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ABSTRACT

While one-dimensional Hidden Markov Models have been
very successfully applied to numerous problems, their ex-
tension to two dimensions has been shown to be exponen-
tially complex, and this has very much restricted their usage
for problems such as image analysis.
In this paper we propose a novel algorithm which is able

to approximate the search for the best state path (Viterbi
decoding) in a 2D HMM. This algorithm makes certain as-
sumptions which lead to tractable computations, at a price
of loss in full optimality. We detail our algorithm, its imple-
mentation, and present some experiments on handwritten
character recognition.
Because the Viterbi algorithm serves as a basis for many

applications, and 1D HMMs have shown great 
exibility
in their usage, our approach has the potential to make 2D
HMMs as useful for 2D data as 1D HMMs are for 1D data
such as speech.

1. INTRODUCTION

Hidden Markov Models (HMM) have long been used to e�-
ciently model uni-dimensional data (sequences of symbols),
in particular in speech recognition systems. While it is
tempting to bene�t from this e�ciency for the modeling
of two-dimensional data such as images, e�orts to achieve
this have been limited by the increase in complexity that
occurs when going from one to two dimensions.
In previous work [6], using Hidden Markov Models for

image analysis, it was shown that these tools allowed for

exibility in designing image models. However, these mod-
els also exhibited a lack of geometrical consistency which
generated problems for creating `semi-rigid' models. This
was due to the fact that the two-dimensional structure of
the image was taken at two successive levels (i.e. pixel and
line levels).
The work of Levin and Pieraccini [5] introduced the idea

of planar hidden markov models where the complexity of
the problem is reduced by applying image alignment con-
straints. Miller and Hunt [12] described a sub-optimal 2D
Viterbi algorithm for bilevel image reconstruction. Their
approach is in fact based on a 1D "column-based" Viterbi
that uses decision feedback from previous rows. Recently, Li
et al. [11] proposed an 2D-HMM algorithm for image classi-
�cation in which HMM parameters are estimated using the
EM algorithm and the 2D Viterbi.

In this paper, we present a new approximation of the 2D
Viterbi algorithm that allows to compute an approxima-
tion of the best path within a 2D HMM, while avoiding the
exponential growth in computation. In section 2, we intro-
duce the concept and theory of the procedure. We present
implementation details in section 3. We illustrate the use
of this procedure in on some simple real world examples in
section 4. Finally, in section 5 we conclude on our �ndings
and present our future research e�orts.

2. A NOVEL 2D VITERBI PROCEDURE

One-dimensional Hidden Markov Models (1D HMM) are
�nite state machines which emit sequences of symbols ac-
cording to a probabilistic mechanism. The state occupied
by the machine at time t is a random variable qt, and the
evolution is controlled by the output probability distribu-
tions P [otjqt = s] = P [otjs] and the transition probabilities
P [qt = sjjqt�1 = si] = P [sjjsi].
Two-dimensional Hidden Markov Models (2D HMM) can

be de�ned in a similar way. The output observation is an
array of symbols oxy, for example the pixels of an image
scanned using a line per line ordering, which are emitted
based on the current state qxy. The output probability
distributions of the model are now P [oxyjqxy = s]. Be-
ing two dimensions, we expect the transition probability
to depend on horizontal and vertical neighbors, such as
P [qxy = skjqx�1;y = si; qx;y�1 = sj] = P [skjsi; sj], for local
context dependency.
It is easy to see that such a model has similar

theoretical properties as a 1D HMM, because a 2D
HMM is equivalent to a 1D HMM where the states are
(q1;y; q2;y ; :::qx�1;y; qx;y�1; :::qX;y�1). However, such the
equivalent model has a number of states which is now N

X,
(if N is the number of states in the model and X is the
length of a line), and this leads to an exponential increase
in the amount of computation that is needed for the regular
Baum-Welch and Viterbi algorithms.

