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Abstract—The widespread growth in the adoption of digital
video surveillance systems emphasizes the need for privacy-
preservation video analytics techniques. While these privacy
aspects have shown big interest in recent years, little impor-
tance has been given to the concept of context-aware privacy
protection filters. In this paper, we specifically focus on the
dependency between privacy preservation and crowd density.
We show that additional information about the crowd density
in the scene can be used in order to adjust the level of
privacy protection according to the local needs. This additional
information cue consists of modeling time-varying dynamics
of the crowd density using local features as an observation
of a probabilistic crowd function. It also involves a feature
tracking step which enables excluding feature points on the
background. This process is favourable for the later density
function estimation since the influence of features irrelevant to
the underlying crowd density is removed. Then, the protection
level of personal privacy in videos is adapted according to the
crowd density. Afterwards, a framework for objective evalu-
ation of the contextualized protection filters is proposed. The
effectiveness of the proposed context-aware privacy filters has
been demonstrated by assessing the intelligibility vs. privacy
trade-off using videos from different crowd datasets.

Keywords-Privacy, Protection Filters, crowd density, local
features, intelligibility, detection

I. INTRODUCTION

In recent years, a widespread growth in the adoption of
digital video surveillance systems for monitoring of build-
ings and public spaces has been observed. In this context,
several concerns have been raised related to the possibility of
infringing the privacy rights of the subjects being monitored
[1]. At the same time, the adoption of automated methods for
the analysis of video surveillance data has raised additional
concerns, since algorithms such as face recognition or people
re-identification could potentially expose the identity of any
individual under video surveillance at any time [2].

Current video surveillance systems either do not imple-
ment any mechanism for privacy protection, or they use
naı̈ve approaches, for instance uniformly applying simple
filters (e.g. masking, Gaussian blur, and pixelization) to
some regions of the image which contain privacy sensitive
information, such as faces or license plates. The lack of spe-
cific methods to detect privacy sensitive regions of interest
and to evaluate the amount of privacy protection required in
a specific scenario often causes failure in either minimizing

the intrusion of the surveillance system or goes against the
purpose of the surveillance itself.

One big challenge in defining privacy protection policies
for video surveillance applications is the identification of the
correct trade-off between intelligibility of the video, which
should be adequate to the monitoring tasks, and privacy
protection itself. Consequently, a number of recent studies
have been conducted to propose more adequate systems for
privacy protection.

In this perspective, the concept of context-aware privacy
protection has emerged, as the notion that the amount of
privacy protection required is deeply linked to the context of
the scene and purpose of the monitoring activity. A context-
dependent approach to privacy protection is described in [3],
where image processing and scene understanding techniques
are employed to automatically evaluate the context in which
video surveillance takes place, in order to apply context-
specific privacy rules. This approach is based on scene
and object detection algorithms such as bag-of-visual-words,
people tracking and gait analysis in order to recognize
specific sub-contexts which require the application of dif-
ferent privacy protection rules. In [4], the authors propose
another context-aware surveillance system, where the sit-
uation within an environment is interpreted by combining
a number of contextual information, which are then used
to determine an appropriate level of privacy. Six levels of
privacy protection ranging from high to low are proposed,
and their application is based on the analysis of visual
features such as global motion in the scene and detection-
based crowd size estimation.

As employed in [4], the crowd size (or more precisely
the number of people in the scene) can be an important
indication of which events are expected and therefore which
privacy level is suitable in the scene. If we take crowd
management as an exemplary standard task within the field
of video surveillance, video operators need clear visual
information in crowded regions. Mainly in case of abnormal
events such as potential overcrowding or dangerous mo-
tion patterns, a video operator should be able to perceive
the maximal information for early detection of unusual
situations in large scale crowd to ensure assistance and
emergency contingency plan and to decide if an intervention
by security forces is needed. At the same time, the more



people are present around a site, the less perceivable and
identifiable is a single individual. It is therefore reasonable
in many applications to reduce the privacy filtering level
in crowded areas compared to spaces composed of isolated
individuals.

In this paper, we propose a system which is able to
choose a suitable level of privacy according to a crowd
density measure. In the simplest form, the used crowd
density measures could be the number of persons [5], [6]
or the crowd level [7], [8]. However, these measures have
the limitation of giving only global information for the entire
image and discarding local information about the crowd.

