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Abstract

The cost of Byzantine Fault Tolerant (BFT) storage is the main concern preventing its adoption in
practice. This cost stems from the need to maintain at least 3t+ 1 replicas in different storage servers in
the asynchronous model, so that t Byzantine replica faults can be tolerated.

In this paper, we present MDStore, the first fully asynchronous read/write BFT storage protocol that
reduces the number of data replicas to as few as 2t + 1, maintaining 3t + 1 replicas of metadata at
(possibly) different servers. At the heart of MDStore store is its metadata service that is built upon a
new abstraction we call timestamped storage. Timestamped storage both allows for conditional writes
(facilitating the implementation of a metadata service) and has consensus number one (making it im-
plementable wait-free in an asynchronous system despite faults). In addition to its low data replication
factor, MDStore offers very strong guarantees implementing multi-writer multi-reader atomic wait-free
semantics and tolerating any number of Byzantine readers and crash-faulty writers.

We further show that MDStore data replication overhead is optimal; namely, we prove a lower bound
of 2t + 1 on the number of data replicas that applies even to crash-tolerant storage with a fault-free
metadata service oracle. Finally, we prove that separating data from metadata for reducing the cost of
BFT storage is not possible without cryptographic assumptions. However, our MDStore protocol uses
only lightweight cryptographic hash functions.



1 Introduction

Byzantine Fault Tolerant (BFT) protocols are notoriously costly to deploy. This cost stems from the fact
that, in many applications, tolerating Byzantine faults requires more resources than tolerating less severe
faults, such as crashes. For example, in the asynchronous communication model, BFT read/write storage
protocols [23] are shown to require at least 3t + 1 replicas in different storage servers so that t Byzantine
server faults can be tolerated [30]. This is to be contrasted with the requirement for 2t + 1 replicas in the
asynchronous crash model for protocols used in production cloud-storage systems. This gap between crash
tolerance and BFT is one of the main concerns for practical adoption of BFT systems.

In this paper we show that this gap may in fact be significantly smaller. Namely, we present MDStore, a
novel asynchronous message-passing read/write storage emulation that reduces the number of data replicas
to only 2t + 1, maintaining 3tM + 1 metadata replicas at (possibly) different servers. Here, t and tM are
thresholds on the number of Byzantine data and metadata replicas, respectively. To achieve lower repli-
cation cost, MDStore does not sacrifice other functionalities. Namely, MDStore implements multi-writer
multi-reader (MWMR) atomic wait-free storage [18, 23] that tolerates any number of Byzantine readers
and crash-faulty writers. MDStore is the first asynchronous BFT storage protocol that does not assume
any trusted components to reduce its resource cost (unlike [9, 10, 21, 31]). Moreover, being a fully asyn-
chronous read/write storage protocol, MDStore is fundamentally different from the existing consensus [17],
state-machine replication (SMR) [25, 34] and SMR-based storage protocols [2], which employ the similar
separation of control and data planes and which are all subject to the FLP impossibility result [15] and
require partial synchrony [13].

MDStore has modular architecture: a client reads and writes metadata (which consists of a hash of the
value, timestamp and pointers to data replicas that store a value) through the abstraction of a metadata
service. Our implementation of metadata service consists of an array of SWMR safe wait-free storage
objects [23] and a novel MWMR atomic wait-free storage object variant, which we call timestamped storage.
In an array of safe storage, indexed by timestamps, MDStore stores hashes of data values, whereas in atomic
timestamped storage, MDStore stores pointers to t + 1 (out of 2t + 1) data replicas storing the most recent
value. On the other hand, data replicas simply store timestamp/value pairs.

Our timestamped storage object is very similar to classical atomic [23] (or linearizable [20]) read/write
storage, except that it also exposes a timestamp attached to the stored values to clients, allowing for condi-
tional writes, i.e., writes that take effect conditional on a timestamp value. Interestingly, despite its support
of conditional writes, timestamped storage has consensus number [18] equal to one, which makes an imple-
mentation of the metadata service possible in the asynchronous model despite faults. Indeed, we show that
the MDStore metadata service can be implemented from simple asynchronous BFT SWMR safe [1, 16, 28]
and SWMR atomic [3,7,11,29] storage protocols using 3t+ 1 replicas for tolerating t faults; in the context
of MDStore, these replicas are exactly the 3tM + 1 metadata replicas.

Complementing the MDStore protocol, this paper also establishes lower bounds on the number of data
replicas that are needed for asynchronous storage implementations with logically separated metadata. In
more detail:

• We prove that at least 2t+ 1 data replicas are necessary for implementations that leverage a metadata
service, even if data replicas can fail only by crashing. This shows not only that MDStore is optimally
resilient, but also that it incurs no additional data replication cost compared to crash-tolerant storage.
The lower bound of 2t + 1 has a very broad scope: it applies already to obstruction-free [19] single-
writer single-reader safe storage [23] (and can be extended to eventual consistency [32]). Moreover,
for the purpose of the lower bound, we define a metadata service very loosely as a fault-free oracle that
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provides arbitrary functionality with the single limitation that it cannot store or forward data values,
roughly speaking. We believe that this definition of a metadata service is of independent interest.

• We show that reducing the cost of BFT storage by separating metadata and data requires to limit the
computational power of a Byzantine adversary. In the practically relevant case of a bounded adversary
that cannot subvert collision resistance of cryptographic hash functions, MDStore shows that 2t + 1
data replicas are sufficient. However, with an unbounded adversary, we show that one needs 3t + 1
data replicas, despite the metadata service oracle.

The rest of the paper is organized as follows. In Section 2 we introduce the system model and preliminary
definitions. Section 3 presents MDStore. In Section 4 we prove our lower bounds on the number of data
replicas and Section 5 discusses related work. Finally, Section 6 concludes the paper with an outlook to
future work. The correctness proof of MDStore is postponed to Appendix A.