2.1. Notations

The two-dimensional data is represented by the array of
symbols oxy, for example the pixels of an image. The 2D
HMM has states (s1; s2:::sS), and probability distributions
bi(o) = P (ojsi) and aijk = P [skjsi; sj]. The random vari-
able used to indicate the state used to emit symbol oxy is
qxy.



In the intermediate steps of the algorithm, we are inter-
ested by the emission of the block of pixels Oxy = fouv ; 1 �
u � x ; 1 � v � yg corresponding to the state block
Qxy = fquv ; 1 � u � x ; 1 � v � yg. Note that com-
puting P [OxyjQxy] is straightforward because the states are
known (after a state has been chosen as local context for
the border pixels).
We will compute the best path for block Oxy from the

combination of previously obtained values. For that pur-
pose, we need to introduce the following intermediate no-
tations:

� p = (x; y), q = qxy, o = oxy,

� p
0 = (x� 1; y� 1), q0 = qx�1;y�1, o

0 = ox�1;y�1,

� p1 = (x; y � 1), q1 = qx;y�1, o1 = ox;y�1, Q1 =
fquv ; 1 � u � x ; 1 � v � y� 1g,

� p2 = (x � 1; y), q2 = qx�1;y , o2 = ox�1;y, Q2 =
fquv ; 1 � u � x� 1 ; 1 � v � yg,

We will also need the following:

� Rp0 is one state con�guration at positions f(u; y) ; 1 �
u < x � 1g (i.e. along the row containing p

0 = (x �
1; y � 1), until the position (x� 2; y � 1)).

� Cp0 is one state con�guration at positions f(x; v) ; 1 �
v < y � 1g (i.e. along the column containing p

0 =
(x� 1; y � 1), until the position (x� 1; y � 2)).

These notations are graphically illustrated in �gure 1.
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Figure 1: Notation for the 2D Viterbi procedure.

2.2. Approximation

Let us de�ne Vxy(k) to be the maximum probability of the
emission of output block Oxy over all possible state blocks
Qxy with qxy = sk. We can decompose

Vxy(k) = max
i;j�N

V2D(x; y; i; j)aijkbk(oxy);

where V2D(x;y; i; j) is the maximum probability over all
state blocks Qxy � fqxyg with qx;y�1 = si and qx�1;y = sj

corresponding to the emission of pixels in Oxy � foxyg. In
order words, we �rst produce the output block except the
last pixel oxy with states si sj as neighbors for the last

pixel, then move in state sk in position x; y and emit the
last pixel oxy.

In turn, V2D(x; y; i; j) can be decomposed as

V2D(x; y; i; j) = max
l�N;R

p0 ;Cp0

�
VA(p

0
; l;Rp0 ; Cp0) �

T2D(q1 = sijp
0

; l;Rp0 ; Cp0)�

T2D(q2 = sjjp
0

; l;Rp0 ; Cp0 )
�

(1)

where

� VA(p
0
; l;Rp0 ; Cp0) is the maximum probability over all

state blocks Qx�1;y�1 corresponding to the emission of
Ox�1;y�1 with state sl at position p

0 = (x� 1; y � 1)
and containing the con�gurations of states Rp0 and Cp0

on its borders.

� T2D(q1 = sijp
0
; l;Rp0 ; Cp0) is the maximum probability

of over all state blocks Q1 = Qx;y�1 corresponding to
Ox;y�1 with qx;y�1 = si given the values of sl at posi-
tion p

0, and given that Q1 = Qx;y�1 should comprise
the state con�gurations Rp0 and Cp0 .

The previous formula relates the construction of the best
state block for output block Oxy from state blocks corre-
sponding to smaller output blocks Ox�1;y�1. However, an
exact usage of Equation 1 is di�cult to implement in prac-
tice, since it requires to store all possible con�gurations for
q0, Rp0 and Cp0 .