We therefore resort to another crowd density measure,
in which local information at pixel level substitutes a global
number of people or a crowd level per frame. The alternative
solution based on computing crowd density maps is indeed
more appropriate as it enables both the detection and the
location of potentially crowded areas. It is typically based
on using local features as an observation of a probabilistic
crowd function. A feature tracking step is also involved in
the process to alleviate the effects of feature components
irrelevant to the underlying crowd density. Our following
objective is then to use these results in order to build
adaptive privacy protection filters, in which the privacy level
gradually decreases with the crowd density.

As an additional contribution of this paper, we iden-
tify a framework for objective evaluation, which enables
assessing the intelligibility vs. privacy balance based on
the performances of state-of-art video surveillance analysis
algorithms. In our experiments, we intend to demonstrate
that the proposed contextualized privacy protection filters are
resistant to local features-based person matching algorithms,
which potentially threaten one’s individual privacy, while
still preserving those visual features which are fundamental
for automated crowd analysis tasks such as people detection
and counting.

The remainder of the paper is organized as follows: we
introduce our proposed approach for crowd density map
estimation in Section II. Section III shows then how the
crowd density information is incorporated into a privacy
protection framework which alters the data protection level
accordingly. The objective evaluation framework and results
using two privacy filters and different video sequences are
given in Section IV. Finally, we briefly conclude in Section
V.

II. CROWD DENSITY ESTIMATION

Crowd density analysis has been studied as a major
component for crowd monitoring and management in vi-
sual surveillance systems. In this paper, we explore a new
promising application of crowd density measures in privacy
context. An illustration of the proposed crowd density map
modules [9] is shown in Figure 1. The remainder of this
section describes each of these system components.

A. Extraction of local features

One of the key aspects of crowd density measurements is
crowd feature extraction. Under the assumption that regions
of low density crowd tend to present less dense local features
compared to a high-density crowd, we propose to use local
feature as a description of the crowd by relating dense or
sparse local features to the crowd size. For this purpose,
the crowd density map is estimated by measuring how close
local features are.

For local features, we assess Features from Acceler-
ated Segment Test (FAST) [10], Scale-Invariant Feature
Transform (SIFT) [11], and Good Features to Track (GFT)
[12]. The reason behind selecting these features for crowd
measurement is as follows: FAST was proposed for corner
detection in a reliable way. It has the advantage of being
able to find small regions which are outstandingly different
from their surrounding pixels. Besides in [13], FAST was
used to detect dense crowds from aerial images and the
derived results demonstrate a reliable detection of crowded
regions using FAST. SIFT is another well-known texture
descriptor, for which interest point locations are defined
as maxima/minima of the difference of Gaussians in scale-
space. Under this respect, SIFT is rather independent of the
perceived scale of the considered object which is appropriate
for crowd measurements. These two aforementioned features
are compared to the classic feature detector GFT, which is
based on the detection of corners containing high frequency
information in two dimensions and typically persist in an
image despite object variations.

B. Local features tracking

Using the extracted features directly to estimate the crowd
density map without a feature selection process might incur
at least two problems: Firstly the high number of local
features increases the computation time of the crowd density.
As a second and more important effect, the local features
contain components irrelevant to the crowd density. Thus,
we need to add a separation step between foreground and
background entities to our system. This is done by assigning
motion information to the detected local features in order to
distinguish between moving and static ones. Based on the
assumption that only persons are moving in the scene, these
can then be differentiated from background by their non-zero
motion vectors.

Motion estimation is performed using the Robust Local
Optical Flow (RLOF) [14], which computes accurate sparse
motion fields by means of a robust norm1. The motion vector
d is computed by a minimization of the shrinked Hampel
norm with the parameters σ1, σ2 defining the treatment of

1www.nue.tu-berlin.de/menue/forschung/projekte/rlof
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Figure 1. Illustration of the proposed crowd density map estimation using local features extraction: (a) Exemplary frame, (b) FAST Local features (c)
Feature tracks, (d) Distinction between moving (green) and static (red) features - red features at the lower left corner are due to text overlay in the video,
(e) Estimated crowd density map

outliers:

ρ(y,σ) =


y2 , |y| ≤ σ1
σ1σ2 , |y| ≥ σ2
σ1

σ1−σ2
(|y| − σ2)2 + σ1σ2 , else

. (1)

A common problem in local optical flow estimation is the
choice of feature points to be tracked. Depending on texture
and local gradient information, these points often do not
lie on the center of an object but rather at its borders
and can thus be easily affected by other motion patterns
or by occlusion. While RLOF handles these noise effects
better than the standard Kanade-Lucas-Tomasi (KLT) feature
tracker from [15], it is still not prone against all errors. This
is why we establish a forward-backward verification scheme
where the resulting position of a point is used as input to the
same motion estimation step from the second frame towards
the first one. Points for which this “reverse motion” does not
result in their respective initial position are discarded. For
all other points, motion information is aggregated to form
longterm trajectories.

