
PeerRush: Mining for Unwanted P2P Traffic

Babak Rahbarinia1, Roberto Perdisci1 Andrea Lanzi2, and Kang Li1

1 Dept. of Computer Science, University of Georgia, Athens, GA 30602, USA,
babak,perdisci,kangli@cs.uga.edu

2 EURECOM Institute, Sophia Antipolis, France,
lanzi@eurecom.fr

Abstract. In this paper we present PeerRush, a novel system for the
identification of unwanted P2P traffic. Unlike most previous work, Peer-
Rush goes beyond P2P traffic detection, and can accurately categorize
the detected P2P traffic and attribute it to specific P2P applications,
including malicious applications such as P2P botnets. PeerRush achieves
these results without the need of deep packet inspection, and can accu-
rately identify applications that use encrypted P2P traffic.

We implemented a prototype version of PeerRush and performed an
extensive evaluation of the system over a variety of P2P traffic datasets.
Our results show that we can detect all the considered types of P2P traffic
with up to 99.5% true positives and 0.1% false positives. Furthermore,
PeerRush can attribute the P2P traffic to a specific P2P application with
a misclassification rate of 0.68% or less.

Keywords: P2P, Traffic Classification, Botnets

1 Introduction

Peer-to-peer (P2P) traffic represents a significant portion of today’s global In-
ternet traffic [13]. Therefore, it is important for network administrators to be
able to identify and categorize P2P traffic crossing their network boundaries,
so that appropriate fine-grained network management and security policies can
be implemented. In addition, the ability to categorize P2P traffic can help to
increase the accuracy of network-based intrusion detection systems [6].

While there exists a vast body of work dedicated to P2P traffic detection [4],
a large portion of previous work focuses on signature-based approaches that re-
quire deep packet inspection (DPI), or on port-number-based identification [17,
7]. Because modern P2P applications avoid using fixed port numbers and im-
plement encryption to prevent DPI-based detection [13], more recent work has
addressed the problem of identifying P2P traffic based on statistical traffic anal-
ysis [10, 11]. However, very few of these studies address the problem of P2P
traffic categorization [9], and they are limited to studying only few types of non-
encrypted P2P communications. Also, a number of previous studies have focused
on detecting P2P botnets [5, 22, 15, 2, 23], but with little or no attention to ac-
curately distinguishing between different types of P2P botnet families based on
their P2P traffic patterns.

In this paper, we propose a novel P2P traffic categorization system called
PeerRush. Our system is based on a generic classification approach that leverages



high-level statistical traffic features, and is able to accurately detect and catego-
rize the traffic generated by a variety of P2P applications, including common file-
sharing applications such as µTorrent, eMule, etc., P2P-based communication
applications such as Skype, and P2P-botnets such as Storm [8], Waledac [16],
and a new variant of Zeus [12] that uses encrypted P2P traffic. We would like
to emphasize that, unlike previous work on P2P-botnet detection, PeerRush
focuses on accurately detecting and categorizing different types of legiti-
mate and malicious P2P traffic, with the goal of identifying unwanted P2P
applications within the monitored network. Depending on the network’s traf-
fic management and security policies, the unwanted applications may include
P2P-botnets as well as certain specific legitimate P2P applications (e.g. some
file-sharing applications). Moreover, unlike most previous work on P2P-botnet
detection, PeerRush can reveal if a host is compromised with a specific
P2P botnet type among a set of previously observed and modeled botnet fam-
ilies. To the best of our knowledge, no previous study has proposed a generic
classification approach to accurately detect and categorize network traffic related
to both legitimate and malicious P2P applications, including popular applica-
tions that use encrypted P2P traffic, and different types of P2P-botnet traffic
(encrypted and non-encrypted).

Figure 1 provides an overview of PeerRush, which we discuss in detail in
Section 2. The first step involves the identifications of P2P hosts within the
monitored network. Then, the P2P traffic categorization module analyzes the
network traffic generated by these hosts, and attempts to attribute it to a given
P2P application by matching an application profile previously learned from sam-
ples of traffic generated by known P2P applications. If the P2P traffic does not
match any of the available profiles, the traffic is classified as belonging to an
“unknown” P2P application (e.g., this may represent a new P2P application re-
lease or a previously unknown P2P botnet), and should be further analyzed by
the network administrator. On the other hand, if the P2P traffic matches more
than one profile, an auxiliary disambiguation module is used to “break the tie”,
and the traffic is labeled as belonging to the closest P2P application profile.

