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Abstract. Linear regression amounts to estimating a linear model that
maps features (e.g., age or gender) to corresponding data (e.g., the an-
swer to a survey or the outcome of a medical exam). It is a ubiquitous
tool in experimental sciences. We study a setting in which features are
public but the data is private information. While the estimation of the
linear model may be useful to participating individuals, (if, e.g., it leads
to the discovery of a treatment to a disease), individuals may be reluctant
to disclose their data due to privacy concerns. In this paper, we propose
a generic game-theoretic model to express this trade-off. Users add noise
to their data before releasing it. In particular, they choose the variance
of this noise to minimize a cost comprising two components: (a) a pri-
vacy cost, representing the loss of privacy incurred by the release; and
(b) an estimation cost, representing the inaccuracy in the linear model
estimate. We study the Nash equilibria of this game, establishing the
existence of a unique non-trivial equilibrium. We determine its efficiency
for several classes of privacy and estimation costs, using the concept of
the price of stability. Finally, we prove that, for a specific estimation cost,
the generalized least-square estimator is optimal among all linear unbi-
ased estimators in our non-cooperative setting: this result extends the
famous Aitken/Gauss-Markov theorem in statistics, establishing that its
conclusion persists even in the presence of strategic individuals.

Keywords: Linear regression, Gauss-Markov theorem, Aitken theorem,
privacy, potential game, price of stability

1 Introduction

The statistical analysis of personal data is a cornerstone of several experimental
sciences, such as medicine and sociology. Studies in these areas typically rely on
experiments, drug trials, or surveys involving human subjects. Data collection
has also become recently a commonplace—yet controversial—aspect of the In-
ternet economy: companies such as Google, Amazon and Netflix maintain and
mine large databases of behavioral information (such as, e.g., search queries or
past purchases) to profile their users and personalize their services. In turn, this
has raised privacy concerns from consumer advocacy groups, regulatory bodies,
as well as the general public.

The desire for privacy incentivizes individuals to lie about their private
information–or, in the extreme, altogether refrain from any disclosure. For exam-
ple, an individual may be reluctant to participate in a medical study collecting
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biometric information, concerned that it may be used in the future to increase
her insurance premiums. Similarly, an online user may not wish to disclose her
ratings to movies if this information is used to infer, e.g., her political affiliation.
On the other hand, a successful data analysis may also provide a utility to the
individuals from which the data is collected. This is evident in medical stud-
ies: an experiment may lead to the discovery of a treatment for a disease, from
which an experiment subject may clearly benefit. In the cases of commercial
data mining, users may benefit both from overall service improvements, as well
as from personalization. If such benefits outweigh privacy considerations, users
may consent to the collection and analysis of their data, e.g., by participating in
a clinical trial, completing a survey, or using an online service.

In this paper, we approach the above issues through a non-cooperative game,
focusing on a statistical analysis task called linear regression. We consider the
following formal setting. A set of individuals i ∈ {1, . . . , n} participate in an
experiment, in which they are about to disclose to a data analyst a private
variable yi ∈ R–e.g., the answer to a survey or the outcome of a medical test.
Each individual i is associated with a feature vector xi ∈ Rd, capturing public
information such as, e.g., age, gender, etc. The analyst wishes to perform linear
regression over the data, i.e., compute a vector β ∈ Rd such that:

yi ≈ βTxi, for all i ∈ {1, . . . , n}.

However, individuals do not reveal their true private variables to the analyst
in the clear: instead, before reporting these values, they first add noise. In our
examples above, such noise addition aims to protect against, e.g., future use
of the individual’s biometric data by an insurance company, or inference of her
political affiliation from her movie ratings. The higher the variance of the noise an
individual adds, the better the privacy that she attains, as her true private value
is obscured. On the other hand, high noise variance may also hurt the accuracy
of the analyst’s estimate of β, the linear model computed in aggregate across
multiple individuals. As such, the individuals need to strike a balance between
the privacy cost they incur through disclosure and the utility they accrue from
accurate model prediction.

Our contributions can be summarized as follows.

(i) We model interactions between individuals as a non-cooperative game, in
which each individual selects the variance level of the noise to add to her
private variable strategically. An individual’s decision minimizes a cost func-
tion comprising two components: (a) a privacy cost, that is an increasing
function of the added noise variance, and (b) an estimation cost, that de-
creases as the accuracy of the analyst’s estimation of β increases. Formally,
the estimation cost increases with the covariance matrix of the estimate of
β, when this estimate is computed through a least-squares minimization.

