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Abstract—We consider the temporally-correlated Multiple-
Input Multiple-Output (MIMO) broadcast channels (BC) and
interference channels (IC) where the transmitter(s) has/have
(i) delayed channel state information (CSI) obtained from a
latency-prone feedback channel as well as (ii) imperfect current
CSIT, obtained, e.g., from prediction on the basis of these
past channel samples based on the temporal correlation. The
degrees of freedom (DoF) regions for the two-user broadcast and
interference MIMO networks with general antenna configuration
under such conditions are fully characterized, as a function of
the prediction quality indicator. Specifically, a simple unified
framework is proposed, allowing to attain optimal DoF region for
the general antenna configurations and current CSIT qualities.
Such a framework builds upon block-Markov encoding with
interference quantization, optimally combining the use of both
outdated and instantaneous CSIT. A striking feature of our work
is that, by varying the power allocation, every point in the DoF
region can be achieved with one single scheme. As a result, instead
of checking the achievability of every corner point of the outer
bound region, as typically done in the literature, we propose a
new systematic way to prove the achievability.

Index Terms—MIMO, Broadcast Channels, Interference Chan-
nels, Degrees of Freedom, Delayed CSIT

I. INTRODUCTION

While the capacity region of the Multiple-Input Multiple-
Output (MIMO) broadcast channel (BC) was established in [1],
the characterization of the capacity of Gaussian interference
channel (IC) has been a long-standing open problem, even
for the two-user single-antenna case. Recent progress sheds
light on this problem from various perspectives, among which
the authors in [2] characterized the degrees of freedom (DoF)
region, specializing to the large signal-to-noise-ratio (SNR)
regime, for the two-user MIMO IC. The number of DoF
represents the slope with which the rate increases with the
logarithm of SNR. Note that when taking additional system
limitations into account such as imperfect hardware, finite
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modulation levels, and cost of channel training in a time-
varying environment, the sum rate inevitably saturates in the
very large SNR limit [3]. However, the DoF can be shown to be
meaningful within a reasonable interval of practical SNRs for
properly designed systems. Furthermore, it provides us with
a first-order approximation from which novel transmission
schemes and insights emerge. In most works, the DoF analysis
for multiuser channels involves the full knowledge of channel
state information (CSI) at both the transmitter and receiver
sides. In practice, however, the acquisition of perfect CSI at
the transmitters is difficult, if not impossible, especially for fast
fading channels. The CSIT obtained via feedback suffers from
delays, which renders the available CSIT feedback possibly
fully obsolete (i.e., uncorrelated with the current true channel)
under the fast fading channel and, seemingly non-exploitable
in view of designing the spatial precoding.

Recently, this common accepted viewpoint in such scenario
(referred to as “delayed CSIT”) was challenged by an interest-
ing information theoretic work [4], in which a novel scheme
(termed here as “MAT alignment”) was proposed for the MISO
BC to demonstrate that even the completely outdated channel
feedback is still useful. The precoders are designed achieving
strictly better DoF than what is obtained without any CSIT. The
essential ingredient for the proposed scheme in [4] lies in the
use of a multi-slot protocol initiating with the transmission of
unprecoded information symbols to the user terminals, followed
by the analog forwarding of the interferences created in the
previous time slots. Most recently, generalizations under the
similar principle to the MIMO BC [5], MIMO IC [6] settings,
the MIMO BC with secrecy constraints [7], among others, were
also addressed, where the DoF regions are fully characterized
with arbitrary antenna configurations, again establishing DoF
strictly beyond the ones obtained without CSIT [8]–[10] but
below the ones with perfect CSIT [1], [2]. Note that other
recent interesting lines of work combining instantaneous and
delayed forms of feedback were reported in [11], [12].

Albeit inspiring and fascinating from a conceptual point of
view, these works made an assumption that the channel is in-
dependent and identically distributed (i.i.d.) across time, where
the delayed CSIT bears no correlation with the current channel
realization. Hence, these results pessimistically consider that
no estimate for the current channel realization is producible to
the transmitter. Owing to the finite Doppler spread behavior
of fading channels, it is however the case in many real life
situations that the past channel realizations can provide some
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information about the current one. Therefore a scenario where
the transmitter is endowed with delayed CSI in addition to some
(albeit imperfect) estimate of the current channel is of practical
relevance. Together with the delayed CSIT, the benefit of such
imperfect current CSIT was first exploited in [13] for the
MISO BC whereby a novel transmission scheme was proposed
which improves over pure MAT alignment in constructing
precoders based on delayed and current CSIT estimate. The
full characterization of the optimal DoF for this hybrid CSIT
was later reported in [14], [15] for MISO BC under this setting.
The key idea behind the schemes (termed hereafter as “α-MAT
alignment”) in [13]–[15] lies in the modification of the MAT
alignment such that i) the initial time slot involves transmission
of precoded symbols, which enables to reduce the power of
mutual interferences and efficiently compress them; ii) the
subsequent slots perform a digital transmission of quantized
residual interferences together with new private symbols. Most
recently, this philosophy was extended to the MIMO networks
(BC/IC) but only with symmetric antenna configurations [16],
as well as the K-user MISO case [17]. The generalization
to the MISO BC with different qualities of imperfect current
CSIT was also studied in [18]. Remarkably, the authors of [18]
showed that, in order to balance the asymmetry of the CSIT
quality, an infinite number of time slots are required. As
such, they extended the number of phases of the α-MAT
alignment [14] to infinity and varied the length of each phase.

Unfortunately, extending the previous results to the MIMO
case with arbitrary antenna configurations is not a trivial step,
even with the symmetric current CSIT quality assumption. The
main challenges are two-fold: (a) the extra spatial dimension at
the receiver side introduces a non-trivial tradeoff between the
useful signal and the mutual interference, and (b) the asymmetry
of receive antenna configurations results in the discrepancy of
common-message-decoding capability at different receivers. In
particular, the total number of streams that can be delivered as
common messages to both receivers is inevitably limited by
the weaker one (i.e., with fewer antennas). Such a constraint
prevents the system from achieving the optimal DoF of the
symmetric case by simply extending the previous schemes
developed in [16].

To counter these new challenges posed by the asymmetry of
antenna configurations, we develop a new strategy that balances
the discrepancy of common-message-decoding capability at
two receivers. This allows us to fully characterize the DoF
region of both MIMO BC and MIMO IC, achieved by a unified
and simple scheme built upon block-Markov encoding. This
encoding concept was first introduced in [19] for relay channels
and then became a standard tool for communication problems
involving interaction between nodes, such as feedback (e.g.,
[20], [21]) or user cooperation (e.g., [22]). It turns out that our
problem with both delayed and instantaneous CSIT, closely
related to [20], can also be solved with this scheme. As it will
become clear later, in each block, the transmitter superimposes
the common information about the interferences created in the
past block (due to the imperfect instantaneous CSIT) on the new
private information (thus creating new interferences). At the
receiver side, backward decoding is employed, i.e., the decoding
of each block relies on the common side information from the

decoding of future blocks. Due to the repetitive nature in each
block, the proposed scheme can be uniquely characterized with
the parameters such as the power allocation and rate splitting
of the superposition. Surprisingly enough, our block-Markov
scheme can also include the asymmetry of current CSIT with a
simple parameter change, and thus somehow balance the global
asymmetry, i.e., antenna asymmetry and CSIT asymmetry, in
the system.

Overall, our results allow to bridge between previously
reported CSIT scenarios such as the pure delayed CSIT of [4],
[5] and the pure instantaneous CSIT scenarios [1], [2] for the
MIMO setting. We tackle both the BC and IC configurations as
we point out the tight connection between the DoF achieving
transmission strategies in both settings. More specifically, we
obtain the following key results:

• We establish outer bounds on the DoF region for the two-
user temporally-correlated MIMO BC and IC with perfect
delayed and imperfect current CSIT, as a function of the
current CSIT quality exponent. By introducing a virtual
received signal for the IC, we nicely link the outer bound
to that of the BC, arriving at the similar outer bound results
for both cases. In addition to the genie-aided bounding
techniques and the application of the extremal inequality
in [14], we develop a set of upper and lower bounds of
ergodic capacity for MIMO channels, which is essential
for the MIMO case but not extendible from MISO.

• We propose a unified framework relying on block-Markov
encoding uniquely parameterized by the rate splitting
and power allocation, by which the optimal DoF regions
confined by the outer bounds are achievable with perfect
delayed plus imperfect current CSIT. For any antenna and
current CSIT settings, every point in the outer bound
region can be achieved with one single scheme. For
instance, the MIMO BC with M = 3, N1 = 2 and
N2 = 1 achieves optimal sum DoF 15+4α1+2α2

7 when
3α1 − 2α2 ≤ 1 and 7+2α2

3 otherwise, where α1 and
α2 are imperfect current CSIT qualities for both users’
channels. This smoothly connects three special cases: the
case with pure delayed CSIT [5] (α1 = α2 = 0), that
with perfect current CSIT [1] (α1 = α2 = 1), and that
with perfect CSIT at Receiver 1 and delayed CSIT at
Receiver 2 [24] (α1 = 1, α2 = 0).

• We propose a new systematic way to prove the achievabil-
ity. In the proposed framework, the achievability region is
defined by the decodability conditions in terms of the rate
splitting and power allocation. The achievability is proved
by mapping the outer bound region into a set of proper
rate and power allocation and showing that this set lies
within the decodability region. This contrasts with most
existing proofs in the literature where the achievability of
each corner point is checked.

It is worth noting that our results cover the previously
reported particular cases: the perfect CSIT setting [1], [2]
(i.e., current CSIT of perfect quality), the pure delayed CSIT
setting [6] (i.e., current CSIT of zero quality), the partial/hybrid
CSIT MIMO BC/IC case [24]–[26] (with perfect CSIT at
one receiver and delayed CSIT at the other one), and the
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special MISO case [13]–[15] with N1 = N2 = 1, symmetric
MIMO case [16], as well as the MISO case with asymmetric
current CSIT qualities [18]. In a parallel work [23], a similar
scheme was independently revealed, also built on the block-
Markov encoding, evolving from the multi-phase scheme
initially proposed in [18]. While they focus on the MISO
BC in a more general evolving CSIT setting, our work deals
with a wider class of channel configurations (both MIMO BC
and IC) with static CSIT.

The rest of the paper is organized as follows. We present the
system model and assumptions in the coming section, followed
by the main results on DoF region characterization for both
MIMO BC and MIMO IC cases in Section III. Some illustrative
examples of the achievability schemes are provided in Section
IV, followed by the general formulation in Section V. In Section
VI, we present the proofs of outer bounds. Finally, we conclude
the paper in Section VII.

Notation: Matrices and vectors are represented as uppercase
and lowercase letters, respectively. Matrix transport, Hermitian
transport, inverse, rank, determinant and the Frobenius norm of
a matrix are denoted by AT, AH, A−1, rank(A), det(A) and
‖A‖F, respectively.A[k1:k2] represents the submatrix ofA from
k1-th row to k2-th row when k1 ≤ k2. h⊥ is the normalized
orthogonal component of any non-zero vector h. We use IM
to denote an M ×M identity matrix where the dimension is
omitted whenever confusion is not probable. The approximation
f(P ) ∼ g(P ) is in the sense of limP→∞

f(P )
g(P ) = C, where

C > 0 is a constant that does not scale as P . Partial ordering
of Hermitian matrices is denoted by � and �, i.e., A � B
means B−A is positive semidefinite. Logarithms are in base 2.
(x)+ means max{x, 0}, and Rn+ represents the set of n-tuples
of non-negative real numbers. f = O(g) follows the standard
Landau notation, i.e., lim f

g ≤ C where the limit depends on
the context. With some abuse of notation, we use OX(g) to
denote any f such that EX(f) = O(EX(g)). Finally, the range
or null spaces mentioned in this paper refer to the column
spaces.

II. SYSTEM MODEL

A. Two-user MIMO Broadcast Channel

For a two-user (M,N1, N2) MIMO broadcast channel
(BC) with M antennas at the transmitter and Ni antennas
at Receiver i, the discrete time signal model is given by

yi(t) = Hi(t)x(t) + zi(t) (1)

for any time instant t, where Hi(t) ∈ CNi×M is the channel
matrix for Receiver i (i = 1, 2); zi(t) ∼ NC (0, INi) is the
normalized additive white Gaussian noise (AWGN) vector
at Receiver i and is independent of channel matrices and
transmitted signals; the coded input signal x(t) ∈ CM×1 is
subject to the power constraint E

(
‖x(t)‖2

)
≤ P , ∀ t.

B. Two-user MIMO Interference Channel

For a two-user (M1,M2, N1, N2) MIMO interference chan-
nel (IC) with Mi antennas at Transmitter i and Nj antennas

at Receiver j, for i, j = 1, 2, the discrete time signal model is
given by

yi(t) = Hi1(t)x1(t) +Hi2(t)x2(t) + zi(t) (2)

for any time instant t, where Hji(t) ∈ CNj×Mi (i, j = 1, 2)
is the channel matrix between Transmitter i and Receiver j;
the coded input signal xi(t) ∈ CMi×1 is subject to the power
constraint E

(
‖xi(t)‖2

)
≤ P for i = 1, 2, ∀ t.

In the rest of this paper, we refer to MIMO BC/IC as MIMO
networks. For notational brevity, we define the ensemble of
channel matrices, i.e., H(t) , {H1(t),H2(t)} (resp. H(t) ,
{H11(t),H21(t),H12(t),H22(t)}), as the channel state for
BC (resp. IC). We further define Hk , {H(t)}kt=1, and Ĥk ,
{Ĥ(t)}kt=1, where k = 1, · · · , n.

