
A Measurement Study of Data-intensive
Network Traffic Patterns in a Private Cloud

Daniele Venzano Pietro Michiardi
EURECOM – Sophia-Antipolis, France

Email: first name.last name@eurecom.fr

Abstract—In this work we investigate the impact of virtu-
alization on the raw network performance attainable by “data-
intensive” applications deployed in a private cloud. To this end we
developed a new software tool, called OSMeF, to take repeatable
measurements on our OpenStack-based platform. We also discuss
the implications of our measurement results toward informed
deployments of distributed applications such as Hadoop.

I. INTRODUCTION

Nowadays, cloud computing represents a key enabler for
the rapid provisioning of resources from public or private data-
centers to deploy a wide range of applications. To provide
flexible and cost-effective resource sharing among users, most
cloud service providers rely on machine virtualization, that
support multiple instances of virtual machines (VMs) on the
same physical server. VM instances share physical processors
and I/O interfaces with other instances: as such, it is important
to understand the impact of virtualization on computation and
communication performance of cloud services.

In this work, we study the performance – from the network-
ing perspective – that private cloud deployments expose to a
specific class of applications, namely data-intensive scalable
computing frameworks such as Hadoop [1]. In this context, vir-
tualization brings many benefits, including ease of operation,
high availability, elasticity and multi-tenancy [2]. However,
only few studies attempted to measure rigorously the raw
performance achievable by I/O intensive applications running
on virtual compute clusters (section II). Thus, our goal is to
cast light on the bulk transfer capacity attainable by a range
of traffic patterns derived from a typical Hadoop operation.

By using our OpenStack-based [3] private cloud deploy-
ment, detailed in section III, and by leveraging a software
tool we built (the OpenStack Measurement Framework, or
OSMeF), described in section IV, we studied the behaviour
of virtual and physical networks, along with the loopback
mechanism that is heavily used by distributed applications like
Hadoop. Our measurement results can be used to inform the
proper configuration and tuning of OpenStack and Hadoop
deployments, including: i) the selection of appropriate VM
“flavors” to run Hadoop components, ii) the importance of
VM placement across available physical servers, which largely
determines the attainable network throughput of data transfers
and iii) the need for novel mechanisms to support fast cross-
tenant communications.

II. RELATED WORK

Understanding the impact of virtualization on network
performance has attracted several studies [4], [5] in the past,

albeit oriented toward public cloud providers. These works
use a black-box approach in their study, as it is difficult (if
not impossible in some cases) to determine the measurement
conditions (e.g. interference from other users) in their experi-
ments, not to mention knowledge of the physical servers and
networks the cloud operator uses for the service. Instead, in our
approach, the platform used for the experiments is completely
under our control and hardware and software configurations
are known and measurable.

Other works focus especially on studying network perfor-
mance from the hypervisor point of view: for example, studies
[6] and [7] examine TCP and HTTP throughput, respectively,
in Xen virtual machines. In our work, instead, we use KVM,
the most commonly used hypervisor in conjunction with Open-
Stack. Moreover we also study end-to-end throughput across
the whole virtual network setup by OpenStack.

From the application perspective, some recent works ana-
lyze the behavior of Hadoop when deployed in virtual ma-
chines. In [8], Han et al. present a model of Hadoop to
examine how performance could be affected by VM char-
acteristics and placement in a cluster. However, that work
focuses on application-level performance metrics only, neglect-
ing network-level ones. Similarly, the work in [9] studies the
performance of Hadoop deployed in an Amazon EC2 cluster,
albeit the focus is on the design of a more efficient scheduling
mechanism to optimize application-level metrics.

Finally, recent works [10], [11] recognize the challenge
of designing efficient virtual networks, and propose software
approaches to increase virtual network performance.

III. EXPERIMENTAL SET-UP

We conduct our measurement study on a cluster of ded-
icated machines, configured as a private cloud, using the
OpenStack cloud operating system [3]. In this section we
briefly outline the design of OpenStack, concentrating on its
networking component, quantum,1 and provide details on our
platform, both from the hardware and software point of view.

OpenStack. OpenStack provides a range of management func-
tionalities needed by a cloud provider, from user and tenant
management (keystone) to interfacing with hypervisors
(nova-compute), virtual networking (quantum), block
(cinder) and object storage (swift). All these software
components are implemented in a distributed and fault-tolerant
way, with each service storing a minimal amount of state and
communicating through a message queueing service.