The application profiles can model the traffic characteristics of legitimate
P2P applications as well as different P2P-botnets. It is common for security
researchers to run botnet samples in a controlled environment to study their
system and network activities [3]. The traffic collected during this process can
then be used as a sample for training a specific P2P-botnet application profile,
which can be plugged into our P2P traffic categorization module. In summary
this paper makes the following contributions:

– We present PeerRush, a system for P2P traffic categorization that en-
ables the accurate identification of unwanted P2P traffic, including en-
crypted P2P traffic and different types of P2P botnet traffic. To
achieve these goals, we engineer a set of novel statistical features and classi-
fication approaches that provide both accuracy and robustness to noise.

– We collected a variety of P2P traffic datasets comprising of P2P traffic gener-
ated by five different legitimate P2P applications used in different configura-



P2P traffic
samples

P2P host
detection

Non-P2P
samples

Live network
traffic

P2P traffic
categorization

Auxiliary
P2P traffic

disambiguation

training

training

training
application

profile 1

application
profile 2

application
profile 3

application
profile N

P2P traffic
categorization

reports

Fig. 1. PeerRush system overview.

tions, and three different P2P botnets including a P2P botnet that employs
encrypted P2P traffic. We are making these datasets publicly available.

– We performed an extensive evaluation of PeerRush’s classification accuracy
and noise resistance. Our results show that we can detect all the considered
types of P2P traffic with up to 99.5% true positives and 0.1% false positives.
Furthermore, PeerRush can correctly categorize the P2P traffic of a specific
P2P application with a misclassification rate of 0.68% or less.

2 System Overview

PeerRush’s main goal is to enable the discovery of unwanted P2P traffic in a
monitored computer network. Because the exact definition of what traffic is
unwanted depends on the management and security policies of each network, we
take a generic P2P traffic categorization approach, and leave the final decision
on what traffic is in violation of the policies to the network administrator.

To achieve accurate P2P traffic categorization, PeerRush implements a two-
stage classification system that consists of a P2P host detection module, and a
P2P traffic categorization module, as shown in Figure 1. PeerRush partitions
the stream of live network traffic into time windows of constant size W (e.g.,
W = 10 minutes). At the end of each time window, PeerRush extracts a num-
ber of statistical features from the observed network traffic, and translates the
traffic generated by each host H in the network into a separate feature vector
FH (see Section 2.1 for details). Each feature vector FH can then be fed to a
previously trained statistical classifier that specializes in detecting whether H
may be running a P2P application, as indicated by its traffic features within the
considered time window. Splitting the traffic analysis in time windows allows
to generate periodic reports and leads to more accurate results by aggregating
outputs obtained in consecutive time windows (see Section 3.3).

The classifier used in the P2P host detection is trained using samples of
network traffic generated by hosts that are known to be running a variety of
P2P applications, as well as samples of traffic from hosts that are believed not
to be running any known P2P application (see Section 3.1). Once a host H is
classified as a P2P host within a given time window W by the first module,
its current network traffic (i.e., the traffic collected during the current analysis
time window W ) is sent to the P2P traffic categorization module. This module



consists of a number of one-class classifiers [20], referred to as “application
profiles” in Figure 1, whereby each classifier specializes in detecting whether H
may be running a specific P2P application or not. Each one-class classifier is
trained using only previously collected traffic samples related to a known P2P
application. For example, we train a one-class classifier to detect Skype traffic,
one for eMule, one for the P2P-botnet Storm, and etc. This allows us to build
a new application profile independently from previously learned traffic models.
Therefore, we can train and deploy a different optimal classifier configuration
for each target P2P application and analysis time window W .

Given the traffic from H, we first translate it into a vector of categorization
features, or traffic profile, PH (notice that these features are different from the
detection features FH used in the previous module). Then, we feed PH to each
of the available one-class classifiers, and each classifier outputs a score that
indicates how close the profile PH is to the application profile that the classifier
is trained to recognize. For example, if the Skype one-class classifier outputs a
high score, this means that PH closely resembles the P2P traffic generated by
Skype. If none of the one-class classifiers outputs a high enough score for PH ,
PeerRush cannot attribute the P2P traffic of H to a known P2P application, and
the P2P traffic profile PH is labeled as “unknown”. This decision may be due to
different reasons. For example, the detected P2P host may be running a new P2P
application for which no traffic sample was available during the training of the
application profiles, or may be infected with a previously unknown P2P-botnet.