In every temporal step, the overall mean motion mt of a
trajectory t is compared to a certain threshold β which is set
according to image resolution and camera perspective. Mov-
ing features are then identified by the relation mt > β while
the others are considered as part of the static background.

The advantage of using trajectories in this system instead
of computing the motion vectors only between two consec-
utive frames is that outliers are filtered out and the overall
motion information is less affected by noise. As a result,
the separation between foreground and background entities
is improved and the number and position of the tracked
features undergo an implicit temporal filtering step which
makes them smoother.

C. Kernel density estimation

After generating trajectories to filter out static features, we
define the crowd density map as a kernel density estimate
based on the positions of local features. Starting from the
assumption of a similar distribution of feature points on the
objects, the observation can be made that the more local

features come towards each other, the higher crowd density
is perceived. For this purpose, a probability density function
(pdf) is estimated using a Gaussian kernel density.

For a given video sequence of N frames {I1, I2, ..., IN},
if we consider a set of mk local features extracted from a
frame Ik at their respective locations {(xi, yi), 1 ≤ i ≤ mk},
the corresponding density map Ck is defined as follows:

Ck(x, y) =
1√
2πσ

mk∑
i=1

exp−(
(x− xi)2 + (y − yi)2

2σ2
) (2)

where σ is the bandwidth of the 2D Gaussian kernel.
The resulting crowd density map characterizes the spatial

and temporal variations of the crowd which convey rich
information about the distributions of pedestrians in the
scene.

III. INCORPORATION OF CROWD DENSITY MEASURE IN
A PRIVACY-PRESERVATION FRAMEWORK

In this Section, we propose to apply crowd density in-
formation for context-aware privacy purposes. In particular,
the proposed crowd density measure described in Section
II is employed to adjust the level of privacy protection
according to the local needs. The reason behind that is
to hide personal information to the video operator without
preventing him to be able to identify potential dangerous
areas and events. A simple way for that could be to just
use crowd density directly as an input to a privacy filter in
such way that the obfuscation level depends directly on the
density of a given region. This method could substantially
decrease the visibility of potentially important information
since all crowded areas would be obscured. Because of
that, we restrict the application of privacy preservation filers
to some regions of interest, i.e. only regions that contain
personal information are obfuscated. These could include
face, clothing, skin/hair color or even gait depending on the
scene context. Given this variety and considering that these
information is not perceivable under all circumstances (e.g.
heavy crowding, different lighting conditions, motion blur,
low contrast, low resolution...), in our work we consider head
obfuscation as the most visible part of a human in a crowd.
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Figure 2. Flowchart of the proposed contextualized privacy preservation filters using an examplary frame from PETS 2009 [16], the dotted line in this
figure shows that the crowd density map can also be used to improve the robustness of the detection in crowded scenes

However, once a person has left the crowd and is perceived
as an isolated subject, more information has to be hidden.
This is why in these cases we extend the obfuscated region
to the whole body in order to hide details such as clothing
or skin color from the viewer.

As a measure for privacy protection, the level of obfus-
cation is adapted according to the crowd density for the
following reasons: Crowds are usually interesting to video
operators as they are a common place for crimes or for
dangerous overcrowding events. At the same time, people
in a crowd exhibit a smaller amount of information to a
video operator, thus they do not have to be filtered to
the same degree as for isolated people who are entirely
visible. We therefore propose to lower the level of privacy
protection within a crowded area. The flowchart of the
proposed contextualized privacy protection filers is shown in
Figure 2. In the following, we describe the RoIs detection
and adaptive filters system components.

