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Abstract—We consider a communication system in which a
given digital content has to be delivered sequentially at constant
rate to a set of users who asynchronously request it according to
a Poisson process. Users can retrieve data: i) from one or more
sources that statically store the entire content; ii) from users who
have previously requested the content, and contribute (for limited
time) a random amount of upload bandwidth to the system. We
propose a stochastic fluid framework that allows characterizing
the aggregate streaming rate necessary at the sources to satisfy all
active requests. In particular, we establish the conditions under
which the system becomes asymptotically scalable as the number
of users grows. Our theoretical results apply to increasingly
popular Video-on-Demand systems exploiting users’ cooperation.

Index Terms—Stochastic models, cooperative networking,
Video-On-Demand.

I. INTRODUCTION

Online streaming over the Internet is becoming the dominant
way of distributing multimedia contents to large populations
of users. According to recent forecasts [2], video traffic is
expected to exceed 90% of all global consumer Internet traffic
by 2016, posing a tremendous challenge to both content
providers and network operators.

The current approach to handle the increasing demand
of bandwidth-hungry contents in the Internet is based on
Content Delivery Networks (CDNs): thanks to the proliferation
of proxy servers, contents are “moved” close to the users,
significantly reducing the Internet core traffic and improving
the perceived quality of service (e.g., the latency). However,
any solution based on CDNs has severe limitations in terms
of scalability: indeed, the aggregate resources required at data
centers (bandwidth/storage/processing), and the corresponding
costs incurred by content providers, inevitably scale linearly
with users’ demand and data volume. Content providers are
thus forced to continuously upgrade their CDN infrastructure,
or acquire additional resources from cloud services.

The only scalable solution proposed so far to distribute
multimedia contents at massive scale is to exploit users’
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cooperation: while they retrieve and watch contents, users
contribute their resources (bandwidth/storage/processing) to
the system, thus offloading the servers [3], [4].

On the other hand, streaming architectures which primarily
rely on users’ cooperation can hardly guarantee the strict
quality-of-service requirements of multimedia contents (e.g.,
in the case of online video a steady download rate no smaller
than the playback rate is necessary for a smooth watch-
ing experience). For these reasons, user-assisted architectures
should be supported by properly dimensioned CDNs (or cloud
services) that intervene whenever the resources provided by
users are not enough to satisfy the current demand.

In our work, we are specifically interested in characterizing
the additional bandwidth that servers must supply (in addition
to the bandwidth contributed by the users) to guarantee ideal
service to all users (i.e., requests are immediately satisfied and
contents can be enjoyed without interruption till the end).

In this paper, we focus on a single content (e.g., a video),
and we theoretically analyse the communication system that
allows this content to be sequentially delivered to an arbitrarily
large number of users, who contribute a random amount of
upload bandwidth while they stay in the system. Our main
contribution is a stochastic analytical framework that allows
us to derive general upper and lower bounds to the additional
bandwidth requested from the servers to guarantee constant
download rate to all users. In particular, our bounds permit
tightly characterizing the asymptotic system behavior as the
number of users increases.

We observe that the mathematical formulation of the system
considered in this paper has been already proposed in the
literature [3], [5]. However in previous work authors have
resorted to Monte-Carlo approaches to evaluate it. To the best
of our knowledge, we are the first to provide an analytical char-
acterization of the solution and rigorously prove its asymptotic
properties in the large users limit.

One of our main finding is that the conditions under which
the system becomes scalable (i.e., the bandwidth requested
from the servers does not increase with the number of users)
depend critically on the underlying assumptions about the
video request process. In particular, we will consider both
the case in which the video request rate is constant, and the
case of a newly introduced video whose popularity changes
over time, determining a non-homogeneous video request
rate. We find that completely different conditions on the
system parameters must be satisfied in the above two cases
to guarantee the scalability of the video distribution as the
system size increases.

As another contribution, we propose a methodology to
derive exact estimate of the bandwidth requested from the



servers under the assumption that the user upload bandwidth
is exponentially (or more generally phase-type) distributed.

Although we restrict our attention to a single video, our
theoretical analysis provides the building block to assess
the performance of general user-assisted Video-On-Demand
(VoD) systems, in which users browse an online catalogue of
available videos and asynchronously issue requests to watch
a given content. We remark that VoD systems should not be
confused with websites offering live streaming service, where
users join the distribution of a given TV channel at random
points in time, but users connected to the same channel watch
the content almost synchronously.

We emphasize that our analysis is orthogonal to two on-
going streams of theoretical research: the one targeting opti-
mal replication strategies and push/pull schemes for content
(re)placement [6], [7], [8], and the one dealing with practical
issues related to chunk scheduling [9] and peer selection [10].
This will become clear later on in the paper.

The paper is organized as follows. In Sect. II we describe
the system model; in Sect. III we present our stochastic
fluid framework to characterize the instantaneous bandwidth
requested from the servers, as function of the average number
of users present in the system at a given time. The obtained
results are then exploited in Sect. IV to analyse the asymptotic
behavior of the system as the number of users increases, under
both constant and time-varying video popularity. In Sect. V
we give an overview of the related literature. In Sect.VI we
briefly discuss the impact of the main modeling assumptions.
We conclude the paper in Sect. VIIL.

II. MODEL
A. System assumptions

In our system users run applications that allow them to
browse an online catalogue of videos. When a user selects a
video, we assume that the request is immediately satisfied and
the selected video can be watched uninterruptedly till the end,
i.e., the system is able to steadily provide to the user a data
flow greater than or equal to the video playback rate. Users
contribute their upload bandwidth to the video distribution,
thus they can retrieve part of the video (or even the entire
video) from other peers!, saving servers’ resources.

We focus on a given video of size L bytes. We assume that
the video is downloaded by each user at constant rate d bytes/s,
greater than or equal to the playback rate. Let 7; = L/d be
the time needed to download the whole video. In general,
the download rate of a peer could be adapted over time, and
made dependent on certain peer’s characteristics (such as its
upload bandwidth). By assuming a constant download rate d
at each user we greatly simplify the analysis, while obtaining
a conservative prediction with respect to the case in which
the download rate can be adapted over time maintaining an
average value equal to d.

The amount of upload bandwidth with which users con-
tribute to the redistribution of the video, instead, may or
may not be under the control of the system. In our analysis,

'In this paper we use the terms peer and user interchangeably.

we assume that the upload bandwidth available at a peer is
a random variable with a given distribution. This way, we
encompass both the realistic case of users with heterogeneous
Internet connections (i.e., ADSL, fiber, LAN) and cross-traffic
fluctuations, and the case in which the peer upload bandwidth
allocated to the given video is tuned by the system (such as
in universal streaming architectures). More specifically, the
amount of upload bandwidth with which users contribute at
a given time to the redistribution of the considered video is
modelled as a random variable U with cumulative distribution
function Fy;() and mean U. The random variables denoting
the instantaneous upload bandwidths of the users are assumed
to be i.i.d. (independent and identically distributed).

B. Users dynamics

We need to incorporate in our analysis a model describing
how peers join the distribution of the considered video, and
when and how they leave the system, stopping to contribute
their upload bandwidth. To this aim, we adopt a flexible
model that allows to consider a non-stationary video request
process. In particular, we assume that the arrival process
of requests for the considered video follows a time-varying
Poisson process of intensity A(t). Assuming that at a given
time the arrival process is Poisson is reasonable, since users
behave independently of each other, and their requests are
immediately satisfied. On the other hand, a video (e.g., a
typical movie) can be long enough that the rate at which it is
requested varies significantly during the playing time, due to
daily traffic fluctuations, or rapidly-changing video popularity.
By considering a non-homogeneous Poisson process of video
requests with time-varying intensity A(¢), we account for quite
general non-stationary conditions.

As soon as users issue their request to watch the considered
video, they start downloading it and assisting other peers.
We define as activity period the duration of the interval
during which a peer contributes its upload bandwidth to the
distribution of the video, starting from the instant at which
the video has been requested. Activity periods of the users
are highly heterogeneous, as observed in several measurement
studies [4]: some users stop watching the video after a very
short time since the beginning, because they realize they are
no longer interested in it; most users who decide to watch the
video shut down the computer/Internet-TV towards the end of
it; some of them keep the application running for prolonged
time after the end of the video; those running set-top-boxes
can be considered to be always active and serving other peers
(as long as the set-top-box keeps a copy of the considered
video, contributing to its distribution).

We account for general user behavior assuming that the
activity period of a user is described by an arbitrary random
variable T with finite mean T and complementary cumulative
distribution function G (). The activity periods of the users
are assumed to be i.i.d.