(ii) We characterize the Nash equilibria of the above game. In particular, we show
that the above setting forms a potential game. Moreover, under appropriate
assumptions on the privacy and estimation costs, there exists a unique pure
Nash equilibrium at which individual costs are bounded.
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(iii) Armed with this result, we determine the game’s efficiency, providing bounds
for the price of stability for several cases of privacy and estimation costs.

(iv) Finally, we turn our attention to the analyst’s estimation algorithm. We show
that, among the class of unbiased, linear estimators, generalized least squares
is the estimator that yields the most accurate estimate, at equilibrium. In a
formal sense, this extends the Aitken theorem in statistics, which states that
generalized least squares estimation yields minimal variance among linear
unbiased estimators. Our result implies that this optimality persists even if
individuals strategically choose the variance of their data.

The remainder of this paper is organized as follows. We present related work
in Section 2. Section 3 contains a review of linear regression and the definition
of our non-cooperative game. We characterize Nash equilibria in Section 4 and
discuss their efficiency in Section 5. Our Aitken-type theorem is in Section 6, and
our conclusions in Section 7. Due to space constraints, long proofs are relegated
to our technical report [1].

2 Related Work

Perturbing a dataset before submitting it as input to a data mining algorithm
has a long history in privacy-preserving data-mining (see, e.g., [2, 3]). Indepen-
dent of an algorithm, early research focused on perturbing a dataset prior to
its public release [4,5]. Perturbations tailored to specific data mining tasks have
also been studied in the context of reconstructing the original distribution of
the underlying data [6], building decision trees [6], clustering [7], and association
rule mining [8]. We are not aware of any study of such perturbation techniques
in a non-cooperative setting, where individuals add noise strategically.

The above setting differs from the more recent framework of ε-differential
privacy [9, 10], which has also been studied from the prespective of mechanism
design [11–13]. In differential privacy, noise is added to the output of a com-
putation, which is subsequently publicly released. Differential privacy offers a
strong guarantee: changing an individual’s input alters the distribution of the
perturbed output at most by an exp ε ≈ 1 + ε factor. The analyst performing
the computation is a priori trusted; as such, individuals submit unadulterated
inputs. In contrast, the classic privacy-preserving data-mining setting we study
here assumes an untrusted analyst, which motivates input perturbation.

In experimental design [14, 15], an analyst observes the public features of a
set of experiment subjects, and determines which experiments to conduct with
the objective of learning a linear model. The quality of an estimated model is
quantified through a scalarization of its variance [16]. Though many such scalar-
izations exist, we focus here on non-negative scalarizations, to ensure meaningful
notions of efficiency (as determined by the price of stability, c.f. Section 5).

Several papers study problems of statistical inference from the perspective of
mechanism design. Horel et al. [17] study a version of the experimental design
problem in which subjects report their private values truthfully, but may lie
about the costs they require for their participation. Closer to our setting, Dekel
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et al. [18] consider a broad class of regression problems in which participants
may misreport their private values, and determine loss functions under which
empirical risk minimization is group strategy-proof–the special case of linear
regression is also treated, albeit in a more restricted setting, in [19]. Our work
differs in considering noise addition as a non-cooperative game, and studying
the efficiency of its Nash equilibria, rather than mechanism design issues.

Our model has analogies to models used in public good provision problems
(see, e.g., [20] and references therein). Indeed, the estimate variance reduction
can be seen as a public good in that, when an individual contributes her data,
all other individuals in the game benefit. Moreover, the perturbation technique
used in our proof of Theorem 6 is similar to techniques used in public good
models introduced in the context of traffic congestion [21,22].

3 Model Description

In this section, we give a detailed description of our linear regression game and
the players involved. Before discussing strategic considerations, we give a brief
technical review of linear models, as well as key properties of least squares esti-
mators; all related results presented here are classic (see, e.g., [23]).

