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Abstract

We present an implementation of autonomous navigation for Micro Air Vehicles which is

well-suited for very inexpensive models: It only relies on a single camera and few additional
on-board sensors to solve the challenges of flight planning and collision avoidance. Artificial
landmarks are not required except in places with an ambiguous further flight path, such as
corridor crossings or junctions. There they provide topological localization, which enables
our system to perform tasks like way point following.

Even without any direct 3D sensor, our system is able to reconstruct metric distances
from its monocular camera via two complementary methods: An oscillating motion pattern
is superimposed to regular flight to reliably estimate up-to-date 3D positions of sparse
image features. As an alternative, a specific flight maneuver can virtually create a vertical
stereo camera to provide depth information densely across most pixels at single points in
time. The unknown metric scale inherent in employing a single camera is determined by
evaluating further sensors via a robust two-stage approach. We use the results from either

method to traverse free space and avoid obstacles.

1 Introduction

The popularity, availability and range of applications of Micro Air Vehicles (MAV) — especially
quadcopters — has been steadily increasing over the last few years. While the mechanical perfor-
mance of rotor-driven models has long been satisfactory, enabling applications like localization,
mapping and autonomous flight using minimal sensors and infrastructure still presents various

challenges to research: Especially for MAVs, on-board
sensors as well as processors should be inexpensive, but
also lightweight and energy-efficient. Implementations
therefore must be able to cope with limited and noisy
inputs. At the same time, either their complexity needs
to be feasible for on-board processing or their robust-
ness against signal latencies and interruptions has to
allow for remote operation.

As an example of such applications, we present a
complete system for fully-autonomous indoor naviga-
tion based on the monocular forward-facing camera and
supplementary on-board sensors of an inexpensive Par-
rot AR.Drone 2.0 quadcopter [I7] shown in fig. [1] Re-
garding infrastructure, our system requires a standard
PC for remote processing and control, and landmarks

Figure 1: AR.Drone 2.0 quadcopter:
Its 4 degrees of freedom during flight
are indicated by arrows.
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for topological localization at crossings or junctions, but no external cameras or radio beacons.
Our respective labs productively employ this system i. a. for studying and mitigating the quad-
copter’s impact on privacy while guiding visitors in an office environment, as well as for teaching
computer vision and control theory. A demonstration video of our system is available at [2].
The remainder of this paper is organized as follows: Section [2] introduces related works and
differentiates them from our contributions. After section [3|has given an overview of our system
and its fundamentals, the two complementary modules for sparse and dense 3D reconstruction
as well as for landmark-based navigation are described in sections [4 to [0} including respective
experimental results. Section [7] concludes the paper and presents an outlook on future works.

2 Related Work and Contribution

MAV research connects a diverse range of topics such as control systems, computer vision, sensor
fusion and artificial intelligence. Several publications are related to individual aspects of this pa-
per: [I8] avoids collisions based on re-projected sparse feature correspondences between images
from a single camera. This technique’s inherent ambiguity of absolute scale can be resolved via
integrating additional sensors — exemplarily, inertial measurement units (IMU) are employed by
[0, [6] and [I5] to enable drift-free localization, precise figure-flying and autonomous mapping
respectively. We extend this approach in two ways: Firstly, a preferred method to estimate the
absolute distances of re-projected sparse 3D points evaluates the quadcopter’s position relative
to the ground plane. It is therefore less susceptible to noise in IMU measurements. Secondly,
we superimpose a circular motion pattern in vertical and lateral direction to regular flight so
that feature correspondences can be re-projected more precisely and reliably.

Besides the above structure from motion-based approaches, various sensors to directly mea-
sure a MAV’s 3D environment are available, including time-of-flight and structured light cam-
eras or LIDAR. As another example, [7] primarily uses on-board stereo cameras to explore and
map unknown environments. We propose to emulate such a sensor by evaluating monocular
images before and after a change in flight altitude. While saving one camera’s weight and power
consumption, this approach also introduces algorithmic challenges and inherent limitations.

The more complex quadcopter models used in some of the works above allow performing at
least parts of the respective computations on-board. In our system, processing is also distributed
among a remote PC and the AR.Drone itself, but the latter can only run manufacturer-supplied
code such as longitudinal and lateral velocity tracking. Nevertheless, this does not necessarily
limit our system’s range — e. g. a six-legged ground robot has been demonstrated to be a suitable
base station for cooperative terrain exploration with a very similar quadcopter model [10].