1This component is called neutron in the current development branch.



Configuring and tuning OpenStack is complex: the large
number of parameters that govern system behavior, the variety
of hypervisor technologies, the different flavors of storage
systems (various filesystem and logical volume management
combinations), the number of alternatives to implement net-
work switching (GRE tunnels, dynamic VLANs) all play a
crucial role in determining the overall system performance.

Our Platform. Our cluster uses a heterogeneous set of phys-
ical machines: we have two master nodes running on a dual
quad-core Xeon L5320 server clocked at 1.86GHz, with 16GB
of RAM, two 1TB hardware RAID5 volumes, and two 1Gbps
network interfaces; worker nodes execute on six dual exa-core
Xeon E5-2650L (with hyperthreading enabled) servers clocked
at 1.8GHz, with 128GB of RAM, ten 1TB disks (configured
as JBOD) and four 1Gb/s network cards. In this work we
use a single network interface per host, as splitting traffic or
using bonding would have added complexity to the system
that, instead, we strive to keep as simple as possible, since in
this work we are interested only in baseline performance.

The hardware and network configuration closely resembles
the one suggested by commercial private cloud providers, such
as Rackspace [12]. In particular storage is distributed on the
master and compute hosts and is not concentrated on a separate
storage network.

Each machine in the cluster runs the same Linux distri-
bution, a Ubuntu 12.04.2 LTS, updated with the most recent
patches. All energy saving settings in the BIOS are disabled,
since they cause severe performance penalties. We use the
KVM hypervisor, with virtio and vhost_net acceleration
modules enabled. Virtualization support in the CPUs is enabled
(VMX) and KVM uses it automatically. The hypervisor is
configured by Nova to use LVM for VM storage. VMs use
the unmodified Ubuntu 13.10 image from the Ubuntu Cloud
archives.

We use the Grizzly release of OpenStack, which is in-
stalled via the Ubuntu cloud repository. One of the master
nodes runs the OpenStack management services: the web-
based dashboard console, cinder, glance, keystone, and
quantum (including the server, layer 2/3 services and DHCP
agents). Worker nodes are configured as compute-only nodes,
and they host all the VMs created by our tenants and users.
Currently, we configure quantum to use GRE tunnels over a
physical network that interconnects all nodes of our cluster.

We implemented the most common setup, where quantum
is configured to use the OpenVSwitch [13] (OVS) plugin to
provide connectivity between VMs. OVS is a software switch
implementation that materializes as a virtual switch spanning
across multiple physical hosts. In our configuration, quantum
creates a single OVS switch for all VMs, using VLAN tagging
to separate traffic from different tenants.

To provide connectivity between tenants and the external
network, our virtual network is configured according to the
provider router with private networks use-case described in
the OpenStack documentation [14]. Thus, each tenant has its
own IP subnet, and exchange traffic between each other and the
Internet using a single virtual router connected to the subnets
of each tenant from one side and to the external network on
the other side. The quantum virtual router is implemented as
network namespace on the master node, where a number of

NAT and routing rules provide interconnection, external access
and floating IPs allocated to the VMs.

These settings are the result of a tedious trial and error
process that lasted several months. The OpenStack installation
manuals only cover the basics to setup a system that is (mostly)
operational, but far from being optimized for performance.

IV. MEASUREMENT METHODOLOGY

We now describe and motivate the methodology used for
our measurements, the tools we used, and the performance
metrics we considered for our results.

A. Motivation and background

We consider data-intensive scalable computing applica-
tions, and in particular we focus on the Hadoop framework [1].
Hence, we are interested in studying the network performance
of traffic patterns that mimic2 those generated by a typical
data analysis task. In addition, we consider several “flavors”
of Hadoop deployments, that exploit the characteristics of
virtualization in the context of multi-tenant, shared clouds.
Next, we briefly describe the basic principles of Hadoop
MapReduce.

MapReduce, popularized by Google [15] and by
Hadoop [1], is both a programming model and an execution
framework. In MapReduce, a data analysis job consists of three
phases and accepts as input a dataset, appropriately partitioned
and stored in a distributed file system. In the first phase,
called MAP, a user-defined function is applied in parallel to
input partitions to produce intermediate data stored on the
local file system of each machine of the cluster; intermediate
data is sorted and partitioned when written to disk. Then, a
REDUCE phase begins. It comprises a SHUFFLE phase, where
intermediate data is pulled by the reducers: data from multiple
mappers is sorted and aggregated to produce output data.