Notational conventions. We use boldface type (e.g., x, y, β) to denote vectors
(all vectors are column vectors), and capital letters (e.g., A, B, V ) to denote ma-
trices. As usual, we denote by Sd+, Sd++ ⊂ Rd×d the sets of (symmetric) positive
semidefinite (PSD) and positive definite matrices of size d× d, respectively. For
two positive semidefinite matrices A,B ∈ Sd+, we write that A � B if A−B ∈ Sd+;
recall that � defines a partial order over Sd+. We say that F : Sd+ → R is
non-decreasing in the positive semidefinite order if F (A) ≥ F (A′) for any two
A,A′ ∈ Sd+ such that A � A′. Moreover, we say that a matrix-valued function
F : Rn → Sd+ is matrix convex if αF (λ) + (1 − α)F (λ′) � F (αλ + (1 − α)λ′)
for all α ∈ [0, 1] and λ,λ′ ∈ Rn. Given a square matrix A = [aij ]1≤i,j≤d ∈ Rd×d,
we denote by trace(A) its trace (i.e., the sum of its diagonal elements), and by
‖A‖F its Frobenious norm (i.e., the `2-norm of its d2 elements).

3.1 Linear Models

Consider a set of n individuals, denoted by N ≡ {1, · · · , n}. Each individual
i ∈ N is associated with a vector xi ∈ Rd, the feature vector, which is public; for
example, this vector may correspond to publicly available demographic informa-
tion about the individual, such as age, gender, etc. Each i ∈ N is also associated
with a private variable yi ∈ R; for example, this may express the likelihood that
this individual contracts a disease, the concentration of a substance in her blood
or an answer that she gives to a survey.

Throughout our analysis, we assume that the individual’s private variable yi
is a linear function of her public features xi. In particular, there exists a vector
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β ∈ Rd, the model, such that the private variables are given by

yi = βTxi + εi, for all i ∈ N, (1)

where the “inherent noise” variables {εi}i∈N are i.i.d. zero-mean random variables
in R with finite variance σ2. We stress that we make no further assumptions on
the noise; in particular, we do not assume it is Gaussian.

An analyst wishes to observe the yi’s and infer the model β ∈ Rd. This type of
inference is ubiquitous in experimental sciences, and has a variety of applications.
For example, the magnitude of β’s coordinates captures the effect that features
(e.g., age or weight) have on yi (e.g., the propensity to get a disease), while the
sign of a coordinate captures positive or negative correlation. Knowing β can
also aid in prediction: an estimate of private variable y ∈ R of a new individual
with features x ∈ Rd is given by the inner product βTx.

We note that the linear relationship between yi and xi expressed in (1) is
in fact quite general. For example, the case where yi = f(x) + εi, where f is a
polynomial function of degree 2, reduces to a linear model by considering the
transformed feature space whose features comprise the monomials xikxik′ , for
1 ≤ k, k′ ≤ d. More generally, the same principle can be applied to reduce to (1)
any function class spanned by a finite set of basis functions over Rd [23].

3.2 Generalized Least Squares Estimation

We consider a setup in which the individuals intentionally perturb or distort
their private variable by adding excess noise. In particular, each i ∈ N computes
ỹi = yi + zi where zi is a zero-mean random variable with variance σ2

i ; we
assume that {zi}i∈N are independent, and are also independent of the inherent
noise variables {εi}i∈N . Subsequently, each individual reveals to the analyst (a)
the perturbed variable ỹi and (b) the variance σ2

i . As a result, the aggregate
variance of the reported value is σ2 + σ2

i .
In turn, having access to the perturbed variables ỹi, i ∈ N , and the cor-

responding variances, the analyst estimates β through generalized least squares
(GLS) estimation. For i ∈ N , let λi ≡ 1

σ2+σ2
i
be the inverse of the aggregate

variance. Denote by λ = [λi]i∈N the vector of inverses and by Λ = diag(λ) the
diagonal matrix whose diagonal is given by vector λ. Then, the generalized least
squares estimator is given by:

β̂GLS = arg min
β∈Rd

(∑
i∈N

λi(ỹi − βTxi)2
)

= (XTΛX)−1XTΛ ỹ (2)

where ỹ = [ỹi]i∈N is the n-dimensional vector of perturbed variables, and X =
[xTi ]i∈N ∈ Rn×d the n × d matrix whose rows comprise the transposed feature
vectors. Throughout our analysis, we assume that n ≥ d and that X has rank d.

