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Abstract—This paper presents a novel approach to unsuper-
vised multi-view dimensionality reduction and reports its ap-
plication to multi-modal biometrics retrieval, specifically audio-
visual speaker retrieval. We propose a new concept referred
to as multi-view subspace agreement, which aims to learn a
subspace for each view which respects the similarity relationships
between data points in the other view. The proposed algorithm
is unsupervised but exhibits discriminative characteristics and is
thus well suited to applications such as retrieval and clustering
where class labels are generally unavailable. The effectiveness
of the proposed algorithm is evaluated under an audio-visual
speaker retrieval experiment with the MOBIO database. The
retrieval performance of the proposed approach out-performs
other single-view or multi-view dimensionality reduction methods
with a significant margin.

I. INTRODUCTION

Biometric systems exploit physiological and/or behavioural
traits to recognize individuals. Popular traits or modalities
include fingerprints, face, voice, iris, retina, gait, signature,
palmprint, ear, etc. Most biometric systems share two common
operation modules, namely feature extraction and matching.
In the feature extraction module, each biometric sample is
represented by a numerical feature, which is often a high-
dimensional vector. In the matching module, the feature vector
of a query sample is compared to a template sample to
generate a distance or similarity score. If the similarity score is
greater than a certain threshold, the two samples are considered
belonging to the same subject. A major challenge in biometrics
research is the compensation of intra-class variation and often
with only a small inter-class variation. For example, in face
recognition problems, two facial images of the same person
with different poses and/or expressions are visually different
and their distance in the feature space can be significant.
A typical solution to this problem involves discriminative
feature extraction (or dimensionality reduction) such as Linear
Discriminant Analysis (LDA) [1], which finds an optimal
projection such that, in the lower-dimensional projected feature
space, the intra-class scatter is minimized while the inter-class
scatter is maximized. These methods are typically supervised
and require a large amount of labelled training data, which
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is typically expensive to obtain. In some unsupervised tasks
such as clustering and retrieval, where labelled data is en-
tirely absent, supervised feature extraction methods cannot
be applied. Unsupervised feature extraction methods such as
Principle Component Analysis (PCA) [2] are of potential use,
but commonly lack discriminative power.

Biometric data can have multiple representations. This is the
case with multibiometric systems [3] where different features
could be extracted from multiple biometric traits, e.g. the
human face and voice for example. The fusion of modalities
remains a challenging problem and is generally treated in
isolation to that of dimensionality reduction [4].

The problem of extracting discriminative features from
multi-view, unlabelled data is referred to as unsupervised
multi-view dimensionality reduction (UMVDR). Most exist-
ing UMVDR algorithms are based on Canonical Component
Analysis (CCA) and its variants. Suppose data samples can
be represented by two different features X(1) and X(2), CCA
is applied jointly to the two features to learn projections P(!)
and P(®)| so that the correlation between projections of two
features PX ™ and P()X () is maximized. The work in [5]
and [6] has shown that, given conditional independent feature
pairs, CCA can extract class-discriminative features in an
unsupervised manner. Kernel CCA (KCCA) [7] is able to cope
with non-linear conditions and has been applied in content-
based image retrieval (CBIR) with image and associated text.
In [8], the authors approached the UMVDR problem by
extracting shared features between multiple views through a
matrix factorization approach.

In this paper, we treat the UMVDR problem from a different
angle based on a multi-view subspace structure agreement
assumption. Let data samples be again represented in two
views, X1 and X®), which exhibit a certain level of condi-
tional independence, as is often the case with multibiometrics.
Suppose also that a similarity graph S (v = 1,2) can
be constructed from the v-th view of the data where the
nodes represent data samples and the edges SE;J) represent
a similarity measure between the 7" and j** sample in the
v-th view. Since the two features are corrupted by different
intra-class variation, two samples considered “’similar” in one
feature space may not be considered “similar” in the other.