2 System model and definitions

Processes. The distributed system we consider consists of four sets of processes: (i) a set metadata repli-
cas of size M containing processes {m1, ...,mM}, (ii) a set of D data replicas containing processes
{d1, ..., dD}, (iii) a set of W writers containing processes {w1, ..., wW }; and (iv) a set readers of size
R containing processes {r1, ..., rR}. The set clients is the union of writers and readers. Similarly, the set
replicas denotes the union of data replicas and metadata replicas. Clients are disjoint from replicas, but
writers and readers may intersect, just like metadata replicas and data replicas. Clients are either benign or
Byzantine, as defined later.

We model distributed algorithmA for set of processes Π as a collection of deterministic automata, where
Ap is the automata assigned to process p ∈ Π. The computation of benign processes proceeds in steps of A.
For space constraints, we omit the details of this model and refer to the literature [27].
Channels. We assume that every process can communicate with every other process using point-to-point
perfect asynchronous communication channels [5]. In short, perfect channels guarantee reliable commu-
nication: i.e., if neither process at the end of a communication channel is faulty, every sent message is
eventually delivered to the receiver exactly once.1 For presentation simplicity, we also assume a global
clock, which, however, is not accessible to processes who perform local computations and communicate
asynchronously.
Adversary. A Byzantine process p does not follow Ap and may perform arbitrary actions, such as (i)
sending arbitrary messages or (ii) changing its state in an arbitrary manner. We assume an adversary that
can coordinate Byzantine processes and make them collude.

We use a deterministic model for a cryptographic hash function. A hash function maps a bit string of
arbitrary length to a short, unique representation of fixed length and consists of a distributed oracle accessible
to all processes. The hash oracle exports a single operationH; its invocation takes a bit string x as parameter
and returns an integer as the response. The oracle maintains a list L of all x that have been invoked so far.
When the invocation contains x ∈ L, then H responds with the position of x in L; otherwise, H appends
x to the end of L and returns its position. This ideal implementation models only collision resistance, i.e.,
that it is infeasible even for an unbounded adversary to produce two different inputs x and x′ such that
H(x) = H(x′).

In the following, unless explicitly specified differently, we use this model of a hash function. In our
context this is equivalent to assuming that the adversary is computationally bounded, i.e., that it cannot

1Perfect channels are simply implemented from lossy channels using retransmission mechanisms [5].
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break cryptographic hash functions. Alternatively, we speak of an unbounded adversary when no such hash
function is available. This terminology matches the traditional names and formalizations of cryptographic
hash functions [22].

Finally we assume that channels that relate benign processes are authenticated, i.e., that the adversary
cannot (undetectably) insert messages in these channels. In practice, authenticated communication can be
implemented easily from point-to-point channels with a message-authentication code (MAC) [22].
Executions and faults. Given any algorithm A, an execution of A is an infinite sequence of steps of A
taken by benign processes, and actions of Byzantine processes. A partial execution is a finite prefix of some
execution. A (partial) execution ex′ extends some (partial) execution ex if ex is a prefix of ex′. We say that
a benign process p is correct in an execution ex if p takes an infinite number of steps of A in ex. Otherwise
a benign process p is crash-faulty. We say that a crash-faulty process p crashes at step sp in an execution, if
sp is the last step of p in that execution.

All writers in our model are benign and any number of them can be crash-faulty. Moreover, any number
of readers can be Byzantine. Unless stated differently, we assume that up to t (resp., tM ) data (resp.,
metadata) replicas can be Byzantine; all other replicas are correct. Unless stated differently, we assume
D = 2t+ 1 and M = 3tM + 1.
Storage object. A storage abstraction is a shared READ/WRITE object. Its sequential specification consists
of a shared variable x with two operations: WRITE(v), which takes a value v from domain V , stores v in
x and returns special value ok /∈ V , and READ(), which returns the value of x. We assume that the initial
value of x is a special value ⊥ /∈ V .

We assume that each client invokes at most one operation at a time (i.e., does not invoke the next
operation until it receives the response for the current operation). Only writers invoke WRITE operations,
whereas any client can invoke READ operations. When we talk about SWSR storage (single-writer single-
reader), we assume that the writer and the reader are distinct process. Otherwise, we assume MWMR storage
with W ≥ 1 and R ≥ 1.

For presentation simplicity, we do not explicitly model the initial state of processes nor the invocations
and responses of the operations of the implemented storage object. We assume that the algorithm A initial-
izes the processes in executions and determines the invocations and responses of operations. We say that p
invokes an operation op at step sp when A modifies the state of a process p in step sp to start op; similarly,
op completes at the step of A when the response of op is received.

We say that a READ/WRITE operation op is complete in a (partial) execution if the execution contains
a response step for op. In any run, we say that a complete operation op1 precedes operation op2 (or op2
follows op1) if the response step of op1 precedes the invocation step of op2 in that run. If neither op1 nor
op2 precedes the other, the operations are said to be concurrent.
Timestamped storage. We use a special storage variant called timestamped storage with a slightly different
sequential specification. Besides x (initialized to ⊥), timestamped storage maintains a timestamp TS (an
integer, initially 0). Timestamped storage exports the following operations:

• TSWRITE((ts, v)) takes a pair of an integer timestamp ts and a value v ∈ V ; if ts ≥ TS, then it stores
ts to TS and v to x atomically2. Regardless of timestamp ts, TSWRITE returns ok.