We therefore introduce the following approximations

V2D(x; y; i; j) ' max
k�N

��
max

R
p0 ;Cp0

VA(p
0

; k;Rp0 ; Cp0)

�
�

�
max

R
p0 ;Cp0

T2D(q1 = sijp
0

; k;Rp0 ; Cp0 )

�
�

�
max

R
p0 ;Cp0

T2D(q2 = sj jp
0

; k;Rp0 ; Cp0 )

��

Let us de�ne VH(q1 = sijq
0 = sk) as the maximum prob-

ability over all state blocks Q1 containing the state q0 = sk

at position p
0 = (x � 1; y � 1) and the state q1 = si at

position p1 = (x; y� 1), while emitting Ox;y�1.

VH(q1 = sijq
0 = sk) ' max

R
p0
;C

p0

VA(p
0

; k;Rp0 ; Cp0 ) �

max
R
p0
;C

p0

T2D(q1 = sijp
0

; k;Rp0 ; Cp0)(2)

Now, by de�nition,

max
R
p0 ;Cp0

VA(p
0

; k;Rp0 ; Cp0 ) = Vp0 (k) = Vx�1;y�1(k)

so that,

max
R
p0 ;Cp0

T2D(q1 = sijp
0

; k;Rp0 ; Cp0) '
VH(q1 = sijq

0 = sk)

Vp0 (k)

When detailing the case of p2 = (x � 1; y), we de�ne in
the same manner VV(q2 = sijq

0 = sk) as the maximum
probability over all state blocks Q2 containing the state
q
0 = sk at position p

0 = (x� 1; y � 1) and the state q2 = si



at position p1 = (x� 1; y), while emitting Ox�1;y . In this
context,

max
R
p0
;C

p0

T2D(q2 = sijp
0

; k;Rp0 ; Cp0) '
VV(q2 = sijq

0 = sk)

Vp0 (k)

We therefore obtain,

V2D(x; y; i; j) = max
k�N

�
VH(qx;y�1 = sijqx�1;y�1 = sk)

Vx�1;y�1(k)
�

VV(qx�1;y = sjjqx�1;y�1 = sk)

Vx�1;y�1(k)

�

Finally, combining all equations, we obtain the 2D
Viterbi recursive formula,

Vxy(i) = max
j;k;l�N

�
VH(q1 = sjjq

0 = sl)VV(q2 = skjq
0 = sl)

Vx�1;y�1(l)
�

P [qxy = sijqx;y�1 = sj; qx�1;y = sk]]P [oxyjqxy = si]

which can be equivalently rewritten as

Vxy(i) = max
l�N

�
max
j;k�N

	xy(i; j; k; l)

�
bi(oxy); (3)

where,

	xy(i; j; k; l) = aijk �

�
VH(qx;y�1 = sjjqx�1;y�1 = sl)

Vx�1;y�1(l)
�

VV(qx�1;y = skjqx�1;y�1 = sl)

Vx�1;y�1(l)

�
(4)

These equations now create a link between the resulting
most likely state at position p

0 = (x� 1; y � 1) and that at
position p = (x; y) via the enumeration of all combination
of states at positions p1 = (x; y � 1) and p2 = (x � 1; y).
Equation 3 and 4 will form the core of the procedure we
propose for retrieving the most likely state block from a
given output block O.

3. 2D VITERBI PROCEDURE

3.1. Forward pass

We now detail the practical implementation of our 2D
Viterbi procedure. A model � is represented by the fol-
lowing parameters:

� N , the number of states in the model.

� V, the vocabulary (i.e. the set of all possible values of
an observation). V can possibly be of in�nite size.

� A = faijk = P [qxy = sijqx;y�1 = sj; qx�1;y = sk] ; 1 �
i � N; 1 � j � N; 1 � k � Ng, the 2D-transition
probability values.

� B = fbi(v) = P [oxy = vjqxy = si] ; 1 � i � N 8v 2
Vg, the set of state output probability values.

� � = f�i = P [qxy = sijx = 1 or y = 1] ; 1 � i � Ng,
the set of initial state probability which determine the
(upper and left) border constraints.