Now assume that, there exist optimal projections Pgi,)t and



Pg,)t such that in the two projected subspaces, the intra-
class variation is successfully suppressed. Then a pair of
closely-located samples in one projected space should also be
closely-located in the other, since they belong to the same
class. If S and S@ are constructed with the projected
samples P(O;)tT X and Pgi)tTX(Q), they are expected to be
similar. Based on this logic, we propose to approximate Pg;)t
and Pgi)t by finding the P(") and P(® which minimize the
difference between S and S(?). In this paper, we show that
this objective could be achieved through the graph-based co-
training of locality preserving projection (LPP) [9]. We refer
to this approach as the Co-LPP algorithm.

We report the application of the proposed Co-LPP algorithm
in an audio-visual speaker retrieval problem. In this task, we
have an unlabelled video database where each video sample
contains the facial and vocal traits of a single subject. Given a
query video sample, the retrieval system is expected to return
t samples from the database containing the same subject as the
query. The Co-LPP algorithm is applied to the facial and vocal
features of the unlabelled video database to obtain projections
P®) and P, The facial and vocal feature vectors of the
query sample are then projected onto their corresponding
subspaces and a cosine distance is calculated between the
query and each of the samples in the database. The ¢ closest
samples are returned as retrieved results. The proposed method
is evaluated using MOBIO audio-visual database [10]. We ob-
serve significant improvements in retrieval accuracy compared
to other single-view or multi-view dimensionality reduction
methods such as PCA, LPP, CCA and KCCA. With the help
of data-visualization tools, we observe that the proposed Co-
LPP algorithm has significantly higher discriminative power
than competing approaches.

The remainder of this paper is organized as follows. Sec-
tion 2 presents two essential components of the proposed
algorithm: co-training and LPP. Section 3 presents the new
algorithm itself and its application to multibiometric retrieval.
Section 4 presents experimental evaluations and Section 5
presents our conclusions.

II. LOCALITY PRESERVING PROJECTION AND
CO-TRAINING

In this section we describe two essential components of the
proposed algorithm: LPP and Co-training.

A. Locality Preserving Projection

LPP belongs to the family of manifold (or local) dimension-
ality reduction techniques, and seeks to preserve intrinsic geo-
metric structure by learning a locality preserving sub-manifold
[9]. In simpler words, LPP seeks to find an optimal projection
P such that the neighbouring samples in the original space
remain closely located in the projected space. The objective
function of LPP is formulated as:

. T T
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where S is a local similarity matrix which reflects the similar-
ity of any pair of samples x; and x;. This commonly involves
a simple weight function; two common examples are a binary
weight:

|

or heat kernel weight:

1, if x; € KNN(xzj)or x; € KNN(x;)
0, otherwise
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where K NN (x;) denotes the set of K nearest neighbours of
sample x;. From Equation 1 we see that, if two samples x;
and x; are considered similar in the original space (S;; > 0),
projecting them far apart will incur a high penalty.

Let X = [z1,...,x,] be a matrix of n samples. Through
some straightforward algebraic manipulation (interested read-
ers are referred to [9] for details), the objective function in
Equation 1 can be re-written as:

arg min (PTXLX"P), “4)
where L is the graph Laplacian matrix and where:
L=D-S, ®)

in which D is a diagonal matrix with D;; = Zj Si;. The pro-
jection is obtained by P = [p1,...,Ppk| Where p1,..., Pk
are the eigenvectors corresponding to the & smallest eigenval-
ues of the generalized eigenvalue problem:

XLXTp=XXDX"p. (6)

Although LPP has been successfully applied in automatic
face recognition problems [11], it has relatively low discrim-
inative power. Biometric data often contain significant intra-
class variations, causing data sample from the same subject
located far-apart in the original feature space. This is likely to
be the same in the projected space, due to the data structure
preserving nature of LPP.