A. RoIs detection

To obfuscate people in the scene, we apply an additional
RoI detection step using the deformable part-based models
[17]. Firstly proposed in [18], Histograms of Oriented Gradi-
ents (HOG) extracts gradient information from a detection
window, derives a feature vector from it and compares it
against annotated samples. Then, HOG is extended to the
deformable part-based models which achieves much more
accurate results than the original HOG and marks the state-
of-the-art. The detector uses a feature vector over multiple
scales and a number of smaller parts to get additional
information about an object.

While human detection using the deformable part-based
models has become a quite popular technique, its extension
to crowded scenes has a limited success. In fact, the density
of people substantially affects their appearance in video
sequences. Especially in dense crowds, people occlude each

other and only some parts of each individual’s body are
visible. Therefore, robust human detection in such scenarios
with frequent occlusions and high interactions among the
targets remains a challenge.

Out of the scope of this paper, the crowd density map can
also be used to improve the robustness of the detection in
crowded scenes (dotted line in Figure 2). This improvement
has been proposed in [19], where a scene-adaptive dynamic
parametrization using this crowd density measure is applied.
In addition, the proposed extension of deformable part mod-
els to crowds includes a self-adaptive geometrical filtering in
order to reduce false positive detections in crowded areas. As
demonstrated in [19], by integrating the crowd density and
geometrical constraints, the detection results are enhanced
considerably.

In our framework, we employ this improved deformable
part models proposed in [19] to detect people in crowded
scenes. Then, for people obfuscation, we apply adaptive
privacy preservation filters to only the head part or to the
whole body depending if the target is isolated or within the
crowd. More details about the adaptive protection filters in
given in the next paragraph.

B. Adaptive privacy filters
After applying person detection, we get a set of RoIs

Dk = {dk1 , ..., dknk} at frame Ik, dkj denotes the jth detection
at this frame and is defined as dkj = {xkj , ykj , wkj , hkj }, where
(xkj , y

k
j ) denotes the top left corner position and wkj , h

k
j the

respective width and height. Given also the crowd density
map Ck(x, y) that shows information about the crowd size
and the crowd location as well, our goal is to adapt the
level of the privacy protection filters according to the crowd
density. More precisely, as explained before we intend to use
high privacy protection in less crowded areas while reducing
the level of privacy protection in areas with many people.
For this purpose, given a set of filter parameters representing



different obfuscation levels P = {Pmin, ..., Pmax}, we
quantify the crowd density values into c = |P | crowd levels.
Then, for a given detection dkj , its average crowd density
value Ĉk(dkj ) is used to choose the respective filter parameter
that has to be applied to the bounding box dkj :

Ĉk(dkj ) =

hkj−1∑
p=0

wkj−1∑
q=0

Ck(xkj + p, ykj + q)

wkj · hkj
(3)

In addition to the crowd density, the visibility of a person
in the scene is also sensitive to his distance from the camera
because of perspective effects. The perspective distortions
can be explained by the fact that persons far away from
the camera appear smaller than the closest ones. Thus, the
distance from the camera is another parameter that has to
be taken into account to choose the suitable obfuscation
level. To achieve that, the range of obfuscation levels given
by the lower and upper boundary Pmin/Pmax is adapted
according to the distance from the camera. A simple method
to interpret the distance from the camera is to use the size
of the detected bounding box. Since this information could
be subject to errors, a better method consists of computing
the aspect ratio and the perceived height of a person from
all accepted detections. Following [20], we assume the
relationship between a person’s position and his perceived
height to be:

h̃kj = αk−1 · ykj + βk−1, j ∈ {1...nk} (4)

where αk−1 and βk−1 parameters are learned using a
standard regression. And the aspect ratio is defined as:

γk−1 = median

{
wij
hij

}
1≤i≤(k−1),1≤j≤ni

(5)

γk−1, αk−1, and βk−1 parameters are computed from all ac-
cepted detections {D1, ...,Dk−1} and updated at each frame.
Using this method, we are able to predict the height and the
ratio of a detection from the previous detections. Thus, the
estimated size of a bounding box dkj is S̃kj = (h̃kj )2 ∗ γk−1

which is more robust than wkj ∗ hkj .
In this paper, we show results for two typical privacy

protection filters which are:
Gaussian Blurring: This privacy filter consists essentially
of removing details in a region of interest by applying
Gaussian low pass filtering.