It follows from our assumptions that the number of active
users N (t) at time ¢ is distributed as the number of customers
in an M/G/co queue with time-varying arrival rate, hence it
follows a Poisson distribution with time-varying mean N (t)



given by .
N(t):/ NG (t — 2)dz 0

In our analysis we need to distinguish two classes of active
users: those who are still downloading the video, and those
who have completed the download (referred to as seeds in the
following). The number of downloading peers at a given time
instant ¢, denoted by Ny(t), follows a Poisson distribution of
mean N4(t) given by

t
Na)= [ A@)Gr(t-2)dz @
t—Taq
Then, standard properties of Poisson processes allow to say
that the number of seeds at time ¢, Nyeq(t), follows a Poisson
distribution of mean Neeq(t) = N(t) — Ng(t).
We define as instantaneous system load +(¢) the quantity
3 = L0 )
U-N(t)

which is the ratio between the average amount of data rate
requested at time ¢ by downloading peers and the average
upload rate provided by all active users at time ¢. Borrowing
the terminology adopted in previous work [3], [5] we say that
at time ¢ the system operates in deficit mode if ~v(¢) > 1, in
balanced mode if v(t) = 1, and in surplus mode if (¢) < 1.
We denote by Ty = [;* Gr(z) dz the average time spent
downloading the video by a user. Note that, in general, T'; can
be shorter than 74 due to peer churn (premature abandons). We
define as per-user system load -, the quantity

Ty

WETT
which is the ratio between the average amount of data that is
downloaded by a peer, and the average amount of data that a
peer is able to offer to other peers. Note that by construction
vp is equal to the (constant) instantaneous system load ~y(¢)

in the case of a time-invariant user arrival process.

“4)

C. Performance metrics

A fundamental goal of a VoD system is to minimize
the bandwidth requested from the servers. To save server
bandwidth, the system tries first to exploit the upload capacity
of the peers as much as possible, so as to meet the strict con-
straints of video distribution (i.e., maximum delay, minimum
rate). In this paper we consider an ideal bandwidth allocation
mechanism that is able, at any given time, to fully exploit
the upload bandwidth that users can supply to the system
(subject to physical constraints). In particular, we first take into
account the cooperation among downloading users, allocating
their upload bandwidth according to an (optimal) sequential
delivery scheme. Then we allocate the bandwidth provided by
the seeds. If this is not enough (i.e., some additional bandwidth
is needed to support all active downloads), the system finally
resorts to servers’ bandwidth.

Let S(t) be the random variable denoting the additional
bandwidth that the servers must supply at time ¢ to satisfy all
active downloads of the considered video. Let Fis(w, t) be the

TABLE 1

NOTATION

Symbol Definition
d user download rate
U average user upload bandwidth
Ty average time spent downloading the video (s)
T average user activity period (s)
At) arrival rate of new requests for the video at time ¢
N(t) average number of users at time ¢
Na(t) average number of downloading users at time ¢
Need(t) | average number of seeds at time ¢
Sq(t) average bandwidth requested by downloading users at time ¢
Sseed () average bandwidth offered by seeds at time ¢
S(t) average bandwidth requested from the servers at time ¢
¥(t) instantaneous system load at time ¢
f~g f € ©(g), i.e., f is bounded both above and below

by g asymptotically

cumulative distribution of S(t). At last, we denote by S(t) the
mean of S(t). Since in practice there are multiple videos to
be served concurrently by the system, statistical multiplexing
arguments suggest that a good design goal is to minimize the
mean value S(t) of the servers bandwidth required by a single
video. Therefore, this will be the main metric that we will
look at in our performance analysis. Table I summarizes the
notation of our model.

III. ANALYSIS

A. Preliminaries

In our analysis we take a snapshot of the system at an
arbitrary instant ¢, and seek to characterize the random variable
S(t) denoting the instantaneous bandwidth requested from the
servers at time ¢. This quantity depends on the instantaneous
number of downloading users N,4(t) and on the instantaneous
number of seeds Ngea(t). Let Sy(t) be the bandwidth re-
quested by the downloading users from both servers and seeds
at time ¢ (i.e., Sg(t) is the bandwidth that servers and seeds
must supply to downloading users at time t). Observe that,
since downloading users can assist the download of other
users with their own bandwidth, Sg(t) significantly differs
from the total download rate d - Ny(t). The mathematical
definition of S, (¢) will be specified in the following. We define
Sseed(t) = Zf\ff“(t) U; as the aggregate upload bandwidth
offered by the seeds at time ¢. The bandwidth requested
from the servers at time ¢ is given by the difference between
the bandwidth requested by the downloading users and the
bandwidth offered by seeds, provided that such difference is
positive:

S(t) = max{0, Sq(t) — Sseea(t)}- (5)

Under our system assumptions, both Ng(t) and Nyeeq(t)
have a Poisson distribution, which is completely characterized
by its mean. It follows that S(t) is essentially a function of
the mean value N 4(t) of downloading users at time ¢ and of
the mean value Nq(t) of seeds at time #:

S(t) = f (Na(t), Nsealt)) -

In this section, to simplify the notation, we will drop the
dependency of all variables on time, focusing our attention on




the random variable
S = f(Ndvﬁseed) = max{O, Sa — Sseed} (6)

representing the bandwidth requested from the servers in the
presence of a generic average number N, of downloaders
and a generic average number Neeq Of seeds (both Poisson
distributed). Notice that S completely characterizes the system
performance under constant video request rate, since in this
case the average number of downloaders/seeds does not vary
over time. The extension of the analysis to time-varying video
request rate will be done in Section IV.

To analjzse variable S in (6), we first observe that
Sseed = D, iz’“{" U; is simply characterized as a compound Pois-
son random variable whose moment generating function is

E[ezsseed] — eﬁseed(ﬂsU(z)*l) (7)

where ¢ (2) 2 E[e*U] is the moment generating function of

the peer upload bandwidth U, which is supposed to be known.
In particular, the average of Seq iS Ssced = NseeaU. Notice
also that Sgeq is independent from S;. We will denote by
Fs_.,() its cumulative distribution function.

The main challenge of our analysis is thus the characteriza-
tion of the bandwidth S, requested by the downloading users.

B. Universal lower bound

Focusing on Sy, we first condition it on the number of
downloading users, defining

Sa(k) £ (Sq | Na = k) (®)

An easy lower bound to S;(k) can be obtained assuming that
the upload bandwidth of each downloading user can always
be fully utilized by the system, irrespective of the arrival time
of the user into the system. We obtain

k k
Sa(k) > max{d,k d—» Ui} >kd—> U
=1 =1

and thus E[Sy(k)] > k(d — U). Deconditioning with respect
to k we obtain E[Sy] > Ny(d —U).

At last, we can obtain a lower bound to the average server
bandwidth S requested from the servers, since by construction

S E[max{0,Sq — Sseed }]

max{QE[Sd - Sieed}}i .
max{0, Ng(d — U) — NeeeaU}
max{0,d Ny — U N}

€))

v IVl

which provides a universal lower bound to S for any chunk
distribution scheme. The above lower bound is trivially zero
for y<1, whereas it is equal to d Ny — U N for y> 1.

C. Upper bounds

An upper bound to the bandwidth requested from the
servers can be obtained assuming that all peers download the
video chunks sequentially. We observe that many implemented
applications inspired by BitTorrent allow also non-sequential
chunk dissemination in a swarm-like fashion, although this is

typically only enabled within a limited portion of the video to
meet the hard delay constraints of individual chunks. Actually,
an almost in-order download is the only choice when the
download rate d is close to the video playback rate (and the
start-up delay is small).

Besides being analytically tractable (as we will see), the
sequential download is also simple to implement in a peer-
assisted VoD system, as it does not require the complex
chunk/peer selection mechanisms which are necessary in
BitTorrent-like swarms. In any case, the main point is that
the server bandwidth required under sequential download is
an upper bound to the bandwidth required by a more general
(non-sequential) download scheme.

Below we show how to obtain analytical upper bounds to S,
the average of .9, in the case of sequential download, obtaining
upper bounds valid for any distribution scheme.

We start looking at quantity Sy(k) defined in (8). We
observe that, if all peers download the video sequentially at
common rate d, a peer can only redistribute video pieces to
peers arrived later on in time.

When there is only one downloading user, we trivially have
Sq(1) = d. If there are two downloaders, the first arrived
makes its entire upload bandwidth available to the second,
and we have

Sq(2) = d+max{0,d — U, } = max{d,2d — U }

where d represents the external bandwidth necessary to sustain
the download of the first arrived peer and max{0,d — U}
represents the bandwidth needed to sustain the download of
the second arrived peer.