When a single job is submitted to an Hadoop cluster, the
Hadoop scheduler assigns a number of MAP tasks equal to the
number of partitions of the input data. The scheduler tries to
assign MAP tasks to “slots” available on machines in which
the underlying storage layer holds the input intended to be pro-
cessed, an important concept called data locality. Essentially,
when reading and writing data, local communications are to
be preferred over remote ones, since the network is generally
assumed to be the bottleneck. REDUCE tasks are scheduled
once intermediate data, output from mappers, is available.
Overall, the performance of an individual job is determined by
the slowest task: asymmetries due to an uneven amount of data
to process or to network bottlenecks may create “stragglers”
that should be carefully handled by the application.

As a concluding remark, it is important to notice that
Hadoop is made of a number of components that run as
daemons: master nodes execute daemons (e.g. the scheduler)
that orchestrate several workers, each in charge of data and
compute operations. For the principle of data locality outlined
above, data and compute components are collocated on the

2Note that, in this work, we do not execute Hadoop in our cluster, hence we
do not measure communication performance at the application level. Rather,
we generate traffic with system-level tools, according to the communication
patterns of Hadoop.



same cluster machine. All components communicate through
a simple REST-ful API: in particular, co-located components
exchange messages through the loopback interface, whereas
components on different hosts, use network interfaces.

B. Traffic patterns

Application-level characteristics. The nature of the commu-
nications between Hadoop components discussed above leads
us to focus on the performance achieved by both “regular”
network and loopback interfaces, the former being used mainly
during the SHUFFLE phase of MapReduce and the latter
used mainly for data I/O operations. As such, in section V
we measure the performance of the localhost – both at the
hypervisor and VM level – and of the cluster network –
between hypervisors and VMs.

Recall the data-intensive nature of the applications we
consider: therefore, we study the behavior of long-lived con-
nections (in all our experiments we consider 6 minutes long
data transfers) that are typical in Hadoop. For example, in the
SHUFFLE phase, it is common to transfer several GBytes of
data among cluster machines. Moreover, from a measurement
point of view, long-lived connections have the advantage of
reducing the variance [16] caused by load spikes in network
and CPU usage in the cluster.

Finally, we consider the effects of a number of parallel
communications taking place concurrently: this is another
typical traffic pattern of Hadoop, whereby each component
could establish a large number of connections to exchange
data.3 Note that it is also important to study whether bandwidth
allocation among competing parallel connections is fair, as
uneven performance may contribute to the creation of “strag-
glers” and impact the overall application-level performance of
a data analysis job.

Virtualization effects. Deploying data-intensive applications
in a cluster of virtual machines involves a wide range of
possible architectural choices. As we alluded above, in a
typical “bare-metal” Hadoop architecture, compute and data
components are co-located, in light of the data locality princi-
ple. Similarly, with respect to the traffic patterns, we consider
a virtual Hadoop cluster in which individual VMs host both
components.

In addition, we also study more elaborate setups that
stem from recent efforts [2] to define reference Hadoop
architectures for multi-tenant, shared clusters of virtualized
resources. Essentially, we consider traffic patterns that arise
when compute and data components live in different VMs
and possibly in different tenants. In our experiments, we
therefore study network performance under a variety of VM-
to-VM communication patterns: in doing so, we revisit the
notion of data locality and define a new distance metric that
accounts for VM placement choices. For example, we consider
communications to be local even when they involve distinct
VMs, as long as they are instantiated on the same physical
host.

Finally, we also study the effects on network performance
of a variety of VM “flavors”: namely, we focus on the number

3For example, during the SHUFFLE phase, a TASKTRACKER serves up to
40 connections, and establishes up to 5 connections to pull intermediate data.

of virtual CPUs available to a VM. Indeed, the CPU plays a
crucial role in determining the performance of some software
network components we use in our platform (including the
loopback interface and the virtual switches). As such, we use
VMs with 1 up to 16 virtual CPUs.

C. OSMeF

The OpenStack Measurement Framework (OSMeF) pro-
vides a way to perform a large number of measurements in an
automatic and reproducible way. It is implemented in Python
and uses a JSON output format. We released it as an open-
source project [17] and we plan to extend it to cover more
scenarios and measurements.