Ikblur(x, y) = Ik(x, y) ∗ 1

2πσk,j2
e

(x2+y2)

2σk,j
2 (6)

For this technique, the bandwidth σk,j of the used Gaussian
is adapted according to the crowd density level and the
predicted size.
Pixelization: This filter is based on decreasing the resolution
of any region of interest by replacing each block of pixels

in this area with its respective average. The pixelization of
frame Ik corresponding to dkj detection is given by:

Ikpix(x, y) =
1

b2k,j

bk,j−1∑
i=0

bk,j−1∑
j=0

I

(⌊
x

bk,j

⌋
+ i,

⌊
y

bk,j

⌋
+ j

)
(7)

As for the blurring process, the filter size bk,j ∝
(Ĉk(dkj ), S̃kj ).

For both pixelization and Gaussian blurring, the region of
interest in restricted to head part only if the person is moving
inside the crowd, i.e: if Ĉk(dkj ) ≤ τ , x ∈ [xkj ...x

k
j +wkj −1]

and y ∈ [ykj ...y
k
j + hkj − 1], otherwise x ∈ [xkj + ∆x...x

k
j +

wkj −∆x − 1] and y ∈ [ykj ...y
k
j + hkj −∆y − 1], where ∆x

and ∆y parameters are used to crop the head part from the
detected bounding box dkj .

IV. EXPERIMENTAL RESULTS

A. Datasets and Experiments

The proposed framework is evaluated within challenging
crowd scenes from multiple video datasets. In particular,
we selected some videos from PETS 2009 [16], UCF [21]
and Data Driven Crowd Analysis [22] public datasets. To
evaluate our proposed context-dependent privacy protection,
we adopt an objective evaluation framework, by studying the
variation in performances of the state-of-the-art algorithms
commonly used in video surveillance analytics before and
after applying the proposed privacy protection filters. We
recall, as mentioned in the introduction, that one of the
major challenges in defining privacy protection policies
lies in identifying the correct balance between the two axis
of intelligibility and privacy protection of the surveillance
data. Therefore, our evaluation framework will consider
both axis and model each of them based on the performance
scores of an appropriate algorithm.

We model the impact of privacy filters on intelligibility
by evaluating the performances of a people counting-by-
detection algorithm before and after applying the protection
filters. We motivate our choice observing that privacy
protected video surveillance footage must at least retain
those visual features necessary to perform very basic
monitoring tasks such as people detection and counting.

To evaluate the amount of privacy guaranteed by our
method, we model privacy as inverse score of a person
matching algorithm based on local features. Such algorithm
tries to identify an individual among a set of other
subjects by extracting and matching local features between
a gallery and a probe set. This algorithm represents
a common step for higher level tasks such as person
re-identification, recognition or tracking, which could
potentially reveal information on the identity of a subject.
In our implementation, we use Hessian-Laplace interest
point detector together with the SIFT descriptor and nearest
neighbor matching, based on the efficient approximate



implementation of [23]. Details of the people matching
algorithm, together with an extensive evaluation of the
different feature extraction and description approaches
suitable to the task can be found in [24]. Based on such
premise, a good privacy filter should prevent the person
matching algorithm to correctly detect and describe local
features.

In both cases of intelligibility and privacy, we are only
interested in the relative change of performances from the
original unprotected images, which constitutes the baseline
for privacy filter evaluation. We adopt people counting
score as a measure of intelligibility, and one minus person
matching score as a measure of privacy protection.

B. Results and Analysis

In Figure 3, the results using three frames from different
videos are shown. In the first and the second columns
we show the results of RoIs detection, and the estimated
crowd density maps. These two sources of information are
combined for adaptive protection filters. For this purpose,
two privacy protection tools (blurring, and pixelization) are
employed to show different ways to protect personal privacy
in video sequences. In this figure, it is visible that the
block size in the pixelization filter and the bandwidth of
the Gaussian blurring are changed by our system according
to the crowd density value and perceived size of the person.
Comparing e.g. the woman in the lower right corner of the
first image row, to the persons walking in the crowd, it
is well perceivable that the privacy level is reduced within
the crowd by a smaller block size or a smaller bandwidth
respectively. At the same time, it can be seen that this woman
compared to groups of people walking in the crowd does not
generate such a high density measure and is consequently
obfuscated to a higher degree on the whole body. We also
note that the estimated crowd density is lower for the
second scene (second row), compared to the first one.That
justifies why people in the second scene show rather higher
protection levels.