When there are three downloaders, the last arrived can
exploit the upload bandwidth of the second plus the residual
upload bandwidth of the first, i.e., a total upload rate of
Us +max{U; —d, 0}. Summing up the download rates needed
by the three peers, we obtain

Sa(3) = d+ max{0,d — Uy}
+max{0,d — Uy — max{U; —d,0}}
= d+max{0,d — Uy}
+ max{0, min{2d — Uy — Us,d — Uz }}
= max{54(2),3d — Uy — Uz}
(10)

The last equation follows from the fact that if d — Uz <
2d — Uy — Uy then d — Uy > 0 and thus max{0,d — Uy} +
max{0, min{2d — Uy — Ua,d — U }} = max{0,d — Uy, 2d —
U, — Uz}

In general the k-th downloader (assuming downloaders to
be numbered in order of arrival) can receive the content
from every other downloader preceding it. However, if the
preceding peers are not able to fully support the download of
the k-th downloader (i.e., if 7~ U; — kd < 0), the missing
bandwidth must be provided either by servers or by seeds. We
obtain the following recursive equation for Sy(k):

Sq(k) = d o
a(k) = maX{Sd(k—1)7kd—Z§;11 Uj} k>1

Y

If we iterate back up to S4(1) we can obtain an explicit



expression for Sy(k) in terms of the upload bandwidths of
peers U;, for ¢ < k, and of the download rate d, as:

Sy(k) = d+ max {o,d — Uy, 2d — (Uy + Us),
3d — (U + Uy + Us), ..., (k—1)d — S5} Ui}

J

1<j<k—1 {0’ Z(d B Ul)}

=d+ max
=1

12)
We emphasize that (12) has already been obtained in [3], [5].
However in previous work authors have resorted to Monte-
Carlo approaches to evaluate it.

To proceed in the analysis, we define the auxiliary variable
Zd(k)I

i
Z4(k) & max

1<j<k { ;(d B Uz)}

(13)

where Z4(k) = 0 if k = 0. Then Sy(k) can be expressed in
terms of Z;(k — 1) according to

Sa(k) = d + max{0, Zy(k — 1)}. (14)

Now, Z4(k) can be regarded as the maximum value (up
to time k) reached by a unidimensional random walk with
increments X; = d — U;. Thus we can exploit the existing
literature on random walks, and especially their application to
risk theory, to characterize the distribution of Z4(k).

For our purposes, we need the following classic result,
known as the Lundberg’s inequality (see for example [11]).

Lemma 1: (Lundberg inequality) Consider a sequence of
i.i.d. variables (X;);>1, satisfying the following three proper-
ties: i) E[X;] < 0; ii) P(X; > 0) > 0; iii) E[¢!*!] is finite in a
neighborhood of the origin. Define the r.v. Q(k) £ Zle Xi,
k > 1, Q(0) £ 0. Then, denoting §* the strictly positive
solution of E[e?” X1] = 1, which exists unique under i), ii),
and iii), we have, for all n > 1:

P( max Q(k) >w) <e %% | V> 0. (15)

1<k<n

Remark: condition iii) requires X; to be light-tailed (i.e., to
have a tail that decays at least exponentially fast).
For completeness, in Appendix A we report a proof of Lemma
1 based on a Martingale approach.

Lundberg inequality can be generalized and adapted to our
context, to obtain an upper bound to P(Sy > w):

Theorem 1: Assume the following properties hold for U:
i) U > 0, ii) E[e!Y] is finite in a neighborhood of the origin,
iii) Fyy(w) > 0 for every w > 0. For ¢ € [(U — d)*,U),
define A = d — U + ¢ (note that max{0,d — U} < A < d).
Let 0* be the unique strictly positive solution of the equation
E[e?(@=U=4)] = 1. For any w > 0, it holds

min {02676*(74;701)7 Cg} w>d

P(Sd>w)§{cl 0<w<d,

— " - x 8*A _ *
where Cy £ 1—6_N°L,C’2 £ e_gfe_Nd (eVae” 7 N e A—
1)and C3 21— e Na — Nye Na,

A detailed proof of Theorem 1 is reported in Appendix

B. Observe that, when d < U, we can obtain an upper

bound on P(S; > w) applying the Lundberg inequality to
P(Sq(k) > w) for any k. Instead, when d > U, since
E[d — U;] > 0, we cannot apply Lundberg inequality directly
to P(S4(k) > w). Therefore we need to define an auxiliary
sequence of random variables, tightly related to Sy(k), on
which Lundberg bound can be applied. Then we can derive
a bound on P(Sy(k) > w). The approach of the auxiliary
sequence of variables is generalized also to the case d < U,
to obtain a possibly tighter upper bound.

Exploiting the result in Theorem 1, we derive an upper
bound to the average bandwidth S, requested by the down-
loading peers:

Corollary 1: The average bandwidth requested by down-
loading peers satisfies:

Sd<{ Cid + Cs(w* — d) + C3/0*

Cid + 02/9*
where w* £ 9% log (%) +d.

if Cy > Cjs

The proof of Corollary 1 can be found in Appendix C.
Remark: note that (1) and (16) hold under an arbitrary choice
of ¢ € [(U — d)T,U). The tightest bound is obtained by
minimizing the expressions (1) and (16) with respect to e.

From Corollary 1 it immediately follows that the average
bandwidth requested by downloaders is finite even when the
average number of downloaders diverges (i.e., Ny — 00),
provided that d < U. Indeed, by selecting ¢ = U — d (and
thus A = 0), we obtain Sy < d + 7=, being 6* the unique
positive solution to E[e?(¢~U)] = 1.

By taking into account also the impact of the seeds, we
obtain an upper bound to the average bandwidth requested
from the servers, according to (6):

Theorem 2: The following bound holds for the average
bandwidth requested from the server:

(d)d + Co & " E[e=""Se], Cy Fy_, (d)d

seed seed

S < min {ClFS

+03 (02* Lt — gseed 4 E[ee*sseed]e—g*w*/e*) }
7)
where w* = ei* log (%) +d.
The proof of Theorem 2 is reported in Appendix D.

D. Exact solutions

In this section we describe a methodology to obtain an exact
solution of (12) when the upload bandwidth distribution is
exponentially or phase-type distributed.

The first step consists in deriving an integral equation

satisfied by the cumulative distribution function of the quantity
Z4(k) defined in (13). Observe that Z;(k) can be written as:

J
Zd(k) e max{d — Ul’;??é(k { Z(d — Uz)} +d— Ul}
= 1=2

Now since the U; are i.i.d., we can permute the indices i of



(U;)i>1, obtaining a new random variable Z4(k) defined as

J
Za(k) 2 max {d Uk, max {Y(d~U)}+d - Uk}
- =2

which has the same distribution of Z4(k). Note that Z4(k) can

be written as:
Za(k) = max{d U Za(k— 1) +d — Uk}. (18)

Denoting by Fz(w | k) the cumulative distribution function
of Z;(k) (and thus of Z,(k)), we have:

Fy(w | k) = P(Za(k) < w)
:P(max{d—Uk,Zd(k—1)+d—Uk} <w2
(19)

We now condition on the value assumed by Xy, L2d-U:

Fz(w|k) = ffOOOIP<maX{Xk,Zd(k— 1) +Xk} <w
| X, = a) dFy, (a)

. (Zd(k 1) +a< w) dFx, (@)

= ff)oon(’LU—Odk'—l)dFXk(oz).
(20)
Observing that by construction Fz(a | 1) = Fx, («), from
(20) we get:
Felw|B)= [ Felw-alk-1dFzal)) @D

Explicit solutions of the above functional equation can
be given when the peer upload bandwidth is phase-type
distributed. In particular, in the case of peer upload bandwidth
exponentially distributed, we obtain (see Appendix E):

w—d
FZ(“’J k) =Fz(d|k)e T Luco + Lu>kd
+e T T (1) F(d | b — i) e Ui,
(22)
where I is the indicator function. In (22) the constants
F7(d | k) can be obtained imposing the condition
Fz(kd | k) =1 for all k, as shown in Appendix E

From Fyz(d | k) we immediately obtain P(S4(k) > w):

1 - Fyw—d|k—1) ifw>d
P(Sa(k) >“’):{ 1 A= dlk=y ifw < d
(23)

Finally, we can derive the average server bandwidth Sy
requested by the downloading peers, and the average server
bandwidth S requested from the servers.

In the case d < U, since the sequence of increasing random
variables Z;(k) converges w.p.l to a finite random variable
Z4(00) (as direct consequence of Lemma 1), we can find the
distribution of Z;(c0) from the stationary version of (21). We
state this result in the following theorem.