Because of the nature of statistical classifiers, while a host H is running a
single P2P application more than one classifier may declare that PH is close
to their application profile. In other words, it is possible that the P2P traffic
categorization module may conclude that H is running either Skype or eMule, for
example. In these cases, to try to break the tie PeerRush sends the profile PH to a
disambiguation module, which consists of a multi-class classifier that specializes
in deciding what application profile is actually the closest to an input profile
PH . Essentially, the output of the disambiguation module can be used by the
network administrator in combination with the output of the single application
profiles that “matched” the traffic to help in further investigating and deciding
if the host is in violation of the policies.

In the following, we detail the internals of the P2P traffic detection and
categorization modules. It is worth noting that while some of the ideas we use
for the detection module are borrowed from previous work on P2P traffic de-
tection (e.g., [23]) and are blended into our own P2P host detection approach,
the design and evaluation of the P2P traffic categorization component
include many novel P2P traffic categorization features and traffic clas-
sification approaches, which constitute our main contributions.

2.1 P2P Host Detection

Due to the nature of P2P networks, the traffic generated by hosts engaged in
P2P communications shows distinct characteristics, which can be harnessed for
detection purposes. For example, peer churn is an always-present attribute of
P2P networks [18], causing P2P hosts to generate a noticeably high number of



failed connections. Also, P2P applications typically discover and contact the IP
address of other peers without leveraging DNS queries [21]. Furthermore, the
peer IPs are usually scattered across many different networks. This makes P2P
traffic noticeably different from most other types of Internet traffic (e.g, web
browsing traffic). To capture the characteristics of P2P traffic and enable P2P
host detection, PeerRush measures a number of statistical features extracted
from a traffic time window. First, given the traffic observed during a time window
of length W (e.g., 10 minutes), the network packets are aggregated into flows,
where each flow is identified by a 5-tuple (protocol, srcip, srcport, dstip,
dstport). Then, to extract the features related to a host H, we consider all flows
whose srcip is equal to the IP address of H, and compute a vector FH that
includes the following features:

Failed Connections: we measure the number of failed TCP and (virtual) UDP
connections. Specifically, we consider as failed all TCP or UDP flows for which
we observed an outgoing packet but no response, and all TCP flows that had
a reset packet. We use two versions of this feature: (1) the number of failed
connections as described above, and (2) the number of failed connections per
host, where the failed connections to a same destination host are counted as one.

Non-DNS Connections: we consider the flows for which the destination IP
address dstip was not resolved from a previous DNS query, and measure two
features: (1) the number of non-DNS connections as described above, and (2)
non-DNS connections per host, in which all flows to a same destination host are
counted as one.

Destination Diversity: given all the dstip related to non-DNS connections,
for each dstip we compute its /16 IP prefix, and then compute the ratio between
the number of distinct /16 prefixes in which the different dstips reside, divided
by the total number of distinct dstips. This gives us an approximate indication
of the diversity of the dstips contacted by a host H. We consider /16 IP prefixes
because they provide a good approximation of network boundaries. In other
words, it is likely that two IP addresses with different /16 IP prefixes actually
reside in different networks owned by different organizations. We compute the
destination diversity features for successful, unsuccessful, and all connections.

These three groups of features are designed to accurately pinpoint P2P hosts,
since they capture the behavioral patterns of traffic generated by P2P applica-
tions. Therefore, the expectation is that the value of these features are higher for
P2P hosts in comparison to non-P2P hosts. The time window size W is a con-
figurable parameter. Intuitively, longer time windows allow for computing more
accurate values for the features, and consequently yield more accurate results
(in Section 3 we experiment with W ranging form 10 to 60 minutes).

To carry out the detection, at the end of each time window we input the
computed feature vectors FH (one vector per host and per time window) to
a classifier based on decision trees (see Section 3.2 for details). To train the
classifier, we use a dataset of traffic that includes non-P2P traffic collected from
our departmental network, as well as the traffic generated by a variety of P2P



applications, including Skype, eMule, BitTorrent, etc., over several days. The
data collection approach we used to prepare the training datasets and assess the
accuracy of the P2P host detection module is discussed in detail in Section 3.1.