B. Co-training

Co-training [12] is one of the most acclaimed approaches
to semi-supervised learning. In co-training, data samples are
assumed to be represented by two conditionally independent
features XV and X®. Two predictors f(!) and f(2) assign
to each X a class label Y (f : X — Y) and are trained
according to each view using a small pool of labelled data.
The two predictors are used to assign labels to a larger pool of
unlabelled data. A subset of samples with which the predictors
have the most confidence in label assignments is added to
the pool of labelled data. The predictors are then iteratively
re-learned and applied to the remaining unlabelled data. The
objective of co-training is essentially to learn two different
predictors f(1) and f(®) such that:

D fOXY) = f@(X3) for all labelled data;

2) the number of samples for which fM(XM) =

fA(x (2)) is minimized for unlabelled data;



This objective is based on a predtctor agreement assumption.
Suppose two optimal predictors f and fo ) can reliably pre-
dict the label Y from two features X M and X @ respectively,
their predictions should be the same for all unlabelled data.
As a result, these optimal predictors can be approximated by
requiring weak predictors f() and f(®) to agree on unlabelled
samples.

III. PROPOSED APPROACH

In this section, we apply the idea of co-training to multi-
view unsupervised subspace learning. Analogous to the pre-
dictor agreement assumption in co-training, we propose a
subspace data structure agreement assumption in the UMVDR
problem. Given paired features X M) and X® and assuming
that there exist optimal projections P( )t and P((,i)t which can
remove the intra-class variation and kept inter-class variation,
two closely-located data samples in one projected space should
be also closely-located in the other projected space. Since the
similarity relationships between data samples can be repre-
sented by similarity graphs, we propose to approximate ng)t
and P(2) by P® and P® which minimize the difference
between the two similarity graphs constructed in the subspace
of two views.

A. Objective function

Consider a set of n samples represented in two views:
X ={XW, X} where X = {z{", ..., (v)}
v=1,2. X(”) is first centred so that X "’ Z W n =0.
Given two projections P and P?, we define local simi-
larity matrices S(1) and S(®) in subspaces for each view such
that:

1, if POz e KNN(PO (")
Sy = or PV e KNN(PW T2y (D)
0, otherwise

which is similar to Equation 2 but the K NN function is
performed in the subspace. For simplicity, here we employ
binary weight rather than a heat kernel weight to prevent the
optimization of parameter o in Equation 3. S(*) encodes local
similarity relationships between data samples in the subspace
of the v-th view. The ¢-th and j-th sample are considered
similar in the v-th view if Si(;’) =1 and dissimilar otherwise.

We further define a multi-view local structure agreement
index as:

(1) _ g2
L 2x 30,18 Dl
1 2

Z?] S( )+ZU S( )
which is upper-bounded by 1 if S = S and lower-
bounded by 0 if Si(;) # SZ-(;) for all pairs of x; and x;. We
seek projections PW and P such that the agreement in the

local data structure is maximized. The objective function thus
is given by:

Agr(sWM,5%)) = ®)

argmax Agr(S™M, §?) )
P P2

Algorithm 1 Co-LPP

Input: A set of n multi-view samples X = {X )|y =
1,2}, number of neighbourhood K.

Output: Projection matrices P(l)7 p®

Initialize:

« Center the feature vectors in each view and apply PCA
if the dimensionality of the feature space is too high;
o Constructed Similarity graphs S() and S(%),
repeat
forv=1to 2 do
. Use X and S®=) to train LPP projections P
and project X ) into this subspace;
. Update S(*) with projected samples pWTx®)
end for
until Agr(S™,S®?)) does not reach a new maximum
within a fixed number of iterations;

Note that S() is solely determined by P if the number of
neighbours K in the K NN function is fixed.