Theorem 3: Under the condition d < U, the cumulative
function of Z;(0co) satisfies the stationary version of (21), i.e.,

Falw] o) = [ Falu

When the U}, are exponentially distributed the solution of (24)

—a|o0)dFx(a) (24)

can be obtained following the approach described in Appendix
E, obtaining:

Fy(w | 00) = Fz(d | 00)e T Tycg
w—d w—1 e—id U
+Fz(d] 00)e T 35 (—1)% o l(,i 'V Ly>id
where
1
Fz(d|oo) = i S (— 1) (=0 (h—a/T

Notice that Z;(co) provides a tight bound to the distribution
of the server bandwidth requested by a large number of
downloading users, when the system operates in the surplus
mode.

We emphasize that the approach described in Appendix E
can be generalized in a rather straightforward way to obtain
the exact solution of (21) and (24) under any phase-type
distribution of peers upload bandwidth. In this regard, recall
that any distribution whose moment generating function is
finite in a neighborhood of the origin (i.e., it is light-tailed) can
be approximated by a phase-type distribution with an arbitrary
degree of accuracy (see [11, Ch.4]). Thus the methodology
presented in this section can be applied to derive analytical
approximations of the bandwidth requested from the servers
in the case in which the peer upload bandwidth is arbitrarily
distributed.

As a concluding remark, we wish to emphasize that up-
per bounds obtained in Section III-C and exact solutions
presented in this section are complementary tools for the
analysis of peer-assisted VoD systems properties. Indeed,
the upper bounds presented in Section III-C provide very
general and easy-to-handle expressions from which we can
derive qualitative/asymptotic properties of the system. The
methodology described in this section provides more accurate
estimates (which are exact for phase-type distributions) of the
bandwidth requested from the servers, but are computationally
more expensive, especially for large numbers of users.

E. Numerical Illustration

We provide a graphical illustration of our results considering
a scenario in which the video request rate is constant, and
the average activity period of the users is twice the time
spent downloading the movie, representing users who tend
to keep their application/devices active after watching the
movie. Notice that in this case Ny = Ngeq. We normalize
the parameters d = 1 and Ty = 1, and thus we set T = 2.

Figure 1 reports on a log-log scale the average server
bandwidth S as function of the average number of users
N, for different values of the per-user system load ~,. The
peer upload bandwidth is exponentially distributed with mean
U = 1/(27,). We compare the upper bound (17) (labeled UB)
with the exact solution presented in Section III-D. Specifically,
exact results are derived from (23), de-conditioning with
respect to the number n4(t) of downloading users in the
system. We also report for vy, > 1 the lower bound (9).

Comparing the upper bound with the exact solution, we
observe that, although the bound can be pessimistic up to a



1000 T T

UB-y,=13 ——
Jexact-\/J =13 —— ]
UB-Vh=11 --mm-
- exact-yL =11 ————- g
£ 100} UB-yP =09 ——- e 3
s fexact - . =09 —.— — s
g UB-Yo=07 ------
I act-yh=07 -
o 10 | ‘OWerbounas = 1
8
)
&
o
: 1 «
\\\ | : -\
01 - 1 13 1 -
10 100 1000 10000
Average number of users
Fig. 1.  Average server bandwidth S versus the average number of users

E, for diiferent values of the per-user system load ~p, in the case d = 1,
Tgq =1, T = 2, and exponentially distributed upload bandwidth.

factor about 4, the bound captures well the qualitative behavior
of the exact curve.

As expected, in the deficit mode (v, > 1) the server
bandwidth diverges for increasing number of users. Moreover,
the upper bound becomes asymptotically tight to the lower
bound, which grows linearly with the number of users. This
interesting property will be proved in the next section.

In the surplus mode, instead (7, < 1), the server bandwidth
achieves a maximum for a given number of users, and then
decreases to zero as N — oo. This is another fundamental
asymptotic property of our system, which will be proved in
the next section.

1000 T T T

Average server bandwidth

Average number of users

Fig. 2. Average server bandwidth 'S versus the average number of users
N, for different values of the coefficient of variation (CV) of user upload
bandwidth, in the case d =1, Tq =1, T =2, v, = 0.9.

To show the impact of peer bandwidth heterogeneity, we
consider the same scenario as before, keeping the load fixed
to v, = 0.9 (surplus mode), and varying the coefficient of
variation (CV) of the upload bandwidth distribution of the
users. In particular, we assume that the upload bandwidth

is distributed according to a second-order hyper-exponential
distribution with balanced means, which could well describe
the situation in which we have many peers with low upload
bandwidth (e.g., behind ADSL lines) and few peers with large
upload bandwidth (e.g., connected with fiber or LAN). We
observe the strong impact of the CV on the resulting server
bandwidth. Since 7, = 0.9 < 1 (surplus mode), we expect
that S goes to zero as N — oo (as predicted by Theorem 4
in the next section). However, it is interesting to observe that
the maximum value of S is achieved for quite large number
of users (in the order of thousands) for large values of the CV.
Again, the analytical upper bound follows well the qualitative
behavior of the system, in all considered cases.

IV. ASYMPTOTIC ANALYSIS

The numerical results reported in the previous section
suggest interesting asymptotic properties of our system as the
number of users grows large. In this section, we will precisely
characterize how the average bandwidth requested from the
servers scales as we increase the number of users, i.e., when
A — o0.

We will first consider the simpler case in which the video
request rate is constant, i.e., A(t) = A, referred to as time-
invariant video popularity. Then, we will analyse a scenario
in which the video request rate varies over time, referred
to as time-varying video popularity. We will see that, while
in the deficit mode the above two cases scale in a similar
way, in the surplus mode the asymptotic system behavior is
radically different. In particular, different conditions on the
system parameters must be satisfied in the two considered
scenarios to achieve scalability as the users population size
increases.

A. Time-invariant video popularity

The asymptotic system behavior in this case is characterized
by the following fundamental result:

Theorem 4: Assume U not constant. Then, as A — oo, the

following asymptotic regimes hold for any chunk distribution
scheme: For v, < 1 and, additionally T > T, the average
bandwidth requested from the servers tends to zero, i.e.,
limy_,oo S = 0. For v, > 1, the average bandwidth requested
from the servers grows linearly with the number of users. In
particular, limy_ o, (N% =1.
The proof of Theorem 4 can be found in Appendix F. Notice
that for -, > 1 the upper bound becomes asymptotically tight
to the lower bound (9), as observed in the numerical example
in Figure 1.

Theorem 4 suggests that, for very popular contents (large
number of users concurrently watching the same video), a
peer-assisted video distribution is scalable, provided that the
system is in surplus mode (i.e., 7, < 1) and users stay in
the system, on average, for a time larger (by an arbitrarily
small constant) than the time needed to download the whole
video (T > T). This holds for any chunk distribution scheme,
including the simple sequential scheme.

In the deficit mode, i.e., v, > 1, the system is obviously not
scalable, since an additional bandwidth at least equal to the



bandwidth deficit (Nyd — U N) must be provided by servers.
However, in this case there is (asymptotically) no gain in
adopting a non-sequential chunk delivery scheme with respect
to the simple sequential download. Indeed, as the number of
users grows large, the system in which users download the
content sequentially performs as well as an ideal (infeasible
for VoD applications) system in which the content can be
downloaded in arbitrary order.

B. Time-varying video popularity

In this section we extend the asymptotic analysis to a
scenario in which the video request rate varies over time,
while still letting the average number of users downloading the
video grow to infinity. In particular, we assume that the arrival
process of requests for the considered video follows an non-
homogeneous Poisson process with intensity A(t) = Ag(t),
where ¢(t) is a shaping function modelling the popularity
evolution of a video inserted into the catalogue at time ¢ = 0.

Without loss of generality, we assume ¢(¢) to be an inte-
grable function such that [°¢(t)dt = 1 and ¢(t) = 0 for
all ¢ < 0. By so doing, A becomes equivalent to the average
overall number of times that the video is requested during
its lifetime in the system. The asymptotic analysis is then
performed by letting A — oo.

We characterize the system performance in terms of the
average amount of data V' that servers must supply to satisfy
all requests for the considered video:

V:Awﬂw&

Our main results are summarized in the following:

Theorem 5: Consider a bounded, integrable popularity
function ¢(t) having finite mean, i.e., [;°tq(t)dt < oco. If
d < U, we distinguish the following three cases:

e if ¢(t) has an heavy tail, ie., 3 To, K > 0 and o > 1
such that ¢(t) < Kt~ for t > Ty, then the
average amount of data requested from the servers is
V =0O(AY?) as A — .

o if g(t) has an exponential tail, i.e., 3 Ty, K > 0 and o > 0
such that ¢(t) < Ke~* for t > Tp, then V = O(log A)
as A — oo.

o if ¢(t) has finite support, i.e., 3 T» > 0 such that ¢(¢) = 0
for all £ > T, then V = O(1) as A — oc.