Note that ỹ ∈ Rn is a random variable and as such, by (2), so is β̂GLS. It can
be shown that E(β̂GLS) = β (i.e., β̂GLS is unbiased), and

V (λ) ≡ Cov(β̂GLS) = E
[
(β̂GLS − β)T (β̂GLS − β)

]
= (XTΛX)−1.



6 S. Ioannidis, P. Loiseau.

The covariance V captures the uncertainty of the estimation of β. The matrix

A(λ) ≡ XTΛX =
∑
i∈N λixix

T
i

is known as the precision matrix. It is positive semidefinite, i.e., A(λ) ∈ Sd+,
but it may not be invertible: this is the case when rank(XTΛ) < d, i.e., the
vectors xi, i ∈ N , for which λi > 0, do not span Rd. Put differently, if the set of
individuals providing useful information does not include d linearly independent
vectors, there exists a direction x ∈ Rd that is a “blind spot” to the analyst:
the analyst has no way of predicting the value βTx. In this degenerate case the
number of solutions to the least squares estimation problem (2) is infinite, and
the covariance is not well-defined (it is infinite in all such directions x). Note
however that, since X has rank d (and hence XTX is invertible), the set of λ for
which the precision matrix is invertible is non-empty. In particular, it contains
(0, 1/σ2]n since A(λ) ∈ Sd++ if λi > 0 for all i ∈ N .

3.3 User Costs and a Non-Cooperative Game

The perturbations zi are motivated by privacy concerns: an individual may be
reluctant to grant unfettered access to her private variable or release it in the
clear. On the other hand, it may be to the individual’s advantage that the analyst
learns the model β. In our running medical example, learning that, e.g., a disease
is correlated to an individual’s weight or her cholesterol level may lead to a cure,
which in turn may be beneficial to the individual.

We model the above considerations through cost functions. Recall that the
action of each individual i ∈ N amounts to choosing the noise level of the
perturbation, captured by the variance σ2

i ∈ [0,∞]. For notational convenience,
we use the equivalent representation λi = 1/(σ2+σ2

i ) ∈ [0, 1/σ2] for the action of
an individual. Note that λi = 0 (or, equivalently, infinite variance σi) corresponds
to no participation: in terms of estimation through (2), it is as if this perturbed
value is not reported.

Each individual i ∈ N chooses her action λi ∈ [0, 1/σ2] to minimize her cost

Ji(λi, λ−i) = ci(λi) + f(λ), (3)

where we use the standard notation λ−i to denote the collection of actions of all
players but i. The cost function Ji : Rn+ → R+ of player i ∈ N comprises two
non-negative components. We refer to the first component ci : R+ → R+ as the
privacy cost : it is the cost that the individual incurs on account of the privacy
violation sustained by revealing the perturbed variable. The second component
is the estimation cost, and we assume that it takes the form f(λ) = F (V (λ)),
if A(λ) ∈ Sd++, and f(λ) = ∞ otherwise. The mapping F : Sd++ → R+ is
known as a scalarization [16]. It maps the covariance matrix V (λ) to a scalar
value F (V (λ)), and captures how well the analyst can estimate the model β.
The estimation cost f : Rn+ → R̄+ = R+ ∪ {∞} is the so-called extended-value
extension of F (V (λ)): it equals F (V (λ)) in its domain, and +∞ outside its
domain. Throughout our analysis, we make the following two assumptions:
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Assumption 1 The privacy costs ci : R+ → R+, i ∈ N , are twice continuously
differentiable, non-negative, non-decreasing and strictly convex.

Assumption 2 The scalarization F : Sd++ → R+ is twice continuously differ-
entiable, non-negative, non-constant, non-decreasing in the positive semidefinite
order, and convex.

The monotonicity and convexity assumptions in Assumptions 1 and 2 are
standard and natural. Increasing λi (i.e., decreasing the noise added by the indi-
vidual) leads to a higher privacy cost. In contrast, increasing λi can only decrease
the estimation cost: this is because decreasing the noise of an individual also de-
creases the variance in the positive semidefinite sense (as the matrix inverse is a
PSD-decreasing function). Note that it is possible to relax Assumptions 1 and 2
(in particular, amend the twice-continuous differentiability assumption) without
affecting most of our results, at the expense of an increased technical complexity
in our proofs. We therefore focus on the above two assumptions for the sake of
simplicity.