C. Assumptions and Definitions

Assumption 1 (perfect delayed and imperfect current CSIT).
At each time instant t, the transmitters know perfectly the
delayed CSI Ht−1, and obtain an imperfect estimate of the
current CSI Ĥ(t), which could, for instance, be produced by
standard prediction based on past samples. The current CSIT
estimate is modeled by

Hi(t) = Ĥi(t) + H̃i(t) (3)

Hij(t) = Ĥij(t) + H̃ij(t) (4)

for BC and IC, respectively, where estimation error H̃i(t)
(resp. H̃ij(t)) and the estimate Ĥi(t) (resp. Ĥij(t)) are mutu-
ally independent, and each entry is assumed1 to be NC

(
0, σ2

i

)
and NC

(
0, 1− σ2

i

)
. Further, we assume the following Markov

chain

(Ht−1, Ĥt−1)→ Ĥ(t)→ H(t), ∀t, (5)

which means H(t) is independent of (Ht−1, Ĥt−1) conditional
on Ĥ(t). Furthermore, at the end of the transmission, i.e., at
time instant n, the receivers know perfectly Hn and Ĥn.

It readily follows that, for any fat submatrixH ofHi orHij ,
E(log det(HHH)) > −∞ and E(log det(ĤĤH)) = O(1)
when σ2

i goes to 0.
The assumption on the CSI at the receiver (CSIR) is in

accordance with previous works with delayed CSIT, and does
not add any limitation over the assumption made in [4]–[6].
We point out that only local CSIT/CSIR (the channel links
with which the node is connected) is really helpful and leads
to the same result. Nevertheless, we assume the CSIT/CSIR to
be available in a global fashion for simplicity of presentation.

We are interested in characterizing the degrees of freedom
(DoF) of the above system as functions of the quality of current
CSIT, thus bridging between the two previously investigated
extremes which are the perfect instantaneous CSIT and the fully
outdated (non-instantaneous) CSIT cases. As it was established
in previous works [13], [14], the imperfect current CSIT has
beneficial value (in terms of improving the DoF) only if the
CSIT estimation error decays at least exponentially with the

1We make the above assumption on the fading distribution to simplify
the presentation, although the results can be applied to a broader class of
distributions.
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d1 ≤ min{M,N1}, (6a)
d2 ≤ min{M,N2}, (6b)

d1 + d2 ≤ min{M,N1 +N2}, (6c)
d1

min{M,N1}
+

d2
min{M,N1 +N2}

≤ 1 +
min{M,N1 +N2} −min{M,N1}

min{M,N1 +N2}
α1, (6d)

d1
min{M,N1 +N2}

+
d2

min{M,N2}
≤ 1 +

min{M,N1 +N2} −min{M,N2}
min{M,N1 +N2}

α2, (6e)

SNR or faster. Thus it is reasonable to study the regime by
which the CSIT quality can be parameterized by an indicator
αi ≥ 0 such that:

αi , − lim
P→∞

log σ2
i

logP
(7)

if the limit exists. This αi indicates the quality of current CSIT
corresponding to Receiver i at high SNR. While αi = 0 reflects
the case with no current CSIT, αi →∞ corresponds to that
with perfect instantaneous CSIT. As a matter of fact, when
αi ≥ 1, the quality of the imperfect current CSIT is sufficient
to avoid the DoF loss, and ZF precoding with this imperfect
CSIT is able to achieve the maximum DoF [27]. Therefore,
we focus on the case αi ∈ [0, 1] henceforth. The connections
between the above model and the linear prediction over existing
time-correlated channel models with prescribed user mobility
are highlighted in [13], [14]. According to the definition of the
estimated current CSIT, we have E

(
|hH

k(t)ĥ⊥k (t)|2
)

= σ2
i ∼

P−αi , with hH

k representing any row of channel matrices Hi(t)
(resp. Hij(t)), and ĥH

k being its corresponding estimate.
A rate pair (R1, R2) is said to be achievable for the two-user

MIMO networks with perfect delayed and imperfect current
CSIT if there exists a

(
2nR1 , 2nR2 , n

)
code scheme with:

• two message sets W1 , [1 : 2nR1 ] and W2 , [1 : 2nR2 ],
from which two independent messages W1 and W2

intended respectively to Receiver 1 and Receiver 2 are
uniformly chosen;

• one encoding function for (each) transmitter:

BC: x(t) = ft
(
W1,W2,Ht−1, Ĥt

)
IC: xi(t) = fi,t

(
Wi,Ht−1, Ĥt

)
, i = 1, 2;

(8)

• one decoding function at the corresponding receiver,

Ŵj = gj
(
Y n
j ,Hn, Ĥn

)
, j = 1, 2 (9)

for Receiver j, where Y n
j , {yj(t)}nt=1,

such that the average decoding error probability P (n)
e , defined

as P (n)
e , P

(
(W1,W2) 6= (Ŵ1, Ŵ2)

)
, vanishes as the code

length n tends to infinity. The capacity region C is defined
as the set of all achievable rate pairs. Accordingly, the DoF
region can be defined as follows:

Definition 1 (degrees of freedom region). The degrees of
freedom (DoF) region for the two-user MIMO network is
defined as

D =

{
(d1, d2) ∈ R2

+| ∀(w1, w2) ∈ R2
+, w1d1 + w2d2

≤ lim sup
P→∞

(
sup

(R1,R2)∈C

w1R1 + w2R2

logP

)}
.

(10)

III. MAIN RESULTS

According to the assumptions and definitions in the previous
section, the main results of this paper are stated as the following
two theorems:

Theorem 1. For the two-user (M,N1, N2) MIMO BC with
delayed and imperfect current CSIT, the optimal DoF region
{(d1, d2)|(d1, d2) ∈ R2

+} is characterized by eq-(6) on the top
of this page, where αi ∈ [0, 1] (i = 1, 2) indicates the current
CSIT quality exponent of Receiver i’s channel.

Proof: The proof of achievability will be presented in
Section IV showing some insights with toy examples, and in
Section V for the general formulation. The converse proof will
be given in Section VI focusing on (6d) and (6e), because
the first three bounds correspond to the upper bounds under
perfect CSIT settings and thus hold trivially under delayed and
imperfect current CSIT settings.

Remark 1. This result yields a number of previous results
as special cases: the delayed CSIT case [5] for α1 = α2 =
0, where the sum DoF bound (6c) is inactive; perfect CSIT
case [1] for α1 = α2 = 1, where the weighted sum DoF
bounds (6d) and (6e) are inactive; partial CSIT (i.e., perfect
CSIT for one channel and delayed CSIT for the other one)
case [24] for α1 = 1, α2 = 0, where only (6b) and (6e) are
active; delayed CSIT in MISO BC for N1 = N2 = 1 [14],
[15], [18].

Before presenting the optimal DoF region for MIMO IC,
we specify two conditions.

Definition 2 (Condition Ck). Given k ∈ {1, 2}, the condition
Ck holds, indicating the following inequalities

Mk ≥ Nj , Mj < Nk, M1 +M2 > N1 +N2 (11)

are true, ∀ j ∈ {1, 2}, j 6= k.

Remark 2. This definition that points out the existence of the
corresponding outer bound, is different from that in [6], in
which the condition implies the activation of the outer bounds.

Theorem 2. For the two-user (M1,M2, N1, N2) MIMO IC
with delayed and imperfect current CSIT, the optimal DoF
region {(d1, d2)|(d1, d2) ∈ R2

+} is characterized by eq-(12)
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d1 ≤ min{M1, N1}, (12a)
d2 ≤ min{M2, N2}, (12b)

d1 + d2 ≤ min{M1 +M2, N1 +N2,max{M1, N2},max{M2, N1}}, (12c)
d1

min{M2, N1}
+

d2
min{M2, N1 +N2}

≤ min{N1,M1 +M2}
min{M2, N1}

+
min{M2, N1 +N2} −min{M2, N1}

min{M2, N1 +N2}
α1, (12d)

d1
min{M1, N1 +N2}

+
d2

min{M1, N2}
≤ min{N2,M1 +M2}

min{M1, N2}
+

min{M1, N1 +N2} −min{M1, N2}
min{M1, N1 +N2}

α2, (12e)

d1 +
N1 + 2N2 −M2

N2
d2 ≤ N1 +N2 + (N1 −M2)α2, if C1 holds (12f)

d2 +
N2 + 2N1 −M1

N1
d1 ≤ N1 +N2 + (N2 −M1)α1, if C2 holds (12g)

on the top of this page, where αi ∈ [0, 1] (i = 1, 2) indicates
the current CSIT quality exponent corresponds to Receiver i.

Proof: The general formulation of achievability will be
presented in Section V, and the converse will be given in Section
VI. For the converse, the first three inequalities correspond to
the outer bounds for the case of perfect CSIT, which should
also hold for our setting. Hence, it is sufficient to prove the
last four bounds. Due to the symmetry property of the bounds
(12d) and (12e), (12f) and (12g), it is sufficient to prove the
bounds (12d) and (12f).

Remark 3. Some previous reported results can be regarded
as special cases of our results: delayed CSIT case [6] for
α1 = α2 = 0; perfect CSIT case [2] for α1 = α2 = 1, where
the weighted sum DoF bounds (12d)-(12g) are inactive; hybrid
CSIT (i.e., perfect CSIT for one channel and delayed CSIT
for the other one) case [26] for α1 = 1, α2 = 0, where the
bounds (12e) and (12f) are active.

IV. ACHIEVABILITY: TOY EXAMPLES

To introduce the main idea of our achievability scheme, we
revisit MAT [4] and α-MAT alignment [13]–[15] for the case
of MISO BC in Section IV. A, followed by an alternative way
built on block-Markov encoding and backward decoding in
Section IV. B, as well as some examples in Section IV. C
and IV. D showing that block-Markov encoding allows us
to balance the asymmetry both in current CSIT qualities
and antenna configurations. Although MAT [4] and α-MAT
alignment [13]–[15] appear to be conceptually different, these
schemes boil down into a single block-Markov encoding
scheme (of an infinite number of constant-length blocks). In
fact, both schemes can be represented exactly in the same
manner with different parameters.

A. MAT v.s. α-MAT Revisit

Let us take the simplest antenna configuration, i.e., (2, 1, 1)
BC, as an example. Recall that both MAT and α-MAT deliver
symbol under the same structure. Specifically, in the first phase
(Phase I), two independent messages w1 and w2 are encoded
into two independent vectors u1(w1) and u2(w2) with different

covariance matrices Q1 , E (u1u
H
1) and Q2 , E (u2u

H
2). The

sum of these vectors are sent out, i.e.,

x[1] = u1 + u2,

s.t.


MAT: Q1 = Q2 = P I,

α-MAT:

{
Q1 = P1ΦΦΦĥ2

+ P2ΦΦΦĥ⊥2
Q2 = P1ΦΦΦĥ1

+ P2ΦΦΦĥ⊥1

(13)

where P1 ∼ P 1−α, P2 = P − P1 ∼ P , ∀α ∈ [0, 1], and
ΦΦΦh , hhH

‖h‖2 . Each receiver experiences some interferences
caused by the symbols dedicated to the other receiver{

η1 , hH
1u2

η2 , hH
2u1

s.t.

{
MAT: E

(
|ηi|2

)
∼ P

α-MAT: E
(
|ηi|2

)
∼ P 1−α (14)

Then, the task of the second phase is to multicast the
interferences (η1, η2) to both receivers. The main difference
between the MAT and α-MAT lies in the way in which the
interferences are sent. While the analog version of ηk is sent
in two slots with MAT, the digitized version is sent with α-
MAT instead. Note that the covariance matrices Q1 and Q2,
or equivalently, the spatial precoding and power allocation, of
α-MAT are such that the mutual interferences (η1, η2) have
a reduced power level P 1−α. According to the rate-distortion
theorem [28], each interference ηk, k = 1, 2, can be compressed
with a source codebook of size P 1−α or (1 − α) logP bits
into an index lk, in such a way that the average distortion
between ηk and the source codeword η̂k(lk) is comparable to
the AWGN level [14]. Then, the index lk is encoded with a
channel codebook into a codeword xc(lk) ∼ P I2 and sent as
the common message to both receivers. Thanks to the reduced
range of lk, there is still room to transmit private messages.
The structure of the two slots in the second phase (Phase II) is{

MAT: x[2] = vkηk,
α-MAT: x[2] = xc(lk) + up1 + up2

(15)

where k = 1, 2, vk is a randomly chosen vector; the covariances
of the private signals up1 and up2 are respectively Qup1 =
PαΦΦΦĥ⊥2

andQup2 = PαΦΦΦĥ⊥1
in such a way that they are drown

in the AWGN at the unintended receivers without creating
noticeable interferences (at high SNR). At Receiver k, the
common messages l1 and l2 are first decoded from the two
slots in Phase II, by treating the private signal up1 or up2 as
noise. The common messages are then used to 1) reconstruct
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η1 and η2 that will be used with the received signal in Phase
I to decode wk and recover 2− α DoF, and 2) to reconstruct
xc(lk) and remove it from the received signals in Phase II
so as to decode the private messages and recover 2α DoF (in
two slots). In the end, 2 − α + 2α = 2 + α DoF per user is
achievable in three slots, yielding an average DoF of 2+α

3 per
user. The interested readers may refer to [14] for more details
of α-MAT alignment.