• TSREAD() returns the pair (TS, x).
2Here, in the sequential specification of timestamped storage, it is critical to notice that the guard for a TSWRITE to “take effect”

requires ts to be greater or equal to TS. With such a condition, timestamped storage has consensus number [18] one, and can be
implemented with SWMR atomic registers as we discuss in Section 3.3. In contrast, [6] defines a “replica” object that is exactly the
same as timestamped storage except that the guard for the conditional write requires ts to be strictly greater than TS; this object,
however, has consensus number ∞.

3



Safety and liveness. An algorithm implements safe (or atomic) storage if every (partial) execution of the
algorithm satisfies safety (or atomicity, respectively) properties [23]. We define safe storage for a single
writer only and say that a partial execution satisfies safety if every READ operation rd that is not concurrent
with any WRITE operation returns value v written by the last WRITE that precedes rd, or ⊥ in case there
is no such WRITE. An execution ex satisfies atomicity (or linearizability [20]) if ex can be extended (by
appending zero or more response events) to an execution ex′ and there is a sequential permutation π of ex′

(without incomplete invocations) such that π preserves the real-time precedence order of operations in ex
and satisfies the sequential specification. Moreover, a storage algorithm is obstruction-free or wait-free if
every execution satisfies obstruction-freedom [19] or wait-freedom [18], respectively. Obstruction-freedom
states that if a correct client invokes operation op and no other client takes steps, op eventually completes.
Wait-freedom states that if a correct client invokes operation op, then op eventually completes. Atomicity
and wait-freedom also apply to timestamped storage.

3 Protocol MDStore

In this section, we first give an overview of MDStore and then explain its modular pseudocode. We then
discuss possible implementations of the MDStore metadata service module using existing BFT storage pro-
tocols. For lack of space, a full correctness proof is postponed to Appendix A.

3.1 Overview

MDStore emulates multi-writer multi-reader (MWMR) atomic wait-free BFT storage, using 2t+1 data repli-
cas and 3tM + 1 metadata replicas. Our implementation of MDStore is modular. Namely, metadata replicas
are hidden within a metadata service moduleMDS which consists of: (a) a MWMR atomic wait-free times-
tamped storage object (denoted byMDSdir), which stores the metadata about the latest authoritative storage
timestamp ts and acts as a directory by pointing to a set of t+ 1 data replicas that store the value associated
with the latest timestamp (in the vein of [2, 14]); and (b) an array of SWMR safe wait-free storage objects
(denoted by MDShash), which each stores a hash of a value associated with a given timestamp ts, i.e.,
timestamps are used as indices for the MDShash array. Every client may write to and read from MDSdir,
but the entries of MDShash are written only once by a single client. Timestamps in MDStore are classical
multi-writer timestamps [4,5], comprised of an integer num and a process identifier cid that serves to break
ties. Their comparison uses lexicographic ordering such that ts1 > ts2 if and only if ts1.num > ts2.num
or ts1.num = ts2.num and ts1.cid > ts2.cid.

The MDStore client pseudocode is given in Algorithm 1 with data replica pseudocode given in Algo-
rithm 2. On a high level, WRITE(v) proceeds as follows: (i) a writer w reads from MDSdir to determine the
latest timestamp ts (Alg. 1, lines 14–18); (ii)w increments ts and writes the hash of value v toMDShash[ts]
(Alg. 1, lines 19–20); (iii) w sends a write message to all data replicas containing (ts, v) and waits for a set
Q of t+ 1 data replicas to reply (Alg. 1, lines 21–24); (iv) w writes (ts,Q) to MDSdir where Q is a set of
t+ 1 data replicas that have responded previously (Alg. 1, line 25–26); and (v) w sends a commit message
to allow data replicas to garbage collect the data with timestamp less than ts (Alg. 1, lines 27–28).

On the other hand, a reader r upon invoking a READ: (i) reads from MDSdir the latest authoritative
metadata md with latest timestamp md.ts and a set md.replicas containing the identifiers of t + 1 data
replicas that store the latest value (Alg. 1, lines 33–34); and (ii) sends a read message to md.replicas
to read timestamp/value pairs not older than md.ts. Since clients do not trust replicas, reader r needs to
validate every timestamp/value received in a readVal message sent by a data replica in response to a read
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Algorithm 1 Algorithm of client c.

1: Types:
2: TS: (N0 × {N0 ∪ ⊥}) with fields num and cid // timestamps
3: TSVals: (TS× {V ∪⊥}) with fields ts and val
4: TSMeta: (TS× 2N) ∪ {⊥} with fields ts and replicas
5: Shared objects:
6: MDSdir, is a MWMR atomic wait-free timestamped storage object storing x ∈ TSMeta
7: MDShash[ts ∈ TS] is an array of SWMR safe wait-free storage objects storing x ∈ H(V )
8: Client state variables:
9: md: TSMeta, initially ⊥

10: ts: TS, initially (0,⊥)
11: Q : 2N, initially ∅
12: readval: TSVals ∪ {⊥}, initially ⊥

13: operation WRITE(v)
14: md←MDSdir.TSREAD()
15: if md = ⊥ then
16: ts← (0, c)
17: else
18: ts← md.ts

19: ts← (ts.num+ 1, c)
20: MDShash[ts].WRITE(H(v))

21: Q← ∅
22: for 1 ≤ i ≤ D do
23: send write〈ts, v〉 to di
24: wait until |Q| ≥ t+ 1

25: md← (ts,Q)
26: MDSdir.TSWRITE(md)

27: for 1 ≤ i ≤ D do
28: send commit〈ts〉 to di
29: return OK

30: upon receiving writeAck〈ts〉 from replica di
31: Q← Q ∪ {i}

32: operation READ()
33: readval← ⊥
34: md←MDSdir.TSREAD()

35: if md = ⊥ then
36: return ⊥
37: for i ∈ md.replicas do
38: send read〈md.ts〉 to di
39: wait until readval 6= ⊥
40: return readval.val