As a consequence of Assumption 2, the extended-value extension f is convex.
The convexity of F (V (·)) follows from the fact that it is the composition of the
non-decreasing convex function F (·) with the matrix convex function V (·); the
latter is convex because the matrix inverse is matrix convex. Moreover, f is twice
continuously differentiable on its effective domain {λ ∈ Rn+ : A(λ) ∈ Sd++}.

Scalarizations of positive semidefinite matrices and, in particular, of the co-
variance matrix V (λ), are abundant in statistical inference literature in the con-
text of experimental design [14–16]. We give two examples we use in our analysis
below:

F1(V ) = trace(V ), F2(V ) = ‖V ‖2F . (4)

Both scalarizations satisfy Assumption 2.
We denote by Γ = 〈N, [0, 1/σ2]n, (Ji)i∈N 〉 the game with set of players N =

{1, · · · , n}, where each each player i ∈ N chooses her action λi in her action set
[0, 1/σ2] to minimize her cost Ji : [0, 1/σ2]n → R+, given by (3). We refer to
a λ ∈ [0, 1/σ2]n as a strategy profile of the game Γ . We analyze the game as a
complete information game, i.e., we assume that the set of players, the action
sets and utilities are known by all players.

4 Nash Equilibria

We begin our analysis by characterizing the Nash equilibria of the game Γ .
Observe first that Γ is a potential game [24]. Indeed, define the function Φ :
[0, 1/σ2]n → R̄ such that

Φ(λ) = f(λ) +
∑
i∈N

ci(λi), (λ ∈ [0, 1/σ2]n). (5)
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Then for every i ∈ N and for every λ−i ∈ [0, 1/σ2]n−1, we have

Ji(λi, λ−i)− Ji(λ′i, λ−i) = Φ(λi, λ−i)− Φ(λ′i, λ−i), ∀λi, λ′i ∈ [0, 1/σ2]. (6)

Therefore, Γ is a potential game with potential function Φ.
In the game Γ , each player chooses her contribution λi to minimize her cost.

A Nash equilibrium (in pure strategy) is a strategy profile λ∗ satisfying

λ∗i ∈ arg min
λi

Ji(λi, λ
∗
−i), for all i ∈ N.

From (6), we see that (as for any potential game) the set of Nash equilibria
coincides with the set of local minima of function Φ.

First note that there may exist Nash equilibria λ∗ for which f(λ∗) = ∞.
For instance, if d ≥ 2, λ∗ = 0 is a Nash equilibrium. Indeed, in that case, no
individual has an incentive to deviate since a single λi > 0 still yields a non-
invertible precision matrix A(λ). In fact, any profile λ for which A(λ) is non-
invertible, and remains so under unilateral deviations, constitutes an equilibrium.

We call such Nash equilibria (at which the estimation cost is infinite) trivial.
Existence of trivial equilibria can be avoided in practice using slight model ad-
justments. For instance, one can impose a finite upper bound on the variance σi
of an individual i (or, equivalently, a positive lower bound on λi). Alternatively,
the existence of d non-strategic individuals whose feature vectors span Rd is also
sufficient to enforce a finite covariance at all λ across strategic individuals.

In the remainder, we focus on the more interesting non-trivial equilibria.
Using the potential game structure of Γ , we derive the following result.

Theorem 1. There exists a unique non-trivial equilibrium of the game Γ .

Proof. Recall that the set of Nash equilibria coincides with the set of local min-
ima of function Φ. To conclude the proof, we show that there exists a unique
local minimum λ of Φ in the effective domain of f .

First note that, by Assumption 1, the privacy cost ci(·) is finite on [0, 1/σ2]
since it is continuous on a compact set. Therefore, Φ(·) is finite iif f(·) is finite
i.e., domΦ ≡ {λ : Φ(λ) < ∞} = dom f , where dom is the effective domain.
Recall that since X has rank d, (0, 1/σ2]n ⊂ domΦ, and domΦ is non-empty.

By Assumptions 1 and 2, function Φ is strictly convex on its effective do-
main. Therefore it has at most one local minimum in domΦ. Since domΦ is
not compact, we still need to show that the minimum is achieved. By As-
sumption 1, the privacy cost derivatives are bounded and increasing. Let M =
maxi∈N c

′(1/σ2) < ∞ be the largest possible privacy cost derivative across all
users and all λi’s. On the other hand, the partial derivatives of the estimation
cost can be written as

∂f

∂λi
(λ) = − trace

(
∂F

∂V
· (XTΛX)−1xix

T
i (XTΛX)−1

)
= −xTi (XTΛX)−1 · ∂F

∂V
· (XTΛX)−1xi,
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where
∂F

∂V
=

(
∂F
∂V11

· · ·
...