The following intermediate variables are calculated during
the forward process,

� Vxy(i) is the maximum probability of obtaining a state
block Qxy containing the state q = si at position p =
(x;y), while emitting Oxy,

� VH(qx;y�1 = sjjqx�1;y�1 = sl) is the maximum prob-
ability of obtaining a state block Q1 containing the
state q0 = sl at position p0 = (x � 1; y � 1) and the
state q1 = sj at position p1 = (x;y�1), while emitting
Ox;y�1,

� VV(qx�1;y = skjqx�1;y�1 = sl) is the maximum prob-
ability of obtaining a state block Q2 containing the
state q

0 = sl at position p
0 = (x � 1; y � 1) and the

state q2 = sk at position p2 = (x�1; y), while emitting
Ox�1;y ,

� 	xy(i; j; k; l) is the probability of obtaining one state
block Q containing the states si, sj , sk and sl at po-
sitions p = (x;y), p1 = (x;y � 1), p2 = (x � 1; y)
and p

0 = (x � 1; y � 1), respectively, while emitting
Oxy � foxyg.

Similarly to the 1D Viterbi procedure, the values of V , VH,
and VV are de�ned recursively and calculated online during
the forward pass.

3.2. Backward pass

The retrieval of the best state block Q
� which emits the

output O is possible via the storage of states which lead to
maximal values during the forward pass. For example, we
have

P [Oj�] = max
i

VXY (i) (5)

so that the index which achieves the maximum de�nes the
�nal state q�XY of the best state block. From the �nal state,
we can recover the previous two neighbors (given the �-
nal state), then retrieve backwards all states from the last
row and column, �nally all internal states (in reverse order,
given their successors), through the array of indices

�xy(i; j; k) = l
� = argmax

l
[	xy(i; j; k; l)]with 1 � i � N;

2 � x � X � 1; 2 � y � Y � 1

4. EXPERIMENTS

4.1. Segmentation

We have used our procedure to train 2D HMM on images
of handwritten characters. One application is the segmen-
tation of such images. In the following example, we use a
5 state 2D HMM, with initial transition probabilities com-
puted from the transition of the �ve regions of shown in
�gure 2. Note that this initialization induces some con-
straints on the boundaries between regions, as certain tran-
sition probabilities will be set to zero and will prevent cer-
tain combination of state neighborhoods to occur. After
training on character images, the best state block provides
a segmentation of training images shown in �gure 3.
It is visible that the initial constraints produce a model

which can easily �t the shapes on �rst row, but is less ade-
quate for the shapes in the second row, resulting in a some-
times awkward segmentation of these images.



            

Figure 2: Initial segmentation

Figure 3: Segmentation using the completed model

4.2. Recognition

In this experiment, we use a portion of the NIST database
(see �gure 4) to train a generic 10x10 model on a set of
instances for each digit from 0 to 9. 10 instances of each
�gures are taken as training set, to build 10 HMM models
�i, i = 0; : : : ; 9.

Figure 4: Handwritten character training database

Recognition is performed by searching for the best model
which emits an unknown character image

n = arg max
i

P [Ij�i]

As an example, the sequence of handwritten characters
shown in �gure 5 is recognized as 9 7 7 3 8 6 9 7 2 3.

The system incorrectly identi�ed three of the ten char-
acters. The errors have occured on the �rst characters \4",
\1", \3". When comparing with the database these errors
are consistent with the training set (i.e. for example, the
�rst \4" is very similar to some instances of \9").

5. CONCLUSION

We have presented a procedure which approximates the
computation of the Viterbi path in a 2D HMM. This opens
new possibilities for the modelization of 2D data such as
images, using probabilistic procedures which takes into ac-
count the local context of each pixel.

Figure 5: Example of a test �gure string

We have illustrated how this technique can be applied
to handwritten optical character recognition. In the future,
we intend to evaluate the sensitivity and performance of our
algorithm on larger problems, and extend other 1D HMM
procedures to this 2D HMM framework.
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