41: upon receiving readVal〈ts′, v′〉 from replica di
42: if readval = ⊥ then
43: if ts′ = md.ts then
44: CHECK(ts′, v′)
45: if ts′ > md.ts then
46: md′ ←MDSdir.TSREAD()
47: if md′.ts ≥ ts′ then
48: CHECK(ts′, v′)
49: procedure CHECK(ts, v)
50: if H(v) = MDShash[ts].READ() then
51: readval← (ts, v)

message (Alg. 2, lines 55–58). To this end, readers consult the metadata service (Alg. 1, lines 41–51): (i) in
case the timestamp received from a data replica ts′ equals the timestamp in md.ts (Alg. 1, line 43) then the
reader only checks whether the value has indeed been written by reading MDShash[md.ts] and comparing
this to the hash of the received value; otherwise (ii), i.e., when ts′ > md.ts (Alg. 1, line 45), the reader first
validates ts′ itself by checking if MDSdir points to ts′ or even a later timestamp, and, if yes, proceeds to
check the integrity of the value by comparing its hash to the value in MDShash[ts′].

3.2 MDStore details

We further illustrate MDStore using an execution ex, depicted in Figure 1. In ex, we assume t = 1 and
hence D = 3 data replicas. In ex, data replica d1 due to asynchrony does not receive messages in a timely
manner, whereas data replica d3 is Byzantine.

Execution ex starts with a completewr1 = WRITE(v1) which stores (ts1, v1) into data replicas {d2, d3},
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Algorithm 2 Algorithm of data replica di.

52: Server state variables:
53: data: 2TSVals, initially ∅
54: ts: TS, initially (0,⊥)

55: upon receiving read〈ts′〉 from client c
56: if ts′ < ts then ts′ ← ts
57: v ← v′ ∈ V : (ts′, v′) ∈ data
58: send readVal〈ts′, v〉 to c

59: upon receiving write〈ts′, v′〉 from client c
60: if ts′ > ts then
61: data← data ∪ {(ts′, v′)}
62: send writeAck〈ts′〉 to client c
63: upon receiving commit〈ts′〉 from client c
64: if ts′ > ts ∧ ∃(ts′, ·) ∈ data then
65: ts← ts′

66: data← data \ {(ts′, ·) ∈ data : ts′ < ts}

where ts1 is a pair (1, w1) that writerw1 generated in line 19 ofwr1. Notice that WRITE wr1 is not explicitly
shown in Figure 1; however, the states of MDSdir and MDShash[ts1] upon completion of wr1 are shown.

In ex, the initial wr1 is followed by two concurrent operations depicted in Figure 1: (i) a wr2 =
WRITE(v2) by writer w2, and (ii) READ rd by reader r1. Upon invoking wr2, writer w2 in Step 1© (we
refer to numbers in Fig. 1) first reads from MDSdir the latest timestamp by invoking MDSdir.TSREAD()
(line 14). MDSdir eventually responds and w2 reads timestamp ts1 = (1, w1). Then, writer w2 increments
the timestamp and adds its own identifier (line 19) to obtain timestamp ts2 = (2, w2). Then, writer w2

invokes MDShash[ts2].WRITE(H(v2)) where H(v2) is a hash of written value v2 (line 20, Step 2©). Values
written to MDShash serve to ensure integrity in the presence of potentially Byzantine data replicas; a writer
writes to MDShash before exposing the current WRITE to other clients by writing to MDSdir in order
to prevent Byzantine replicas forging values with a given timestamp. Eventually, MDShash responds and
writer w2 then sends a write〈ts2, v2〉 message to all data replicas containing an entire value v2 (lines 22–23,
Step 3©). In ex, write messages are received only by data replicas d2 and d3 (which is Byzantine). A correct
replica d2 simply adds the pair (ts2, v2) to its data set (line 61) but d2 does not update its local authoritative
timestamp ts which still reflects ts1. At this point in time of execution ex, we make writer w2 wait for
asynchronous replies from data replicas.

MetaData Service (MDS)

MDShash [ ]H(v1) ...H(v2)

data replicas
ts1

d1

d2

d3

MDSdir

writers

readers2
write[ts2](H(v2))

(ts1, {d2,d3})

3 write(ts2,v2)

ts100

...

(ts1,v1)
(ts2,v2)

(ts1,v1)
(ts2,v2)

4 read()→(ts1, {d2,d3})

5 rea
d(ts1)

6 readval(ts2,v2)

7 read()→(ts1,...)

8 readval(ts1,v1)

ts2

1 read()→(ts1, ...)

9
read[ts1]→H(v1)

write((ts2, {d2,d3}))10

Figure 1: Illustration of a MDStore execution with a concurrent WRITE and READ.

At the same time, concurrently with wr2, reader r1 invokes READ rd. Reader r1 first queries MDSdir
for metadata md by invoking MDSdir.TSREAD(), to determine the latest timestamp md.ts and the set of
data replicas md.replicas that store the latest value (line 34, Step 4©). MDSdir eventually responds and r1
sees md.ts = ts1 and md.replicas = {d2, d3}. Then, r1 sends read message to data replicas d2 and d3
(lines 37–38, Step 5©). By the algorithm, a data replica d replies to a read message with a readVal message
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containing the value associated with its local authoritative timestamp ts, which does not necessarily reflect
the highest timestamp that replica d stores in data; e.g., in case of d2 (and d3) in ex, ts equals ts1 and
not ts2. However, a Byzantine d3 could mount a sophisticated attack and respond with the pair (ts2, v2)
(Step 6©); although this pair is in fact written concurrently, it is dangerous for r1 to return v2 since, in
MDStore readers do not write back data and the value v2 has not been completely written — this may
violate atomicity. To prevent this attack, a reader invokes MDSdir.TSREAD() to determine whether ts2 (or
a higher timestamp) became authoritative in the mean time (lines 45–43, Step 7©). Since this is not the case,
r1 discards the reply from d3 and waits for an additional reply (from d2).