On the other hand, when d > U, V grows linearly with A for
any function ¢(t), i.e., V = ©O(A), A — .

A detailed proof of Theorem 5 is reported in Appendix G.
In the following we just sketch the rationale of the proof.

First of all, from (2) we compute the following upper bound
to the average number of downloading users at time ¢,

Ndﬂ<Alt

t*‘f‘d)*’

q(z)dz (25)
obtained considering the worst case in which users remain in
the system at least for a period equal to the downloading time
7a (i.e., Gr(z) = 1 for all z < 74). Given the bound on
S(t) in (17), we compute V' as the sum of two contributions:

V= fOTl S(t)dt+ [ S(t)dt, where T is a threshold defined
as Ty £ max{t : N4(t) > 1}. Note that the average number
of downloaders N 4(t) can be arbitrarily large for t € (0,T}),
while this number becomes negligible for ¢t > 77. When
d < U, we found that the first integral is bounded above
by 77. When the popularity distribution has an exponential
decreasing tail, the most significant contribution is given by
the first integral (i.e., by 7% ) which scales logarithmically with
A. When the popularity distribution is heavy-tailed, the two
integrals give the same contribution, asymptotically.

We emphasize that the results in Theorem 5 differ substan-
tially from those stated in Theorem 4. Indeed, in the case of
time-invariant video popularity the scalability of the system
is governed by the system load y,. Notice that in this case
the system can be in surplus mode (7, < 1) even when
d > U, since the system can also efficiently exploit the
upload bandwidth offered by the seeds. In the case of time-
varying video popularity, instead, the scalability of the system
is governed by the relationship between U and d: if d > U, the
system cannot scale to large number of users, no matter how
long users stay available in the system as seeds, after watching
the movie. If d < U, the scalability of the system depends on
the tail behavior of the popularity shape function: the faster the
tail decreases, the smaller the data volume requested from the
servers. In particular we have shown that, at least in the case
of a popularity function with finite support, the data volume
requested from servers remains bounded as A — co. More in
general, the data volume V' is sublinear in A.

V. RELATED WORK

We restrict ourselves to mentioning theoretical performance
studies of content distribution systems leveraging users’ coop-
eration, which are closely related to our work.

Stochastic fluid models for classical peer-assisted file distri-
bution systems, such as Bit-Torrent (in which the content can
be enjoyed by users only after completing the download), have
been proposed for both transient and steady-state regimes [12],
[13], but they are not directly applicable to streaming systems.
In [14], authors adapt the fluid model in [13] to VoD systems,
investigating the impact of different piece selection policies
(rarest-first and in-order) on download latency and startup
delay, in the case of users with homogeneous bandwidth. In
contrast to [14], we focus on the scalability of VoD systems
with strict service guarantees and heterogeneous user upload
bandwidths.

A stochastic fluid approach to analyse peer-assisted video
distribution has been proposed in [15] in the context of
live streaming, in which (heterogeneous) peers download and
playback content synchronously. Here we apply the stochastic
fluid approach to VoD streaming systems, whose dynamics are
quite different from live streaming, since users can watch the
video asynchronously.

The mathematical formulation (12) for the server band-
width needed by a VoD system based on sequential delivery,
appeared in [4], in which authors resort to a Monte-Carlo
approach to get basic insights into the system behavior (like
surplus and deficit modes).



The same formulation (12) has been considered in [5],
where authors explore by simulation the effectiveness of
different replication strategies to minimize the server load in
the slightly surplus mode, as well as distributed replacement
algorithms to achieve it. To the best of our knowledge, we
are the first to analytically study the stochastic process (12),
establishing its connection with random walks and risk theory.

An alternative analysis of equation (12), based on a second-
order gaussian approximation, has been proposed in [16] to
obtain an efficient methodology to evaluate the performance
of both stationary and non-stationary systems.

In [17], a per-chunk capacity model is developed to show the
tradeoff that exists between system throughput, sequentiality
of downloaded data and robustness to heterogeneous network
conditions. Optimal content placement strategies to maximize
the upload capacity of (homogeneous) set-top-boxes (and thus
minimize the servers workload) in VoD systems have been
recently investigated in [8] under many-user asymptotic.

VI. DISCUSSION ON MODEL ASSUMPTIONS

In this section we critically revisit the main assumptions of
our model discussing their impact on the analysis of a VoD
system.

The first strong assumption consists in assuming the video
playback rate constant and equal to d. This assumption actually
does not hold in practice since most video encoding schemes
produce variable bitrate streams. However, rapid bitrate fluc-
tuations are usually averaged out by the playout buffer of
the decoder, so that assuming a download rate constant and
equal to the average playback rate can be an acceptable
assumption, while being also a reasonable design choice to
simplify the system. Nevertheless, it would be possible to
incorporate in the model a variable download rate, equal to
the instantaneous playback rate of the video, under some
specific assumptions: i) the bitrate distribution of the video is
known,; ii) bitrate fluctuations are sufficiently fast that any two
users concurrently downloading the video have uncorrelated
playback rates; iii) the bitrate distribution does not change
throughout the video. Under the above assumptions, since
different users in a VoD system are retrieving at time ¢ different
and independent segments of the video content, we could well
assume instantaneous play-back rates of users to be described
by i.i.d. random variables with known distribution. The effect
of variable play-back rates could then be easily incorporated
in our modeling framework without changing its mathematical
structure. Observe, indeed, that the structure of Z;(k) in (13)
remains unchanged when d—U; is replaced with d; —U; where
d; is a random variable.

The second important assumption of our work consists
in modeling the users’ upload bandwidth as i.i.d. random
variables U; with assigned distribution. We do not consider this
assumption particularly restrictive, since it permits to represent
pretty well bandwidth heterogeneity of users’ access links, as
well as random fluctuations in the available upload bandwidth
due to cross traffic and other forms of bandwidth restriction.
Notice that such fluctuations could be also correlated over time
at each user, without affecting our analysis, which is essen-
tially based on an instantaneous analysis of the system. The

assumption that upload bandwidths are uncorrelated among
users is also reasonable, since in a VoD system users are
geographically spread, and thus they are likely to experience
independent bandwidth fluctuations.

Furthermore, we assume that users download the video in a
perfect sequential fashion, although this is not strictly required
as long as a minimum play-out buffer level is maintained at
the receiver. Indeed, notice that in many real systems videos
are cut into segments, usually called chunks, and the reception
of out-of-sequence chunks is allowed within a limited sliding
window of data starting from the point currently played.
Therefore, a perfect sequential delivery can be regarded as
the limit case in which the size of the sliding window tends to
zero (say it becomes much smaller than the total video size).

At last, in our work we have ignored implementation issues
such as: i) the effects of protocol overheads and signalling
bandwidth (necessary to reconfigure the cooperation among
users); ii) possible constraints on the number of peers from
which a user can simultaneously download data; iii) the
effect of congestion inside the network. All these issues can
potentially affect the performance of a realistic system, but
we have not incorporated them for the sake of simplicity and
analytical tractability.

VII. CONCLUSION

We have developed a stochastic fluid methodology to derive
analytical upper bounds to the bandwidth requested from the
servers in an ideal streaming system leveraging the upload
bandwidth of the users, studying the performance achieved
by the simple sequential distribution scheme. Our bounds
hold under the only assumption that the upload bandwidth
distribution of peers is light-tailed. We have also proposed
an analytical methodology to exactly estimate the bandwidth
requested from servers when user upload bandwidth is phase-
type distributed. Besides being analytically tractable, the sim-
ple sequential delivery scheme is also an attractive solution
in real systems, for two main reasons: i) it allows users to
immediately start watching the requested movie; ii) it is simple
to manage and control. Moreover, we have proved that the
sequential delivery scheme leads to an asymptotically optimal
exploitation of the peers’ upload bandwidths as the number
of users grows large. Indeed, our bounds tightly characterize
the asymptotic performance of large-scale peer-assisted con-
tent distribution systems employing both sequential and non-
sequential delivery schemes.

APPENDIX A
PROOF OF LEMMA 1

Consider a sequence of i.i.d. variables (X;);>1, satisfying
the three properties: i) E[X;] < 0; i) P(X; > 0) > 0;
iii) E[e!*1] is finite in a neighborhood of the origin. Define
Qk) = Zle X, k > 1, Q(0) := 0. Define the filtration
Fo = {0,Q}, Fr = o{Xy,..., Xx}, &k > 1 (ie the o-
algebra generated by {X; ... X }). Consider the r.v.