2.2 P2P Traffic Categorization

After we have identified P2P hosts in the monitored network, the P2P traffic cat-
egorization module aims to determine what type of P2P application these hosts
are running. Since different P2P applications (including P2P-botnets) use dif-
ferent P2P protocols and networks (i.e., they connect to different sets of peers),
they show distinguishable behaviors in terms of their network communication
patterns. Therefore, we construct a classification system that is able to learn dif-
ferent P2P application profiles from past traffic samples, and that can accurately
categorize new P2P traffic instances.

As shown in Figure 1, the categorization module consists of a number of one-
class classifiers [20] that specialize in recognizing a specific application profile.
For example, we train a one-class classifier to recognize P2P traffic generated by
Skype, one that can recognize eMule, etc. Also, we build a number of one-class
classifiers that aim to recognize different P2P-botnets, such as Storm, Waledac,
and a P2P-based version of Zeus. Overall, in our experiments we build eight dif-
ferent one-class classifiers, with five models dedicated to recognizing five different
legitimate P2P applications, and three models dedicated to categorizing differ-
ent P2P-botnets (see Section 3.3). PeerRush can be easily extended to new P2P
applications by training a specialized one-class classifier on the new P2P traffic,
and plugging the obtained application profile into the categorization module.

Given the traffic generated by a previously detected P2P host H, we first
extract a number of statistical features (described below) that constitute the
traffic profile PH of H within a given time window. Then, we feed PH to each
of the previously trained one-class classifiers, and for each of them we obtain a
detection score. For example, let sk be the score output by the classifier dedicated
to recognizing Skype. If sk is greater than a predefined threshold θk, which is
automatically learned during training, there is a high likelihood thatH is running
Skype. If no classifier outputs a score si (where the subscript i indicates the i-th
classifier) greater than the respective application detection threshold θi, we label
the P2P traffic from H as “unknown”. That is, PeerRush detected the fact that
H is running a P2P application, but the traffic profile does not fit any of the
previously trained models. This may happen in particular if H is running a new
P2P applications or an unknown P2P-botnet for which we could not capture
any traffic samples to learn its application profile (other possible scenarios are
discussed in Section 4).

Notice that the threshold θi is set during the training phase to cap the false
positive rate to ≤ 1%. Specifically, the false positives produced by the i-th clas-
sifier over the traffic from P2P applications other than the one targeted by the
classifier is ≤ 1%. due to the nature of statistical classifiers, it is possible that
more than one one-class classifier may output a score si greater than the respec-
tive detection threshold θi, thus declaring that PH matches their application
profile. In this case, to break the tie we use a P2P traffic disambiguation module



that consists of a multi-class classifier trained to distinguish among the eight
different P2P applications that we consider in our experiments. In this case,
the multi-class classifier will definitely assign one application among the avail-
able ones, and the output of the multi-class classifier can then be interpreted as
the most likely P2P application that is running on H. This information, along
with the output of each one-class classifier, can then be used by the network
administrator to help decide if H violates the network security policies.

The main reason for building the application profiles using one-class classi-
fiers, rather than directly using multi-class classification algorithms, is that they
enable a modular classification approach. For example, given a new P2P appli-
cation and some related traffic samples, we can separately train a new one-class
classifier even with very few or no counterexamples (i.e., traffic samples from
other P2P applications), and we can then directly plug it into the P2P traf-
fic categorization module. Learning with few or no counterexamples cannot be
easily done with multi-class classifiers. In addition, differently from multi-class
classifiers, which will definitely assign exactly one class label among the possible
classes, by using one-class classifiers we can more intuitively arrive to the conclu-
sion that a given traffic profile PH does not really match any previously learned
P2P traffic and should therefore be considered as belonging to an “unknown”
P2P application, for example.