An alternative attack by Byzantine d3 could be to make up a timestamp/value pair with a large timestamp,
say ts100. In this case, r1 would also first check withMDSdir whether ts100 or a higher timestamp has been
written (just like in Step 7©). However, if so, r1 would then proceed to check the integrity of a hash of
the value reported by d3 by invoking MDShash[ts100].READ() (lines 49–51); this check would assuming a
bounded adversary as the hash function is collision-free.

In ex, eventually d2 responds to r1 with pair (ts1, v1) (lines 55–58, Step 8©). By the protocol (opti-
mizations omitted for clarity) reader r1 verifies the integrity of v1 by reading a hash from MDShash[ts1]
(lines 49–51, Step 9©). This time, the check succeeds and rd completes returning value v1.

Eventually, writer w2 receives writeAck replies in wr2 from replicas d2 and d3. Then, writer w2 invokes
MDSdir.TSWRITE(ts2, {d2, d3}) (lines 25–26, Step 10©) only now, when the writewr2 finally “takes effect”,
i.e., at the linearization point of WRITE which coincides with the linearization point of the TSWRITE to
MDSdir. Finally, the writer sends a commit message to all replicas to allow them to garbage collect stale
data (lines 27–28); notice that data replicas update their local variable ts, which reflects a value they will
serve to a reader, only upon receiving a commit message (lines 63–66).

Finally, we point out that MDStore uses timestamped storage (MDSdir) as a way to avoid storing entire
history of a shared variable at data replicas. We could not achieve this withMDSdir being a classical storage
object, since such a classical storage object would allow overwrites of MDSdir with a lower timestamp.
With our protocol at data replicas (notably lines 59–62) and our goal of not storing entire histories, such an
overwrite could put MDSdir in inconsistent state with data replicas.

3.3 Metadata service implementations

We show how to implement the MDStore metadata service from existing asynchronous BFT storage proto-
cols that rely on 3t + 1 replicas — in our case these are exactly 3tM + 1 metadata replicas. To qualify for
reuse, existing BFT protocols should also tolerate an arbitrary number of Byzantine readers, any number of
crash-faulty writers, and, ideally, make no cryptographic assumptions.

First, it is critical to see that MDSdir, our MWMR atomic wait-free timestamped storage, can be im-
plemented as a straightforward extension of the classical SWMR to MWMR atomic storage object trans-
formation (e.g., [5, page 163]). In this transformation, there is one SWMR storage object per writer and
writers store timestamp/value pairs in “their” storage object, after first reading and incrementing the highest
timestamp found in any other storage object. In this extension, the reader determines the timestamp/value
pair with the highest timestamp among the SWMR storage objects as usual, and simply returns also the
timestamp together with the value. This implementation may be realized from existing SWMR atomic wait-
free storage (with 3t+ 1 replicas); examples include [3,11] (with an unbounded adversary) and [7,29] (with
a bounded adversary).

Second, MDShash is an array of SWMR safe storage objects that can directly be implemented from
the protocols with atomic semantics mentioned above, or even from protocols with weaker implementa-
tions, such as (i) SWMR safe wait-free storage [1] or (ii) its regular variant, both without cryptographic
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assumptions [16], or (iii) regular storage with digital signatures [28].
Finally, we add that more efficient, direct, implementations of the MDStore metadata service can be

obtained easily, but these are beyond the scope of this paper.

4 Lower bounds

In this section we prove two lower bounds: (i) we show that using 2t + 1 data replicas to tolerate t data
replica crash faults is necessary implementing distributed single-writer single-reader obstruction-free safe
storage, even with the help of a metadata service oracle; and (ii) we also show that the same result extends
to 3t + 1 replicas in the model with Byzantine data replicas. However, this second lower bound applies
in the model with an unbounded adversary and does not hold when the adversary is bounded, i.e., when it
cannot break cryptographic hash functions (see Sec. 2).

Technically, we unify the two results into one single argument in a hybrid failure model, where we con-
sider D = 2t + b + 1 data replicas, out of which up to b can be Byzantine and up to t − b can only crash.
For the purpose of this proof, we focus on the model with a single writer.

Preliminaries. Our lower bound model assumes a metadata service (Def. 4.1): in short, a metadata service
is an oracle, modeled as a correct process.3 A metadata service is parameterized by the domain of values V
of the implemented storage. Roughly speaking, a metadata service can implement an arbitrary functionality,
except that it might not be able to help a reader distinguish whether the writer wrote value v ∈ V or value
v′ ∈ V , where v 6= v′.

Definition 4.1 (Metadata service) A metadata service for a value domain V (denoted by MDSV ) is a cor-
rect process that can implement an arbitrary automaton with the following limitation. There exist two values
v, v′ ∈ V (we say they are indistinguishable to MDSV ), such that there is no distributed storage algorithm
for MDSV , the writer and a set of processes P , such that some process p ∈ P can distinguish execution exv
from exv′ , where:

• In exv, the writer invokes a complete WRITE(v) and crashes, such that no process in P receives any
message from the writer in exv; and

• In exv′ , the writer invokes a complete WRITE(v′) and crashes, such that no process in P receives any
message from the writer in exv′ .

Intuitively, Definition 4.1 models metadata service as a general oracle with arbitrary functionality, with
the restriction that it cannot store or relay data values in V . Observe that if we extend both executions exv
and exv′ in Definition 4.1 by appending a READ by a correct reader (from P ), to obtain partial executions
ex′v and ex′v′ , respectively, obstruction-freedom or safety is violated in ex′v or in ex′v′ .