B. Subspace learning by co-training LPP

In the following we propose an algorithm that optimizes
PY and P? by a cross-view training of LPP. The main
steps of the iterative algorithm are as follows:

1) Fix P and construct S according to Equation 7.
Solve for P(? according to Equation 5 and 6 by setting
X =X@ and § =50,

2) Fix P® and construct 5 according to Equation 7.
Solve for P ) according to Equation 5 and 6 by setting
X =XW and § = 5@,

3) Go back to step 1 and iterate. At the end of each
iteration, calculate the agreement score using Equa-
tion 8. Stop when the agreement score converges or does
not reach a new maximum within a fixed number of
iterations;

In other words, we iteratively use similarity matrix generated
in the subspace of one view as constraint to train LPP
projections in the other view. Sometimes the dimensionality
of original features is very high (more than several thousand),
PCA can be applied to each view as a preprocessing step as
suggested in Laplacianface method [11]. Since the cross-view
training process of LPP projections is similar to the co-training
process of predictors, we refer the new approach as Co-LPP
algorithm, which is formally summarized in Algorithm 1.
Here we justify the proposed co-training approach to op-
timize the objective function in Equation 9. Step 1 of the
co-training process optimizes the following objective function:

2 2 1
(P(2)Ta:§ ) _ P(2)Ta:§ ))251'(3‘)

2]

(10)

arg min
P®

Accordingly, if two samples are considered similar in view
1 (‘S'i(j1 ) = 1), they are required to be projected close to

each other in view 2, otherwise a penalty is incurred. As
a result, the new similarity matrix S5(2) determined from



PAT X ig forced to have a similar structure to S(). The
same logic applies in step 2 where PW s obtained by training
LPP with X") and S®). We acknowledge that the proposed
optimization approach is heuristic, as is in the case of the
original co-training method [12]. While we do not present a
strict proof of convergence, we did not observed divergence
in any case of our experiments.

IV. APPLICATION TO MULTIBIOMETRIC RETRIEVAL

Because of the unsupervised nature of the proposed Co-LPP
algorithm, it is particularly suitable for biometric applications
where no class labels are available, retrieval and clustering for
instance. Here we discuss its applications to a multibiometric
data retrieval problem.

Given a pool of unlabelled biometric database consisting of
n samples represented in two views X = {x1,...,x,} where
xT; = {mgl),w§2)} and one query sample ¢ = {qV),q?}, a
retrieval algorithm is expected to return t (retrieval window
size) samples from X which are considered containing the
same subject as in the query . In our approach, PCA is first
performed separately on each view of X as a preprocessing
step, the obtained PCA projection matrix for two views are
noted as P(lczl and P?) respectively. The Co-LPP projections

pca

matrix Pglpp and ngp are then jointly learned with PCA

embeddings of both views. The final embedding of the i-th
sample in the v-th view is:

v = Pl Pial (@ = p), (v=1,2)

colpp™ pca

(11

where p1(*) is the mean of ("), Similarly, the two view of the
query sample are projected into the obtained subspaces by:

—u), (v =1,2)

Then the cosine similarity score between z and each target
y, in the v-th view is calculated as:

200 . ™)

. (
|

70 — pWT P(U)T(q(v)

— 7 colpp™ pca

12)

S =

v=1,2) (13)

121 ly;
This similarity score is bounded between -1 and 1. In each
view, t samples in the database with the largest similarity
score are returned. Since our approach learns similar local data
structure across different views, the retrieval results in each
view also tend to be similar. However, they are not necessarily
the same. A fusion could be performed to further improve
the performance. Since this paper is focused on discriminant
feature extraction rather than fusion, we apply a simple score
level fusion by weighted sum:

8; = ozsl(»l) +(1- a)sgz) (14)

where 0 < o < 1 is a weighting parameter.

V. EXPERIMENTAL RESULTS

In this section, the effectiveness of the proposed algorithm
is evaluated with an audio-visual speaker retrieval experiment,
where each data sample is represented by a person’s facial and
vocal feature.