Tw:=nf{k>1: Q(k) > w}



where the infimum is equal to co if {k > 1: Q(k) > w} = 0.
Note that 7, is the first time at which the process Q(k) exceeds
the quantity w.

Let 0* be such that E[e’ 1] = 1. It can be proved that
under the three conditions described above, there exists a
unlque 9* > 0. It can be easily checked that the process
{ee Q(k)1 is an Fy-martingale. Therefore, using the stopping
theorem (note that 7, is an Fj-stopping time) the process
{e?" @EATW)Y s an Fj.-martingale, for each w > 0.

Consequently, we have

1 limy, oo B[e? QAT
E[(lim infj,_.o e/ QFATe))1{7,, < o0}
E[1{r, < co}e? @w))

P(max Q(k) > w)e”"

AV VAN

where the first inequality follows by Fatou’s lemma. We
conclude that
< —9*’[0 > .
P(lrgnkannQ(k) >w)<e , w>0
APPENDIX B
PROOF OF THEOREM 1
Define X; 2 d—U;—A, forall i > Land Q(k) £ 35,
Since max{0,d — U} < A < d we have E[X;] < 0 and
P(X; > 0) > 0. Note that by (13), Z;(0) = 0, while, for
k > 0, it holds:
J J
= — <
20 = 32U < e { ;
+ (e=0)a} = max Q) ) + b
For k >0
0w

P(Zg(k) > w+kA)< P(lglaka(j)JrkA >w+kA) <e " Y,
<<

and then P (Z4(k) > w

By (14), S4(k) = d + max{0,Z4(k — 1)}. It is easy
to prove that the event {max{0, Zs(k — 1)} > w'} is equal
to the event {Zy(k — 1) > w'}, for all w’ > 0. Therefore,
P(Sq(k) > w) = P(Z4(k—1) > w —d) for all w > d and
P(Sq(k) > w) =1 for w < d. Thus, for w < d it holds

P(Sy>w) = 2, P(Sqlk) > w)P(Ny = k)

= ZELP(Nde) .
1-P(Ng=0)=1-eNa=(y.

) < efe*wee*k:A.

On the other hand, for w > d, we have

P(Sy>w) = Zk 1 P(Sa(k) > w)P (Nd:k)—k B
- SRRk s Y
< P(Z4(0) > w —d) Nge Na

+e—9*(w—d)e—me—9m ZZOZQ (eg*z‘ﬁd)k
— 0 (w=d)p—Ng,—0"A ZZO:Q (ee*ZJ'V;i)k
= Cpe? ), |

Moreover, if w > d, we can get another simple bound as
follows:

]P(Sd > w) Zzo 1 P(Sd(k‘) > )P(Nd = k) -
o0 N efN
= S P (Za(k - 1)>w—d)%
= YR P(Za(k—1) > w —d) Nt
0o Ndke Ng i
S Q=2 TR
= 1—eNae—Nye Na=(4.
Therefore
min {026_0*(1”_(1), C’3} w>d
<
P(Sd>w){01 0<w<d

APPENDIX C
PROOF OF COROLLARY 1

We compute the average bandwidth requested by download-
ing users:

Sa = fo (Sqg > w) dw

fo Cy dw —|—fd mln{C’zefg*(“”d),Cg} dw,
where the last inequality follows from Theorem 1. The quan—
tity min {Coe=? (w=9 C5} is equal to C3 if w < w* =
1/9)log( )—i—d Thus, if w* > d we have:

IN

Sq < [lCidw+ f;” Cydw + [ Coe=? (0= qu
= COyd+ Cy(w* —d) + Cpe=? (0 =) /g
= Cld + Cg('w* — d) + C3/9*
where the last equality comes from the fact that C5 =
Cae=0" (w"=4) by the way we defined w*.
On the other hand, if w* < d, we have:

d fo%e)
Sy < / Cy dw +/ Coe " (W=D quy = Cyd + Cy /6.
0 d

Note that w* > d if, and only if, C; > C5. Thus, we have:

5, < Cld+03(w*—d)+03/0* if Cy > Cy
4= Cid+ Cy/0* 0.W.
APPENDIX D

PROOF OF THEOREM 2

We compute the average bandwidth requested from the
servers (5). For every > 0 we have:



]P)(S > 33) (Sd > Sgeed + x)

fO Sd >w -+ 1'|Sseed = w) dFS\“d( )

< f““‘”‘{” oy dFy, (w)
+fmax{0 d—z} dFSseed( )
min{Cy, Cye 0" (w—d+2)}

max{0,d—z}

S f C dFSseed( )

+fy dFs (w)Cae™? (0mdre)

C:1Fs,,(max{0,d — z})

+02 [ 79*5535,3]679*(337(”

OlFSmed( _ 1.) + CQE[e*Q*S“““’]e’H*(I*d)
Note that the quantity Fi_,, (max{0,d—z}) is always equal

to Fs,_,(d — z): indeed if d —z < 0, then Fg_, (d —z) =

Fs..,(0) = 0, since Sgeeq 18 a positive random variable. Finally,

S = fo (S >z)dx
< fO chSmd(d —z)dz + [;° CoEle
= f C1Fs,.,(y)dy + ;7 CoE[e? Se]e=0"(z=d) qy
< C’lFSmd( Yd + Coe? 9E[e=0" Sxa]1/0*

—0" Sust]g=0" (2=d) g

(26)

Observe that, if Cy > Cs, i.e., w* > d, the above bound
becomes weak. Thus, we obtain a tighter bound in this case
using a different approach:

S I Jio.00) P(Sa > w + @) Fs .y (dw)da

f[ofx: Fs. . (dw) [*° P(Sq > z)dz

f[o 4 TS ea (dw) [0 P(Sq > 2)dz

+ Jid.00) Fs (dw) [ P(Sq > z)dz

f[o 4] Fieea (dw) U P(Sq > z)dz +[;°P(S4 > z)dz}
+fd,oo Fs, . (dw) [*° P(Sq > z)dz

seed

IN

+ Jtd.00) FSicea (dw) [ min{Cs5, Cae 0" (*=D1dz
ClFSseed(d)d — Cl f[O,d] wFsseed (dw)
+Fs, ., (d) fdoo min{Cs, Cye 0 =D 1dz
+f(d7oo) Fg_ (dw) fu(jo min{Cs, Coe™?
CIFSmd (d)d - Cl f[O,d] wFSmd (dw)
+Fs,(d) [ min{Cs, Che=?" =D}z
+Fs,..(d) [>T min{C3, Coe=? ==D}dz

seed

+ Jtdwe) FSia (dW0) [2° min{C5, Ce™?" =D }dz

=) d,

+ f(w* 00) Fg_ (dw) fu(jo min{Csy, Cye ¢ =D 1dz
= Cl Fsseed (d)d - Cl ‘f[o d] wFSaesd (dw)
+Cs(w* — d)Fs,.,(d) + Co*~—5—"Fs__,(d)

-l-f(dw*]FsM (dw f mln{03702e 0 (z— d)}dz
+02 o j‘(w 00) _9 Fsseed(dw)
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Note that, if w < w*:
[ mln{Cg,C’ge TE=ddy
— —0"(z—d)
= [ min{C3, Coe )z 28)

+ [, < min{Cs, Coe=0" (:=D1}dz
= Cg(’u) — w) + 02779 (v D)

f[O,d]FSseed (dw)[cl (d—w)+fdoomin{c37 026_9* (z=d) }dz] <q

Combining (27) e (28) we obtain:
S < CiFs(d)d—C [, g wFs,(dw) — C5Fy
(w —d)
Oy e Py (w) o+ Oy Fsy (w”)
_CB f(d,w*] wFSSCCd (dw)_l_CQQT f(w*,ooe)79 wFSsccd (d’LU)
(29)
Using the bound fod(l — Fs_,(w))dw < d and the Cher-
noff bound (1 — Fs_,(w)) < E[e? %«t)e=0"%  the integral
—C3 [y w WEs o, (dw) in (29) becomes:

(d)d+

seed

_03 f(d w*] wFSseed (dw) =
—Cs( w(Fs(w) = DI~ + [ (1

- Foy(w) dv)

— 5w <Fsm< )= 1) = (Fs(d) = 1) -d
(1= Fo(w) dw — (1~ P, (w)) du
(- P, <w>> dw)

<y (w W Py (") + Fs (d)d — d — Syeq
Fa [0 P (w)du)