OSMeF implements the OpenStack and Quantum APIs,
which are used to instantiate and delete VMs and virtual
interfaces as required by the specific measurement scenario
being performed. Essentially, OSMeF reads a measurement
configuration file, performs VM placement according to the
specification (including a proper selection of VM flavor),
instruments all VMs with additional software components
required to perform a specific measurement and finally runs
the necessary tools, parsing and aggregating their outputs to
create a compact JSON summary for each experiment.

In addition, before any experiment is executed, OSMeF
gathers a number of statistics from each end point operating
system, which are required to verify that measurements are
performed under known system conditions. These statistics
include a time-stamp, the current load on each machine (both
physical and virtual), network utilization, kernel versions and
many others. Such experiment “meta-data” is appended to the
JSON output of each measurement campaign.

Currently, OSMeF uses nuttcp [18] to perform the actual
network measurements.4 Nuttcp is a well-known tool (origi-
nated from ttcp [19]) that produces a number of useful statistics
(in addition to raw throughput figures) gathered during a TCP
transfer of a specified length. For each experiment, OSMeF
configures nuttcp according to the measurement configuration
file, including the number of parallel connections and their
duration.

D. Performance metrics

The main performance metric we measure in our experi-
ments is related to network throughput: indeed, the very nature
of the data-intensive applications we consider in this work is
geared toward moving and ingesting large volumes of data,
rather than guaranteeing low-latency access to small records.
In addition to throughput, we also consider a metric related to
the fairness of bandwidth allocation across competing, parallel
connections. Next, we describe our metrics in detail:

Bulk Transfer Capacity (BTC). BTC is defined as the rate
that a transmitting entity implementing a standard congestion
control mechanism can attain over a given network path
[20]. Throughout this paper, we measure BTC as the average
throughput generated during 6-minute TCP transfers between
two physical or virtual network interfaces.

4We also used IPerf as an alternative to nuttcp, and preferred the latter for
its verbosity.



Virtual router

Switches

Tenant A Tenant B

VM1 VM2 VM3 VM4

PHY1 PHY2 PHY3

Fig. 1: The distance between two VMs is equal to the number
of edges data must traverse in this tree. Distance between VM1
and VM2 is 2 and distance between VM2 and VM3 is 4, even
if they reside on the same physical host. Processes on the same
VM, not shown, communicate with distance 0.

Jain’s fairness index (J). Jain’s index [21] is a well-known
fairness metric used to establish how equally a network re-
source is being shared. When J is equal to or approximately
1, then all connections are treated equally, in that they re-
ceive roughly the same amount of bandwidth. Instead, if J is
less than 1, some connections are mistreated with respect to
others, which creates an asymmetry that may severely impact
application-level performance (see section IV-B).

These metrics are enriched by two important elements:

Distance. We borrow the definition of distance between com-
municating entities from that used in Hadoop [22] to take
informed decisions on data and compute tasks placement.
Logically, the network is represented as a tree and the distance
between two nodes is the sum of the distances to their closest
common ancestor. As can be seen in figure 1, this definition
takes into account OpenStack’s virtual topology.

CPU load. Our definition of CPU load refers to the percentage
of time spent running by a receiving or sending UNIX process.
Indeed, CPU speed and memory bus bandwidth are important
factors that limit the throughput achieved by a local (i.e.,
distance equals zero) communication. This metric is measured
by nuttcp and reported by OSMeF on a per-connection basis.

V. RESULTS

We now present our results in terms of the metrics defined
in section IV-D, that we obtained with more than 250 OSMeF
runs, using various combinations of the traffic patterns dis-
cussed in section IV-B. We consider the following scenarios:

• Physical / Virtual loopback performance of an indi-
vidual host or VM, with flavors in the range from 1
to 16 virtual CPUs;

• Host-to-Host performance, which provides a “physi-
cal” baseline for the network performance;

• VM-to-VM performance,5 and the following VM
placements across physical servers (the same conven-
tion is used in the remainder of the paper):

1) Same host and same tenant;

5In this work we present results for a 1 virtual CPU VM, since results for
different VM flavors are qualitatively similar.