3 System Overview and Fundamentals

As mentioned initially and shown in fig.[2] our quadcopter is complemented by a remote PC for
performing custom tasks like 3D reconstruction and flight control. The following paragraphs
will introduce each of the depicted modules:

Our MAYV of choice is the Parrot AR.Drone 2.0, whose standard quadcopter design enables
flight with four degrees of freedom: Vertical motion and yaw rotation are independent, while
forward /backward and sideways motion is achieved via pitch and roll rotation respectively.
Although being marketed mainly as a toy for private use at a price of $300, it provides various
sensors, and is safe to use and robust. In contrast to more expensive models, custom code cannot
easily be run on-board, and hardware extensions are limited to vendor-supported devices — as
of 2013, these only include USB flash drives for recording flights and an optional GPS receiver.
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Figure 2: Overview of our system’s modules: The perception methods may be run concurrently,
but only one of their associated control strategies is selected based on their respective results.

Among the aforementioned on-board sensors are a 3-axis accelerometer, both an ultrasonic
and a pressure-based altimeter, but also a gyroscope and a magnetometer for measuring the
quadcopter’s angular velocities and absolute orientation. Their readings are combined with the
optical flow determined from a downward camera to estimate the quadcopter’s translational
velocities at short intervals and with reduced drift [3]. A second forward-facing camera provides
images with a maximum resolution of 1280 x 720 pixels at a rate of up to 30 Hz for remote
processing. However, in order to transfer the video stream more steadily and reduce compression
artifacts, we limit resolution and frame rate to 640 x 360 px and 15 Hz respectively.

The remote PC connects to the quadcopter via WiFi. At this, our base system employs Robot
Operating System [16], a widely-used open-source middleware. A supplementary driver [14]
conveniently provides the AR.Drone’s camera images and sensor measurements, and accepts
normalized control commands € [—1, 1] for each of the quadcopter’s four degrees of freedom.

Because our methods for environmental perception generate metric deviations between the
quadcopter’s current and target 3D position and yaw angle, we use discrete-time PID controllers
to convert them to the required normalized commands. Table [I] shows their respective para-
meters, which have been determined via the closed-loop Ziegler-Nichols method: In individual
experiments, proportional-only control is used to hover at a certain altitude or yaw angle, or
exactly above a longitudinal or lateral line on the ground. The controller’s gain is increased until,
at its ultimate value ky, the quadcopter performs a permanent marginally stable oscillation
with period Tyy. Both values are used in a heuristic rule [13] for finding PID control parameters
which achieve quick settling without overshoot. As the controllers’ outputs may well exceed the
[—1,1] interval and therefore the quadcopter’s capabilities, an anti-windup logic prevents their
error integrals from building up and — once the set point has been reached — causing significant
overshoot while being unwound again.

One last part of our base system is image undistortion — it is required since all our methods
for environmental perception expect the pinhole camera model to be valid. This model greatly
simplifies the re-projection of image points into 3D, and approximately holds for the AR.Drone’s
downward camera. Its forward-facing camera however shows significant barrel distortion, which
can be described and corrected using the Brown-Conrady model [4]. The undistorted images

degree of freedom k}U TU kp:k'U/5 k[ZZkP/TU k‘D:k‘pTU/?)
longitudinal and lateral | 1.2 4.65 0.24 0.10 0.37
vertical 2.9 2.50 0.58 0.46 0.48
yaw-angular 5.4 0.95 1.08 2.27 0.34

Table 1: PID control parameters for each of the quadcopter’s degrees of freedom: ky and Ty
are determined experimentally and used to find the actual parameters via a heuristic rule [13].
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cover a 64 ° horizontal field of view on 736 x 360 pixels. Undistortion is our system’s only task to
exploit data-parallelism through multiple CPU cores or optionally a GPU in order to minimize
latency. All further processing runs sufficiently fast even on an Intel Core 2 Duo T7700, even
though we selected efficient algorithms and implementations mainly to maintain the possibility
of using an embedded on-board processor of a different quadcopter model in the future.

To conclude this overview, we will briefly introduce the three combinations of environmental
perception methods and flight control strategies listed in fig.[2]- their respective implementations
and experimental results on the other hand will be described in individual sections later on.

e Sparse 3D reconstruction may be used continuously during regular flight and therefore is
our preferred method of perception. It usually yields the spatial locations of few hundreds
of distinct image points, whereat their accuracy largely depends on the quadcopter’s
motion: Vertical and sideways movements are particularly beneficial, which is why our
associated control strategy superimposes an oscillation in those directions, hereby creating
a corkscrew-shaped flight trajectory.

e Dense 3D reconstruction can alternatively provide an estimated distance for most of the
265.000 pixels of an image, but in return requires exclusive flight control to virtually create
a vertical stereo camera through a change in altitude. Because this maneuver interrupts
regular flight, results are dense in space yet sparse in time.

e Landmarks to be detected and recognized by our system are only required in places offering
multiple possible directions for further flight. There they allow us to topologically localize
the quadcopter within the set of marked crossings, including its inbound direction. Using
this information, it can assume a predefined position and outbound direction relative to
the landmark before resuming 3D reconstruction-based flight.