B. An Alternative: Block-Markov Implementation

In fact, both MAT and α-MAT can be implemented in a
block-Markov fashion, the concept of which is shown in Fig. 1
for α = 0. The common message xc(lb−1) comes from the
previous block b− 1, and uk(wkb) is the new private message
dedicated to Receiver k (k = 1, 2). Essentially, we “squeeze”
the Phase II of block b − 1 and the Phase I of block b into
one single block, with proper power and rate scaling.

𝒙𝑐(𝑙𝑏−2) 

𝒖1 𝑤1𝑏−1 + 𝒖2(𝑤2𝑏−1) 

𝒙𝑐(𝑙𝑏−1) 

𝒖1 𝑤1𝑏 + 𝒖2(𝑤2𝑏) 

𝒙𝑐(𝑙𝑏) 

𝒖1 𝑤1𝑏+1 + 𝒖2(𝑤2𝑏+1) 
⋯ ⋯ 

Fig. 1: Block-Markov Encoding.

The transmission consists of B blocks of length n. For
simplicity of demonstration, we set n = 1. In block b, the
transmitter sends a mixture of two new private messages w1b

and w2b together with one common message lb−1, for b =
1, . . . , B. As it will become clear, the message lb−1 is the
compression index of the mutual interferences experienced by
the receivers in the previous block b−1. By encoding w1b, w2b,
and lb−1 into u1(w1b), u2(w2b), and xc(lb−1), respectively,
with independent channel codebooks, the transmitted signal is
written as

x[b] = xc(lb−1) + u1(w1b) + u2(w2b), b = 1, . . . , B
(16)

where we set l0 = 1 to initiate the transmission and w1B =
w2B = 1 to end it. As before, the common message xc(lb−1)
is with power P , whereas the precoding in u1 and u2 is with
a reduced power, parameterized by A, A′, with 0 ≤ A,A′ ≤ 1,
such that

Q1 = PAΦΦΦĥ2
+ PA

′
ΦΦΦĥ⊥2

, Q2 = PAΦΦΦĥ1
+ PA

′
ΦΦΦĥ⊥1

(17)

where A , (A′ − α)+. The mutual interferences are defined
similarly and their powers are now reduced

y1[b] = hH

1xc(lb−1)︸ ︷︷ ︸
P

+hH

1u1(w1b)︸ ︷︷ ︸
PA′

+hH

1u2(w2b)︸ ︷︷ ︸
η1b∼PA

(18)

y2[b] = hH

2xc(lb−1)︸ ︷︷ ︸
P

+hH

2u2(w2b)︸ ︷︷ ︸
PA′

+hH

2u1(w1b)︸ ︷︷ ︸
η2b∼PA

(19)

where we omit the block indices for the channel coefficients
as well as the AWGN for brevity. At the end of block b,
(η1b, η2b) are compressed with a codebook of size P 2A into
an index lb ∈

{
1, . . . , P 2A

}
. The distortion between (η1b, η2b)

and (η̂1(lb), η̂2(lb)) is at the noise level.

At the end of B blocks, Receiver k would like to retrieve
wk1, . . . , wk,B−1. Let us focus on Receiver 1, without loss of
generality. In this particular case, lb−1 can be decoded at the
end of block b, by treating the private signals as noise, i.e.,
with signal-to-interference-and-noise-ratio (SINR) level P 1−A′ ,
for b = 2, . . . , B. The correct decoding of lb−1 is guaranteed if
the SINR can support the DoF of 2A for the common message,
i.e.,

2A ≤ 1−A′. (20)

Given that this condition is satisfied, l0, l1, . . . , lB−1 are avail-
able to both receivers. Therefore, η1b, η2b, b = 1, . . . , B − 1,
are known, up to the noise level. To decode w1b, Receiver 1
uses η1b, η2b, and lb−1 to form the following 2 × 2 MIMO
system [

y1[b]− hH
1xc(lb−1)− η1b
η2b

]
=

[
hH
1

hH
2

]
u1(w1b) (21)

where the equivalent channel matrix has rank 2 almost surely.
This decoding strategy for the private message boils down to
the backward decoding, where the mutual interferences (η1b,
η2b) decoded in the future block are utilized in current block as
side information. From the covariance matrix Q1 of u1 from
(17), we deduce that the correct decoding of w1b is guaranteed
if the DoF d1b of w1b satisfies

d1b ≤ A+A′. (22)

Combining (20) and (22), it readily follows that the optimal
A′ should equalize (20), i.e., A′∗ = 1+2α

3 . Thus, we achieve
d1b = 2+α

3 . Due to the symmetry, d2b has the same value.
Finally, we have

dk =
1

B

B−1∑
b=1

dkb =
B − 1

B

2 + α

3
, k = 1, 2 (23)

which goes to 2+α
3 when B →∞.

By now, we have shown that both MAT and α-MAT schemes
can be interpreted under a common framework of block-Markov
encoding with power allocation parameters (A,A′) and that
they only differ from the choice of these parameters. As we
will show in the following subsections, the strength (or benefit)
of the block-Markov encoding framework becomes evident
in the asymmetric system setting, where the original α-MAT
alignment fails to achieve the optimal DoF in general.

C. Asymmetry in Current CSIT Qualities

Let us consider again the MISO BC case but assume now that
the CSIT qualities of two channels are different, i.e., α1 6= α2,
where αk (k = 1, 2) is for Receiver k. The signal model is in
the exact same form as in (16) with a more general precoding,
parameterized by Ak, A′k, with 0 ≤ Ak, A′k ≤ 1, such that

Q1 = PA1ΦΦΦĥ2
+ PA

′
1ΦΦΦĥ⊥2

, Q2 = PA2ΦΦΦĥ1
+ PA

′
2ΦΦΦĥ⊥1

(24)

where Ak , (A′k − αj)
+, j 6= k ∈ {1, 2}. Following the

same footsteps as in the symmetric case, it is readily shown
that η1b ∼ PA2 and η2b ∼ PA1 and that (η1b, η2b) can be
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TABLE I: Parameter Setting for the (2, 1, 1) BC Case (α1 ≥ α2)

Condition A′1 A′2 Corner Point (d1, d2)

2α1 − α2 ≤ 1
A′1 = 1+α1+α2

3
A′2 = 1+α1+α2

3

(
2+2α1−α2

3
, 2−α1+2α2

3

)
A′1 = 1+α2

2
A′2 = α1 (1, α1)

2α1 − α2 > 1 A′1 = 1+α2
2

A′2 = 1+α2
2

(1, 1+α2
2

)

- A′1 = α2 A′2 = 1+α1
2

(α2, 1)

compressed up to the noise level with a source codebook of
size PA1+A2 . The decoding at both receivers is the same as
before. To decode the common message lb−1 by treating the
private signals as noise, since the SINR is P 1−A′1 at Receiver 1
and P 1−A′2 at Receiver 2, the DoF of the common message
should satisfy

A1 +A2 ≤ min{1−A′1, 1−A′2}. (25)

Using the common messages lb and lb−1 as side information,
w1b and w2b can be decoded at the respective receivers if

d1b ≤ A1 +A′1 and d2b ≤ A2 +A′2. (26)

By carefully selecting the parameters A′1 and A′2, all corner
points of the DoF outer bound can be achieved, as shown in
Table I on the top of this page where the condition is to make
sure the corner points exist. Note that the corner point (α2, 1)
always exists as long as α1 ≥ α2.

D. Asymmetry in Antenna Configurations

We use the (4, 3, 2) MIMO BC case to show that the
block-Markov encoding can achieve the optimal performance
in asymmetric antenna settings. Recall that, in the previous
subsections, the backward decoding is performed to decode
the private messages, and that the common messages can be
decoded block by block. In this case, however, we also need
backward decoding to decode the common messages as well.

The same transmission signal model (16) is used here, with
the following precoding, parameterized by Ak and A′k, k = 1, 2,
0 ≤ Ak ≤ A′k ≤ 1:

Q1 = PA1ΦΦΦĤ2
+ PA

′
1ΦΦΦĤ⊥2

, Q2 = PA2ΦΦΦĤ1
+ PA

′
2ΦΦΦĤ⊥1

(27)

where Ak, k 6= j ∈ {1, 2}, is defined as

Ak ,

{
(A′k − αj)+, dk ≤ 4−Njαj ,
dk−(4−Nj)

Nj
, dk > 4−Njαj

(28)

with dk ∈ R+ being the achievable DoF associated with
Receiver k. It is readily verified that A′k − αj ≤ Ak ≤ A′k
is always true, such that the created interference at intended
Receiver j is of power level Ak, and the desired signal at
Receiver k is of level A′k.

We recall that the common message xc(lb−1) is transmitted
with power P and that the ranks of ΦΦΦĤ2

, ΦΦΦĤ⊥2
, ΦΦΦĤ1

, and ΦΦΦĤ⊥1
are respectively 2, 2, 3, and 1, almost surely. The received
signals are now vectors given by

y1[b] = H1xc(lb−1)︸ ︷︷ ︸
P I3

+H1u1(w1b) +H1u2(w2b)︸ ︷︷ ︸
η1b∼PA2I3

, (29)

y2[b] = H2xc(lb−1)︸ ︷︷ ︸
P I2

+H2u2(w2b) +H2u1(w1b)︸ ︷︷ ︸
η2b∼PA1I2

. (30)

Following the same footsteps as in the single receive antenna
case, it is readily shown that (η1b,η2b) can be compressed up
to the noise level with a source codebook of size P 2A1+3A2 .
For convenience, let us define

dη , 2A1 + 3A2. (31)

Unlike the MISO case where the common messages can be
decoded independently in each block without loss of optimality,
backward decoding is required to jointly decode the common
and private messages in the general MIMO case, in order to
achieve the optimal DoF. As we will see later on, the common
rate can be improved with backward decoding in general. The
decoding starts at block B. Since w1B and w2B are both known,
the private signals can be removed from the received signals
y1[B] and y2[B]. The common message lB−1 can be decoded
at both receivers if dη ≤ 2. At block b, for b = B − 1, . . . , 2,
assuming lb is known perfectly from the decoding of block b+1,
η1b and η2b can be reconstructed up to the noise level. The
following MIMO system can be obtained[

y1[b]− η1b
η2b

]
=

[
H1

0

]
xc(lb−1) +

[
H1

H2

]
u1(w1b). (32)

Note that this is a multiple-access channel (MAC) from which
lb−1 and w1b can be correctly decoded if the rate pair lies
within the following region

dη ≤ 3 (33)
d1b ≤ 2A1 + 2A′1 (34)

dη + d1b ≤ 3 + 2A1, (35)

whose general proof is provided in Appendix A. Let us set
d1b to equalize (34). Then, (33) and (35) imply dη ≤ 3− 2A′1.
Similar analysis on Receiver 2 will lead to dη ≤ 2− A′2, by
setting d2b = A′2 + 3A2. Therefore, from (31), we obtain the
following constraint

2A1 + 3A2 ≤ min {3− 2A′1, 2−A′2} (36)

to achieve any (d1b, d2b) such that

d1b ≤ 2A1 + 2A′1 and d2b ≤ A′2 + 3A2. (37)

By letting B →∞, d1 = 2A1+2A′1 and d2 = A′2+3A2 can be
achieved for any A′1, A

′
2 ≤ 1 given the definition of (A1, A2) in

(28), as long as (36) is satisfied. We can show that, by properly
choosing (A′1, A

′
2), all the corner points given by the outer

bound can be achieved. For example, by setting α1 = α2 = α,
the values (A′1, A

′
2) that achieve the corner points are illustrated

in Table II on the top of the next page. Note that ( 12
5 ,

4
5 + α)

exists only when α ≤ 4
5 , whereas (3α, 4−3α) and (4−2α, 2α)

exist only when α > 4
5 .
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TABLE II: Parameter Setting for the (4, 3, 2) BC Case with α1 = α2 = α.

Corner Point (d1, d2) Cond. (A′1, A
′
2) (A1, A2) dη

(3, α)
α ≤ 1

2
( 3+2α

4
, α) ( 3−2α

4
, 0) 3−2α

2
α > 1

2
(1, α) ( 1

2
, 0) 1

(2α, 2)
α ≤ 2

3
(α, 2+3α

4
) (0, 2−α

4
) 6−3α

4
α > 2

3
(α, 1) (0, 1

3
) 1

( 12
5
, 4
5
+ α) α ≤ 4

5
( 3
5
+ 1

2
α, 1

5
+ α) ( 3

5
− 1

2
α, 1

5
) 9

5
− α

(3α, 4− 3α) α > 4
5

(1, 1) ( 3α−2
2

, 1− α) 1
(4− 2α, 2α) α > 4

5
(1, 1) (1− α, 2α−1

3
) 1

V. ACHIEVABILITY: THE GENERAL FORMULATION

As aforementioned, the key ingredients of the achievability
scheme consist of:

• block-Markov encoding with a constant block length: the
fresh messages in the current block and the interferences
created in the past blocks are encoded together with the
proper rate splitting and power scaling;

• spatial precoding with imperfect current CSIT: with proper
power allocation over the range and null spaces of the
inaccurate current channel, the interference power at
unintended receiver can be reduced as compared to that
without any CSIT;

• interference quantization: instead of forwarding the over-
heard interference directly in an analog way as done in
pure delayed CSIT scenario, the reduced-power interfer-
ences are compressed first with a reduced number of bits,
and forwarded in a digital fashion with lower rate;

• backward decoding: the messages are decoded from the
last block to the first one, where in each block the
messages are decoded with the aid of side information
provided by the blocks in the future.

In the following, the general achievability scheme will be
described in detail for BC and IC respectively.

