
Live Evaluation of Quality of Experience for Video

Streaming and Web Browsing

Louis Plissonneau

Orange Labs, France

louis.plissonneau@orange.com

Heng Cui

Eurecom, France

heng.cui@eurecom.fr

Ernst Biersack

Eurecom, France

erbi@eurecom.fr

Abstract—Web browsing and Video download are two major
applications of the Internet. To evaluate Quality of Experience
(QoE) of these applications, we have developed two tools: (i)
pytomo, a tool that executes video download and emulates
playback as performed by the Flashplayer plugin. A live web
interface for visualisation also gives user information about main
indicators for troubleshooting. (ii) CPM, a Firefox plugin that
records main events during Web page download to perform a
“post-mortem” Critical Path Analysis, indicates to the end-user
or Web developer which objects of a given Web page determines
the overall page load time.

I. INTRODUCTION

Nowadays, web-driven content represents the majority of

Internet traffic with the surge of video sharing sites, such as

YouTube. This traffic is usually interactive and studies show

that the perception of the service by the user influences a

lot how web browsing or video streaming are used. Moreover

typical QoS metrics such as loss rate or RTT are not sufficient:

one needs to get as “close as possible” to the client in order

to evaluate the Quality of Experience (QoE) as seen by the

end-user.

In this demo, we focus on the evaluation of Quality of

Experience (QoE) for Web Browsing and Video Streaming

which are two main Internet applications. The approach taken

is to perform measurements from an end-user computer so that

end-to-end QoE is evaluated. The tools presented here allow

the evaluation of the main factors influencing QoE but also

offer methods for self-diagnostic of users’ Internet access.

For video streaming, we focus on the number of video stalls

during visualisation. We also provide main QoS metrics in

order to investigate the selection of video cache servers used

by video streaming sites. As for web browsing, an analysis

of the objects downloaded on the page is performed to derive

a critical path with the overall page load time as main QoE

indicator. The results of this analysis can be used to ask What-

IF questions such as the impact of changing the round-trip time

on the overall page load time.

II. VIDEO STREAMING

A. Video Streaming QoE

The main QoE indicator in the case of HTTP video stream-

ing is the number of interruptions in the playback of a video.

Indeed, this type of streaming is not adaptive: in case of

insufficient throughput, the video will stall and the download

continues until there is a sufficient amount of data for resuming

playback.

To address the challenge of measuring HTTP video stream-

ing QoE, we have developed an active monitoring tool called

pytomo [2]. The core part of our tool consists of a model

of video playback obtained through reverse engineering of the

flash video player used by YouTube and DailyMotion (two

of the most popular video streaming sites). We not only

collect QoE indicators but also QoS indicators that allow us

to figure out the delivery policies of the video streaming site

analysed. The tool has been in operational use within an ISP’s

network for several months. We previously used this tool to

better understand the cache selection of YouTube videos and

its impact on QoE [1].

B. Demonstration

Our demonstration will consist of multiple live pytomo

crawls using the Internet accesses of different ISPs and a visu-

alisation of results for each of the accesses. The visualisation

interface allows us to also dig into the redirection process

for viewing requests. We will perform live crawls of the most

popular videos of YouTube and DailyMotion and we will show

the evolution over time of QoE across different access types

(wired and wireless), see Fig. 1.

III. WEB BROWSING

A. Web Page Download Performance Analysis and Prediction

We propose a novel method for the performance analysis

web page downloads based on the idea of finding Critical

Path of a given web page. Our method preforms a passive

analysis of multiple instances of browsing experiences for the

same web page. This analysis helps explain page rendering

performance and predict changes to both, the dependencies

of the objects in that Web page or the network conditions

affecting download performance of the objects.

There are two main steps of our methodology: first, we use

some basic header and timestamp information to infer possible

dependencies between each downloaded objects; second, we

use the delay information to draw the “critical path” on the

inferred dependency graph.

Dependency graph in our algorithm is represented by a

Directed Acyclic Graph (DAG) where node means the down-

loaded objects and arrow is parental relationships between

each other. To draw such graph of a given web page, we



Fig. 1: Workflow of the Web Streaming Demo

Fig. 2: Timeline of Object Downloads for www.google.com Page

define several rules to infer the parental relationships between

each object. For example, we use basic HTTP headers such

as Referer or Location to infer the obvious referenced

parental relationships; we also use statistical method to check

the objects’ starting and ending download time.

B. Demonstration

We show an example by google home page. We use

Firefox as the browser with a customized plugin to record

each objects downloading activity. Fig. 2 shows an example

of the object downloads of the Google page generated by

the HAR Viewer (http://www.softwareishard.com/har/viewer/).

Fig. 3 shows the results by our CPM algorithm for the same

1.html

2.html

3.png

4.js

5.js 6.png 7.gif

8.png9.gif 10.js

Fig. 3: Critical Path Analysis Example for www.google.com Page

2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

Page Load Time (ms)

C
D

F

Google

 

 

original load time
100ms increase
200ms increase
predict for 100ms
predict for 200ms

Fig. 4: CDF of Page Load Time

page (red thick lines indicate the selected critical path).

We see that the page consists of 10 different objects

with diverse content types. The first request is always for

www.google.com (1.html), then, redirect to the main file

www.google.fr (2.html) of this current page. In this case, from

Fig. 3, 1.html is always the “root” of the page and has direct

parental relationship to 2.html. When the browser receives

enough data from the main file, it downloads other objects. In

this case, we can always see a parental relationship between

2.html and other embedded objects. For the whole web page,

objects with relative larger downloading delays are normally

selected in the critical path which is useful to discover the

page performance bottlenecks.

We will also demonstrate Web page performance prediction

based on updating the inferred critical path. We will demon-

strate how we can predict the impact of a change in RTT on the

overall page load time. We use one Linux PC to automatically

browse the Google home page for multiple times and measure

their page full load time as original load time; for each

browsing, we update the object delays by the measurement

of the browser plugin; we then compute a new critical path as

shown in Fig. 3 and we use total delay traversing the new path

as the estimation of the performance under different what-if

scenarios. As a validation, we use netem to manually increase

client outgoing packet delays and browse the same page under

different scenarios. Fig. 4 shows that the predictions pretty

closely match the measured page load times.

REFERENCES

[1] L. Plissonneau, E. Biersack, and P. Juluri. Analyzing the impact of
youtube delivery policies on user experience. In ITC 24, 2012.

[2] Pytomo. http://code.google.com/p/pytomo/.