. . .

)
.

Hence, since F is non-constant, there exists an i ∈ N for which ∂f
∂λi

(λ) is un-
bounded. Therefore, it is possible to define Ē ≡ {λ ∈ [0, 1/σ2]n : f(λ) > K}
with K large enough so that maxi∈N

∣∣ ∂f
∂λi

(λ)
∣∣ > M for all λ ∈ Ē . Let E be the

complement of Ē in [0, 1/σ2]n. Let λ ∈ Ē . Since maxi∈N
∣∣ ∂f
∂λi

(λ)
∣∣ > M , there

exists λ′ ∈ E such that Φ(λ′) < Φ(λ). Therefore, there exists a point in E for
which Φ is smaller than anywhere outside E . Finally, by Assumption 2, E is com-
pact. We deduce that Φ has a unique minimum on domΦ which concludes the
proof. ut

The potential game structure of Γ has another interesting implication: if in-
dividuals start from an initial strategy profile λ such that f(λ) < ∞, the so
called best-response dynamics converge towards the unique non-trivial equilib-
rium (see, e.g., [25]). This implies that the non-trivial equilibrium is the only
equilibrium reached when, e.g., all users start with non-infinite noise variance.

5 Price of Stability

Having established the uniqueness of a non-trivial equilibrium in our game, we
turn our attention to issues of efficiency. We define the social cost function
C : Rn → R+ as the sum of all individual costs, and say that a strategy profile
λopt is socially optimal if it minimizes the social cost, i.e.,

C(λ) =
∑
i∈N

ci(λi) + nf(λ), and λopt ∈ arg min
λ∈[0,1/σ2]n

C(λ).

Let opt = C(λopt) be the minimal social cost. We define the price of stabil-
ity (price of anarchy) as the ratio of the social cost of the best (worst) Nash
equilibrium in Γ to opt, i.e.,

PoS = min
λ∈NE

C(λ)

opt
, and PoA = max

λ∈NE

C(λ)

opt
,

where NE ⊂ [0, 1/σ2]n is the set of Nash equilibria of Γ .
Clearly, in the presence of trivial equilibria, the price of anarchy is infinity.

We thus turn our attention to determining the price of stability. Note however
that since the non-trivial equilibrium is unique (Theorem 1), the price of stability
and the price of anarchy coincide under slight model adjustments discussed in
Section 4 that avoid existence of the trivial equilibria.

The fact that our game admits a potential function has the following imme-
diate consequence (see, e.g., [25, 26]):

Theorem 2. Under Assumptions 1 and 2, PoS ≤ n.
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Proof. Under Assumptions 1 and 2, the unique non-trivial equilibrium λ∗ min-
imizes the potential function Φ(λ) =

∑
i∈N ci(λi) + f(λ). Then, for λopt a min-

imizer of the social cost:

Φ(λ∗) ≤ Φ(λopt) =
∑
i∈N

ci(λ
opt
i ) + f(λopt) ≤

∑
i∈N

ci(λ
opt
i ) + nf(λopt) = opt

by the positivity of f . On the other hand, C(λ∗) ≤ nΦ(λ∗), by the positivity of
ci, and the theorem follows. ut

Improved bounds can be obtained for specific estimation and privacy cost
functions. In what follows, we focus on the two inference cost functions given
by (4). We make use of the following lemma, whose proof is in our technical
report [1]:

Lemma 1. If A(λ) ∈ Sd++, then for any i ∈ N ,

∂ trace
(
A−1(λ)

)
∂λi

= −xTi A−2(λ)xi, and
∂‖A−1(λ)‖2F

∂λi
= −2xTi A

−3(λ)xi.