A. Broadcast Channels

First of all, we notice that the region (6) given in Theorem 1
does not depend on M (resp. Nk) when M > N1 +N2 (resp.
Nk > M ). Therefore, it is sufficient to prove the achievability
for the case M ≤ N1+N2 and Nk ≤M . And the achievability
for the other cases can be inferred by simply switching off the
additional transmit/receive antennas. Thus, it yields

M = min {M,N1 +N2} ,
Nk = min {M,Nk} , k = 1, 2.

(38)

Block-Markov encoding

The block-Markov encoding has the same structure as before,
namely,

x[b] = xc(lb−1) + u1(w1b) + u2(w2b), b = 1, . . . , B
(39)

where we recall that we set l0 = 1 to initiate the transmission
and w1B = w2B = 1 to end it.

Spatial precoding

Both u1,u2 ∈ CM×1 are precoded signals of M streams,
such that

Q1 = PA1ΦΦΦĤ2
+ PA

′
1ΦΦΦĤ⊥2

, Q2 = PA2ΦΦΦĤ1
+ PA

′
2ΦΦΦĤ⊥1

(40)

where the rank of ΦΦΦĤk is Nk whereas the rank of ΦΦΦĤ⊥k
is

M −Nk, k = 1, 2. In other words, for Receiver k, Nj streams
are sent in the subspace of the unintended Receiver j with
power level Ak and the other M −Nj streams are sent in the
null space of Receiver j with power level A′k, where (Ak, A

′
k)

satisfies

0 ≤ Ak ≤ A′k ≤ 1 and Ak ≥ A′k − αj (41)

for j 6= k ∈ {1, 2}. Note that the above condition guarantees
that the interference at Receiver j has power level Ak and the
desired signal at Receiver k is of power level A′k.

Interference quantization

Recall that the common message xc(lb−1) is sent with power
P . The received signals in block b are given by

y1[b] = H1xc(lb−1)︸ ︷︷ ︸
P IN1

+H1u1(w1b) +H1u2(w2b)︸ ︷︷ ︸
η1b∼PA2IN1

, (42)

y2[b] = H2xc(lb−1)︸ ︷︷ ︸
P IN2

+H2u2(w2b) +H2u1(w1b)︸ ︷︷ ︸
η2b∼PA1IN2

. (43)

It is readily shown that (η1b,η2b) can be compressed up to
the noise level with a source codebook of size PN2A1+N1A2

into an index lb. For convenience, let us define

dη1 , N1A2, dη2 , N2A1, and dη , dη1 + dη2 . (44)

Backward decoding

The decoding starts at block B. Since w1B and w2B are
both known, the private signals can be removed from the
received signals y1[B] and y2[B]. The common message lB−1
can be decoded at both receivers if dη ≤ min {N1, N2}. At
block b, assuming lb is known perfectly from the decoding of
block b+ 1, η1b and η2b can be reconstructed up to the noise
level, for b = B − 1, . . . , 2. The following MIMO system can
be obtained at Receiver k, k = 1, 2[

yk[b]− ηkb
ηjb

]
=

[
Hk

0

]
xc(lb−1) +

[
Hk

Hj

]
uk(wkb) (45)
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for j 6= k ∈ {1, 2}. Since the common message lb−1 and the
private message wkb are both desired by Receiver k, this system
corresponds to a multiple-access channel (MAC). As formally
proved in Appendix A, Receiver k can decode correctly both
messages if the following conditions are satisfied.

dη ≤ Nk (46)
dkb ≤ NjAk + (M −Nj)A′k (47)

dη + dkb ≤ Nk +NjAk. (48)

Let us choose dkb to be equal to the right hand side of (47)
for k = 1, 2 and b = 1, .., B − 1. Then, the equality in (47)
together with (44), (46), (48) implies, when letting B → ∞,
the following lemma.

Lemma 1 (decodability condition for BC). Let us define

ABC ,
{

(A1, A
′
1, A2, A

′
2) | Ak, A′k ∈ [0, 1],

A′k − αj ≤ Ak ≤ A′k, ∀ k 6= j ∈ {1, 2}
}

(49)

DBC , {(d1, d2) | dk ∈ [0, Nk], ∀ k ∈ {1, 2}} (50)
and

fA-d : ABC → DBC (51)

(Ak, A
′
k) 7→ dk , NjAk + (M −Nj)A′k, ∀k 6= j ∈ {1, 2}.

(52)

Then (d1, d2) = fA-d(A), for some A ∈ ABC, is achievable
with the proposed scheme, if

dη1 + d1 ≤ N1, (53)
dη2 + d2 ≤ N2. (54)

where we recall dη1 , N1A2 and dη2 , N2A1.

Remark 4. In the above lemma, dηk can be interpreted as the
degrees of freedom occupied by the interference at Receiver k.
Therefore, (53) and (54) are clearly outer bounds for any
transmission strategies, i.e., the sum of the dimension of the
useful signal and the dimension of the interference signal at
the receiver side cannot exceed the total dimension of the
signal space. These bounds are in general not tight except for
special cases such as the “strong interference” regime where
interference can be decoded completely and removed or the

“weak interference” regime where the interference can be treated
as noise while the useful signal power dominates the received
power. Remarkably, the proposed scheme achieves these outer
bounds. This is due to two of the main ingredients of our
scheme, namely, the block-Markov encoding and interference
quantization. The block-Markov encoding places the digitized
interference in the “upper level” of the signal space (with
full power) and thus “pushes” the channel into the “strong
interference” regime in which the digitized interference can
be decoded thanks to the structure brought by the interference
quantization.

Definition 3 (achievable region for BC). Let us define

IBC
A ,

{
(A1, A

′
1, A2, A

′
2) ∈ ABC

∣∣∣∣
(d1, d2) = fA-d(A1, A

′
1, A2, A

′
2),

dk
Nk
≤ 1−Aj , k 6= j ∈ {1, 2}

}
(55)

and the achievable DoF region of the proposed scheme

IBC
d , fA-d(IBC

A ) ,

(d1, d2)

∣∣∣∣∣∣
(d1, d2) = fA-d(A1, A

′
1, A2, A

′
2),

(A1, A
′
1, A2, A

′
2) ∈ ABC,

dk
Nk
≤ 1−Aj , k 6= j ∈ {1, 2}

 . (56)

Achievability analysis

In the following, we would like to show that any pair (d1, d2)
in the outer bound region defined by (6), hereafter referred to
as OBC

d , can be achieved by the proposed strategy. Therefore,
it is sufficient to show that OBC

d ⊆ IBC
d . The main idea is as

follows. If there exists a function

fd-A : OBC
d → ABC (57)

such that

(d1, d2) = fA-d(fd-A(d1, d2)), and (58)

fd-A(d1, d2) ∈ IBC
A , (59)

then for every (d1, d2) ∈ OBC
d we can use the power allocation

(A1, A
′
1, A2, A

′
2) = fd-A(d1, d2) on the proposed scheme to

achieve it, i.e.,

OBC
d = fA-d(fd-A(OBC

d )) ⊆ fA-d(IBC
A ) = IBC

d (60)

from which the achievability is proved. Now, we define formally
the power allocation function.

Definition 4 (power allocation for BC). Let us define fd-A :
OBC
d → ABC:

(d1, d2) 7→ (A1, A
′
1) , f1(d1), (A2, A

′
2) , f2(d2) (61)

where fk, j 6= k ∈ {1, 2}, is specified as below.
• When M = Nj: A′k = Ak = dk

M ;
• When M > Nj and dk < M −Njαj: Ak = (A′k−αj)+,

and thus

A′k =

{
dk

M−Nj , if dk < (M −Nj)αj ;
dk+Njαj

M , otherwise;
(62)

• When M > Nj and dk ≥M −Njαj: A′k = 1, and thus
Ak =

dk−(M−Nj)
Nj

.

It is readily shown that, for any (d1, d2) ∈ OBC
d , the

resulting power allocation always lies in ABC as defined in
(49) and that (58) is always satisfied. It remains to show
that (59) holds as well, i.e., the decodability condition in
(55) is satisfied. To that end, for any (d1, d2) ∈ OBC

d , we
first define (A1, A

′
1, A2, A

′
2) , fd-A(d1, d2) which implies

dj = NkAj + (M − Nk)A′j , j 6= k ∈ {1, 2}. Applying this
equality on the constraints in the outer bound OBC

d in (6), we
have

dk
Nk
≤
M − (M −Nk)A′j

Nk
−Aj , (63)

dk
Nk
≤ 1−

[
(M −Nk)(A′j − αk) +NkAj

M

]+
(64)
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for k 6= j ∈ {1, 2}, where the first one is from the sum rate
constraint (6c) whereas the second one is from the rest of the
constraints in (6). The final step is to show that either of (63)
and (64) implies the last constraint in (55):
• When M = Nk, (64) is identical to the last constraint in

(55);
• When M > Nk and dj ≥ M −Nkαk, we have A′j = 1

according to the mapping fd-A defined in Definition 4.
Hence, (63) is identical to the last constraint in (55);

• When M > Nk and dj < M − Nkαk, we have Aj =
(A′j − αk)+ according to Definition 4. Hence,[

(M −Nk)(A′j − αk) +NkAj

M

]+
≥ Aj (65)

with which (64) implies the last constraint in (55).
By now, we have proved the achievability through the existence
of a proper power allocation function such that (58) and (59)
are satisfied for every pair (d1, d2) in the outer bound.

B. Interference Channels

The proposed scheme for MIMO IC is similar to that for
BC, with the differences that (a) the interferences can only be
reconstructed at the transmitter from which the symbols are sent,
and (b) antenna configuration does matter at both transmitters
and receivers. Further, as with the broadcast channel, we notice
that the region (12) given in Theorem 2 does not depend on
Mk (resp. Nk) when Mk > N1 +N2 (resp. Nk > M1 +M2),
k = 1, 2. Therefore, it is sufficient to prove the achievability
for the case Mk ≤ N1 + N2 and Nk ≤ M1 + M2, k = 1, 2,
since the achievability for the other cases can be inferred by
simply switching off the additional transmit/receive antennas.
Thus, it yields

Mk = min {Mk, N1 +N2} ,
Nk = min {Nk,M1 +M2} , k = 1, 2.

(66)

We also define for notational convenience

N ′1 , min {N1,M2} , N ′2 , min {N2,M1} . (67)

Block-Markov encoding

The block-Markov encoding is done independently at both
transmitters

x1[b] = x1c(l1,b−1) + u1(w1b), (68)
x2[b] = x2c(l2,b−1) + u2(w2b), b = 1, . . . , B (69)

where we set l1,0 = l2,0 = 1 to initiate the transmission and
w1B = w2B = 1 to end it.

Spatial precoding

The signal uk ∈ CMk×1, k = 1, 2, is precoded signal of
Mk streams, such that

Q1 = PA1ΦΦΦĤ21
+ PA

′
1ΦΦΦĤ⊥1

21
+ PA

′′
1 ΦΦΦĤ⊥2

21
, (70)

Q2 = PA2ΦΦΦĤ12
+ PA

′
2ΦΦΦĤ⊥1

12
+ PA

′′
2 ΦΦΦĤ⊥2

12
(71)

where we use Ĥ⊥1jk (resp. Ĥ⊥2jk ) to denote any matrix span-
ning the (Mk −N ′j − ξk)-dimensional (resp. ξk-dimensional)
subspace of the null space of Ĥjk where ξk will be specified
later on. Therefore, the rank of ΦΦΦĤjk is N ′j whereas the rank
of ΦΦΦĤ⊥1

jk
and ΦΦΦĤ⊥2

jk
are respectively Mk − N ′j − ξk and ξk,

k = 1, 2. The power levels (Ak, A
′
k, A

′′
k) satisfy

Ak, A
′
k, A

′′
k ∈ [0, 1],

Ak ≤ A′k, A′′k ≤ A′k, and Ak ≥ A′k − αj
(72)

for j 6= k ∈ {1, 2}. Note that the above condition guarantees
that the interference at Receiver j has power level Ak and the
desired signal at Receiver k at power level A′k.

Interference quantization

Recall that the common messages x1c(l1,b−1) and
x2c(l2,b−1) are sent with power P . The received signals in
block b are given by

y1[b] = H11x1c(l1,b−1) +H12x2c(l2,b−1)︸ ︷︷ ︸
P IN1

+H11u1(w1b) +H12u2(w2b)︸ ︷︷ ︸
η1b∼PA2IN′1

, (73)

y2[b] = H22x2c(l2,b−1) +H21x1c(l1,b−1)︸ ︷︷ ︸
P IN2

+H22u2(w2b) +H21u1(w1b)︸ ︷︷ ︸
η2b∼PA1IN′2

. (74)

It is readily shown that η1b and η2b can be compressed
separately up to the noise level with two independent source
codebooks of size PN

′
1A2 and PN

′
2A1 , into indices l2,b and

l1,b, respectively. For convenience, let us define

dη1 , N ′1A2, dη2 , N ′2A1, and dη , dη1 + dη2 . (75)

Backward decoding

The decoding starts at block B. Since w1B and w2B are both
known, the private signals can be removed from the received
signals y1[B] and y2[B]. The common messages l1,B−1 and
l2,B−1 can be decoded at both receivers if

dηk ≤ min {Mj , N1, N2} , (76)
dη1 + dη2 ≤ min {N1, N2} , (77)

i.e., the common rate pair should lie within the intersection of
MAC regions at both receivers for the common messages. At
block b, assuming both l1,b and l2,b are known perfectly from
the decoding of block b+ 1, η1b and η2b can be reconstructed
up to the noise level, for b = B − 1, . . . , 2. The following
MIMO system can be obtained at Receiver k[
yk[b]− ηkb

ηjb

]
=

[
Hkk

0

]
xkc(lk,b−1) +

[
Hkj

0

]
xjc(lj,b−1)

+

[
Hkk

Hjk

]
uk(wkb) (78)

for j 6= k ∈ {1, 2}. Note that this system corresponds to
a multiple-access channel from which the three independent
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messages l1,b−1, l2,b−1, and wkb are to be decoded. It will
be shown in the Appendix A that the three messages can be
correctly decoded if the DoF quadruple (dη1 , dη2 , d1b, d2b) lies
within the following region

dkb ≤ N ′jAk + (Mk −N ′j − ξk)A′k + ξkA
′′
k

(79)
dηk ≤ min {Mj , N1, N2} (80)

dη1 + dη2 ≤ min {N1, N2} (81)

dηk + dkb ≤ N ′k + min
{
Mk −N ′j , Nk −N ′k

}
A′k

+N ′jAk (82)

dηj + dkb ≤ min {Mk, Nk}+N ′jAk (83)

dη1 + dη2 + dkb ≤ Nk +N ′jAk. (84)

Now, let us fix

dkb , N ′jAk + (Mk −N ′j − ξk)A′k + ξkA
′′
k (85)

dηj , N ′jAk (86)

from which we can reduce the region defined by (79)-(84).
First, we remove (79) that is implied by (85). Second, (80)
is not active as it is implied by (86) and (81). Third, (81) is
implied by (84) and (85). Finally, from (86), (83) is equivalent
to dkb ≤ min{Mk, Nk} that is implied by (85). Therefore, by
letting B →∞, we have the following counterpart of Lemma 1
for interference channels.