E:'

Sample faical images of a subject in different sessions in MOBIO

Fig. 1.
database

A. Database and feature extraction

The experiment is carried out on with the standard MOBIO
database [10] which contains videos of 150 subjects captured
in real-world, challenging conditions. Recordings come from
a mobile phone camera and are captured in 12 different
sessions over a 18-month period where each session contains
11-21 videos. Figure 1 illustrates the level of inter-session
variation in a set of example frames for a given subject. For
computational efficiency, we test our algorithm using a subset
of data from 40 male subjects and for each of them, 5 videos
are selected from each of the 12 sessions. This results in a
pool of 2400 video samples.

We use cropped face images provided with the MOBIO
database, one image per video sample. All images are resized
to 50 x 43 pixels and then histogram equalized. Rows of pixel
intensities are concatenated to form feature vectors of 2150
dimensions. The speech signal is split into frames of 20ms
duration before the extraction of features composed of 26
Mel-scaled frequency cepstral coefficients (MFCCs), their 26
derivatives and the delta energy. Energy-based voice activity
detection is then applied to disguard non-speech frames. A
64-component Gaussian mixture model (GMM) is then fitted
to remaining speech data through the maximum a posteriori
(MAP) adaptation of a speaker-independent world model. The
means of the GMM model are then concatenated to form a
3392-dimensional GMM supervector [13]. As a result, each
video is represented by a face feature vector and a vocal feature
vector.

B. Evaluation Protocol

In our experiment, we adopted a leave-one-out strategy.
Each time, one video sample is randomly selected as a query
while the left 2399 samples are used as the target database.
Note the query sample is not included in the subspace training
process. Commonly used evaluation metrics for an information
retrieval system involves Precision (P) and Recall (R). Let a
be the total number samples of the same class as the query in
the database, b be the number of correctly retrieved samples
and ¢ be the retrieval window size, then P = b/t and R = b/a.
The larger is the retrieval window, the lower is the precision
score and the higher is the recall score. In our experiment, we
choose a window size t = a = 59. In this case P = R, which
is similar to the concept of equal error rate (EER) in biometric
verification setting. We use the corresponding precision/recall
score as an evaluation metric. The experiment is repeated 50
times with the random selection of the query sample and the
mean precision is reported.



TABLE I
AVERAGE RETRIEVAL PRECISION COMPARISON

Precision Face  Speech Fusion
PCA 0,478 0,452 0,615
LPP 0,710 0,675 0,847
CCA 0,858 0,784 0,898
KCCA 0,879 0,796 0,910
Co-LPP 0.984 0,952 0,994

The performance of the proposed Co-LPP algorithm is com-
pared to four alternative dimensionality reduction approach:
single-view approach PCA [2], LPP [9], as well as multi-
view approach CCA [6] and KCCA [7]. Note that different
dimensionality reduction algorithms are used to determine
subspace projections, while the retrieval processes follow
the same protocol as presented in IV. Here we declare the
parameter selections in our experiments:

Dimensionality of subspaces: According to the analysis
in [6], in the case of CCA, most discriminative information
resides in the first number of classes - I eigenvectors cor-
responding to the largest eigenvalues. For simplicity, in all
compared methods, the dimensionality of subspaces is set to
be number of classes - 1.

Number of neighbours in KNN graphs: Both LPP and
Co-LPP need to specify the number of neighbours in KNN
graphs. Here we adopt a rule of thumb K = log(n) where n
is the total number of samples, as suggested in [14]. In our
experiments, this choice leads to reasonable performance for
both LPP and Co-LPP.

PCA pre-preprocessing: As discussed in Section III-B,
in all our experiment, the original features are pre-processed
by PCA while keeping 90% information in the sense of
reconstruction error.

Fusion: In the score level fusion process, for each method,
the weighting parameter o in Equation 14 is set to 100 values
equally distributed in [0, 1] region and the best accuracy is
reported.