We begin by providing a bound on the price of stability when privacy costs
are monomial functions, proved in our technical report [1]. The following theorem
characterizes the PoS in these cases, improving on the linear bound of Theorem 2:

Theorem 3. Assume that the cost functions are given by ci(λ) = ciλ
k, where

ci > 0 and k ≥ 1. If the estimation cost is given by the extended-value extension
of F1(V ) = trace(V ), then PoS ≤ n

1
k+1 . If the estimation cost is given by the

extended-value extension of F2(V ) = ‖V ‖2F , then PoS ≤ n
2

k+2 .

The proof of Theorem 3 relies on characterizing explicitly the socially optimal
profile under relaxed constraints, and showing it equals the Nash equilibrium
λ∗ multiplied by a scalar. Moreover, the theorem states that, among monomial
privacy costs, the largest PoS is n

1
2 for F = F1, and n

2
3 for F = F2. Both are

attained at linear privacy costs; in fact, the above “worst-case” bounds can be
generalized to a class of functions beyond monomials.

Theorem 4. Assume that for every i ∈ N the privacy cost functions ci : R+ →
R+ satisfy Assumption 1. If the estimation cost is the extended-value extension
of F1(V ) = trace(V ), and the derivatives c′i satisfy

nc′i(λ) ≤ c′i(n
1
2λ) (7)

then PoS ≤ n
1
2 . Similarly, if the estimation cost is the extended-value extension

of F2(V ) = ‖V ‖2F , and the derivatives c′i satisfy

nc′i(λ) ≤ c′i(n
1
3λ) (8)

then PoS ≤ n 2
3 .
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Theorem 4, proved in our technical report [1], applies to privacy cost functions
that have the “strong” convexity properties (7) and (8). Roughly speaking, such
functions grow no slower than cubic and fourth-power monomials, respectively.
In contrast to Theorem 3 , in the case of Theorem 4, we cannot characterize the
social optimum precisely; as a result, the proof relies on Brouwer’s fixed point
theorem to relate λopt to the non-trivial Nash equilibrium λ∗.

We note that a similar worst-case efficiency of linear functions among convex
cost families has also been observed in the context of other games, including
routing [27] and resource allocation games [28]. As such, Theorems 3 and 4
indicate that this behavior emerges in our linear regression game as well.

6 An Aitken-Type Theorem for Nash Equilibria

Until this point, we have assumed that the analyst uses the generalized least-
square estimator (2) to estimate model β. In the non-strategic case, where
λ (and, equivalently, the added noise variance) is fixed, the generalized least-
square estimator is known to satisfy a strong optimality property: the so-called
Aitken/Gauss-Markov theorem, which we briefly review below, states that it is
the best linear unbiased estimator, a property commonly refered to as BLUE.
In this section, we give an extension of this theorem, in the strategic case where
λ∗ is not a priori fixed, but is the equilibrium reached by users, itself depending
on the estimator used by the analyst.

For all technical results in this section, we restrict ourselves to the case where
F (V ) = F1(V ) = trace(V ).

6.1 Linear Unbiased Estimators and the Aitken Theorem

A linear estimator β̂L of the model β is a linear map of the perturbed variables ỹ;
i.e., it is an estimator that can be written as β̂L = Lỹ for some matrix L ∈ Rd×n.
A linear estimator is called unbiased if E[Lỹ] = β (the expectation taken over
the inherent and added noise variables). Recall by (2) that the generalized least-
square estimator β̂GLS is an unbiased linear estimator with L = (XTΛX)−1XTΛ

and covariance Cov(β̂GLS) = (XTΛX)−1.
Any linear estimator β̂L = Lỹ can be written without loss of generality as

L = (XTΛX)−1XTΛ+DT (9)

where D = (L − (XTΛX)−1XTΛ)T ∈ Rn×d. It is easy to verify that β̂L is
unbiased if and only if DTX = 0; in turn, using this result, the covariance of
any linear unbiased estimator can be shown to be

Cov(β̂L) = (XTΛX)−1 +DTΛ−1D � Cov(β̂GLS).

In other words, the covariance of the generalized least-square estimator is
minimal in the positive-semidefinite order among the covariances of all linear
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unbiased estimators. This optimality result is known as the Aitken theorem [29].
Applied specifically to homoschedastic noise (i.e., when all noise variances are
identical), it is known as the Gauss-Markov theorem [23], which establishes the
optimality of the ordinary least squares estimator. Both theorems provide a
strong argument in favor of using least squares to estimate β, in the presence of
fixed noise variance.