Feature Engineering To distinguish between different P2P applications, we
focus on their management (or control) traffic, namely network traffic dedicated
to maintaining updated information about the overlay P2P network at each peer
node [1]. The reason for focusing on management flows and discarding data-
transfer flows is that management flows mainly depend on the P2P protocol de-
sign and the P2P application itself, whereas data flows are more user-dependent,
because they are typically driven by the P2P application user’s actions. Because
the usage patterns of a P2P application may vary greatly from user to user,
focusing on management flows allows for a more generic, user-independent P2P
categorization approach. These observations apply to both legitimate P2P ap-
plications and P2P-botnets.

Management flows consist of management packets, such as keep-alive mes-
sages, periodically exchanged by the peers to maintain an accurate view of the
P2P network to which they belong. In a way, the characteristics of management
flows serve as a fingerprint for a given P2P protocol, and can be used to build
accurate application profiles. The first question, therefore, is how to identify
management flows and separate them from the data flows. The answer to this
question is complicated by the fact that management packets may be exchanged
over management flows that are separate from the data flows, or may be embed-
ded within the data flows themselves, depending on the specific P2P protocol
specifications. Instead of making strong assumptions about how managements
packets are exchanged, we aim to detect management flows by applying a few
intuitive heuristics as described below.



We consider the outgoing flows of each P2P hosts (as detected by the P2P
host detection module), and we use the following filters to identify the manage-
ment packets and discard any other type of traffic:

1) Inter-packet delays: given a flow, we only consider packets that have at least
a time gap δ > θδ between their previous and following packets, where θδ is a
predefined threshold (set to one second, in our experiments). More precisely,
let pi be the packet under consideration within a flow f , and pi−1 and pi+1

be the packets in f that immediately precede and follow pi, respectively.
Also, let δ− and δ+ be the inter-packet delay (IPD) between pi−1 and pi and
between pi and pi+1, respectively. We label pi as a management packet if
both δ− and δ+ are greater than θδ. The intuition behind this heuristic is
that management packets are exchanged periodically, while data packets are
typically sent back-to-back. Therefore, the IPDs of data packets are typically
very small, and therefore data packets will be discarded. On the other hand,
management packets are typically characterized by much larger IPDs (in fact,
a θδ = 1s IPD is quite conservative, because the IPDs between management
packets are often much larger).

2) Duration of the connection: P2P applications often open long-lived connec-
tions through which they exchange management packets, instead of exchang-
ing each management message in a new connection (notice that UDP packets
that share the same source and destinations IPs and ports are considered as
belonging to the same virtual UDP connection). Therefore, we only consider
flows that appear as long-lived relative to the size W of the traffic analy-
sis time windows, and we discard all other flows. Specifically, flows that are
shorter than W

3 are effectively excluded from further analysis.

3) Bi-directionality : this filter simply considers bi-directional flows only. The
assumption here is that management messages are exchanged both ways be-
tween two hosts, and for a given management message (e.g., keep-alive) we
will typically see a response or acknowledgment.

Notice that these rules are only applied to connections whose destination IP ad-
dress did not resolve from DNS queries. This allows us to focus only the network
traffic that has a higher chance of being related to the P2P application running
on the identified P2P host. While a few non-P2P flows may still survive this pre-
filtering (i.e., flows whose destination IP was not resolved from DNS queries, and
that are related to some non-P2P application running on the same P2P host),
thus potentially constituting noise w.r.t. the feature extraction process, they will
be excluded (with very high probability) by the management flow identification
rules outlined above.

After we have identified the management (or control) flows and packets, we
extract a number of features that summarize the “management behavior” of a
P2P host. We consider two groups of features: features based on the distribution
of bytes-per-packet (BPP) in the management flows, and feature based on the
distribution of the inter-packet delays (IPD) between the management packets.
Specifically, given a P2P host and its P2P management flows, we measure eight



features computed based on the distribution of BPPs of all incoming and out-
going TCP and UDP flows and the distribution of IPDs for all incoming and
outgoing TCP and UDP packets within each management flow.

The intuition behind these features is that different P2P applications and
protocols use different formats for the management messages (e.g., keep-alive),
and therefore the distribution of BPP will tend to be different. Similarly, differ-
ent P2P applications typically behave differently in terms of the timing between
when management messages are exchanged between peers. As an example, Fig-
ure 2 reports the distribution of BPP for four different P2P applications. As can
be seen from the figure, different applications have different profiles, which we
leverage to perform P2P traffic categorization.