Lemma 2 (decodability condition for IC). Let us define

AIC ,

(A1, A
′
1, A

′′
1 , A2, A

′
2, A

′′
2)

∣∣∣∣∣∣
Ak, A

′
k, A

′′
k ∈ [0, 1]

A′k − αj ≤ Ak ≤ A′k, A′′k ≤ A′k,
ξkA

′′
k ≤ N ′k(1−Aj), k 6= j ∈ {1, 2}

 (87)

DIC ,
{

(d1, d2) | dk ∈ [0,min{Mk, Nk}], ∀ k ∈ {1, 2}
}

(88)

and

fA-d : AIC → DIC (89)

(Ak, A
′
k, A

′′
k) 7→ dk , N ′jAk + (Mk −N ′j − ξk)A′k + ξkA

′′
k ,

∀k 6= j ∈ {1, 2} (90)

where

ξk ,

{
(Mk −N ′j)+ − (Nk −N ′k)+, if Ck holds
0, otherwise.

(91)

Then (d1, d2) = fA-d(A), for some A ∈ AIC, is achievable
with the proposed scheme, if

dη1 + d1 ≤ N1, (92)
dη2 + d2 ≤ N2. (93)

where we recall dη1 , N ′1A2 and dη2 , N ′2A1.

Proof: It has been shown that with (86) and (90), only
(82) and (84) are active. With ξk defined in (91), we can verify
that Mk −N ′j − ξk = min

{
Mk −N ′j , Nk −N ′k

}
. Thus, from

(86), (90), (91), and the last constraint in (87), it follows that

(82) always holds. Finally, the only constraint that remains is
(84) that can be equivalently written as (92) and (93).

Definition 5 (achievable region for IC). Let us define

IICA ,

{
(A1, A

′
1, A

′′
1 , A2, A

′
2, A

′′
2) ∈ AIC

∣∣∣∣
(d1, d2) = fA-d(A1, A

′
1, A

′′
1 , A2, A

′
2, A

′′
2),

dk
N ′k
≤ Nk

N ′k
−Aj , k 6= j ∈ {1, 2}

}
(94)

and the achievable DoF region of the proposed scheme

IICd , fA-d(IICA ) ,

(d1, d2)

∣∣∣∣∣∣
(d1, d2) = fA-d(A1, A

′
1, A

′′
1 , A2, A

′
2, A

′′
2),

(A1, A
′
1, A

′′
1 , A2, A

′
2, A

′′
2) ∈ AIC,

dk
N ′k
≤ Nk

N ′k
−Aj , k 6= j ∈ {1, 2}

 . (95)

Achievability analysis

The analysis is similar to the BC case, i.e., it is sufficient
to find a function fd-A : OIC

d → AIC where OIC
d denotes the

outer bound region defined by (12), such that

(d1, d2) = fA-d(fd-A(d1, d2)), and (96)

fd-A(d1, d2) ∈ IICA . (97)

Now, we define formally the power allocation function.

Definition 6 (power allocation for IC). Let us define γk, k 6=
j ∈ {1, 2}, as

γk , min

{
1,
Mj − dj

ξk

}
. (98)

Then, we define fd-A : OIC
d → AIC:

(d1, d2) 7→ (A1, A
′
1, A

′′
1) , f1(d1, d2),

(A2, A
′
2, A

′′
2) , f2(d1, d2)

(99)

where fk, k 6= j ∈ {1, 2}, such that (90) is satisfied, and that
• when Mk = N ′j: A

′′ = A′k = Ak = dk
Mk

;
• when Mk > N ′j , dk < (Mk −N ′j)γk +N ′j(γk − αj)+:

Ak = (A′k − αj)+, A′k = A′′k < γk; (100)

• when Mk > N ′j , dk ≥ (Mk − N ′j)γk + N ′j(γk − αj)+,
and γk < 1:

Ak = (A′k − αj)+, A′k > A′′k = γk; (101)

• when Mk > N ′j , dk ≥ (Mk − N ′j)γk + N ′j(γk − αj)+,
and γk = 1:

A′k = A′′k = 1. (102)

First, one can verify, with some basic manipulations that,
fd-A(OIC

d ) ⊆ AIC. Second, (96) is satisfied by construction.
Finally, it remains to show that (97) holds as well, i.e., the
decodability condition in (94) is satisfied. Since the region
OIC
d depends on whether the condition Ck holds, we prove

the achievability accordingly.
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1) Neither C1 nor C2 holds (ξ1 = ξ2 = 0): For any
(d1, d2) ∈ OIC

d , we can define (A1, A
′
1, A

′′
1 , A2, A

′
2, A

′′
2) ,

fd-A(d1, d2) which implies, in this case,

dj = N ′kAj + (Mj −N ′k)A′j , j 6= k ∈ {1, 2}. (103)

Applying this equality on the constraints in the outer bound
OIC
d in (12), we have

dk
N ′k
≤ min {max {M1, N2} ,max {M2, N1}}

N ′k

−
(Mj −N ′k)A′j

N ′k
−Aj , (104)

dk
N ′k
≤ min{Mk, Nk}

N ′k
−
[

min{Mk, Nk} −Nk
N ′k

+
(Mj −N ′k)(A′j − αk) +N ′kAj

Mj

]+
,

(105)

for k 6= j ∈ {1, 2}, where the first one is from the sum rate
constraint (12c) whereas the second one is from the rest of
the constraints in (12). The final step is to show that either of
(104) and (105) implies the last constraint in (94).

• When Mj = N ′k, (105) implies the last constraint in (94)
because min{Mk,Nk}−Nk

Nk
≤ 0;

• When Mj > N ′k and dj ≥Mj −N ′kαk, we have A′j = 1
according to the mapping fd-A defined in Definition 6,
since γj = 1. Hence, the right hand side (RHS) of (104) is
not greater than Nk

N ′k
−Aj , which implies the last constraint

in (94);
• When Mj > N ′k and dj < Mj −N ′kαk, we have Aj =

(A′j − αk)+ according to Definition 6 with γj = 1. Since
min{Mk,Nk}−Nk

Nk
≤ 0, we can show that[

min{Mk, Nk} −Nk
Nk

+
(Mj −N ′k)(A′j − αk) +N ′kAj

Mj

]+
≥ min{Mk, Nk} −Nk

Nk
+Aj (106)

with which (105) implies the last constraint in (94).

2) Ck holds (ξk > 0, ξj = 0): In this case, it is readily
shown, from (90) and (91), that

dk = NjAk + (Nk −Mj)A
′
k + ξkA

′′
k , (107)

dj = MjAj . (108)

Applying the mapping dj = MjAj on (12c) results in

dk
N ′k
≤ min{Mk, Nk}

N ′k
−Aj (109)

that always implies dk
N ′k
≤ Nk

N ′k
− Aj . Due to the asymmetry,

we also need to prove that dj
Nj
≤ 1−Ak. Therefore, the final

step is to show that it can be implied by at least one of the
constraints in (12), together with (107) and (108).

• When dk < (Mk − Nj)γk + Nj(γk − αj)
+, we have

A′k = A′′k < γk according to (100). Therefore, dk =

NjAk + (Mk − Nj)A′k, plugging which into (12e), we
obtain
dj
Nj
≤ min{Mj , Nj}

Nj
−
[

min{Mj , Nj} −Nj
Nj

+
(Mk −Nj)(A′k − αj) +NjAk

Mk

]+
(110)

≤ min{Mj , Nj}
Nj

−
[

min{Mj , Nj} −Nj
Nj

+Ak

]
(111)

where the [·]+ in (110) is from the single user bound
(12b); the last inequality is due to Ak = (A′k −αj)+ and
min{Mj ,Nj}−Nj

Nj
≤ 0.

• When dk ≥ (Mk − Nj)γk + Nj(γk − αj)
+, we have

A′k ≥ A′′k = γk according to (101) and (102).
– If γk < 1, then A′′k = γk =

Mj−dj
ξk

and dk = (Nk −
Mj)A

′
k +Mj − dj +NjAk. Plugging the latter into

(12f), we obtain

dj
Nj
≤min{Mj , Nj}

Nj
−
[

min{Mj , Nj} −Nj
Nj

+
(Nk −Mj)(A

′
k − αj) +NjAk

Nk +Nj −Mj

]+
(112)

≤min{Mj , Nj}
Nj

−
[

min{Mj , Nj} −Nj
Nj

+Ak

]
(113)

where the [·]+ in (112) is from the single user bound
(12b); the last inequality is due to Ak = (A′k −αj)+
and min{Mj ,Nj}−Nj

Nj
≤ 0.

– If γk = 1, then A′k = A′′k = 1 and dk = Mk −Nj +
NjAk. Plugging the latter into (12c), we obtain

dj
Nj
≤ min{Mk, Nk} −Mk +Nj −NjAk

Nj
(114)

≤ 1−Ak. (115)

Thus, the last constraint in (94) is shown in all cases. By now,
we have proved the achievability through the existence of a
proper power allocation function such that (96) and (97) are
satisfied for every pair (d1, d2) in the outer bound.

VI. CONVERSE

To obtain the outer bounds, the following ingredients are
essential:
• Genie-aided bounding techniques by providing side infor-

mation of one receiver to the other one [5], [6];
• Extremal inequality to bound the weighted difference of

conditional differential entropies [29], [30];
• Ergodic capacity upper and lower bounds for MIMO

channels with channel uncertainty.
In the following, we first present the proof of outer bound

(6d) for MIMO BC and (12d) for MIMO IC, referred to in
this section as L4. It should be noticed that both bounds share
the same structure. Then, we give the proof of bound (12f) for
the MIMO IC case, referred to in this section as L6, when the
condition C1 holds.
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A. Proof of Bound L4

We first provide the outer bounds by employing the genie-
aided techniques for BC and IC, respectively, reaching a similar
formulation of the rate bounds. With the help of extremal
inequalities, the weighted sum rates are further bounded. Finally,
the bounds in terms of (α1, α2) are obtained by deriving novel
ergodic capacity bounds for MIMO channels with channel
uncertainty.

To obtain the outer bounds, we adopt a genie-aided upper
bounding technique reminisced in [5], [6], by providing
Receiver 2 the side information of Receiver 1’s message W1 as
well as received signal Y n

1 . For notational brevity, we define
a virtual received signal as

ȳi(t) ,

{
Hi(t)x(t) + zi(t) for BC
Hi2(t)x2(t) + zi(t) for IC (116)

and we also define Xn , {x(t)}nt=1, Xn
i , {xi(t)}nt=1,

Y k
i , {yi(t)}kt=1, and Ȳ k

i , {ȳi(t)}kt=1. Denote also
nεn , 1 + nRP

(n)
e where εn tends to zero as n → ∞ by

the assumption that limn→∞ P
(n)
e = 0.