While undistorted input images and supplementary sensor data are processed in parallel by all
perception methods, only one control strategy’s outputs must be selected for being sent to the
quadcopter. We prioritize the strategies based on their internal state: Once triggered, the alti-
tude change maneuver for dense 3D reconstruction is never interrupted. Otherwise, landmark-
based navigation is effective while a landmark has been detected and the corresponding further
flight orientation has not yet been reached. Lastly, continuous sparse 3D reconstruction and
“corkscrew” flight are intermitted with dense 3D scans on demand.

4 Sparse 3D Reconstruction and “Corkscrew” Flight

The basis of this method of environmental perception is formed by sparse optical flow, i.e. the
change in pixel coordinates of corresponding distinct points from two subsequent images. Our
system usually evaluates directly consecutive frames from the quadcopter’s forward camera, but
may make one exception in case of very slow flight: Because a sufficient translational movement
between both views is required to obtain accurately reconstructed 3D points, a previous image
may be kept and processed with a series of new images until this movement has built up.

The process of estimating this translational as well as the rotational movement of a camera is
called visual odometry — a real-time open-source implementation is offered i. a. by LIBVISO2 [§]
for both stereoscopic and monocular cameras. Because the latter version is particularly aimed
at ground vehicles however, we extended it for use in conjunction with a quadcopter. The
following list outlines the whole process of obtaining 3D points from an image pair. State-of-
the-art algorithms from [9] are briefly summarized while our extensions are described in detail:

1. To efficiently find correspondences between images, LIBVISOZ2 uses custom implementa-
tions: Its feature detector distinguishes between 4 classes. Its descriptor is neither scale-
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Figure 3: The ground plane is correctly iden-
tified by the 4" step of sparse 3D reconstruc-
tion. The camera’s height Z. above it may
safely be assumed to equal the altitude Z,
measured by the on-board ultrasonic sensor.
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Figure 4: The tabletop is mistaken for the
ground plane. The 3D points’ distances and
the camera’s motion t. are over-estimated by
a common factor, which can be corrected by
incorporating t, from on-board odometry.

nor rotation-invariant, but quickly compute- and comparable. Finally, the matching stra-
tegy considers intra-class matches only and uses the results from an initial subset of points
as priors for the remaining set.

. The rotation matrix R and translation vector t. between both camera poses are deter-
mined as intermediate results': As a basis, applying the normalized eight-point algorithm
in a RANSAC scheme yields a robust estimate of the fundamental matrix F, which relates
the two views. The camera matrix K is used for converting F to the essential matrix E,
from which four potential solutions for the camera’s motion can be constructed. Each
one’s translation vector is only defined up to scale however — its metric length remains to

be determined.
E=K'FK=t], R (1)

. Given the camera’s motion, a 3D position X; = [X; Y; Zi]T of each point correspondence %
can be reconstructed very efficiently via homogeneous linear triangulation, which merely
requires a singular value decomposition of a 4x4 matrix. The correct tuple (R, t.) among
the four potential solutions from the previous step can be easily determined because
ideally all 3D points are reconstructed in front of both cameras for one of them only.
However, since t is still only determined up to scale, the same holds true for X,;.

. Our preferred method of estimating the above common scale of all X; and t relies on the
assumption that — as shown in fig. 3| — a horizontal ground plane extends from below the
quadcopter into its camera’s field of view. This plane’s position w.r. t. the quadcopter can
be described in terms of flight altitude Z,, pitch 8 and roll v, all of which are measured
directly and accurately on-board. Using these angles, each 3D point X; can be projected
to the ground plane’s normal vector:
cos(0) sin(v))
Zi=n'X; = | cos(f)cos(¢y) | X; (2)
— sin(0)

After finding the distance Z. of the largest cluster within all Z; below the quadcopter, the
scale factor s is determined so that Z. matches the altitude Z, measured by the ultrasonic
sensor: s = Z,/Z.. It is then applied to each 3D point X; and the translation vector t..