6.2 Extension to a Non-Cooperative Game

Suppose now that the data analyst uses a linear unbiased estimator β̂L of the
form (9), with a given matrix D ∈ Rn×d, which may depend on X. As before, we
can define a game Γ in which each individual i chooses her λi to minimize her
cost; this time, however, the estimation cost depends on the variance of β̂L. A
natural question to ask is the following: it is possible that, despite the fact that
the analyst is using an estimator that is “inferior” to β̂GLS in the BLUE sense,
an equilibrium reached under β̂L is better than the equilibrium reached under
β̂GLS? If so, despite the Aitken theorem, the data analyst would clearly have an
incentive to use β̂L instead.

In this section, we answer this question in the negative, in effect extending
Aitken’s theorem to the case of strategic individuals. Formally, we consider the
game Γ = 〈N, [0, 1/σ2]n, (Ji)i∈N 〉 defined as in Section 3.3, except that the
estimation cost is the extended-value extension of F1(V (λ)) with

V (λ) ≡ (XTΛX)−1 +DTΛ−1D, (Λ = diagλ). (10)

Γ is still a potential game with potential function given by (5). Moreover, As-
sumption 2 still holds since V (·) given by (10) is a matrix convex function, and
the extended-value extension f(·) is still convex.

Since the proof of Theorem 1 relied on the convexity of the potential, a
straightforward adaptation of the proof gives the following result.
Theorem 5. For any matrix D ∈ Rn×d, there exists a unique non-trivial equi-
librium of the game Γ under the corresponding linear unbiased estimator (9).
As for the case of GLS, this result follows from the uniqueness of a minimizer of
the potential function attained in the effective domain.

We are now ready to state our extension of Aitken Theorem, proved in our
technical report [1].
Theorem 6. The generalized least-square estimator gives an optimal covariance
among linear unbiased estimators, in the strategic case, in the order given by the
scalarization F1 used in the estimation cost. That is, for any linear unbiased
estimator β̂L, we have

f(λ∗L) ≥ f(λ∗GLS),

where λ∗L and λ∗GLS are the non-trivial equilibria for the linear unbiased estimator
and for the generalized least-square estimator respectively.

Theorem 6 therefore establishes the optimality of β̂GLS amongst linear unbi-
ased estimators w.r.t. the scalarization F1, in the presense of strategic individu-
als. The proof uses perturbative techniques similar to the ones used in [22].
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7 Concluding Remarks

This paper studies linear regression in the presence of cost-minimizing individu-
als, modeling noise addition as a non-cooperative game. We establish existence of
a unique non-trivial Nash equilibrium, and study its efficiency for several differ-
ent classes of privacy and estimation cost functions. We also show an extension
of the Aitken/Gauss-Markov theorem to this non-cooperative setup.

The efficiency result in Theorem 3 gives specific bounds on the price of sta-
bility for monomial privacy costs. These bounds are sub-linear. However, the
efficiency result in Theorem 4 indicates that a sub-linear price of stability can
be attained for a much wider class of privacy cost functions. Nevertheless, The-
orem 3 includes functions not covered by Theorem 4, which leaves open the
question of extending the bounds of Theorem 4, potentially to all privacy costs
satisfying Assumption 1. Moreover, both of these theorems, as well as Theo-
rem 6, are shown for specific scalarizations of the estimator variance. Going
beyond these scalarizations is also an interesting open problem.

Our Aitken/Gauss-Markov-type theorem is weaker than these two classical
results in two ways. First, the optimality of the generalized least squares esti-
mator is shown w.r.t. the partial order imposed by the scalarization F1, rather
than the positive semidefinite order. It would be interesting to strenghthen this
result not only in this direction, but also in the case of the order imposed by
other scalarizations used as estimation costs. Second, Theorem 6 applies to linear
estimators whose difference from GLS does not depend on the actions λ. In the
presence of arbitrary dependence on λ, the non-trivial equilibrium need not be
unique (or even exist). Understanding when this occurs, and proving optimality
results in this context, also remains open.

Finally, our model assumes that the variance added by each individual is
known to the analyst. Amending this assumption brings issues of truthfulness
into consideration: in particular, an important open question is whether there
exists an estimator (viewed as a mechanism) that induces truthful noise reporting
among individuals, at least in equilibrium. Again, an Aitken-type theorem seems
instrumental in establishing such a result.
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