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Abstract—With the continuous and exponential increase of the
number of users and the size of their data, data deduplication be-
comes more and more a necessity for cloud storage providers. By
storing a unique copy of duplicate data, cloud providers greatly
reduce their storage and data transfer costs. The advantages of
deduplication unfortunately come with a high cost in terms of
new security and privacy challenges. We propose ClouDedup,
a secure and efficient storage service which assures block-level
deduplication and data confidentiality at the same time. Although
based on convergent encryption, ClouDedup remains secure
thanks to the definition of a component that implements an
additional encryption operation and an access control mechanism.
Furthermore, as the requirement for deduplication at block-level
raises an issue with respect to key management, we suggest
to include a new component in order to implement the key
management for each block together with the actual deduplication
operation. We show that the overhead introduced by these new
components is minimal and does not impact the overall storage
and computational costs.

I. INTRODUCTION

With the potentially infinite storage space offered by cloud
providers, users tend to use as much space as they can and
vendors constantly look for techniques aimed to minimize
redundant data and maximize space savings. A technique
which has been widely adopted is cross-user deduplication.
The simple idea behind deduplication is to store duplicate
data (either files or blocks) only once. Therefore, if a user
wants to upload a file (block) which is already stored, the
cloud provider will add the user to the owner list of that file
(block). Deduplication has proved to achieve high space and
cost savings and many cloud storage providers are currently
adopting it. Deduplication can reduce storage needs by up to
90-95% for backup applications [11] and up to 68% in standard
file systems [23].

Along with low ownership costs and flexibility, users re-
quire the protection of their data and confidentiality guarantees
through encryption. Unfortunately, deduplication and encryp-
tion are two conflicting technologies. While the aim of dedu-
plication is to detect identical data segments and store them
only once, the result of encryption is to make two identical data
segments indistinguishable after being encrypted. This means
that if data are encrypted by users in a standard way, the cloud
storage provider cannot apply deduplication since two identical

1Partially funded by the Cloud Accountability project A4Cloud (grant EC
317550) and the Secure Virtual Cloud (SVC) project, supported by the French
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data segments will be different after encryption. On the other
hand, if data are not encrypted by users, confidentiality cannot
be guaranteed and data are not protected against curious cloud
storage providers.

A technique which has been proposed to meet these two
conflicting requirements is convergent encryption [18], [25],
[26] whereby the encryption key is usually the result of the
hash of the data segment. Although convergent encryption
seems to be a good candidate to achieve confidentiality and
deduplication at the same time, it unfortunately suffers from
various well-known weaknesses [15], [24] including dictionary
attacks: an attacker who is able to guess or predict a file can
easily derive the potential encryption key and verify whether
the file is already stored at the cloud storage provider or not.

In this paper, we cope with the inherent security ex-
posures of convergent encryption and propose ClouDedup,
which preserves the combined advantages of deduplication and
convergent encryption. The security of ClouDedup relies on
its new architecture whereby in addition to the basic storage
provider, a metadata manager and an additional server are de-
fined: the server adds an additional encryption layer to prevent
well-known attacks against convergent encryption and thus
protect the confidentiality of the data; on the other hand, the
metadata manager is responsible of the key management task
since block-level deduplication requires the memorization of a
huge number of keys. Therefore, the underlying deduplication
is performed at block-level and we define an efficient key
management mechanism to avoid users to store one key per
block. To summarize our contributions:

• ClouDedup assures block-level deduplication and
data confidentiality while coping with weaknesses
raised by convergent encryption. Block-level dedupli-
cation renders the system more flexible and efficient;

• ClouDedup preserves confidentiality and privacy
even against potentially malicious cloud storage
providers thanks to an additional layer of encryption;

• ClouDedup offers an efficient key management solu-
tion through the metadata manager;

• The new architecture defines several different compo-
nents and a single component cannot compromise
the whole system without colluding with other com-
ponents;

• ClouDedup works transparently with existing cloud
storage providers. As a consequence, ClouDedup is



fully compatible with standard storage APIs and any
cloud storage provider can be easily integrated in our
architecture.

