet la réponse SAML
est le même navigateur Web qui transmet les demandes SAML.

A Formal Analysis and Security Testing Tool Nous avons déve-
loppé un outil qui met en oeuvre les techniques de vérification et de test
montré dans les section A.3 et section A.4. En outre, nous avons étendu
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Figure 5 – ASLan++ Editor

ces techniques pour aider les ingénieurs d’analyser et de tester différentes
configurations du même protocole.

A.7 Conclusions

L’état de l’art des techniques d’analyse ne fournit pas de support pour
la découverte automatique des vulnérabilités dans la logique de l’entreprise
de logiciels. Dans cette thèse, nous avons développé des techniques d’ana-
lyse pour résoudre les problèmes de ces technologies afin de permettre la
découverte automatique des vulnérabilités logiques.

Dans la section A.3, nous avons montré une application de la technique
de la vérification de modèle de protocoles de sécurité SSO SAML et OpenID.
A partir des spécifications des protocoles, nous avons écrit des spécifications
formelles qui capturent le comportement des participants, la structure des
messages, et la composition des participants. Nous avons montré que la vé-
rification de modèle peut détecter automatiquement les vulnérabilités dans
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la logique des protocoles. Cependant, les résultats ne sont pas directement
applicables aux implémentations. Nos résultats sont, cependant, été discutés
avec les membres de l’organisation OASIS. En conséquence, OASIS a publié
un erratum pour SAML.

Dans la section A.4, nous avons abordé le premier objectif de cette thèse,
à savoir exécuter des tests contre les implémentations à partir des attaques
détectées par le vérificateur de modèle. Nous avons proposé une approche
qui comble le fossé entre les modèles formels et système réel grace à l’ins-
trumentation du modele. L’instrumentation du modele consiste à calculer
automatiquement un ensemble de fragments de programmes qui codent pour
la génération et la vérification de messages. Les fragments sont finalement
exécutés sur la base de l’attaque identifié par le vérificateur de modèle.

Les techniques des section A.3 et section A.4 ne sont applicables que
lorsque les spécifications sont disponibles. Dans la section A.5, nous avons
proposé une technique automatique pour le modèle de boîte noire qui ne né-
cessite pas d’apport. Notre approche en déduit un modèle de conversations
HTTP. Par la suite, le modèle est utilisé pour générer les cas de test en fonc-
tion d’un certain nombre de modes d’attaque. Enfin, les tests sont effectués
contre l’application Web, et un oracle décide si la logique de l’application a
été violé.

Cette thèse a été développée principalement dans un contexte industriel.
Les techniques présentées dans la section A.3 et section A.4 ont été intégrés
dans un outil industriel, alors que la technique de la section A.5 est une
preuve de concept. L’outil industriel a été utilisé pour tester quatre implé-
mentations de SSO SAML et OpenID. En outre, cet outil a été utilisé dans
SAP pour évaluer la sécurité des protocoles de sécurité mis en place par
SAP. Le deuxième outil a été utilisé pour tester 12 application de commerce
électronique Web, qui a découvert 10 vulnérabilités uniques logique, et 900
bugs. Tous les vulnérabilités critiques ont été signalées aux développeurs.
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