1) Broadcast Channel: The genie-aided model is a degraded
BC Xn → (Y n

1 ,Y
n
2 ) → Y n

1 , and therefore we bound the
achievable rates by applying Fano’s inequality as

n(R1 − εn)

≤ I(W1;Y n
1 |Hn, Ĥn) (117)

=

n∑
t=1

I(W1;y1(t)|Hn, Ĥn,Y t−1
1 ) (118)

=

n∑
t=1

(
h(y1(t)|Hn, Ĥn,Y t−1

1 )

−h(y1(t)|Hn, Ĥn,Y t−1
1 ,W1)

)
(119)

≤
n∑
t=1

(h(y1(t)|H(t))− h(y1(t)|U(t),H(t))) (120)

≤ nN ′1 logP −
n∑
t=1

h(ȳ1(t)|U(t),H(t)) + n ·O(1) (121)

n(R2 − εn)

≤ I(W2;Y n
1 ,Y

n
2 ,W1|Hn, Ĥn) (122)

= I(W2;Y n
1 ,Y

n
2 |W1,Hn, Ĥn) (123)

=

n∑
t=1

I(W2;y1(t),y2(t)|Hn, Ĥn,Y t−1
1 ,Y t−1

2 ,W1) (124)

≤
n∑
t=1

I(x(t);y1(t),y2(t)|Hn, Ĥn,Y t−1
1 ,Y t−1

2 ,W1)

(125)

=

n∑
t=1

(
h(y1(t),y2(t)|Hn, Ĥn,Y t−1

1 ,Y t−1
2 ,W1) (126)

− h(y1(t),y2(t)|x(t),Hn, Ĥn,Y t−1
1 ,Y t−1

2 ,W1)
)

(127)

≤
n∑
t=1

h(y1(t),y2(t)|Hn, Ĥn,Y t−1
1 ,Y t−1

2 ,W1) (128)

=

n∑
t=1

h(ȳ1(t), ȳ2(t)|U(t),H(t)) (129)

where U(t) ,
{
Ȳ t−1
1 , Ȳ t−1

2 ,Ht−1, Ĥt,W1

}
for BC and

N ′1 , min{M,N1}; (120) is from (116) and because (a)
conditioning reduces differential entropy, and (b) {ȳ1(t), ȳ2(t)}
are independent of Hnt+1 and Ĥnt+1, given the past states and
channel outputs; (121) follows the fact that the rate of the point-
to-point M ×N1 MIMO channel (i.e., between the transmitter
and Receiver 1) is bounded by min{M,N1} logP + O(1);
(123) is due to the independence between W1 and W2; (125)
follows date processing inequality; (128) is obtained by noticing
(a) translation does not change differential entropy, (b) Gaussian
noise terms are independent from instant to instant, and are
also independent of the channel matrices and the transmitted
signals, and (c) the differential entropy of Gaussian noise with
normalized variance is non-negative and finite.

2) Interference Channel: Given the message and correspond-
ing channel states, part of the received signal is deterministic
and therefore removable without mutual information loss.
Hence, similarly to the BC case, we formulate a degraded
channel model, i.e., Xn

2 →
(
Ȳ n
1 , Ȳ

n
2

)
→ Ȳ n

1 . By applying
Fano’s inequality, the achievable rate of Receiver 1 and
Receiver 2 can be bounded as

n(R1 − εn)

≤ I(W1;Y n
1 |Hn, Ĥn) (130)

= I(W1,W2;Y n
1 |Hn, Ĥn)− I(W2;Y n

1 |W1,Hn, Ĥn)
(131)

≤ nÑ1 logP − I(W2;Y n
1 |W1,Hn, Ĥn) + n ·O(1) (132)

= nÑ1 logP − h(Y n
1 |W1,Hn, Ĥn)

+ h(Y n
1 |W1,W2,Hn, Ĥn) + n ·O(1) (133)

= nÑ1 logP − h(Y n
1 |W1,Hn, Ĥn) + n ·O(1) (134)

= nÑ1 logP − h(Ȳ n
1 |Hn, Ĥn) + n ·O(1) (135)

≤ nÑ1 logP −
n∑
t=1

h(ȳ1(t)|Hn, Ĥn, Ȳ t−1
1 , Ȳ t−1

2 )

+ n ·O(1) (136)

= nÑ1 logP −
n∑
t=1

h(ȳ1(t)|U(t),H(t)) + n ·O(1) (137)

n(R2 − εn)

≤ I(W2;Y n
1 ,Y

n
2 ,W1|Hn, Ĥn) (138)

= I(W2;Y n
1 ,Y

n
2 |W1,Hn, Ĥn) (139)

= I(W2; Ȳ n
1 , Ȳ

n
2 |Hn, Ĥn) (140)

=

n∑
t=1

I(W2; ȳ1(t), ȳ2(t)|Hn, Ĥn, Ȳ t−1
1 , Ȳ t−1

2 ) (141)

≤
n∑
t=1

I(x2(t); ȳ1(t), ȳ2(t)|Hn, Ĥn, Ȳ t−1
1 , Ȳ t−1

2 ) (142)

=

n∑
t=1

(
h(ȳ1(t), ȳ2(t)|Hn, Ĥn, Ȳ t−1

1 , Ȳ t−1
2 ) (143)
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− h(ȳ1(t), ȳ2(t)|x2(t),Hn, Ĥn, Ȳ t−1
1 , Ȳ t−1

2 )
)

(144)

≤
n∑
t=1

h(ȳ1(t), ȳ2(t)|Hn, Ĥn, Ȳ t−1
1 , Ȳ t−1

2 ) (145)

=

n∑
t=1

h(ȳ1(t), ȳ2(t)|U(t),H(t)) (146)

where we define U(t) ,
{
Ȳ t−1
1 , Ȳ t−1

2 ,Ht−1, Ĥt
}

for IC and

Ñ1 , min{M1 + M2, N1}; (132) follows the fact that the
mutual information at hand is upper bounded by the rate of
the (M1 + M2) × N1 point-to-point MIMO channel created
by letting the two transmitters cooperate perfectly, given by
min{M1 + M2, N1} logP + O(1); (134) is due to the fact
that (a) transmitted signal Xn

i is a deterministic function of
messages Wi, Hn, and Ĥn−1 as specified in (8) for i = 1, 2,
(b) translation does change differential entropy, and (c) the
differential entropy of Gaussian noise with normalized variance
is non-negative and finite; (135) and (140) are obtained because
translation preserves differential entropy; (136) is because
conditioning reduces differential entropy; (145) is because (a)
translation does not change differential entropy, (b) Gaussian
noise terms are independent from instant to instant, and are
also independent of the channel matrices and the transmitted
signals, and (c) the differential entropy of Gaussian noise
with normalized variance is non-negative and finite; (146) is
obtained due to the independence {ȳ1(t), ȳ2(t)} of Hnt+1 and
Ĥnt+1, given the past state and channel outputs.

It is worth noting that BC and IC share the common structure
of the achievable rate bounds, and therefore can be further
bounded in a similar way. To avoid redundancy, we give the
proof for IC, which can be straightforwardly extended to BC.

Define

S(t) ,

[
H12(t)
H22(t)

]
, Ŝ(t) ,

[
Ĥ12(t)

Ĥ22(t)

]
,

K(t) , E{x2(t)xH

2(t) | U(t)}.
(147)

Let p = min{M2, N1 + N2} and q = min{M2, N1}. By
following the footsteps in [14], we have

1

p
h(ȳ1(t), ȳ2(t)|U(t),H(t))− 1

q
h(ȳ1(t)|U(t),H(t)) (148)

≤ EŜ(t) max
K�0,

tr(K)≤P

ES(t)|Ŝ(t)

(
1

p
log det(I + S(t)K(t)SH(t))

− 1

q
log det(I +H12(t)K(t)HH

12(t))

)
(149)

≤ −min{M2, N1 +N2} −min{M2, N1}
min{M2, N1 +N2}

log σ2
1 +O(1)

(150)

where (149) is obtained by applying extremal inequality [29],
[30] for degraded outputs; the last inequality is obtained from
the following lemma:

Lemma 3. For two random matrices S = Ŝ+S̃ ∈ CL×M and
H = Ĥ + H̃ ∈ CN×M with L ≥ N , S̃, H̃ are respectively
independent of Ŝ, Ĥ , and the entries of H̃ are i.i.d. NC(0, σ2).

Then, given any K � 0 with eigenvalues λ1 ≥ · · · ≥ λM ≥ 0,
we have

1

min{M,L}
ES̃ log det(I + SKSH)

− 1

min{M,N}
EH̃ log det(I +HKHH)

≤ −min{M,L} −min{M,N}
min{M,L}

log(σ2)+OŜ(1)+OĤ(1)

(151)

as σ2 goes to 0.

Proof: See Appendix B.
Remark:
• This lemma can be regarded as the weighted difference

of the ergodic capacity for two MIMO channels with
uncertainty, where S̃ and H̃ are channel uncertainties. It
can also be interpreted as the ergodic capacity difference of
two Ricean MIMO channels with line-of-sight components
Ŝ, Ĥ , and fading components S̃, H̃ .

• This lemma also shows the change of the ergodic capacity
per dimension as the dimensionality decreases. In other
words, as the channel dimension decreases, the difference
of the ergodic capacity per dimension is bounded by the
dimension difference and the channel uncertainty.

According to the Markov chain Xn
2 →

(
Ȳ n
1 , Ȳ

n
2

)
→ Ȳ n

1 ,
we upper-bound the weighted sum rate as

n

(
R1

min{M2, N1}
+

R2

min{M2, N1 +N2}
− εn

)
(152)

≤ n · min{M1 +M2, N1}
min{M2, N1}

logP

+

n∑
t=1

(
1

min{M2, N1 +N2}
h(ȳ1(t), ȳ2(t)|U(t),H(t))

(153)

− 1

min{M2, N1}
h(ȳ1(t)|U(t),H(t))

)
+ n ·O(1)

(154)

≤ nmin{M1 +M2, N1}
min{M2, N1}

logP + n ·O(1)

+ n
min{M2, N1 +N2} −min{M2, N1}

min{M2, N1 +N2}
α1 logP

(155)

and another outer bound can be similarly obtained by exchang-
ing the roles of Receiver 1 and Receiver 2. Accordingly, the
corresponding outer bound L4 of the DoF region is obtained
by the definition.

B. Proof of Bound L6

This bound is active when C1 holds, i.e., M1 ≥ N2, N1 >
M2, and M1 +M2 > N1 +N2. The proof follows the same
lines of thought in [6]. Since N1 > M2, we formulate a virtual
received signal

ỹ1(t) , Uy1(t)

= UH11(t)x1(t) +UH12(t)x2(t) +Uz1(t) (156)
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where U ∈ CN1×N1 is any unitary matrix such that the
last N1 − M2 rows of U(t)H12(t) are with all zeros and
is independent of the rest of random variables. Therefore,
the last N1 −M2 outputs in ỹ1(t) are interference free, i.e.,
ỹ1[M2+1:N1](t) ∼H1[M2+1:N1]1(t)x1(t)+z1[M2+1:N1](t). For
convenience, we also define

ỹ2(t) ,H21(t)x1(t) + z2(t). (157)

Starting with Fano’s inequality, the achievable rate can be
bounded as

n(R1 − εn)

≤ I(W1;Y n
1 |Hn, Ĥn) (158)

= I(W1; Ỹ n
1 |Hn, Ĥn) (159)

= I(W1; Ỹ n
1[1:M2]

|Hn, Ĥn, Ỹ n
1[M2+1:N1]

)

+ I(W1; Ỹ n
1[M2+1:N1]

|Hn, Ĥn) (160)

≤ n(M2 − d2) logP + n ·O(1)

+ I(W1; Ỹ n
1[M2+1:N1]

|Hn, Ĥn) (161)

≤ n(M2 − d2) logP + n ·O(1)

+ I(W1; Ỹ n
1[M2+1:N1]

, Ỹ n
2 |Hn, Ĥn) (162)

= n(M2 − d2) logP + n ·O(1)

+

n∑
t=1

I
(
W1; ỹ1[M2+1:N1](t), ỹ2(t)|Hn,

Ĥn, Ỹ t−1
1[M2+1:N1]

, Ỹ t−1
2

)
(163)

≤ n(M2 − d2) logP + n ·O(1)

+

n∑
t=1

h(ỹ1[M2+1:N1](t), ỹ2(t)|Hn,

Ĥn, Ỹ t−1
1[M2+1:N1]

, Ỹ t−1
2 ) (164)

= n(M2 − d2) logP + n ·O(1)

+

n∑
t=1

h(ỹ1[M2+1:N1](t), ỹ2(t)|U(t),H(t))

(165)
n(R2 − εn)

≤ I(W2;Y n
2 |Hn, Ĥn) (166)

= I(W1,W2;Y n
2 |Hn, Ĥn)− I(W1;Y n

2 |W2,Hn, Ĥn)
(167)

≤ nN2 logP − I(W1; Ỹ n
2 |Hn, Ĥn) + n ·O(1) (168)

≤ nN2 logP − h(Ỹ n
2 |Hn, Ĥn)

+ h(Ỹ n
2 |W1,Hn, Ĥn) + n ·O(1) (169)

= nN2 logP − h(Ỹ n
2 |Hn, Ĥn) + n ·O(1) (170)

≤ nN2 logP + n ·O(1)

−
n∑
t=1

h(ỹ2(t)|Hn, Ĥn, Ỹ t−1
1[M2+1:N1]

, Ỹ t−1
2 ) (171)

= nN2 logP −
n∑
t=1

h(ỹ2(t)|U(t),H(t)) + n ·O(1) (172)

where U(t) , {Ht−1, Ĥt, Ỹ t−1
1[M2+1:N1]

, Ỹ t−1
2 } and Ỹ k

i ,
{ỹi(t)}kt=1, i = 1, 2; (159) holds due to the fact that unitary

transformation does not change the mutual information; (161)
comes from Lemma 6 in [6], given by

I(W1; Ỹ n
1[1:M2]

|Hn, Ĥn, Ỹ n
1[M2+1:N1]

)

≤ n(M2 − d2) logP + n ·O(1) (173)

where a similar proof can be straightforwardly obtained; (164)
holds because (a) ỹ1[M2+1:N1](t) and ỹ2(t) are deterministic
functions of W1, Hn and Ĥn, (b) translation does not change
differential entropy, and (c) the differential entropy of Gaussian
noise with normalized variance is non-negative and finite;
(168) follows that the mutual information at hand is upper
bounded by the capacity of an (M1 + M2) × N2 point-to-
point MIMO channel, i.e., N2 logP +O(1) since M1 +M2 >
N2 from the condition C1; (170) holds because ỹ2(t) is a
deterministic function of W1, given channel states, and the
differential entropy of the normalized Gaussian noise is finite;
(171) is due to conditioning reduces the differential entropy;
(165) and the last equality are due to that the received signals
at instant t are independent of Hnt+1 and Ĥnt+1, given the past
states and channel outputs.