Section II explains what deduplication and convergent encryp-
tion are and why convergent encryption is not a secure solution
for cloud storage. Section III provides an overview on the
related work. Sections IV, V and VI describe ClouDedup’s
architecture and the role of each component. Section VII
analyzes the computational and storage overhead introduced
by ClouDedup and evaluates its resilience against potential
attacks. Finally, Section VIII presents our conclusions and
planned future work.

II. BACKGROUND

A. Deduplication

According to the data granularity, deduplication strategies
can be categorized into two main categories: file-level dedupli-
cation [29] and block-level deduplication [17], which is nowa-
days the most common strategy. In block-based deduplication,
the block size can either be fixed or variable [27]. Another
categorization criteria is the location at which deduplication
is performed: if data are deduplicated at the client, then it is
called source-based deduplication, otherwise target-based. In
source-based deduplication, the client first hashes each data
segment he wishes to upload and sends these results to the
storage provider to check whether such data are already stored:
thus only ”undeduplicated” data segments will be actually
uploaded by the user. While deduplication at the client side
can achieve bandwidth savings, it unfortunately can make
the system vulnerable to side-channel attacks [19] whereby
attackers can immediately discover whether a certain data is
stored or not. On the other hand, by deduplicating data at the
storage provider, the system is protected against side-channel
attacks but such solution does not decrease the communication
overhead.

B. Convergent Encryption

The basic idea of convergent encryption (CE) is to derive
the encryption key from the hash of the plaintext. The simplest
implementation of convergent encryption can be defined as
follows: Alice derives the encryption key from her message
M such that K = H(M), where H is a cryptographic hash
function; she can encrypt the message with this key, hence:
C = E(K,M) = E(H(M),M), where E is a block cipher.
By applying this technique, two users with two identical plain-
texts will obtain two identical ciphertexts since the encryption
key is the same; hence the cloud storage provider will be able
to perform deduplication on such ciphertexts. Furthermore,
encryption keys are generated, retained and protected by users.
As the encryption key is deterministically generated from
the plaintext, users do not have to interact with each other
for establishing an agreement on the key to encrypt a given
plaintext. Therefore, convergent encryption seems to be a good
candidate for the adoption of encryption and deduplication in
the cloud storage domain.

C. Weaknesses of Convergent Encryption

Convergent encryption suffers from some weaknesses
which have been widely discussed in the literature [9], [15],

[24]. As the encryption key depends on the value of the
plaintext, an attacker who has gained access to the storage
can perpetrate the so called ”dictionary attacks” by comparing
the ciphertexts resulting from the encryption of well-known
plaintext values from a dictionary with the stored ciphertexts.
Indeed, even if encryption keys are encrypted with users’ pri-
vate keys and stored somewhere else, the potentially malicious
cloud provider, who has no access to the encryption key but
has access to the encrypted chunks (blocks), can easily perform
offline dictionary attacks and discover predictable files. This
issue arises in [28] where chunks are stored at the storage
provider after being encrypted with convergent encryption.

As shown in [24], the two following attacks are possible
against convergent encryption: confirmation of a file (COF)
and learn-the-remaining-information (LRI). These attacks ex-
ploit the deterministic relationship between the plaintext and
the encryption key in order to check if a given plaintext has
already been stored or not. In COF, an attacker who already
knows the full plaintext of a file, can check if a copy of
that file has already been stored. If the attacker is the cloud
provider or an insider, he might also learn which users are the
owners of that file. Depending on the content of the file, this
type of information leakage can be dangerous. For instance,
while some users could not be worried about leaking such
information, it is worth pointing out that by performing this
attack, it is possible to find out if a user has illegally stored a
movie or a song.

While COF might be considered as a non-critical problem,
LRI can disclose highly sensitive information: in LRI, the
attacker already knows a big part of a file and tries to guess
the unknown parts by checking if the result of the encryption
matches the observed ciphertext. This is the case of those
documents that have a predefined template and a small part
of variable content. For instance, if users store letters from
a bank, which contain bank account numbers and passwords,
then an attacker who knows the template might be able to learn
the account number and password of selected users. The same
mechanism can be used to guess passwords and other sensitive
information contained in files such as configuration files, web
browser cookies, etc. In general, the more the attacker knows
about the victim’s data, the more the attack can be effective
and dangerous. Hence, a strategy is needed to achieve a higher
security degree while preserving combined advantages of both
convergent encryption and deduplication.