0 75 150 225 300 375
0

100

200

300

400

outgoing UDP byte/pkt

F
re

q
u
e
n
c
y

Skype

(a) Skype

0 75 150 225 300 375
0

200

400

600

800

1000

1200

1400

outgoing UDP byte/pkt

F
re

q
u
e
n
c
y

eMule

(b) eMule

0 75 150 225 300 375
0

2000

4000

6000

8000

10000

12000

outgoing UDP byte/pkt

F
re

q
u
e
n
c
y

uTorrent

(c) µTorrent

0 75 150 225 300 375
0

100

200

300

400

outgoing UDP byte/pkt

F
re

q
u
e
n
c
y

Zeus

(d) Zeus

Fig. 2. Distribution of bytes per packets for management flows of different P2P apps.

To translate the distribution of the features discussed above into a pattern
vector, which is a more suitable input for statistical classifiers, we proceed as fol-
lows. First, given a host H and its set of management flows, we build a histogram
for each of the eight features. Then, given a histogram, we sort its “peaks” ac-
cording to their height in descending order and select the top ten peaks (i.e.,
the highest ten). This is done to isolate possible noise in the distribution, and to
focus only on the most distinguishing patterns. For each of these peaks we record
two values: the location (in the original histogram) of the peak on the x axis,
and its relative height compared to the remaining top ten peaks. For example,
the relative height ĥk of the k-th peak is computed as ĥk = hk/

∑10
j=1 hj , where

hj is the height of the j-th peak. This gives us a vector of twenty values for each
feature. So the overall feature vector contains 160 features.

This format of the feature vectors is used both as input to the application-
specific one-class classifiers and the P2P traffic disambiguation multi-class clas-
sifier (see Figure 1). The learning and classification algorithms with which we
experimented and the datasets used for training the P2P traffic categorization
module are discussed in Section 3.3.

3 Evaluation

3.1 Data Collection

PeerRush relies on three main datasets for the training of the P2P host detec-
tion and traffic categorization modules: a dataset of P2P traffic generated by a
variety of P2P applications, a dataset of traffic from three modern P2P botnets,



and a dataset of non-P2P traffic. In the next Sections, we will refer back to these
datasets when presenting our evaluation results, which include cross-validation
experiments. We plan to make our P2P traffic datasets openly available to facil-
itate further research and to make our results easier to reproduce3.

(D1) Ordinary P2P Traffic To collect the P2P traffic dataset, we built
an experimental network in our lab consisting of 11 distinct hosts which we
used to run 5 different popular P2P applications for several weeks. Specifically,
we dedicated 9 hosts to running Skype, and the two remaining hosts to run,
at different times, eMule, µTorrent, Frostwire, and Vuze. This choice of P2P
applications provided diversity in both P2P protocols and networks (see Table 1).
The 9 hosts dedicated to Skype were divided into two groups: we configured two
hosts with high-end hardware, public IP addresses, and no firewall filtering. This
was done so that these hosts had a chance to be elected as Skype super-nodes
(indeed, a manual analysis of the volume of traffic generated by these machines
gives us reasons to believe that one of the two was actually elected to become a
super-node). The remaining 7 hosts were configured using filtered IP addresses,
and resided in distinct sub-networks. Using both filtered and unfiltered hosts
allowed us to collect samples of Skype traffic that may be witnessed in different
real-world scenarios. For each host, we created one separate Skype account and
we made some of these accounts be “friends” with each other and with Skype
instances running on machines external to our lab. In addition, using AutoIt
(autoitscript.com/site/autoit), we created a number of scripts to simulate
user activities on the host, including periodic chat messages and phone calls
to friends located both inside and outside of our campus network. Overall, we
collected 83 days of a variety of Skype traffic, as shown in Table 1.

We used other two distinct unfiltered hosts to run each of the remaining
legitimate P2P applications. For example, we first used these two hosts to run
two instances of eMule for about 9 consecutive days. During this period, we
initiated a variety of file searches and downloads4. Whenever possible, we used
AutoIt to automate user interactions with the client applications. We replicated
this process to collect approximately the same amount of traffic from FrostWire,
µTorrent, and Vuze.