To state our lower bound precisely, we change the model of Section 2 and assume that, out of D data
replicas, up to b can be Byzantine and additionally t − b of them are benign (that is, they may crash), for
0 ≤ b ≤ t. We assume an unbounded adversary that can coordinate Byzantine processes and that either
knows values v and v′ that are indistinguishable to MDSV , or can compute such a v given v′, or vice-versa.

We now state the main result of this section:
3In our proof we do not use metadata replicas (defined in Section 2) which are “replaced” by a metadata service oracle.
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Theorem 4.2 Assuming an umbounded adversary, there is no asynchronous distributed algorithm that im-
plements single-writer single-reader (SWSR) obstruction-free safe storage (with domain V ), withD ≤ 2t+b
data replicas and a metadata service for V .

Proof: Assume by contradiction that such implementation I exists. We develop a series of executions of
I to show that at most 2t + b data replicas do not help the reader distinguish the values indistinguishable
to MDSV , v and v′. To this end, we divide the set of data replicas in three disjoint groups T1 and T2, each
containing at most t data replicas, and group B with at most b data replicas.

Consider first partial execution ex1 in which the reader and the replicas from group T1 crash at the
beginning of ex1 and the writer invokes WRITE(v). By obstruction-freedom wr1 eventually completes.
Then, the writer crashes and ex1 ends at time t1. In ex1, the reader and data replicas from T1 do not
deliver any message, whereas the writer, MDSV and data replicas from T2 ∪ B deliver all the messages per
implementation I . We denote the state of data replicas from group B at t1 by σv.

Let ex2 be a partial execution in which the writer invokes WRITE(v′) that ends at time t2, such that ex2
is otherwise similar to ex1, with the reader and replicas from T1 crashing at the beginning of ex2 and the
other processes delivering all messages. We denote the state of data replicas from group B at t2 by σv′ .

Let ex′1 be a partial execution similar to ex1, except that the reader and the data replicas from T1 do not
crash, yet they still do not receive any message by time t1 (due to asynchrony). At time t1, data replicas from
T2 crash. This is followed by READ rd1 by the reader at t3 > max{t1, t2}. The reader and data replicas in
T1, never receive any message from faulty data replicas from T2 or the faulty writer. By obstruction-freedom
rd1 eventually completes (at t4) and, by safety, returns the value written by wr1, i.e., v.

Let ex′2 be a partial execution similar to ex2, except that the reader and the replicas from T1 are not
faulty, yet they still do not receive any message by time t2 (due to asynchrony). At time t2, data replicas
from B (if any) exhibit a Byzantine fault, by changing their state from σv′ to σv (see ex1). After this, data
replicas from B follow the protocol. This is followed by a READ rd2 by the reader at t3. Moreover, assume
that due to asynchrony, MDSV , the reader and data replicas in T1, do not receive any message from data
replicas from T2 until after t4. Notice that, by Definition 4.1 and since they do not receive any message
from the writer or data replicas in T2, the reader and the data replicas in T1 cannot distinguish ex′2 from ex′1.
Hence, in ex′2, rd2 returns v (at t4) like in ex′1. However, this violates safety by which rd2 must return v′.
A contradiction. �

Discussion. We make two observations about Theorem 4.2. First, in the crash model, where b = 0, Theo-
rem 4.2 implies that 2t+1 data replicas are necessary for implementing SWSR obstruction-free safe storage,
even with a metadata service oracle. Second, notice that the Byzantine part of the proof critically relies on
the ability of the adversary to successfully switch from the state where Byzantine replicas “observed” v′

to the state where Byzantine replicas seemingly have “observed” v (see ex′2). In practice, when assuming
a bounded adversary, cryptographic hash functions easily prevent this attack — the proof of Theorem 4.2
breaks down for b > 0. Protocols in this realistic model, including MDStore, are only subject to the lower
bound of 2t+ 1 data replicas from the crash model.

5 Related work

The read/write storage abstraction (also known as a register) was formalized by Lamport [23]. Martin et
al. [30] demonstrated a tight lower bound of 3t + 1 replicas needed for any register implementation that
tolerates t Byzantine replicas in an asynchronous system. Their bound applies even to single-writer single-
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reader safe register, where the reader and the writer are benign. In this paper, we refine this bound by
logically separating storage replicas into data replicas and metadata replicas. With such a separation, we
show that the 3t + 1 lower bound of [30] applies to register metadata replicas only, but it does not hold for
the number of data replicas. Only 2t+ 1 data replicas are needed to tolerate t Byzantine data replicas in an
asynchronous system with a bounded adversary.

Protocol MDStore that matches this lower bound is similar in style to Farsite [2], a BFT file service,
and Hybris [12], a recent hybrid cloud storage system. Namely, like MDStore, Farsite and Hybris separate
metadata from data and keep cryptographic hashes and the directory information as metadata and require
at least 2t + 1 data replicas. However, unlike MDStore, Farsite and Hybris metadata services are based
on replicated state machines; hence both Farsite and Hybris are subject to the FLP impossibility result
[14] and require stronger timing assumptions, such as partial synchrony [11]. In addition, Farsite supports
single-writer and multiple readers and uses read/write locks for concurrency control, whereas our MDStore
supports multiple writers and offers wait-free [18] atomic semantics, without resorting to locks. On the other
hand, Hybris only supports FW-terminating reads and is not wait-free.

Data and metadata have also been separated in asynchronous crash-tolerant storage [8, 14] and in vari-
ants of state-machine replication [33]. Interestingly, separating data from metadata does not reap benefits in
terms of reduced resource costs with crash-faults: indeed all of the mentioned crash-tolerant protocols that
exercise data/metadata separation [8, 14, 33] still need 2t + 1 data replicas. We prove this inherent: even
with a fault-free metadata service, 2t+ 1 data replicas are necessary to tolerate t data replica faults.