III. RELATED WORK

Many systems have been developed to provide secure stor-
age but traditional encryption techniques are not suitable for
deduplication purposes. Deterministic encryption, in particular
convergent encryption, is a good candidate to achieve both
confidentiality and deduplication [22], [30] but it suffers from
well-known weaknesses which do not ensure protection of
predictable files against dictionary attacks [12], [18]. In order
to overcome this issue, Warner and Pertula [24] have proposed
to add a secret value S to the encryption key. Deduplication
will thus be applied only to the files of those users that
share the secret. The new definition of the encryption key
is K = H(S|M) where | denotes an operation between S
and M . However, this solution overcomes the weaknesses
of convergent encryption at the cost of dramatically limiting



deduplication effectiveness. Most importantly, learning the
secret compromises the security of the system. Our approach
provides data confidentiality without impacting deduplication
effectiveness. Indeed, ClouDedup is totally independent from
the underlying deduplication technique.

An alternative approach [21], which makes use of proxy
re-encryption, has been proposed but information on per-
formance and overhead were not provided. To the best of
our knowledge, the most recent work on this topic is [14],
which provides an algorithm to deterministically generate
a key without disclosing any information on the plaintext.
Keys are generated through a key server which retains a
secret. If an attacker learns the secret, the whole system is
compromised and the confidentiality of unpredictable files is
no longer guaranteed. Also, this technique is limited to file-
level deduplication and is not scalable in the case of block-
level deduplication, which achieves higher space savings [23].
Moreover, it does not address either side-channel attacks [19]
or attacks based on the observation of access patterns, which
can leak confidential information and compromise users’ pri-
vacy. We propose ClouDedup, which does not rely on the
security of one single component and manages block-level
deduplication in an efficient manner. Furthermore, thanks to
its architecture, ClouDedup can address side-channel attacks
and preserve users’ privacy.

IV. CLOUDEDUP

The scheme proposed in this paper aims at deduplication
at the level of blocks of encrypted files while coping with
the inherent security exposures of convergent encryption. The
scheme consists of two basic components: a server that is in
charge of access control and that achieves the main protection
against COF and LRI attacks; another component, named as
metadata manager (MM), is in charge of the actual deduplica-
tion and key management operations.

Fig. 1. High-level view of ClouDedup

A. The Server

A simple solution to prevent the attacks against convergent
encryption (CE) consists of encrypting the ciphertexts resulting
from CE with another encryption algorithm using the same
keying material for all input. This solution is compatible
with the deduplication requirement since identical ciphertexts
resulting from CE would yield identical outputs even after
the additional encryption operation. Yet, this solution will not
suffer anymore from the attacks targeting CE such as COF and
LRI.

We suggest to combine the access control function with the
mechanism that achieves the protection against CE through
an additional encryption operation. Indeed, access control is
an inherent function of any storage system with reasonable
security assurance. Enhancing the trusted component of the
storage system, that implements access control, with the new
mechanism against COF and LRI attacks, seems to be the most
straightforward approach. The core component of ClouDedup
is thus a server that implements the additional encryption
operation to cope with the weaknesses of CE, together with
a user authentication and an access control mechanism em-
bedded in the data protection mechanism. Each data segment
is thus encrypted by the server in addition to the convergent
encryption operation performed by the user. As to the data
access control, each encrypted data segment is linked with
a signature generated by its owner and verified upon data
retrieval requests. The server relies on the signature of each
segment to properly identify the recipient.

B. Block-level Deduplication and Key Management

Even though the mechanisms of the server cope with the
security weaknesses of CE, the requirement for deduplication
at block-level further raises an issue with respect to key man-
agement. As an inherent feature of CE, the fact that encryption
keys are derived from the data itself does not eliminate the
need for the user to memorize the value of the key for each
encrypted data segment. Unlike file-level deduplication, in case
of block-level deduplication, the requirement to memorize and
retrieve CE keys for each block in a secure way, calls for
a fully-fledged key management solution. We thus suggest
to include a new component, the metadata manager (MM),
in the new ClouDedup system in order to implement the
key management for each block together with the actual
deduplication operation.