0 10 20 30 40 50
Loopback concurrent connections

0

5000

10000

15000

20000

25000

B
T
C

 i
n
 M

B
/s

Loopback BTC

16 CPUs
16 VCPUs
8 VCPUs
4 VCPUs
1 VCPU

Fig. 2: Loopback BTC comparison between a physical host
with 16 cores (32 with hyperthreading), and VMs with 1 to
16 virtual cores.

2) Different host and same tenant;
3) Same host and different tenant;
4) Different host and different tenant.

In addition to the scenarios presented above, we also focus
on specific characteristics of our cluster configuration, and on
the OpenStack/KVM implementation of virtual networking:
our goal is to characterize, in a fine-grained way, the “path”
taken by a packet from its source to the destination, and
pinpoint potential bottlenecks in the system. Precisely, we
perform the following additional set of measurements:

VM-to-Host and Host-to-VM: these traffic patterns allow
to measure the capacity available through the virtualization
layer, that is between a network interface inside the VM and
the corresponding TAP interface managed by the hypervisor;
Host-to-Host through a GRE tunnel. GRE is a IP-over-IP
tunneling technique used by OVS to instantiate a single switch
spanning multiple physical hosts.

All results are produced by averaging three to five OSMeF
runs of the same scenario, varying the number of parallel
connections between end-points from 1 to 50, with each
connection having a fixed duration of 6 minutes. Note that, in
our experiments, OSMeF is the only active user in the cluster:
we thus eliminate interference due to multiple applications
and background traffic in the system, a necessary condition
in obtaining baseline results.

A. Loopback Performance

Armed with the motivations discussed in section IV-B,
we now focus on the behavior of the loopback interface.
We use OSMeF to establish a variable number of parallel,
concurrent connections with both end processes (client and
server) running in the same host or VM, using the loopback
interface to exchange data.

Figure 2 illustrates the aggregate BTC we measure for both
the physical and virtual interfaces, computed as the sum of the
individual BTC each connection achieves in our measurements.
In particular, for each individual connection, we compute the
average across 5 distinct measurement runs. Figure 2 reports



the aggregate BTC as a function of the number of parallel
connections, and each line in the figure corresponds to a
different VM flavor.

We observe that both the physical and virtual loopback
interfaces share similar characteristics: the aggregate BTC
increases as more connections are established, up to a plateau,
at which BTC saturates. Clearly, the loopback behavior is dom-
inated by the (complex) interplay between several components:
the (physical or virtual) CPU and the number of cores, the
speed at which data can be copied in RAM and the operating
system scheduler.

While loopback performance is quite obviously dominated
by the CPU load, it is important to note that BTC has a point
of maximum, where the number of connections maximises
the amount of resources available. After this point available
bandwidth flattens or even starts to decrease.

Another important observation is about the virtual loop-
back performance: the number of parallel connections that
“saturate” BTC is proportional to the number of virtual cores,
with the exception of the 1 VCPU slope, which does not cope
well with parallel connections. In particular BTC doubles by
doubling the number of VCPUs available, but, comparing the
16 virtual CPUs throughput with the 16 physical CPUs one,
we see a 40% penalty due to virtualization. With additional
measurements, we observe that, despite the negligible VCPU
load, under 1%, the hypervisor CPU is saturated, with VM
processes occupying more than 90% of CPU time.

For each case discussed above, we computed the Jain’s
fairness index as a function of the number of parallel connec-
tions established by OSMeF, for different VM flavors. Our data
indicates that, for long-lived communications, each connection
receives a fair share of the available bandwidth to transfer data,
with values very close to 1, independently of the number of
connections and across different VM flavors.

In summary, the analysis of the loopback behavior allows
to draw a number of conclusions:

• It is important to properly chose a VM flavor that
supports and scales well with the number of parallel
connections required by the application;

• Configuring and tuning data-intensive applications,
such as Hadoop, requires an in-depth knowledge of
virtualization impact to avoid saturation (by limiting
the number of parallel tasks that establish connections
through the loopback interface) and to ensure that
available capacity is not left unused;

• For specific traffic patterns, such as the SHUFFLE
phase of Hadoop, it is important to understand and
quantify asymmetries due to the use of the loopback
interface – whose behavior is heavily influenced by
CPU load – with respect to other network interfaces.