Separation of data from the control plane is well-known in consensus and state machine replication.
Lamport’s Paxos algorithm [24, 25] separated consensus roles into proposers, acceptors, and learners. In
this context, the lower bound of 3t + 1 replicas for partially synchronous BFT consensus was shown to
apply only to acceptors [26], but not to proposers or learners. For example, [17] demonstrated a partially
synchronous BFT consensus protocol in which any number of proposers and learners can be Byzantine. Yin
et al. [34] apply the ideas from Lamport’s consensus role separation and separate agreement from execution
to obtain state machine replication protocols with 3t + 1 agreement replicas and 2t + 1 execution replicas.
However, just like [2, 12], the results of [17, 34] that apply to state-machine replication and consensus are
fundamentally different from ours; they are subject to the FLP impossibility result [15] and the protocols
therefore rely on stronger timing assumptions [13].

6 Conclusion and future work

This paper presents MDStore, the first asynchronous BFT storage protocol that uses 2t + 1 data replicas
to tolerate t Byzantine faults in a general model without trusted components. To achieve this, MDStore
separates data from metadata and stores metadata leveraging a novel abstraction we call timestamped storage
which can can be implemented using existing asynchronous BFT storage protocols that need 3t+ 1 replicas
to tolerate t Byzantine faults. In addition, MDStore implements strong guarantees such as wait-freedom
and atomicity (linearizability). Finally, MDStore relies on collision-resistant cryptographic hash functions
which we show inherent. In this paper we show also that, perhaps surprisingly, no asynchronous crash-
tolerant storage implementation can achieve better resilience with respect to data replicas than our BFT
MDStore.

Our work opens many avenues for future work in BFT storage systems, especially for those of practical
relevance. It requires to revisit other important aspects of asynchronous BFT storage, such as their com-
plexity or erasure-coded implementations, which have been extensively studied in the traditional model with
unified data and metadata.
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A Correctness of MDStore

In this section we prove that the pseudocode in Algorithm 1 and Algorithm 2 is correct by showing that it
satisfies atomicity and wait-freedom.

Definition A.1 (Timestamp of an Operation) If o is an operation, then we define the timestamp of o, de-
noted ts(o) as follows. If o is a WRITE operation, then ts(o) is ts when its assignment completes in line 19.
Else, if o is READ operation, then ts(o) is the timestamp associated to readval when its assignment com-
pletes in line 51.

Lemma A.2 (Timestamped Storage Safety) Let x be a timestamped storage object and let tsrd be an
operation x.TSREAD returning (ts′, v′). If tsrd follows after an operation x.TSWRITE((ts, v)) or after an
operation x.TSREAD returning (ts, v), then ts′ ≥ ts.

Proof: Follows from the sequential specification of timestamped storage. �

Lemma A.3 (Sandwich) Let rd be a complete READ operation and let md and md′ be the value returned
by MDSdir in lines 34 and 46 respectively, Then md.ts ≤ ts(rd) ≤ md′.ts.

Proof: By Definition A.1, ts(rd) is readval.ts when the assignment in line 51 completes. For this to
happen, either the condition in line 43 or line 45 must be satisfied. This is implies that either ts(rd) = md.ts
or md.ts < ts(rd) ≤ md′.ts. �

Lemma A.4 (Partial Order) Let o and o′ be two operations with timestamps ts(o) and ts(o′), respectively,
such that o precedes o′. Then ts(o) ≤ ts(o′) and if o′ is a WRITE operation then ts(o) < ts(o′).

Proof: Let o′ be a READ (resp. a WRITE) operation. By Definition A.1 and Lemma A.3, ts(o′) ≥ o′.md.ts
(o. denotes the context of operation o). In the following we distinguish whether o is a WRITE or a READ.
Case 1 (o is a WRITE): if o is a WRITE, then o.MDSdir.TSWRITE(o.md) in line 26 precedes o′.md ←
o′.MDSdir.TSREAD() in line 34 (resp. 14). By Lemma A.2, it follows that o′.md.ts ≥ o.md.ts. By
Definition A.1 o.md.ts = ts(o), and therefore o′.md.ts ≥ ts(o). There are two possible subcases; either o′

is a READ or a WRITE. If o′ is a READ then ts(o′) ≥ o′.md.ts, and therefore ts(o′) ≥ ts(o). Otherwise, if
o′ is a WRITE, then ts(o′) > o′.md.ts because ts(o′) is obtained from incrementing the first component of
o′.md.ts. Therefore, ts(o′) > o′.md.ts ≥ ts(o).
Case 2 (o is a READ): if o is a READ, then by Definition A.1 and Lemma A.3, o.md.ts ≤ ts(o) ≤ o.md′.ts.
In what follows, we treat the only two possible cases ts(o) = o.md.ts and o.md.ts < ts(o) ≤ o.md′.ts
separately.

(2a): if ts(o) = o.md.ts, then since o′.md← o′.MDSdir.TSREAD() in line 34 (resp. 14) follows after
o.md← o.MDSdir.TSREAD(), by Lemma A.2 o′.md.ts ≥ o.md.ts. Since o.md.ts = ts(o), it follows that
o′.md.ts ≥ ts(o). If o′ is a READ, then ts(o′) ≥ o′.md.ts, and we conclude that ts(o′) ≥ ts(o). Otherwise,
if o′ is a WRITE, then ts(o′) > o′.md.ts and therefore, ts(o′) > ts(o).