C. Threat Model

The goal of the system is to guarantee data confidentiality
without losing the advantage of deduplication. Confidentiality
must be guaranteed for all files, including the predictable
ones. The security of the whole system should not rely on
the security of a single component (single point of failure),
and the security level should not collapse when a single
component is compromised. We consider the server as a
trusted component with respect to user authentication, access
control and additional encryption. The server is not trusted with
respect to the confidentiality of data stored at the cloud storage
provider. Therefore, the server is not able to perform offline
dictionary attacks. Anyone who has access to the storage is
considered as a potential attacker, including employees at
the cloud storage provider and the cloud storage provider
itself. In our threat model, the cloud storage provider is
honest but curious, meaning that it carries out its tasks but
might attempt to decrypt data stored by users. We do not
take into account cloud storage providers that can choose to
delete or modify files. Our scheme might be extended with
additional features such as data integrity [16] and proofs of
retrievability [20]. Among the potential threats, we identify
also external attackers. An external attacker does not have
access to the storage and operates outside the system. This type
of attacker attempts to compromise the system by intercepting



messages between different components or compromising a
user’s account. External attackers have a limited access to the
system and can be effectively neutralized by putting in place
strong authentication mechanisms and secure communication
channels.

D. Security

In the proposed scheme, only one component, that is the
server, is trusted with respect to a limited set of operations,
therefore we call it semi-trusted. Once the server has applied
the additional encryption, data are no longer vulnerable to CE
weaknesses. Indeed, without possessing the keying material
used for the additional encryption, no component can perform
dictionary attacks on data stored at the cloud storage provider.
The server is a simple semi-trusted component that is deployed
on the user’s premises and is in charge of performing user
authentication, access control and additional symmetric en-
cryption. The primary role of the server is to securely retain
the secret key used for the additional encryption. In a real
scenario, this goal can be effectively accomplished by using a
hardware security module (HSM) [10]. When data are retrieved
by a user, the server plays another important role. Before
sending data to a given recipient, the server must verify if block
signatures correspond to the public key of that recipient. The
metadata manager (MM) and the cloud storage provider are not
trusted with respect to data confidentiality, indeed, they are not
able to decrypt data stored at the cloud storage provider. We
do not take into account components that can spontaneously
misbehave and do not accomplish the tasks they have been
assigned.

V. COMPONENTS

In this section we describe the role of each component.

A. User

The role of the user is limited to splitting files into blocks,
encrypting them with the convergent encryption technique,
signing the resulting encrypted blocks and creating the storage
request. In addition, the user also encrypts each key derived
from the corresponding block with the previous one and his
secret key in order to outsource the keying material as well
and thus only store the key derived from the first block and the
file identifier. For each file, this key will be used to decrypt
and re-build the file when it will be retrieved. Instead, the
file identifier is necessary to univocally identify a file over
the whole system. Finally, the user also signs each block
with a special signature scheme. During the storage phase,
the user computes the signature of the hash of the first block:
S0 = σPKu(H(B0)). In order not to apply costly signature
operations for all blocks of the file, for all the following blocks,
a hash is computed over the hash of the previous block and
the block itself: Si = H(Bi|Si−1). The main architecture is
illustrated in Fig. 1.

B. Server

The server has three main roles: authenticating users during
the storage/retrieval request, performing access control by
verifying block signatures embedded in the data, encrypt-
ing/decrypting data traveling from users to the cloud and

viceversa. The server takes care of adding an additional
layer of encryption to the data (blocks, keys and signatures)
uploaded by users. Before being forwarded to MM, data are
further encrypted in order to prevent MM and any other
component from performing dictionary attacks and exploiting
the well-known weaknesses of convergent encryption. During
file retrieval, blocks are decrypted and the server verifies
the signature of each block with the user’s public key. If
the verification process fails, blocks are not delivered to the
requesting user.

C. Metadata Manager (MM)

MM is the component responsible for storing metadata,
which include encrypted keys and block signatures, and han-
dling deduplication. Indeed, MM maintains a linked list and a
small database in order to keep track of file ownerships, file
composition and avoid the storage of multiple copies of the
same data segments. The tables used for this purpose are file,
pointer and signature tables. The linked list is structured as
follows:

• Each node in the linked list represents a data block.
The identifier of each node is obtained by hashing the
encrypted data block received from the server.