B. VM-to-VM performance

We now study the behavior of VM-to-VM traffic patterns:
for this, OSMeF establishes a variable number of connections
between different VMs, varying their placement, each hosting
one end (client or server) of the connection. In addition to
VM measurements, we use OSMeF to perform a series of

0 2 4
Distance

100

101

102

103

104

B
T
C

 i
n
 M

B
/s

VM to VM BTC

p = 1
p = 10
p = 30
p = 50

Fig. 3: BTC behaviour of VM to VM communication with
increasing distances and number of parallel connections (p).
For distance 4 we chose to plot scenario 3 (same host, different
tenant). Please note the log scale on the y axis.

measurements that involve the physical host to upper-bound the
BTC for VM-to-VM communications. This is a summary of
our results (refer to the beginning of this section for placement
descriptions):

• VM-to-VM 1: in this case, the BTC is upper-bounded
by the minimum of the available capacity between the
VM and the underlying hypervisor, corresponding to
VM-to-Host and Host-to-VM traffic patterns;

• VM-to-VM 2: the capacity of the physical network is
the bottleneck in this case, with BTC upper-bounded
by the Host-to-Host traffic patterns;

• VM-to-VM 3 and 4: given the platform configuration
we use (suggested in [14]), the BTC for both traffic
patterns we study is upper bounded by the physical
network, even when VMs run in the same physical
host.

Complete results, with CPU usage statistics and standard
deviations for all scenarios are available in a technical report
[23].

Next, we study the behavior of VM-to-VM communica-
tions as a function of the distance we define in section IV-D.
Figure 3 illustrates the per-connection BTC, computed as the
average BTC each connections achieves in 5 consecutive runs
of our measurements, where each line is representative of a
measurement campaign with a different number of parallel
connections. In summary, we observe that:

• Distance 0: the physical network is not involved in this
case, since all communications are established within
the same physical host. As anticipated above, the
bottleneck that determines the overall performance of
this traffic pattern is related to VM-to-Host and Host-
to-VM communications, which suffer from overheads
due to network virtualization;

• Distance 2: in this case, the physical network is the
bottleneck. Virtualization overheads are low, as the
loss in BTC for this traffic pattern is roughly 4% with



respect to the physical upper-bound. Additionally, we
remark that VM-to-VM communications at distance 2
achieve a BTC that is one order of magnitude lower
than what can be obtained at distance 0;

• Distance 4: also in this case the physical network
constitutes the bottleneck for the attainable BTC, even
for connections between VMs in the same physical
host. We note a further drop in performance, as
compared to distance 2, due to routing overheads to
move data between different tenants.

Overall, the results we show in Figure 3 indicate that the
total network capacity is shared consistently among competing
connections: a single connections uses virtually all of the
available network capacity, whereas on average, for example,
10 connections receive roughly 1/10-th of the total capacity.

We computed the Jain’s fairness index for VM-to-VM
traffic patterns, as a function of the number of connections.
Our results indicate that, each (long-lived) connection receives
a fair share of the available capacity. Interestingly, we notice
that this is not the case for Host-to-Host communications: in
this case, the hypervisor operating system does not distribute
evenly the network capacity among competing flows, a result
that is corroborated also by some recent works [24]. In
addition, our results indicate a 2% performance loss of Host-
to-Host communication through a GRE tunnel, which imposes
a 15% overhead in CPU utilization.

In summary, our results cast light on the impact of network
and system virtualization for the applications we consider in
our work. VM placement plays a crucial role in determin-
ing application-level performance. For SHUFFLE-like traffic
patterns, sub-optimal VM placement might contribute to the
creation of “stragglers” due to the inherent asymmetry of the
BTC attainable between VMs, depending on their distance.

Our results can thus be used to inform VM placement
strategies to cope with application requirements. Moreover,
we observe that the architecture suggested in [2], whereby
data-intensive applications are deployed by separating across
different tenants data and compute layers, may suffer from a
severe performance degradation. The cluster configuration we
used in our experiments – which follows OpenStack guidelines
– is inappropriate for inter-tenant communications that occur
on the same physical host. It is thus necessary to devise
new mechanisms that exploit host-locality to improve network
performance and avoid unnecessary traffic routing.

VI. CONCLUSIONS AND FUTURE WORK

Understanding the consequences of machine and, more
generally, cluster virtualization on communication perfor-
mance of cloud applications is fundamental for their correct
operation. This is particularly true for data-intensive comput-
ing, where I/O performance plays a crucial role in determining
the overall rate at which data analysis tasks can proceed.