C. Results and analysis

The retrieval precision in single face and speech modality
and score-level fusion scheme is reported in TABLE 1. We
observed that the performance of all multi-view approaches
(CCA, KCCA, and Co-LPP) out-performs single-view ap-
proaches (PCA and LPP) in each single modality and the
fusion scheme. If for each approach, we compare the score-
level fusion accuracy (the third column) with the best single-
view accuracy (the first column), it is noticed that the fusion
process provides less relative gain in multi-view approaches
than in single-view approaches. This could be expected since
the information fusion process has already been integrated in
the multi-view dimensionality reduction process, and the ex-
tracted features in two views become correlated. Nevertheless,
the best single view accuracy (face modality) of CCA, KCCA,
and Co-LPP out-performs the score-level fusion accuracy in
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Fig. 2. Retrieval precision for face (red), voice (blue), fusion (green) scheme
and agreement score (black) as a function of number of iterations of co-
training

PCA and LPP, which demonstrates the effectiveness of multi-
view dimensionality reduction in exploring multiple informa-
tion sources. The performance of KCCA is slightly better
than CCA, but it needs careful tuning of kernel parameters.
Finally, the proposed Co-LPP algorithm out-performs the
closest-performing KCCA approach with a significant margin.
Even using the weaker single view (speech), a better retrieval
accuracy is obtained than the fusion scheme in KCCA. The
score-level fusion scheme in Co-LPP subspaces obtained near
perfect retrieval performance (Precision = Recall > 99%).
Figure 2 shows the variation in retrieval accuracy in and
agreement scores as a function of the number of iterations.
The agreement score is seen to stabilized after approximately
10 iterations.

D. Data structure visualization

All the approaches compared above embed data samples
into lower dimensional spaces. It is of interest to visualize the
embedded data structure and thus to observe the relationship
between the embedded structure and retrieval performance.
However, the embedded subspaces are still high-dimensional
and cannot be visualized directly. T-distributed Stochastic
Neighbour Embedding (t-SNE) [15] is a powerful tool used
to visualize high-dimensional data via embedding into a 2-
D or 3-D space while respecting relative distances between
data samples. Figure 3 illustrates 2-D scatter plots of PCA,
LPP, CCA, and Co-LPP embeddings of all 2400 samples after
the application of t-SNE. In all cases, samples belonging to
different classes are represented by different colours. In PCA
subspace (Figure 3(a)), the sample distribution is especially
noisy and explains poor retrieval performance in this case.
In LPP subspace (Figure 3(b)), some classes form compact
clusters while, and some other classes are mixed together. In
CCA subspace (Figure 3(c)), the mixing of different classes is
significantly reduced, yet intra-class scattering is still relatively
large. This observation confirms the analysis in [6], CCA
is able to maximize the scattering of the centroids of each
underlying classes (inter-class scattering), but is not able to
minimize the intra-class scattering. Finally, in the proposed
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Fig. 3. 2-D t-SNE visualizations of data structures for PCA, LPP, CCA,
and Co-LPP subspaces. Different subjects/classes are represented by different
colors.

Co-LPP subspaces (Figure 3(d)), same-class samples are well
located in compact clusters with a much higher between-
class separation, thereby illustrating its superior performance.
In other words, Co-LPP algorithm have high discriminative
power despite of its unsupervised nature.

Besides its application in multi-view data retrieval, the
proposed Co-LPP algorithm is also well suited to clustering
of multi-view data. Still using the same database as in the
retrieval experiment, we performed k-means clustering on the
2400 samples in PCA, LPP, CCA and Co-LPP subspaces.
The best clustering accuracy is achieved in Co-LPP subspace,
which could be expected from the observation of data structure
in Figure 3.

VI. CONCLUSIONS

This paper proposes a new unsupervised multi-view dimen-
sionality reduction algorithm. Given data with multiple repre-
sentations, the proposed algorithm aims to learn a subspace
projection for each view such that the local data structure
in each subspace is in maximal agreement across each view.
The method is unsupervised, leading to the potential to avoid
expensive and time-consuming manual labelling in scenarios
where labelled data is scarce. The new algorithm has high dis-
criminative power compared to other competing approaches.
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