• If there is a link between two nodes X and Y, it means
that X is the predecessor of Y in a given file. A link
between two nodes X and Y corresponds to the file
identifier and the encryption of the key to decrypt the
data block Y.

The tables used by MM are structured as follows:

• File table. The file table contains the file id, file name,
user id and the id of the first data block.

• Pointer table. The pointer table contains the block
id and the id of the block stored at the cloud storage
provider.

• Signature table. The signature table contains the
block id, the file id and the signature.

In addition to the access control mechanism performed by the
server, when users ask to retrieve a file, MM further checks if
the requesting user is authorized to retrieve that file. This way,
MM makes sure that the user is not trying to access someone
else’s data. This operation can be considered as an additional
access control mechanism, since an access control mechanism
already takes place at the server. Another important role of
MM is to communicate with cloud storage provider (SP) in
order to actually store and retrieve the data blocks and get a
pointer to the actual location of each data block.

D. Cloud Storage Provider (SP)

SP is the most simple component of the system. The only
role of SP is to physically store data blocks. SP is not aware
of the deduplication and ignores any existing relation between
two or more blocks. Indeed, SP does not know which file(s) a
block is part of or if two blocks are part of the same file. This
means that even if SP is curious, it has no way to infer the
original content of a data block to rebuild the files uploaded
by the users. It is worth pointing out that any cloud storage



provider would be able to operate as SP. Indeed, ClouDedup
is completely transparent from SP’s perspective, which does
not collaborate with MM for deduplication. The only role
of SP is to store data blocks coming from MM, which can
be considered as files of small size. Therefore, it is possible
to make use of well-known cloud storage providers such as
Google Drive [7], Amazon S3 [3] and Dropbox [6].

E. A realistic example of ClouDedup

Fig. 2. A realistic example of ClouDedup

In this section we show that our proposed solution can
be easily deployed with existing and widespread technologies.
In the scenario we analyze, a group of users belonging to
the same organization want to store their data, save as much
storage space as possible and keep their data confidential.
As shown in Fig. 2, the Server can be implemented using
a Luna SA HSM [10] deployed on the users’ premises.
As documented in [8], in order to make the system re-
silient against single-point-of-failure issues, it is possible to
build a high availability array by using multiple Luna SA
HSMs. This way, in the case the main HSM crashes, it
can be immediately replaced by an equivalent HSM with-
out losing the secret key or getting worse performance.
In order to guarantee data confidentiality even in the case the
server is compromised, an additional HSM can be deployed
between MM and SP. Deploying MM and the additional HSM
in the same location, such as AWS [4], helps to minimize net-
work latency and increase performance. This solution achieves
higher security (it is very unlikely to compromise both HSMs
at the same time) without significantly increasing the costs.
MM can be hosted in a virtual machine on Amazon EC2 [1]
and make use of a database to store metadata and encrypted
keys. The additional HSM can be implemented by taking
advantage of Amazon CloudHSM [5] which provides secure,
durable, reliable, replicable and tamper-resistant key storage.
Finally, very popular cloud storage solutions such as Dropbox
[6], Amazon S3 [3], Amazon Glacier [2] and Google Drive
[7] could be used as storage providers.

VI. PROTOCOL

In this section we describe the two main operations of
ClouDedup: storage and retrieval. The description of other
operations such as removal, modification and search are out
of the scope of this paper.

Notation
EK encryption function with key K
H hash function
Bi ith block of a file
B′

i ith block of a file after convergent encryption
B′′

i ith block of a file after encryption
at the server

Ki key generated from the ith block of a file
K′

i Ki after encryption at the server
KA secret key of server
KUj secret key of user j
PKUj private key of the certificate of user j
Si signature of ith block of a file with PKUj

A. Storage

During the storage procedure, a user uploads a file to the
system. As an example, we describe a scenario in which a user
Uj wants to upload the file F1.