In this work, we described our measurement results and
their implications in light of an appropriate approach to
deploy and tune data-intensive applications. Essentially, this
work helps to inform the design of mechanisms to perform
VM placement on physical servers, and to appropriately tune
communication parameters of Hadoop-like applications.

Currently, we are extending the traffic patterns supported
by our measurement tool (for example to account for n-
way communications), and we plan to run a range of new
measurement campaigns to understand and quantify the impact
of interference caused by background traffic and multiple,
coexisting applications running in our platform. In addition,
we will complement our study by considering the impact of
virtualization on disk I/O performance.

REFERENCES

[1] Apache, “Hadoop.” [Online]. Available: http://hadoop.apache.org/
[2] VMWare, “Hadoop virtualization extensions on VMware

vSphere 5.” [Online]. Available: http://www.vmware.com/files/pdf/
Hadoop-Virtualization-Extensions-on-VMware-vSphere-5.pdf

[3] OpenStack Foundation, “OpenStack.” [Online]. Available: http://
openstack.org

[4] G. Wang and T. S. E. Ng, “The impact of virtualization on network
performance of amazon ec2 data center,” in Proc. of INFOCOM’10.
IEEE Press, pp. 1163–1171.

[5] E. Walker, “Benchmarking amazon ec2 for high-performance scientific
computing,” Usenix Login, vol. 33, no. 5, pp. 18–23, 2008.

[6] P. Apparao et al., “Characterization of network processing overheads
in xen,” in Proc. of VTDC ’06, Washington, DC, USA, 2006.

[7] Y. Mei et al., “Performance measurements and analysis of network i/o
applications in virtualized cloud,” in Proc. of CLOUD 2010. IEEE
Press, 2010, pp. 59–66.

[8] J. Han, H. Makino, and M. Ishii, “Design and performance evaluation
for hadoop clusters on virtualized environment,” in Proc. of ICOIN ’13.
IEEE, 2013, pp. 244–249.

[9] M. Zaharia et al., “Improving mapreduce performance in heterogeneous
environments,” in Proc. of OSDI ’08, Berkeley, CA, USA, 2008.

[10] L. Rizzo and G. Lettieri, “Vale, a switched ethernet for virtual ma-
chines,” in Proc. of ACM CoNEXT ’12, 2012, pp. 61–72.

[11] D. Crisan, R. Birke, G. Cressier, C. Minkenberg, and M. Gusat, “Got
loss? get zovn!” IBM Research, Tech. Rep. RZ 3840, March 2013.

[12] Rackspace, “Rackspace private cloud installation manual.”
[Online]. Available: http://www.rackspace.com/knowledge center/
article/rackspace-private-cloud-installation-prerequisites-and-concepts

[13] “Open vswitch.” [Online]. Available: http://openvswitch.org/
[14] OpenStack Foundation, “Openstack networking administration guide,”

grizzly 2013.1. [Online]. Available: http://docs.openstack.org/grizzly/
openstack-network/admin/content/use cases single router.html

[15] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” in Proc. of OSDI ’04, 2004, pp. 107–113.

[16] M. Jain and C. Dovrolis, “End-to-end available bandwidth: measure-
ment methodology, dynamics, and relation with TCP throughput,”
SIGCOMM Comput. Commun. Rev., no. 4, 2002.

[17] D. Venzano, “Osmef release.” [Online]. Available: https://github.com/
bigfootproject/OSMEF

[18] “Nuttcp.” [Online]. Available: http://www.nuttcp.net
[19] R. Prosad et al., “Bandwidth estimation: metrics, measurement tech-

niques, and tools,” IEEE Network, no. 6, 2003.
[20] M. Mathis and M. Allman, “A framework for defining empirical bulk

transfer capacity metrics,” in Proc. of 51st Internet Engineering Task
Force. IETF, 2001.

[21] R. Jain, D.-M. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,”
CoRR, vol. cs.NI/9809099, 1998.

[22] T. White, Hadoop The Definitive Guide, 2nd ed. O’Reilly and Yahoo!
Press, October 2010.

[23] D. Venzano and P. Michiardi, “Network performance measurements of
data-intensive applications in a private cloud,” Eurecom, Tech. Rep.
RR-13-287.

[24] G. Urvoy-Keller, D. M. L. Pacheco, and H. S. Ha, “Networking in a
virtualized environment: the TCP case,” in Proc. of CloudNet’13. IEEE.