< Cy <w* —w*Fs_,(w*) + Fs,,(d)d — Sseed
+E[ef?" 5] f:;f e "W dw)

= 03 <w* - w*FSseed ('LU*) + Fsseed (d)d - Sseed
+E[69*Smd]670*w* /0*)

Noting that in (29) —C [ wFs,.,(dw) < 0, and that by
definition of w™*, 026*9*(w**d) = ('3, we have:

S (Cl_ CS)FSseed(d)d—i—CSFsseed (w*)/e*
—0"w™
+C3 (w* + Fssccd (d)d - Fseed + ]E[ee*sseed} 69*>
0*d
+C2 % [ o8 F5 s (duw)

_0* *
< Gl >d+03<el* 1" ~Sieeq + Ble? 5] )
+C’3 0> ( - wFS\LLd( ) *—+0* foé o wFSsng

< C)Fs,, (d)d+C5 (9* +w* — Sseed + E[ee Sw}
+CS 869:} (_e_a*w*FSseed( +0*f(w oo% - wdq;]* .
= C1Fs,,(d)d+Cs (91 +w* = Sieea + Ele” SS“"]@T
)0+ )
. B} —0*w*
< CiFs,, (d)d—FC3 (92* +w* — Sgeed + E[ee SseEd]eT

APPENDIX E
DERIVATION OF THE EXACT SOLUTION IN (22)

In this section we derive the solution of (21) for the case in
which the bandwidths U are exponentially distributed. The

w

)

)



same approach can be extended to the case in which the
bandwidth U has a general phase-type distribution.
When the bandwidth is exponentially distributed we have:

dFz(a|1) = Le” T Ia<q da. Thus, from (20), we have
Frlwlk) = [I_ Fzw—alk-1)F ¢ T Lacada
f:nouoﬂ{w’d}F (w—a|k-— 1)% T da

(30)

If w < d, making the substitution ¥ = w — « in the integral,
we obtain:
w_d s
Fy(w | k) = eT/ Fuly | k—1)e ¥ dy.
0
Note that the integrand function does not depends on w, thus

the whole integral can be regarded as a constant. Moreover,
notice that

1 © _u
= [ Patyl k- et ay=Fadp). oD
0
Thus, it holds:
Frlw|k)=eT Fy(d| k) VYw<d (32

Now consider equation (30) when d < w < 2d:

w—d

Fp(w|k) = egdf Fz<y|k—1>e*%dy
eT w—d
—= /5 Fz(y\k—l)e U dy.

(33)
Note that the first term in the sum is equal to T Fz(d | k).
For the second integral, since d < w < 2d, variable y is such
that 0 < y < w — d < d. Thus, using (31) we can write:

w— d

ef 7(y | k—1e Udy
Vud | : (34)
:eﬁv fo YR |k —1)e T dy
= ( : 1“7
Thus, for d € w U2 F\%e(o tain 1.
Fr(w|k)=e"T Fy(d| k) — (wgd)e“’%“ d|k—1).

Now considering 2d < w < 3d, we can still use (33) to express
Fz(w | k) in terms of Fz(y | k — 1) over a domain in which
y < w—d < 2d. Again we know explicitly the expression
of Fz(w | k) over the considered domain in terms of the two
constants Fz(d | k — 1) and Fz(d | k — 2). It turns out:

w—d w— w—2d
Fplw|k) = T Fy(d| k) — Qe T Fy(d | k- 1)
2 w—
+<w 20" “FZ(d|k—2) 2d < w < 3d
(35)

Proceeding in a similar way we can express Fz(w | k) for
any w < kd in terms of the constants F'z(d | 1)...Fz(d | k),
while for w > kd we have trivially Fz(w | k) = 1.

The constants Fiz(d | k) can be obtaining forcing Fz(kd |
k) = 1. Indeed, by imposing Fz(w | 1) |w=q= 1 we imme-
diately obtain Fz(d | 1) = 1. Imposing Fz(w | 2) |y=2q¢= 1
we obtain an algebraic linear equation between F(d | 2) and
Fz(d | 1), from which we can derive Fz(d | 2). In general

imposing Fz(w | k) |w=ka= 1 we obtain a linear algebraic
equation containing all constant Fz(d | 4) with ¢ < k. This
equation can be exploited to derive Fz(d | k) as function of
Fz(d | i) with i < k.

APPENDIX F
PROOF OF THEOREM 4

By virtue of Theorem 2, we have

S < O Fs,(d)d + Coe? UE[e™" ] /9" 25, 1. (36)

seed

Moreover, the first term in the sum above goes to zero, as
X — oo. Indeed, since limy_,oo Ngq = 0o, we have C; — 1
as A — oo, and the claim follows noticing that Fs_,(d) tends
to zero, as A — oo (i.e., the mean number of seeds Ngeeq and
their offered bandwidth tend to infinity).

We first consider the case v, < 1. If d < U, by Theorem
1, € may be freely chosen in the interval [U — d,U). We set
¢ = U — d, obtaining A = 0. For the second term in the sum
(36), note that due to A = 0 we have Cy = e~ Ve (eNe —Ny—
1) = 17€7Nde76 Na . So, using again lim s N, = oo,
we deduce that Cy — 1 as A — co. Combining this with the
relations: _

E[e_g*sseed] = M seed(Pu (=607)—1)

and ¢y(—0*) — 1 < 0 (this latter inequality holds since
dou(—0%) = Ele=?Y] < 1), we easily have that even the
second term in the sum (36) tends to zero as A — oo.
Consequently, for v, < 1 and d < U, we get limy 00 Supl =
limy o S = 0. Now, suppose d > U. Since U is not constant
the equation in z: e **E[e*(Y~U1)] = 1 has a unique solution,
say 6* (). The properties of the function € — 6*(¢) are given
in Proposition 1 below. For X\ large, consider the sequence
{ex} € (0,U) defined by

ex = (0) "1 (ATY/?),

Note that by Proposition 1 €5 — 0 and 0(ey) — 0, as
A — oo. Furthermore \0*(ey) — oo as A — oo. We
neglect again the first term in (36), and we obtain? gup,l ~
Coe? MRB[e=0" Sxa] /0* = (Cpel e sea(9u(=07)=1) /g% We
can say that Sy — 0 if and only if log Sy 1 — —oo. Thus,
we consider

loggup,l ~ IOg 02 — log 0* + 0*d + ATseed((ﬁU(*e*) - 1)

Using the Taylor expansion (and neglecting the term e—? 4
that tends to 1 as A\ — oo), we obtain that

log Cy < —0*A _|_Nd(60 A_ 1)

as A — oo. Using the Taylor expansion as A\ — oo, and the
choice of €y above (thus #* A — 0 and 8* > A~1/2), we have

2With abuse of notation we will use the expression f ~ g to indicate that
f € ©(g), i.e., fis bounded both above and below by g asymptotically



log Supt < —0*A+ Ng(e” 4 —1) — log 0*
+ﬁ*d + Nseed((bU(_e*) - 1)
< AT4(0*A+o0(6*A)) — log(0*)
+7)\Tseed(—U9* + 0(9*)l -
~ AT30*A —log(0*) — AT seeaU 6"
< N (T4A — TeeeaU) — 1/2l0og X — —0c0
since in the regime v, = %l < 1, the quantity T4A —

TeeeqU is negative. Therefore, the theorem follows.
We now consider the case -, > 1. By Theorem 2 we have
that

§ < ClFSmd(d)d + 03 (92* + w* — Seed

(37

+E[ef" Sset)e™ *“’*/9*) £ Supa-

In (37) we can neglect the term C; Fs_,(d)d ~ 1. Note that
as A — oo, C3 ~ 1. Thus, we obtain:

?up,2 = 9% + w* — gseed + E[ee*sseed]efe*w* /9*

The quantity w*, as A — oo becomes w* =
(1/60%)1og(Ca/C3) +d ~ N4A ~ AT 4(d — U). Therefore, as
A — 00, it is easy to prove that log (E[e?" S«]e=0"v" /%) —
—00; as before, we can conclude that E[e? S«]e=0"w" /g* 0

Finally, we obtain, for A — oo,

Sup,2 ~ gseed'i‘w + 1/9*

~ )‘( seedU + Td(d U)) + /\1/2
~ XTa(d—-U)— (T —Ty)U)
= MNT4yd-UT),

or, equivalently:

lim SupZ _
Ao (Ngd—U N)

Note that the quantity Ngd — U N is a lower bound

for S, as described in (9). Therefore, necessarily
liminfy_ oo — —— > 1. Recalling that S < S5,
A OO(Ndd—UN)_ g > Pup,2
we obtain,
S S,
1 < lim S up-2

— < lim —— =
T A=o0 (Ngd—U N) = A=oe (Ngqd—U N)

and the theorem follows.