Fig. 3. Storage Protocol

USER User Uj splits F1 into several blocks. For each block
Bi, Uj generates a key by hashing the block and uses this key
to encrypt the block itself. Therefore B′i = EKi

(Bi) where
Ki = H(Bi). Uj stores K1 and encrypts each following key
with the key corresponding to the previous block: EKi−1(Ki).
Uj further encrypts each key (except K1) with his own
secret key KUj : EKUj

(EKi−1(Ki)). Uj computes the block
signatures as described in V-A. Uj sends a request to the server
in order to upload file F1. The request is composed by:

• Uj’s id : IDUj
;

• the encrypted file name;

• file identifier : Fid1;

• first data block : EK1(B1);

• for each following data block Bi (i ≥ 2): key to
decrypt block Bi, that is EKUj

(EKi−1
(Ki)); signature

of block Bi, that is Si; data block B′i : EKi(Bi);

In order to improve the level of privacy and reveal as little
information as possible, Uj encrypts the file name with his own
secret key. File identifiers are generated by hashing the con-
catenation of user ID and file name H(user ID | file name).

SERVER The server receives a request from user Uj and
runs SSL in order to authenticate Uj and securely commu-
nicate. Each key, signature and block are encrypted under
KA (server’s secret key): B′′i = EKA

(EKi
(Bi)), K ′i =

EKA
(EKUj

(EKi−1
(Ki))), S′i = EKA

(Si). The only parts of
the request which are not encrypted are user’s id, the file name
and the file identifier. The server forwards the new encrypted
request to MM.



MM MM receives the request from the server and for each
block B′′i contained in the request, MM checks if that block has
already been stored by computing its hash value and comparing
it to the ones already stored. If the block has not been stored
in the past, MM creates a new node in the linked list, the
identifier of the node is equal to H(B′′i ). MM updates the
data structure by linking each node (block) of file F1 to its
successor. A link from block B′′i−1 to block B′′i contains the
following information: {Fid1, EKA

(EKUj
(EKi−1

(Ki)))}. It is
worth pointing out that each key is encrypted with the key of
the previous block and users retain the key of the first block,
which is required to start the decryption process. This way, a
chaining mechanism is put in place and the key retained by
the user is the starting point to decrypt all the keys. Moreover,
MM stores the signature of each block in the signature table,
which associates each block of each user to one signature. For
each block B′′i not already stored, MM sends a storage request
to SP which will store the block and return a pointer. Pointers
are stored in the pointer table, which associates one pointer to
each block identifier.

SP SP receives a request to store a block. After storing it,
SP returns the pointer to the block.

MM MM receives the pointer from SP and stores it in the
pointer table.

B. Retrieval

During the retrieval procedure, a user asks to download a
file from the system. As an example, we describe a scenario
in which a user Uj wants to download the file F1.

Fig. 4. Retrieval Protocol

USER User Uj sends a retrieval request to the server in
order to retrieve file F1. The request is composed by the user’s
id IDUj , the file identifier Fid1 and his certificate.

SERVER The server receives the request, authenticates Uj

and if the authentication does not fail, the server forwards the
request to MM without performing any encryption.

MM MM receives the request from the server and analyzes
it in order to check if Uj is authorized to access Fid1 (Uj is the
owner of the file). If the user is authorized, MM looks up the
file identifier in the file table in order to get the pointer to the
first block of the file. Then, MM visits the linked list in order
to retrieve all the blocks that compose the file. For each of
these blocks, MM retrieves the pointer from the pointer table
and sends a request to SP.

SP SP returns the content of the encrypted blocks to MM.
B′′i = EKA

(EKi
(Bi)).

MM MM builds a response which contains all the blocks,
keys and signatures of file F1. Signatures are retrieved from
the signature table. The response is structured as follows:

• file identifier: Fid1;

• first data block : EKA
(EK1

(B1));

• for each following data block Bi(i ≥ 2): key to
decrypt block Bi, that is EKA

(EKUj
(EKi−1

(Ki)));
signature of block Bi, that is EKA

(Si); data block
B′′i : EKA

(EKi(Bi));

MM sends the response to the server.

SERVER The server decrypts blocks, signatures and
keys with KA. If the signature verification does not
fail, the server sends a response to Uj . Each key-block
pair received by the user, will be structured as follows:
{EKUj

(EKi−1
(Ki)), EKi

(Bi)}.