L Algorithms such as bundle adjustment, which estimate the camera’s motion and the feature correspondences’
3D positions jointly rather than successively, may yield more accurate results [9], but are considerably more
computationally demanding than the presented approach.
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Figure 5: Sparse 3D reconstruction results:
Blue/purple lines show optical flow vectors
consistent/conflicting with the quadcopter’s
motion. The points’ color indicates their lon-
gitudinal distance — red stands for 1 m and be-
low, cyan for 10m and above. A larger green
circle marks the target flight direction.
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Figure 6: Imperfect sparse 3D reconstruc-
tions: A path through a window is planned
because of too few point correspondences on
its blinds (top). Mostly mirrored points are
reconstructed (middle). Difficult lighting con-
ditions caused erroneous estimates of camera
motion and 3D point distances (bottom).

5. An optional second stage of scale estimation more ordinarily incorporates the translation
vector t, obtained by integrating measurements from the on-board accelerometer. Since
our quadcopter’s downward camera compensates them for drift, the scale factor can sim-
ilarly be determined as s’ = |t,| / |t.|. Nevertheless, the above method has proven to be
more precise if the ground actually is horizontal and correctly identified within the set of
3D points. Therefore, s’ should only be applied if that does not hold true, e. g. above stairs
or — as illustrated in fig. [4] - if tabletops predominate floor within the field of view. Such
situations can be recognized by large deviations between t. and t,: Our implementation
requires s’ to change the scale by at least 20% in order to become effective.

Figs. [f] and [6] show exemplary results of sparse 3D reconstruction as well as marked target
flight directions. Our approach for determining the latter is similar to [I8]’s virtual directional
distance sensors: We equally divide the camera’s field of view into a (j = 3) x (k = 5) grid of
such sensors, each of which provides a single distance measurement d;;. At this, rather than
finding the closest cluster among the distances d; = |X;| within a sensor’s region of interest, the
25" percentile distance yields comparable results at a reduced computational complexity. We

6
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determine the target flight direction in image coordinates x; by computing a weighted mean of
each virtual distance sensor’s center xy:

Ut iii?s)
X = () = e 3)
J

A grid cell may however lack any feature matches and 3D points, e.g. in case it merely views
a blank wall. Our implementation then artificially sets the associated distance to zero in order
to prevent the quadcopter from flying towards such uncharted regions.

The target flight direction only affects the quadcopter’s yaw rotation and forward velocity,
since its sideways and vertical degrees of freedom are reserved for the aforementioned oscilla-
tions. A conflict of goals must be resolved when defining their amplitude and frequency: Higher
values ensure sufficient motion for precise 3D reconstruction, but require more battery power
and a larger clearance space. We found 0.3 m and 0.33 Hz respectively to be a good compromise
in an office environment. Because of this scenario we also decided to currently ignore the target
direction’s vertical component v4: The quadcopter should fly around tables rather than passing
above or below them. The horizontal component can be converted into an angular deviation
Ay = arctan ((us — ¢y) /fu), which is not only used in closed-loop PID yaw rate control, but
also in a heuristic for determining the forward flight velocity: It is highest when the quadcopter
is well-aligned with the target direction, while angular deviations of +32° — i.e. the edges of
the field of view — lead to in-place rotations without any forward motion.

5 Dense 3D Reconstruction with a Virtual Stereo Camera

In contrast to the previous method, a stereo camera allows estimating a distance for the majority
of pixels. Our system can emulate such a sensor by moving the quadcopter perpendicularly to
its camera’s line of sight and analyzing images buffered before and after that maneuver. Hereby,
creating a virtual vertical stereo camera through an in-place change in flight altitude has several
advantages over the default horizontal arrangement: The AR.Drone’s ultrasonic height sensor
allows to precisely measure the baseline distance between both views and to adapt it to the
current visual range: 0.20m have proven suitable for the indoor scenarios presented in fig.[9]
but larger values likely yield more precise outdoor results. We also found a vertical instead of a
lateral offset to be more quickly and smoothly controllable using on-board odometry — due to
the maneuver’s duration of only 0.5s, the update rate of the previous section’s visual odometry
is insufficient here. As finally shown in fig. [0] the field of view of a vertical stereo arrangement’s
results is also limited vertically, which is the less relevant dimension for our application.
Efficient generic implementations of dense stereo matching such as [11] require input image
pairs to be rectified: Only if all corresponding points are ideally located on the same column,

- L‘/—»"(

T~

Figure 7: Rectification of one image each be-  Figure 8: Video stabilization for moving ob-
fore and after a height change, based on cam-  ject masking, used while hovering before or
era motion estimate according to section after a height change for dense 3D perception
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Figure 9: Dense 3D reconstruction: The overlayed rectified images before and after the height
change indicate the precision of the estimated camera motion (left). Therefore, any standard
implementation for distance reconstruction, e. g. [I1], may be used without modification (right).