Proposition 1: If d > U, then the equation in z
E[e*(U=U1=9)] = 1 admits a unique solution for € € (0,T).
Furthermore, 0*(¢) = arg, - o (e *E[e*(U=U1)] = 1) is strictly
increasing and C' on the interval (0,U). Finally, it holds
lim._o 6*(e) = 0.

Proof: We define the function f(z,¢) = E[e*(V-U1=9)],
Observe that f(z, €) is analytic in the domain z > 0 and € > 0,
as immediate consequence of the fact that U — U; < U < 0.

Observe also that i) f(0,e¢) = 1 and f/(0,¢) = —e < 0

T : : : ’f(z0) _
for any € > 0; ii) f(z,¢€) is convex in z, since g =

E[(U - Uy ZE)QeZ(U_Ul_G)] > 0; i) lim, 00 f(2,€) = 00
for any ¢ < U. This because, for all c € R,

flze) = [7 e*U=w=9) 4 Fy; (w)
> [ e U= 9dFy, (w) > e*U=c=9) Pr(U; < ¢).

Since € < U, there exists a > 1 such that (U — ¢€)/a > 0.
Defining ¢ = (U — €)/a, we have ¢*T~"9 — oo while
Pr(U; <c¢) > 0.

As a consequence of i) , ii) and iii), recalling that f(z,€) is
continuous w.r.t. z for any € > 0 and z > 0 there is a unique
solution 0*(e) = arg, (e *E[e*(V-U1)] = 1).

The regularity of 91(6) with respect to e immediately fol-
lows by the implicit function theorem. At last the monotonicity

of 6*(¢) can be derived again from the implicit function
40" () 95 (8% (e),)
5

= — 52— Note
9F (2, .
7(%?; )lz:9*(e)

indeed that 2LU-(9:9 g+ (¢) (6% (€), €) < 0 Ve > 0, while
af(z < o= (€)> 0 by construction, since f(z,€) is convex
wrt zand f(z,e) <1for0 < z < 0*(e) and f(z,¢) > 1 for
z > 0%(e).

At last, it is immediate to see that also for ¢ — 0 6*(¢) — 0,
in light of the fact that £(0,0) = 1, and f(z,0) > 1 for z > 0.

|

As immediate consequence of the fact that 6*(e) is strictly
increasing (and thus invertible) and continuous over the do-
main (0, U) with lim,_q #*(€) = 0, we have that the following
proposition holds.

Proposition 2: Provided that d > U, and U not constant,
the image of 0*(e) for 0 < € < U is the open interval (0, ),
with § = lim__ 77 6% (e).

theorem, according to which

APPENDIX G
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We first focus on the case d < U. Using the bound in (17):
0*d

(d)d+ Ca(t)
with A = d—U +e Ci(t) = 1 — e N, Oy(t) =
e—&*Ae—Wd(t)(eﬁd(t)ee A Nd(t)eG*A —1).

Since d < U, from Corollary 1 we can set A = 0, and we
get

S(t) < Cy(t)Fs Efe 0" 5]

seed

(38)

Cr(t)
Ca(t)

min{1, N4(t)}

1— Nd(t)e—ﬁd(t) — e~ Na(®)
1 — e~ Nal®)

min{1, N4(t)}

IAINA

By using the Chernoff bound Fieeq(d) < E[e=¢ Sea]ef 4 in
(38), we obtain

S(t) < min{l,Ng(t)}(d+ 1/6%)E[e=0" Swa]ef™d
= min{1, N4(t)}(d 4 1/6%)e N (1=0v(=07)) c07d
(39
Now we can compute an upper bound to the data volume
requested from servers over time as:

L)e? [o min{1, Wa(t) e o000 (-

0")) dt
(40)

V< (d+



In order to compute V, we define T} as the temporal @eshold
such that 71 = sup{t : N4(t) > 1}, where T1 = 0 if N4(t) <
1 for all ¢ > 0. Thus, we compute

v, & fQT min{1, N4(t )}efﬁmd(t)(lfw(*a*)) dt
— f *Nsced t)(l (70*)) dt (41)
< T

and

V, & f;f min{1, N 4(t)}e Nua()A=00(=07) gy

— f;o Wd _Nseed(t)(l_d)U(_a*)) dt (42)
1

< fT Nd dt

We obtain the bound V' =
1/0%)e” 4Ty + [ Na(t

(d+1/6%)e” (Vi + V3) < (d +
) dt).

Recall that Ng(t) = ft 7+ Ma(z)Gr(t — z) dz. Now,
we define Q(t) ft 7.+ Gr(t = 2)q(2) dz, thus Ngy(t) =
AQ(t). We know that Q( ) >0Vt and Q(t) — 0 for t — oo.
By the definition of T} we know that N4(T}) = 1, thus we
have

T, = Ty(A) = Q- (i) . 43)

Since Q(t) — 0 as t — oo, it can be easily shown that
“L(1/A) = T1(A) — o0 as A — cc.

We first consider the case 0 < ¢(t) < Kt~ (@1 for t > Ty,
K >0 and « > 1. Thus, for all ¢ > max{Ty, T4} we have:

t
Na(t) < Af, 7, a(z)dz
t —(«
= A, Kettde 49
< AKt=* 2 N,(t)
We define the time instant T} £ max{t : N,(t) > 1};

thus, T7 is such that N, (T7) = 1. We obtain T ~ Al/e.
It is easy to see that since for all ¢ > max{Tp, Ty} it holds
Ng4(t) < Ny(t), we have that Ty (A) < T7(A). Moreover,
since A — oo, it exists Ag such that for all A > Ag, it holds
Ty (A) > Tp. We conclude T (A) > Ty, and thus 77 (A) > T,
as A > Ag.

Finally, from (41) and (42) we obtain an upper bound to
the average data volume requested from the servers:

vV = (d+1/0*)e YW1+ Vo)
< (d+1/6%)e” (T1+fT Ny(t)dt)
< (d+1/6%)e” d(T1+fT Ny(t dt+fT*Nd t) di)
< (d+1/6%)e? 4Ty + (Tf — T1)+AT1*1 /(o —1))
= (d+1/6%)e” 4AY> AV /(o — 1))
~ AV A 0.
45)

We consider now the case where ¢(¢) has a finite support,
i.e., there exists an instant 75 > T, such that ¢(¢) = 0 for all
t > T5. We observe that T3 is a constant as A — oo, otherwise
¢q(t) would not have finite support. We conclude that both T}
and T are constant in A.

Therefore, in this case we obtain the bound

Vo= (d+ 1/9*)e9*d(v1 +1h)
S @1/ [T NG ) g
< (d+ 1/9*)69 d(T1+(T2+Td—T1))
= (d+1/6%)e% 9Ty, =O(1) when A — co.

We now consider a popularity distribution with an expo-

nential decreasing tail. Thus, 37y such that for all ¢ > T,
q(t) ~ e, a > 0 . In this case we have

t —Qz
f(t—fi)J’ /}6 dz
A(efa(thd)*' _ efo‘t)/a
Ae 2 o

Ny(t)
(47)

~

We obtain again that the quantity 77 is such that N 4(T}) =
1, ie, T1(A) ~logA.

Finally, we obtain the following upper bound to the average
amount of data requested from the servers:

Vi ~ logA
Vo o~ f Ae—t dt
_ Ae aT1(A)/a (48)
~ Ae— log A _ =1
and thus
V<Vi+Ve~logA (49)

Now we consider the case d > U. In can be easily shown
that V' ~ A under both the considered popularity distributions.
We first note that, since the average number of users in
the system grows asymptotically linearly with A, this linear
behavior is a trivial upper-bound for the average data volume
requested from the servers. We consider the following lower-
bound:

S(t) = ((d—U)Na(t)

Integrating the previous lower-bound, and noting that by
definition, Neeq(t) = 0 for t < T4, we obtain

— UNeea(t)) " (50)

v o> fo ((d = U)Ng(t) — UNeea(t)) " at
> [T ((d=T)Na(t) = UNgea(t)) " dt
= de(d U)Nd( )dt (51)
= (d-0) 0 AQ(t)dt
~ A, A—>
The last line follows noting that the integral is a positive

quantity that does not depend on A and d > U in this case.
Since we have proven that V' is bounded above and below by
a quantity that grows asymptotically as A, we can conclude
that V' = ©(A) when d > U for any choice of the shaping
function ¢(¢) modeling the video popularity.
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