USER Uj can finally decrypt blocks and keys. Uj already
knows the key corresponding to the block B1. For each data
block Bi, Uj decrypts block B′i using Ki and Ki+1 using KUj

and Ki. Uj can finally rebuild the original file F1.

VII. EVALUATION

In this section we evaluate the overhead introduced by
our system in terms of storage space and computational
complexity. We also evaluate ClouDedup’s resilience against
potential attacks. In order to refer to a real scenario, we use
the same parameters of [23], but our calculations hold true for
other scenarios.

A. Storage Space

Fig. 5. Overhead of metadata management with encryption

We took into account a scenario in which there are 857 file
systems. The mean number of files per file system is 225K and
the mean size of a file is 318K, resulting in about 57T of data.
In our design, we use SHA256 as hash function so the key size
of each block is 256 bits. Metadata storage space is estimated
by taking into account four main data structures:



• File table. The file table stores one record for each
file and contains the file id (256 bits), file name (256
bits), user id (32 bits) and the id of the first data block
(256 bits).

• Pointer table. The pointer table stores one record for
each block and contains the block id (256 bits) and
the id of the actual block stored at the cloud storage
provider (64 bits).

• Signature table. The signature table stores one record
for each block (non-deduplicated) and contains the
block id (256 bits), the file id (256 bits) and the
signature (2048 bits for the first block, 128 bits for
the remaining blocks).

• Linked list. The linked list contains one node (256
bits) and zero or more links for each block. A link
contains a pointer (64 bits) to a successor block for
a given file and stores additional information such as
encrypted block keys (256 bits) and file id (256 bits).

According to the results of [23], Rabin 8K (expected block
size of 8K) has proved to be the best chunking algorithm,
achieving 68% of space savings. In Fig. 5 we show that the
overhead introduced by the MM component is minimal and
does not affect space savings of deduplication. In the best
deduplication setup (Rabin 8K and deduplication rate of 68%)
the total storage space required for metadata is equal to 2.22%
of the size of non-deduplicated data. These results prove that
the overhead for block-level deduplication is affordable even
with encryption.

B. Computation

We analyze the computational complexity of the two most
important operations: storage and retrieval. N is the mean
number of blocks per file and M the total number of blocks
in the system.

Storage Retrieval
Encryption O(N) O(N)
Hash O(N) O(N)
Lookup in data structures O(N logM) O(N)
Other O(N) O(N)

1) Storage: The first step of the storage protocol requires
the server to encrypt Bi, Ki and Si. As the encryption is
symmetric, the cost of each encryption can be considered
constant, so for N blocks the total cost is O(N). The second
step of the protocol requires the metadata manager to hash each
block in order to compare it with the ones already stored. As
for symmetric encryption, the total cost is O(N). In order to
perform deduplication, MM has to check if a block has already
been stored. In order to do so, he searches (dichotomic search)
for a given hash in a pre-ordered table of hash values. The cost
of this operation is O(logM) and it is performed for each
block. The cost of the update of the data structures can be
considered constant. The last (optional) step of the protocol is
the encryption at the additional HSM, which symmetrically
encrypts at most N blocks. The total cost of the storage
operation is linear for the encryption operations and almost
linear for the lookup in data structures, therefore the metadata
management is scalable.

2) Retrieval: The first step of the retrieval protocol requires
the metadata manager to compute a hash of the concatenation
of user id and file name. The cost of this operation can be
considered constant. Even the lookup in the file table, in order
to get the pointer to the first block of the file, has a constant
cost. Visiting the linked list, searching in the tables and sending
a request to the cloud storage provider, have a constant cost and
are repeated N times. Once again, the cost of the symmetric
decryptions is constant, hence the complexity remains linear.
The signature verification process requires the server to verify
one signature and compute N−1 hashes, hence the cost of this
operation is linear. The total cost of the retrieval operation is
linear, therefore the system is scalable for very large datasets.

C. Deduplication Rate

Our proposed solution aims to provide a robust security
layer which provides confidentiality and privacy without im-
pacting the underlying deduplication technique. Each file is
split into blocks by the client, who applies the best possible
chunking algorithm. When encrypted data blocks are received
by MM, a hash of each block is calculated in order to compare
them to the ones already stored. This task is completely
independent from the chunking technique used by clients.
Also, all the encryptions performed in the system do not affect
the deduplication effectiveness since the encryption is deter-
ministic. Therefore, ClouDedup provides additional security
properties without having an impact on the deduplication rate.