Next, we define

S(t) ,

[
H1[M2+1:N1]1(t)

H21(t)

]
∈ C(N1+N2−M2)×M1 . (174)

Similarly to the proof for bound L4, we obtain the weighted
difference of two differential entropies by applying the extremal
inequality and Lemma 3

1

p
h(ỹ1[M2+1:N1](t), ỹ2(t)|U(t),H(t))−1

q
h(ỹ2(t)|U(t),H(t))

≤ − N1 −M2

N1 +N2 −M2
log σ2

2 +O(1) (175)

where we set p = min{M1, N1 +N2−M2} = N1 +N2−M2

and q = min{M1, N2} = N2.
Finally, we have

n

(
R1

N1 +N2 −M2
+
R2

N2
− εn

)
(176)

≤ n
(

1 +
M2 − d2

N1 +N2 −M2

)
logP

+

n∑
t=1

(
1

N1 +N2 −M2
h(ỹ1[M2+1:N1](t), ỹ2(t)|U(t),H(t))

(177)

− 1

N2
h(ỹ2(t)|U(t),H(t))

)
+ n ·O(1) (178)

≤ n
(

1 +
M2 − d2

N1 +N2 −M2

)
logP

+ n
N1 −M2

N1 +N2 −M2
α2 logP + n ·O(1) (179)

which leads to

d1 +
N1 + 2N2 −M2

N2
d2 ≤ N1 +N2 + (N1 −M2)α2.

(180)

By exchanging the roles of Receiver 1 and Receiver 2, the
outer bound (12g) can be obtained straightforwardly when the
condition C2 holds.
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VII. CONCLUSION

In this work, we focus on the two-user MIMO broadcast
and interference channels where the transmitter(s) has/have
access to both delayed CSIT and an estimate of current CSIT.
Specifically, the DoF region of MIMO networks (BC/IC) in
this setting with general antenna configuration and general
current CSIT qualities has been fully characterized, thanks
to a simple yet unified framework employing interference
quantization, block-Markov encoding and backward decoding
techniques. Our DoF regions generalize a number of existing
results under more specific CSIT settings, such as delayed
CSIT [5], [6], perfect CSIT [1], [2], partial/hybrid/mixed
CSIT [24]–[26]. The results further shed light on the benefits
of the temporally correlated channel, when such correlation
can be opportunistically taken into account for system designs.

APPENDIX

A. Achievable rate regions for the related MAC channels

1) Broadcast Channels: Let us focus on Receiver k, k 6=
j ∈ {1, 2}, without loss of generality. The channel in (45) is a
MAC, rewritten as[

yk[b]− ηkb
ηjb

]
︸ ︷︷ ︸

Yk

=

[
Hk

0

]
︸ ︷︷ ︸
S1

Xc +

[
Hk

Hj

]
︸ ︷︷ ︸
S2

Xk + Zk (181)

where Xc , xc(lb−1) and Xk , uk(wkb) are independent,
with rate Rc and Rk, respectively; Zk is the AWGN. It is
well known [28] that a rate pair (Rc, Rk) is achievable in the
channel if

Rc ≤ I(Xc;Yk |Xk, S) (182)
Rk ≤ I(Xk;Yk |Xc, S) (183)

Rc +Rk ≤ I(Xc, Xk;Yk |S) (184)

for any input distribution pXcXk = pXcpXk ; S , {S1, S2}
denotes the state of the channel. Let Xc ∼ NC (0,Qc) and
Xk ∼ NC (0,Qk) with Qc , P IM and Qk , PA

′
kΦΦΦĤ⊥j

+

PAkΦΦΦĤj . It readily follows that2

I(Xc;Yk |Xk) = log det(I + PS1S
H

1)

= Nk logP +O(1) (185)
I(Xk;Yk |Xc) = log det(I + S2QkS

H

2)

= ((M −Nj)A′k +NjAk) logP +O(1)
(186)

since S2 ∈ C(N1+N2)×M has rank M almost surely, given the
assumption N1 + N2 ≥ M . For the sum rate constraint, we
have

I(Xc, Xk;Yk)

= h(Yk)− h(Zk) (187)
= h(HjXk + Zk2) +O(1)

+ h(Hk(Xc +Xk) + Zk1 |HjXk + Zk2) (188)

2Hereafter, we omit for notational brevity the expectation on the channel
states S, whenever possible, which does not change the high SNR behavior
in this case. We consider any realization S1 and S2 instead.

≥ h(HjXk + Zk2) +O(1)

+ h(Hk(Xc +Xk) + Zk1 |HjXk + Zk2, Xk)
(189)

= h(HjXk + Zk2) + h(HkXc + Zk1) +O(1) (190)
= NjAk logP +Nk logP +O(1) (191)

where we define Zk1 and Zk2 the first and second parts of
the noise vector Zk; the second equality is from the chain
rule and the fact that the Gaussian noise Zk is normalized;
(189) is due to conditioning reduces differential entropy; (190)
is from the independence between Xc and Xk and between
the noises and the rest; the first term in (191) is essentially
the differential entropy of the interference ηjb. By relating
the rate pair (Rc, Rk) to the DoF pair (dη, dkb), (46)-(48) is
straightforward.

2) Interference Channels: In (78), each receiver sees a MAC
with three independent messages. Let us focus on Receiver k,
k 6= j ∈ {1, 2}, without loss of generality. The channel in (78)
is rewritten as[
yk[b]− ηkb

ηjb

]
︸ ︷︷ ︸

Yk

=

[
Hkk

0

]
︸ ︷︷ ︸
Sk1

Xkc +

[
Hkj

0

]
︸ ︷︷ ︸
Sk2

Xjc +

[
Hkk

Hjk

]
︸ ︷︷ ︸
Sk3

Xk + Zk

(192)

where Xkc , xkc(lk,b−1), Xjc , xjc(lj,b−1), and Xk ,
uk(wkb), k 6= j ∈ {1, 2}, are three independent signals, with
rate Rkc, Rjc, and Rk, respectively; Zk is the AWGN. It is
well known [28] that a rate triple (Rkc, Rjc, Rk) is achievable
in the channel if

Rkc ≤ I(Xkc;Yk |Xjc, Xk) (193)
Rjc ≤ I(Xjc;Yk |Xkc, Xk) (194)
Rk ≤ I(Xk;Yk |Xkc, Xjc) (195)

Rkc +Rjc ≤ I(Xkc, Xjc;Yk |Xk) (196)
Rkc +Rk ≤ I(Xkc, Xk;Yk |Xjc) (197)
Rjc +Rk ≤ I(Xjc, Xk;Yk |Xkc) (198)

Rkc +Rjc +Rk ≤ I(Xkc, Xjc, Xk;Yk) (199)

for any pXkcXjcXk = pXkcpXjcpXk , where we omit the
conditioning on the channel states S as in the BC case for
brevity. Let Xkc ∼ NC (0,Qkc) and Xk ∼ NC (0,Qk) with
Qkc , P IMk

and Qk , PAkΦΦΦĤjk +PA
′
kΦΦΦĤ⊥1

jk
+PA

′′
kΦΦΦĤ⊥2

jk
.

It is readily shown that

I(Xkc;Yk |Xjc, Xk) = log det(I + PSk1S
H

k1)

= min {Mk, Nk} logP +O(1) (200)
I(Xjc;Yk |Xkc, Xk) = log det(I + PSk2S

H

k2)

= min {Mj , Nk} logP +O(1) (201)
I(Xk;Yk |Xkc, Xjc) = log det(I + Sk3QkS

H

k3)

= (N ′jAk + (Mk −N ′j − ξk)A′k

+ ξkA
′′
k) logP +O(1) (202)

I(Xjc, Xkc;Yk |Xk) = log det(I + PSk1S
H

k1 + PSk2S
H

k2)

= Nk logP +O(1) (203)

since Sk3 ∈ C(N1+N2)×Mk has rank Mk almost surely, given
the assumption N1 +N2 ≥Mk. Following the same steps as
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Mk

Nj

Mk

(Mk − Nj)+�� �

�� �

Nj

T

Fig. 2: Visualization of the interplay between Xjc and Xk.

(187)-(191), we can obtain

I(Xkc, Xk;Yk |Xjc)

≥ N ′jAk logP + min{Mk, Nk} logP +O(1). (204)

It remains to bound the RHS of (198) and (199). First, using
the chain rule, we have

I(Xjc, Xk;Yk |Xkc)

= I(Xk;Yk |Xkc) + I(Xjc;Yk |Xk, Xkc) (205)

where the scaling of the second term is already shown in (201).
The first term can be interpreted as the rate of Xk by treating
Xjc as noise in a two-user MAC with a channel matrix in the
block upper triangular form

[
Hkj Hkk

Hjk

]
. As shown in Fig. 2,

since Hkj , Hkk, and Hjk are mutually independent, there
exists an invertible row transformation T that can convert the
(N1+N2)×(M1+M2) matrix to the form on the right, almost
surely. The interference created by Xjc is through the matrix
H̄kj , only affecting the overlapping part between Xjc and Xk,
as shown in Fig. 2. Note that the dimension of the overlapping
is ((Mk − Nj)

+ − (Nk − Mj)
+)+ that coincides with the

definition of ξk in (91). From Fig. 2, the interference-free
received signal for Xk is Ỹk =

[
Gkk
Hjk

]
Xk + Z̃k. Thus,

I(Xk;Yk |Xkc) ≥ I(Xk; Ỹk) (206)

= log det

(
I +

[
Gkk
Hjk

]
Qk

[
Gkk
Hjk

]H)
+O(1) (207)

≥ log det

(
I +

[
G̃′kk G̃kk

H̃′kk H̃kk

] [ PA′k IMk−N′j−ξk
PAk IN′

j

]

·
[
G̃′kk G̃kk

H̃′kk H̃kk

]H)
+O(1) (208)

= ((Mk −N ′j − ξk)A′k +N ′jAk) logP +O(1) (209)

where the O(1) term in (207) is from the fact that the
covariance of the noise Z̃k depends on T that does not
scale with P ; Gkk and Hjk remain independent. Next, let
Qk = Ujk diag(PA

′′
k Iξk , P

A′kIMk−N ′j−ξk , P
AkIN ′j )U

H

jk be
the eigenvalue decomposition of Qk and define the column
partitions

[
G̃′′kk G̃

′
kk G̃kk

]
, GkkUjk and

[
H̃ ′′jk H̃

′
jk H̃jk

]
,

HjkUjk where the number of columns of the submatrices
is ξk, Mk − N ′j − ξk, and N ′j , respectively; inequality (208)
is from the fact that removing one column block and the
corresponding diagonal block of size ξk can only reduce the
log-determinant; the last equality is from the fact that the
square matrix

[
G̃′kk G̃kk

H̃′jk H̃jk

]
has full rank, almost surely, for

the following reasons: 1) the matrices G and H are mutually

independent since the column transform Ujk is unitary and
independent of the G matrices; 2) the rows related to the
matrices H are linearly independent, since it can be proved
that rank(H̃jk) = rank(HjkΦΦΦĤjkH

H

jk) = min {Mk, Nj},
i.e., H̃jk has full rank; 3) the rows related to the matrices G
are linearly independent as well. Plugging (209) and (201) into
(205), we have

I(Xjc, Xk;Yk |Xkc)

≥ (N ′k + (Mk −N ′j − ξk)A′k +N ′jAk) logP +O(1).
(210)

Finally, for the sum rate constraint (199), we follow the same
steps as (187)-(191), we can obtain

I(Xkc, Xjc, Xk;Yk)

≥ N ′jAk logP + min{Mk +Mj , Nk} logP +O(1)
(211)

= (Nk +N ′jAk) logP +O(1) (212)

By relating the rate pair (Rkc, Rjc, Rk) to the DoF pair
(dη1 , dη2 , dkb), (79)-(84) are straightforward.

B. Proof of Lemma 3

In order to prove Lemma 3, we provide the following
preliminary results stated as Lemma 4-7.

Let A ∈ CN×M , N ≤M , be a full rank matrix and A′ ∈
CN×M ′ , M ′ ≤M , be a submatrix ofA. We have the following
lemmas that will be repeatedly used in the rest of the proof.

Lemma 4 (rank of submatrix).

rank(A′) ≥ rank(A)− (M −M ′). (213)

Lemma 5. Let I1, . . . , IM be a cyclic sliding window of size
N on the set of indices {1, . . . ,M}, i.e.,

Ik , {(k + i)M + 1 : i ∈ [0, N − 1]}, k = 1, . . . ,M.
(214)

If the columns of A are arranged such that rank(AIk) = N
for some k ∈ [1,M ], then

M∑
k=1

rank(AIk) ≥ N2 (215)

where AIk is the matrix composed of N columns of A defined
by Ik, i.e., AIk , [Aj,i]j∈[1,N ],i∈Ik .