finding their disparity d; = v; after — Vipesore = |t| f/Z; becomes a valid optimization problem.
As sketched in fig.[7] this is achieved by applying perspective transformations to both views such
that their image planes and v-axes coincide. The associated homographies can be computed
from the camera matrix K and motion (R, t.). While the former can be statically calibrated,
our system requires precise estimates of the latter for each individual pair of images from before
and after a change in altitude. Nevertheless, they can successfully be provided by applying the
5 steps described in section [4] directly to both images. Rectification may however fail if wind or
another disturbance cause excessive lateral or especially longitudinal motion during the height
change: We detect such cases within the camera-based translation estimate t. = [te tey tez)
by evaluating 4t2, + 16t2, > tzy and — if true — repeating the maneuver.

One conceptual disadvantage of the proposed method can merely be mitigated algorithmi-
cally: While an actual stereo camera captures both images simultaneously, our system allows
objects to move during the 0.5s height change. Therefore, they often do not meet the above
same-column criterion and cause incorrect distance estimates. Our preliminary approach can-
not correct, but at least mask the potentially affected results before further processing: We
detect moving objects by hovering in place for 0.75s before and after the altitude change. As
sketched in fig.[§] the respective first and last image during each phase are stabilized using a per-
spective transform based on sparse correspondences. Their absolute difference images Alyefore
and Al fier indicate an invalid result if max (Alg prer (Wi, Vi), Alpe fore(Uss Vi — di)) > Alpag.

8
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Figure 10: Landmark with machine-readable dot pattern and human-readable floor plan (left).
Approach towards a detected yet un-recognized landmark (middle). Recognized landmark just
before re-orientation for further flight (right).

6 Landmark-based Navigation

As explained before, our system is capable of navigating locally without any artificial landmarks,
but requires them e. g. for taking previously defined turns at corridor crossings and junctions?.
Fig.[10|shows an example of the wall-mounted markers currently employed by our system, which
have been developed independently in a student project [5]. They are detected and recognized
via thresholding in the HSV color space: Detection only involves the green corners’ relative
positions, from which the landmark’s distance and point of view can be derived as well. The
14 cyan/black dots along the edges allow recognizing 22 = 4096 individual markers, while two
remaining bits are reserved for error detection via checksums.

We use this pattern to encode a location’s ID and the quadcopter’s inbound direction within
each landmark. A supplementary mission description concisely maps this information to an out-
bound direction for further flight. Combining both yields a fully-defined path. The actual flight
control is a two-stage process: Once a landmark is initially detected, it is rarely immediately
recognized as well. However, the quadcopter usually has not yet entered the crossing or junc-
tion at this point either. In a 15° stage, we therefore compute and approach a position directly
facing the landmark at a distance of 1 m. The PID controllers of all 4 degrees of freedom are
used cooperatively for this task. A 24 stage exclusively uses closed-loop yaw control to re-
orientate the quadcopter towards its designated outbound direction. Sparse 3D reconstruction
and “corkscrew” flight continue directly after it has been correctly aligned.

7 Conclusions and Outlook

We have presented each module of a complete system which has proven capable of autonomous
indoor navigation. Despite the absence of any inherent 3D sensor on our quadcopter, it is able
to perform metric 3D reconstructions mainly based on a monocular camera. Comparing the two
complementary approaches we implemented for this purpose, the sparse method seems more
suitable for the task of following way points: Its resulting 3D points consistently cover the area
ahead and are continuously updated, while the dense method periodically needs to interrupt
regular flight. Nevertheless, the latter’s much larger number of result pixels may well be useful
e.g. for mapping a building. For that application, visual odometry — merely an intermediate
result at present — would also be of greater interest. Finally, the presented landmarks effectively
provide topological localization and offer a convenient way to define the quadcopter’s path.

2Without a landmark, the above strategies would heuristically follow the path requiring the least sharp turn.
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Even though it has been sufficient for our application, the quality of sparse 3D reconstruc-
tion and visual odometry can be improved by applying bundle adjustment techniques to longer
feature tracks. Their computational complexity might however inhibit compatibility with em-
bedded on-board PCs. The localization and prediction of moving objects using a monocular
camera requires resolving individual scale ambiguities and i. a. therefore still poses research chal-
lenges. Furthermore, visual place recognition such as [I2] offers the opportunity to avoid the
need for specific landmarks and to make our system fully independent from any infrastructure.
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