Again, different filter sizes can be seen also using UCF
frame (third row). However, in general, the blurring filter
seems to be better suited for our application as in general
already small block sizes are sufficient in the pixelization
filter to render it completely unrecognizable to humans.
Nonetheless, our results indicate clearly that crowd density
maps are well-suited to improve the crowd context-specific
privacy protection in CCTV systems and thus offer a lot of
options for further applications.

Following the described evaluation procedure, we tested
counting and matching on original and privacy protected
sequences of PETS, Inria, and UCF datasets. Figure 4 reports
the people counting results for blurring and pixelization
protection techniques for the different types of features used
in crowd density estimation respectively. Since we are inter-

ested in evaluating the task of counting people before and
after applying a privacy filter, rather than the effectiveness
of the counting algorithm itself, a simple evaluation score
is chosen, i.e. the percentage p ∈ [0, 1] of correctly detected
individuals with respect to the annotated ones in the ground
truth. The red horizontal line represents the counting score
when no protection filter has been applied. As a general
trend, we can observe that the counting results do not
decrease significantly after applying the protection filters. On
average, the score drop is 0.10, with 0.03 representing the
minimum and 0.18 the maximum loss observed respectively
for the blur filter with the SIFT feature and the pixelization
filter with the GFT feature. As a consequence, we are still
able to correctly perform people counting within a 10% error
margin. We also notice that the pixelization algorithm causes
the counting to perform worse than the blurring algorithm.

Matching results are displayed in Figure 5, following a
convention similar to the previous one for detection. In this
case, the red horizontal line represents the baseline matching
result when no filter is applied. We can clearly observe
a dramatic drop in performances of the person matching
algorithm. On average, the drop in matching score is 0.41,
with 0.42 and 0.39 being the minimum and maximum
observed loss respectively for the pixelation filter with the
FAST feature and for the blur filter with the GFT feature.

These results confirm that our approach to privacy protec-
tion behaves in accordance to requirements we mentioned
in the introduction, in terms of preservation of intelligibility
and privacy of the original source. Our privacy protection
filters cause a relatively small loss in people counting score,
and therefore in intelligibility, compared to the drop in
performances of the matching step, and thus the gain in
privacy protection level.

We notice as well how in both the counting and the
matching experiment, the exact choice of feature does
not influence the results significantly, while it is rather
the choice of protection filter which causes variations
in the results. Observing that the counting scores, and
therefore the intelligibility, is significantly worse in the case
of pixelization, and at the same time pixelization offers
slightly less privacy protection (higher matching results),
the choice of filter falls back on the specific application
scenario, according to the desired privacy-intelligibility
trade off.

V. CONCLUSION

In this paper, we show how it is possible to include crowd
density information into a privacy-preserving framework.
Using an additional RoIs detection step, we adapt the degree
of data obfuscation for privacy according to the crowd level.
By doing that, it is possible to preserve an acceptable level
of privacy for the people in a scene while still allowing the
operator to view the data relevant for him. As an additional



contribution, we proposed an objective evaluation of privacy
and intelligibility trade-off offered by our proposed contex-
tualized privacy protection filters. By leveraging the state-of-
the-art video surveillance analysis algorithms, such as people
counting and matching, we demonstrate that our privacy
filters retain good performances on common intelligibility
tasks such as people counting and detection. At the same
time, such privacy filters are able to significantly lower the
performances of person matching algorithms based on local
features, which potentially can expose identity information
of the subject being monitored, therefore threatening their
privacy. Furthermore, our evaluation shows that the choice
of blur over pixelization as the preferred obfuscation method
leads to a better privacy-intelligibility balance.
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(a) Head detections (b) Crowd density map (c) Pixelized image (d) Blurred image

Figure 3. Results of adaptive protection filters using three frames from different test videos. From top to down order: PETS2009 S1.L1 1357.V1, PETS2009
S1.L1 1359.V1, and UCF 879. From left to right order: RoIs detection, estimated crowd density map (the color map Jet is used so red values represent
higher density where blue values represent low density), application of pixelization filter, application of blurring filter
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(b) PETS S1.L1 1357
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(d) UCF 879
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(e) INRIA 879 42

Figure 4. Counting scores on sequences protected by blur and pixelization, compared to original results
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Figure 5. Matching scores on sequences protected by blur and pixelization, compared to original results