Proof: The sketch of the proofs for the above lemma
is illustrated in Fig. 3a. Given that there exists k such that
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rank(AIk)

k
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(a) An example for Lemma 5

rank(AIk)

k

N

�N −M

�

� M

*****
*****
*****
*****
*****
*****
*****

N − (M −M′)

M′
(b) An example for Lemma 6

Fig. 3: Illustrations of the worst-case ranks of the submatrices from a sliding window. For each k, the number of vertical dots
represents the rank of the submatrix AIk . In particular, the number of red (resp. blue) dots is the rank of the submatrix

selected by the red (resp. blue) window. The sum of the ranks can be found by counting the number of dots.

the submatrix selected by the window is full rank N (the
blue window in Fig.3a), the rank of the submatrix selected
by the window Ik+1 or Ik−1 (the red window in Fig.3b) is
lower bounded by N − 1. By applying the same argument,
it is readily shown that the rank of the submatrix selected
by the window Ik+2 or Ik−2 is lower bounded by N − 2.
This lower bound keeps decreasing when the window slides
away from the blue one, until it hits another lower bound
N−(M−N) = 2N−M given by Lemma 4. The submatrices
within the sliding windows are of rank 2N −M , which lasts
M − 1 − 2(M − N) = 2N −M − 1 times. With the help
of Fig.3a, a lower bound on the sum of the ranks of all the
submatrices visited by the sliding window, can be obtained by
counting the dots in the figure, i.e.,

N + 2

M−N∑
i=1

(N − i) + (2N −M)(2N −M + 1) = N2.

(216)

In fact, this can be found easily by “completing the triangle”,
the number of dots in which is N2.

Lemma 6. A′ ∈ CN×M ′ , N ≤ M ′ ≤ M , is a submatrix of
A. We define I ′1, . . . , I ′M ′ as a cyclic sliding window of size
N on the set of indices {1, . . . ,M ′}, i.e.,

I ′k , {(k + i)M ′ + 1 : i ∈ [0, N − 1]}, k = 1, . . . ,M ′.
(217)

If the columns of A′ are arranged such that the first rank(A′)
columns of A′I′k are linear independent for some k ∈ [1,M ],
then we have

M ′∑
k=1

rank(A′I′k
) ≥ N(N − (M −M ′)) (218)

where A′I′k is the submatrix of A′ with N columns defined by
I ′k, i.e., A′I′k , [A′j,i]j∈[1,N ],i∈I′k .

Proof: The sketch of the proofs for the above lemma is
illustrated in Fig.3b. Given that there exists k such that the
submatrix selected by the window has rank r = N−(M−M ′)
given by Lemma 4 and that the first r columns are linearly
independent (the blue window in Fig.3b), the rank of the
submatrix selected by the windows I ′k−1, . . . , I ′k−(N−r) (the
red and brown windows in Fig.3b) is lower bounded by r − 1.
This lower bound keeps decreasing when the window slides
go away from these positions, until it hits another lower bound
N − (M −N) = 2N −M given by Lemma 4. With the help
of Fig.3b, a lower bound on the sum of the ranks of all the
submatrices visited by the sliding window, can be obtained
by counting the dots in the Figure. In fact, after some basic
computations, it turns out that there are N(N − (M −M ′))
dots.

Lemma 7. Given H = Ĥ + H̃ ∈ CN×M , N ≤M , with the
entries of H̃ being i.i.d. NC

(
0, σ2

)
, σ > 0, then

EH̃ log det(HHH) ≥ (N − rank(Ĥ)) log σ2 +OĤ(1)
(219)

as σ2 goes to 0.

Proof: According to [31, Lemma 1], for anyG = Ĝ+G̃ ∈
CN×N with the entries in G̃ i.i.d. NC (0, 1) independent of
Ĝ, we have

EG̃ log det(GGH) ≥
τ∑
i=1

log(λi(ĜĜ
H)) +O(1) (220)

where τ ≤ rank(Ĝ) is the number of eigenvalues of G that
are larger than 1. From here, it follows that

EG̃ log det(GGH) ≥
rank(Ĝ)∑
i=1

log(1 + λi(ĜĜ
H)) +O(1)

(221)

since the remaining rank(Ĝ)− τ eigenvalues are smaller than
1 and do not contribute more than O(1) to the expectation.
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Therefore, for any σ > 0, we can apply the above inequality
to σ−1H and have

EH̃ log det((σ−1H)(σ−1H)H)

≥
rank(Ĥ)∑
i=1

log(λi(σ
−2ĤĤH)) +O(1) (222)

= −rank(Ĥ) log σ2 +

rank(Ĥ)∑
i=1

log(λi(ĤĤ
H)) +O(1)

(223)

= −rank(Ĥ) log σ2 +OĤ(1) (224)

where the last equality is from Assumption 1 that
EĤ(log det(ĤĤH)) > −∞.

In the following, we prove Lemma 3 case by case according
to the value of M 3. First, let us recall that N ≤ L. Since
the case with M ≤ N is trivial, we focus on the cases with
N < M < L and M ≥ L.

1) Case A: N < M < L: Let us define M ′ as the number
of eigenvalues of K that are not smaller than 14, and let
K = V ΛΛΛV H be the eigenvalue decomposition of K. We first
establish the following upper bound:

det(I + SKSH) = det(I + ΛΛΛV HSHSV H) (225)
≤ det(I + λmax(V HSHSV )ΛΛΛ) (226)

≤ det(I + ‖S‖2F ΛΛΛ) (227)

where the last inequality is due to λmax(V HSHSV ) ≤
‖SV ‖2F = ‖S‖2F. Therefore, we have

ES̃ log det(I + SKSH) ≤ log det(I + ES̃(‖S‖2F)ΛΛΛ) (228)

≤ log det(I + ES̃(‖S‖2F)ΛΛΛ′) +OŜ(1)
(229)

where the first inequality is from (227) on which we apply
Jensen’s inequality; ΛΛΛ′ is a diagonal matrix composed of the
M ′ largest eigenvalues of K.

Next, let ΦΦΦ ,HV , ΦΦΦ′ , ĤV . Without loss of generality,
we assume that the columns of ΦΦΦ and ΦΦΦ′ are arranged such
that the conditions in Lemma 5 and Lemma 6 are satisfied (i.e.,
rank(ΦΦΦI) = N , where I is the cyclic window with size N , and
ΦΦΦI is defined as in Lemma 5), respectively. This also implies
that the eigenvalues in ΛΛΛ and ΛΛΛ′ are arranged accordingly. In
the following, given different values of M ′, we prove that

EH̃ log det(I +HKHH)

≥ N

M
log det(ΛΛΛ′) +

N(M −N)

M
log σ2 +OĤ(1). (230)

Case M ′ = M : In this case, we have

det(I +HKHH) = det(I + ΦΦΦΛΛΛΦΦΦH) (231)

=
∑

I⊆{1,...,N}

det(ΛΛΛI)det(ΦΦΦH

IΦΦΦI) (232)

3The technique employed in this proof was first developed in our earlier
version of this paper [16], and later applied and extended to tackle the K-user
MISO case in [17], [31].

4Or any constant c > 0 that is independent of any parameter in the system.
Note that M ′ can depend on Ŝ and the SNR P .

≥
M∑
k=1

det(ΦΦΦH

IkΦΦΦIk)det(ΛΛΛIk) (233)

where (232) is an application of the identity det(I +A) =∑
I⊆{1,...,M}det(AII) for any A ∈ CM×M [32]; the lower

bound is obtained by only considering a sliding window of
size N for all the possible sub-determinant. Thus,

log det(I +HKHH)

≥ log

(
M∑
k=1

det(ΦΦΦH

IkΦΦΦIk)det(ΛΛΛIk)

)
(234)

≥ log

(
1

M

M∑
k=1

det(ΦΦΦH

IkΦΦΦIk)det(ΛΛΛIk)

)
(235)

≥ 1

M
log

(
M∏
k=1

det(ΦΦΦH

IkΦΦΦIk)det(ΛΛΛIk)

)
(236)

=
1

M

(
N log det(ΛΛΛ) +

M∑
k=1

log det(ΦΦΦH

IkΦΦΦIk)

)
(237)

where (236) holds since arithmetic mean is not smaller than
geometric mean; the last equality is from the sliding window
property

∏M
k=1 det(ΛΛΛIk) = det(ΛΛΛ)N . Finally, we have

EH̃ log det(I +HKHH)

≥ 1

M

(
N log det(ΛΛΛ) +

M∑
k=1

EH̃ log det(ΦΦΦH

IkΦΦΦIk)

)
(238)

≥ 1

M

(
N log det(ΛΛΛ) + log σ2

M∑
k=1

(N − rank(Φ̂ΦΦIk))

)
+OĤ(1) (239)

=
1

M

(
N log det(ΛΛΛ) + log σ2

(
MN −

M∑
k=1

rank(Φ̂ΦΦIk)

))
+OĤ(1) (240)

≥ N

M

(
log det(ΛΛΛ′) + (M −N) log σ2

)
+OĤ(1) (241)

where Φ̂ΦΦ , ĤV and hence rank(Φ̂ΦΦ) = rank(Ĥ); (239) is
from Lemma 7; the last inequality is from Lemma 5 and that
ΛΛΛ = ΛΛΛ′ as M = M ′.

Case M > M ′ ≥ N : For this case, we can first get

det(I +HKHH) = det(I + ΦΦΦΛΛΛΦΦΦH)

≥ det(I + ΦΦΦ′ΛΛΛ′(ΦΦΦ′)H). (242)

Following the same footsteps as in (238)-(240), we obtain

EH̃ log det(I +HKHH)

≥ 1

M ′

N log det(ΛΛΛ′) + log σ2

M ′N − M ′∑
k=1

rank(Φ̂ΦΦ
′
I′k

)


+OĤ(1) (243)

≥ N

M ′
(
log det(ΛΛΛ′) + (M −N) log σ2

)
+OĤ(1) (244)

≥ N

M
log det(ΛΛΛ′) +

N(M −N)

M
log σ2 +OĤ(1) (245)

where the inequality (244) is from Lemma 6.
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Case M ′ < N : From (242) and given that M ′ < N , we
have

EH̃ log det(I +HKHH)

≥ log det(ΛΛΛ′) + log σ2
(
M ′ − rank(Φ̂ΦΦ

′
)
)

+OĤ(1) (246)

≥ log det(ΛΛΛ′) + log σ2 (M ′ − (N − (M −M ′))) +OĤ(1)
(247)

= log det(ΛΛΛ′) + (M −N) log σ2 +OĤ(1) (248)

≥ N

M
log det(ΛΛΛ′) +

N(M −N)

M
log σ2 +OĤ(1) (249)

where (247) is from log σ2 ≤ 0 and rank(Φ̂ΦΦ
′
) ≥ N − (M −

M ′).
By now, (230) has been proved in all configurations of

(M,N,M ′). Combining (229) and (230), we have

N ES̃ log det(I + SKSH)−M EH̃ log det(I +HKHH)

≤ −N(M −N) log σ2 +OŜ(1) +OĤ(1)

+N log det
(
ES̃(‖S‖2F) I + (ΛΛΛ′)−1

)
(250)

≤ −N(M −N) log σ2 +OŜ(1) +OĤ(1) (251)

where the last inequality is from the fact that ΛΛΛ′ � I
by construction and hence log det

(
ES̃(‖S‖2F) I + (ΛΛΛ′)−1

)
≤

M ′ log(1 +ES̃(‖S‖2F)) = OŜ(1). This completes the proof of
(151) for the case N < M < L.

2) Case B: M ≥ L: For the first term in (151), we bound
it as follows

ES̃ log det(I + SKSH)

= ES̃ log det(I +USΣSV
H

SKVSΣSU
H

S) (252)

= ES̃ log det(I + Σ2
SV

H

SKVS) (253)

≤ ES̃ log det(I + λmax(Σ2
S)V H

SKVS) (254)

=

L∑
i=1

ES̃ log(1 + λmax(SSH)λi(V
H

SKVS)) (255)

≤
L∑
i=1

ES̃ log(1 + λmax(SSH)λi) (256)

≤
L∑
i=1

ES̃ log(1 + ‖S‖2Fλi) (257)

≤
L∑
i=1

log(1 + ES̃(‖S‖2F)λi) (258)

= log det(I + ES̃(‖S‖2F)ΛΛΛ′′) (259)

= log det(I + ES̃(‖S‖2F)ΛΛΛ′′′) +OŜ(1) (260)

where in (252), S = USΣSV
H

S with ΣS ∈ CN×N and
VS ∈ CM×L; (253) comes from the equality det(I +AB) =
det(I+BA); (256) is due to Poincare Separation Theorem [32]
that λi(V H

SKVS) ≤ λi(K) for i = 1, · · · , N ; (257) is
from the fact that λmax(SSH) ≤ ‖S‖2F; (258) is obtained
by applying Jensen’s inequality; ΛΛΛ′′ , diag(λ1, · · · , λL) and
ΛΛΛ′′′ , diag(λ1, · · · , λmin{L,M ′}) with M ′ being the number
of eigenvalues that are not smaller than 1, i.e., Λ′′′ � I.

For the second term in (151), we use the following lower
bound

EH̃ log det(I +HKHH)

= EH̃ log det(I + ΦΛΦH) (261)
≥ EH̃ log det(I + Φ′Λ′′Φ′H) (262)

≥ N

L
log det(ΛΛΛ′′′) +

N(L−N)

L
log(σ2) +OĤ(1)

(263)

where ΦΦΦ , HV ∈ CN×M with V being the unitary matrix
containing the eigenvectors of K, i.e., K = V ΛΛΛV H with ΛΛΛ =
diag(λ1, · · · , λM ); in (262), ΦΦΦ′ = HV ′ ∈ CN×L with V ′

being the first L columns of V , and multiplying by the matrix
V ′ does not change the distribution property, and ΦΦΦΛΛΛΦΦΦH �
ΦΦΦ′ΛΛΛ′′ΦΦΦ′H; the last inequality is obtained from (230) in the
previous subsection.

Finally, it is readily shown that, following the same steps as
in (250) and (251),

1

L
ES̃ log det(I + SKSH)− 1

N
EH̃ log det(I +HKHH)

≤ −L−N
L

log(σ2) +OŜ(1) +OĤ(1). (264)

This completes the proof of (151) for the case M ≥ L.
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