(2b): if o.md.ts < ts(o) ≤ o.md′.ts, then o.md′ ← o.MDSdir.TSREAD() in line 46 precedes o′.md←
o′.MDSdir.TSREAD() in line 34 (resp. 14). By Lemma A.2 o′.md.ts ≥ o.md′.ts and since o.md′.ts ≥
ts(o), it follows that o′.md.ts ≥ ts(o). If o′ is a READ, then ts(o′) ≥ o′.md.ts, and we conclude that
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ts(o′) ≥ ts(o). Otherwise, if o′ is a WRITE, then ts(o′) > o′.md.ts and therefore, ts(o′) > ts(o), which
completes the proof. �

Lemma A.5 (Unique Writes) If o and o′ are two WRITE operations with timestamps ts(o) and ts(o′), then
ts(o) 6= ts(o′).

Proof: If o and o′ are executed by different clients, then the two timestamps differ in their second compo-
nent. If o and o′ are executed by the same client, then the client executed them sequentially. By Lemma A.4,
ts(o′) 6= ts(o). �

Lemma A.6 (Integrity) Let rd be a READ operation with timestamp ts(rd) returning value v 6= ⊥. Then
there is a single WRITE operation wr of the form WRITE(v) such that ts(rd) = ts(wr).

Proof: Since rd returns v and has an associated timestamp ts(rd), rd receives (ts(rd), v) from one of the
data replicas. Suppose for the purpose of contradiction that v is never written. Then, then by the collision
resistance of H , the check in line 50 does not pass and rd does not return v. Therefore, we conclude that
some operation wr sends a message write〈ts(rd), v〉 in line 23. Since ts(wr) is set only once during the
execution of a WRITE and that occurs in line 19, it follows that ts(wr) = ts(rd). Finally, by Lemma A.5 no
other write has the same timestamp, which completes the proof. �

Theorem A.7 (Atomicity (Linearizability)) Every execution ex of Algorithm 1 and Algorithm 2 satisfies
atomicity.

Proof: Let ex be an execution of the algorithm. By Lemma A.6 the timestamp of a READ operation either
has been written by some WRITE operation or the READ returns ⊥.

We first construct ex′ from ex by completing all WRITE operations of the form WRITE(v), where v has
been returned by some complete READ operation. Then we construct a sequential permutation π by ordering
all operations in ex′ excluding the READ operations that did return ⊥ according to their timestamps and by
placing all READ operations that did not return ⊥ immediately after the WRITE operation with the same
timestamp. The READ operations that did return ⊥ are placed in the beginning of π. Note that concurrent
READ operations with the same timestamp may appear in any order, whereas all other READ operations
appear in the same order as in ex′.

To prove that π preserves the sequential specification of a MWMR register we must show that a READ

always returns the value written by the latest preceding write which appears before it in π, or the initial
value of the register ⊥ if there is no preceding write in π. Let rd be a READ operation returning a value v.
If v = ⊥, then by construction rd is ordered before any WRITE in π.

Otherwise, v 6= ⊥ and by Lemma A.6 there exists a WRITE(v) operation, with the same timestamp,
ts(rd). In this case, this write is placed in π before rd, by construction. By Lemma A.5, other write
operations in π have a different associated timestamp and therefore appear in π either before WRITE(v) or
after rd.

It remains to show that π preserves real-time order. Consider two complete operations o and o′ in ex′

such that o precedes o′. By Lemma A.4, ts(o′) ≥ ts(o). If ts(o′) > ts(o) then o′ appears after o in π
by construction. Otherwise ts(o′) = ts(o) and by Lemma A.4 it follows that o′ is a READ operation. If
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o is a WRITE operation, then o′ appears after o since we placed each read after the WRITE with the same
timestamp. Otherwise, if o is a READ, then it appears before o′ as in ex′. �

Theorem A.8 (Wait-Freedom) The protocol comprising Algorithm 1 and Algorithm 2 satisfies wait-freedom.

Proof: Since the shared storage objects used in Algorithm 1 are wait-free, every READ or WRITE operation
invoked on MDSdir and MDShash[ts], where ts ∈ TSV als, eventually completes. It remains to show
that no WRITE (resp. READ) operation blocks in line 24 (resp. 39). For a WRITE operation wr, the waiting
condition in line 24 is eventually satisfied because there is a time after which all correct data replicas reply
and there are at least t + 1 such replicas. On the other hand, let rd be a READ operation and suppose for
the purpose of contradiction that the waiting condition in line 39 is never satisfied, and therefore readval is
never set in line 51. Let di be a correct data replica such that i ∈ md.replicas. Since rd did previously sent
a read〈md.ts〉 message to di, eventually rd receives a reply from di consisting of a pair (ts′, v) in line 41.

If ts′ satisfies md.ts ≤ ts′ ≤ md′.ts, then since di is a correct replica, the condition in line 50 is also
satisfied, and therefore readval is set in line 51. Suppose for the purpose of contradiction that ts′ < md.ts
or ts′ > md′.ts. Notice that the requested timestamp ismd.ts. If ts′ < md.ts then di replied with a smaller
timestamp than md.ts. However, notice that according to the check in the replica code in line 56, di never
replies with a timestamp smaller than the requested timestamp, contradicting our assumption. Otherwise,
if ts′ > md′.ts, then by Lemma A.3 ts′ > md.ts, and therefore di replies with its local timestamp ts.
According to the replica code, line 65 is the only place where ts is changed. Furthermore, if ts changes to
ts(wr′) then wr′ is a WRITE operation that committed. According to the WRITE code, wr′ commits only
after writing ts(wr′) to MDSdir. Hence, if ts′ > md′.ts, then rd invokes MDSdir in line 46 and does so
only after the corresponding WRITE wrote ts′ to MDSdir. By Lemma A.2, MDSdir returns in line 46 a
value whose timestamp is a least ts′, which means that md′.ts ≥ ts′, a contradiction. �
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