D. Security

We explained the main security benefits of our solu-
tion in section IV-D. We now focus on potential attack
scenarios and possible issues that might arise. As stated
in the threat model section, we assume that an attacker,
like the malicious storage provider, has full access to the
storage. If the attacker has only access to the storage,
he cannot get any information. Indeed, files are split into
blocks and each block is first encrypted with convergent
encryption and then further encrypted with one or more
secret keys. Moreover, no metadata are stored at the cloud
storage provider. Clearly, thanks to this setup, the attacker
cannot perform any dictionary attack on predictable files.
A worse scenario is the one in which the attacker man-
ages to compromise the metadata manager and thus has
access to data, metadata and encrypted keys. In this case,
confidentiality and privacy would still be guaranteed since
block keys are encrypted with users’ secret keys and the
server’s secret key. The only information the attacker can
get are data similarity and relationships between files,
users and blocks. However, as file names are encrypted by
users, these information would be of no use for the at-
tacker, unless he manages to find a correspondence with
a predictable file according to its size and popularity.
The system must guarantee confidentiality and privacy even in
the unlikely event where the server is compromised. The addi-
tional HSM proposed in section V-E and located between the
metadata manager and the storage provider will then enforce
data protection since it also offers another encryption layer;
therefore confidentiality is still guaranteed and offline dictio-
nary attacks are not possible. On the other hand, if the attacker
compromises the server, only online attacks would be possible



since this component directly communicates with users. The
effect of such a breach is limited since data uploaded by users
are encrypted with convergent encryption, which achieves
confidentiality for unpredictable files [15]. Furthermore, a
rate limiting strategy put in place by the metadata manager
can limit online brute-force attacks performed by the server.
In the worst scenario, the attacker manages to compro-
mise both HSMs. In this case, the attacker will be able
to remove the two additional layers of encryption and per-
form offline dictionary attacks on predictable files. How-
ever, confidentiality for unpredictable files is guaranteed.
Finally, we analyze the impact of an attacker who attempts
to compromise users and have no access to the storage. If
an attacker compromises one or more users, he can attempt
to perform online dictionary attacks. As the server is not
compromised, the attacker will only retrieve data belonging
to the compromised user (access control mechanism). Further-
more, the server can limit such attacks by setting a maximum
threshold for the rate with which users can send requests.

VIII. CONCLUSION AND FUTURE WORK

We designed a system which achieves confidentiality and
enables block-level deduplication at the same time. Our system
is built on top of convergent encryption. We showed that it
is worth performing block-level deduplication instead of file-
level deduplication since the gains in terms of storage space
are not affected by the overhead of metadata management,
which is minimal. Additional layers of encryption are added
by the server and the optional HSM. Thanks to the features of
these components, secret keys can be generated in a hardware-
dependent way by the device itself and do not need to be
shared with anyone else. As the additional encryption is
symmetric, the impact on performance is negligible. We also
showed that our design, in which no component is completely
trusted, prevents any single component from compromising
the security of the whole system. Our solution also prevents
curious cloud storage providers from inferring the original
content of stored data by observing access patterns or accessing
metadata. Furthermore, we showed that our solution can be
easily implemented with existing and widespread technologies.
Finally, our solution is fully compatible with standard storage
APIs and transparent for the cloud storage provider, which
does not have to be aware of the running deduplication system.
Therefore, any potentially untrusted cloud storage provider
such as Amazon, Dropbox and Google Drive, can play the
role of storage provider.

As part of future work, ClouDedup may be extended with
more security features such as proofs of retrievability [20], data
integrity checking [16] and search over encrypted data [13].
In this paper we mainly focused on the definition of the two
most important operations in cloud storage, that are storage
and retrieval. We plan to define other typical operations such as
edit and delete. After implementing a prototype of the system,
we aim to provide a full performance analysis. Furthermore,
we will work on finding possible optimizations in terms of
bandwidth, storage space and computation.
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