(D2) P2P Botnet Traffic In addition to popular P2P applications, we were
able to obtain (mainly from third parties) several days of traffic from three dif-
ferent P2P-botnets: Storm [8], Waledac [16], and Zeus [12]. It is worth noting
that the Waledac traces were collected before the botnet takedown enacted by
Microsoft, while the Zeus traces are from a very recent version of a likely still ac-
tive Zeus botnet that relies entirely on P2P-based command-and-control (C&C)
communications. Table 1 indicates the number of hosts and days of traffic we
were able to obtain, along with information about the underlying transport pro-
tocol used to carry P2P management traffic.

3 Please contact the authors to obtain a copy of the datasets.
4 To avoid potential copyright issues we made sure to never store the downloads per-

manently.



(D3) Non-P2P Traffic To collect the dataset of non-P2P traffic, we proceeded
as follows. We monitored the traffic crossing our departmental network over
about 5 days, and collected each packet in an anonymized form. Specifically, we
wrote a sniffing tool based on libpcap that can anonymize the packets “on the
fly” by mapping the department IPs to randomly selected 10.x.x.x addresses
using a keyed hash function, and truncating the packets payloads. We leave
all other packet information intact. Also, we do not truncate the payload of
DNS response packets, because we need domain name resolution information
to extract a number of statistical features (see Section 2). Because users in our
departmental network may use Skype or (sporadically) some P2P file-sharing
applications, we used a number of conservative heuristics to filter out potential
P2P hosts from the non-P2P traffic dataset.

To identify possible Skype nodes within our network, we leverage the fact
that whenever a Skype client is started, it will query domain names ending in
skype.com [7]. Therefore, we use the DNS traffic collected from our department
to identify all hosts that query any Skype-related domain names, and we exclude
them from the traces. Obviously, this is a very conservative approach, because
it may cause a non-negligible number of false positives, excluding nodes that
visit the www.skype.com website, for example, but that are not running Skype.
However, we chose this approach because it is difficult to devise reliable heuristics
that can identify with high precision what hosts are running Skype and for how
long (that’s why systems such as PeerRush needed in the first place), and using a
conservative approach gives us confidence on the fact that the non-P2P dataset
contains a very low amount of noise. Using this approach, we excluded 14 out of
931 hosts in our network.

To filter out other possible P2P traffic, we used Snort (snort.org) with
a large set of publicly available P2P detection rules based on payload content
inspection. We ran Snort in parallel to our traffic collection tool, and excluded
from our dataset all traffic from hosts that triggered a Snort P2P detection
rule. Again, we use a very conservative approach of eliminating all traffic from
suspected P2P hosts to obtain a clean non-P2P dataset. Using this conservative
approach, we filtered out 7 out of 931 IP addresses from our network.

The heuristics-based traffic filtering approach discussed above aims to pro-
duce a dataset for which we have reliable ground truth. While our heuristics are
quite conservative, and may erroneously eliminate hosts that are not actually
engaging in P2P traffic, we ended up eliminating only a small fraction of hosts
within our network. Therefore, we believe the remaining traffic is representative
of non-P2P traffic in our department. Naturally, it is also possible that the non-
P2P dataset may contain some P2P traffic (e.g., encrypted or botnet traffic) that
we were not able to label using Snort or our heuristics, thus potentially inflating
the estimated false positives generated by PeerRush. However, since this would
in the worst case underestimate the accuracy of our system, not overestimate it,
we can still use the dataset for a fair evaluation.



Table 1. P2P traffic dataset summary

Application Protocol Hosts Capture Days Transport

Skype Skype 9 83 TCP/UDP

eMule eDonkey 2 9 TCP/UDP

FrostWire Gnutella 2 9 TCP/UDP

µTorrent BitTorrent 2 9 TCP/UDP

Vuze BitTorrent 2 9 TCP/UDP

Storm - 13 7 UDP

Zeus - 1 34 UDP

Waledac - 3 3 TCP

Table 2. P2P Host De-
tection: results of 10-
fold cross-validation using
J48+AdaBoost

time window TP FP AUC

60 min 99.5% 0.1% 1

40 min 99.1% 0.8% 0.999

20 min 98.4% 1.1% 0.999

10 min 97.9% 1.2% 0.997

3.2 Evaluation of P2P Host Detection

Balanced Dataset To evaluate the P2P host detection module, we proceed as
follows. We perform cross-validation tests using the datasets D1, D2, and D3
described in Section 3.1. We then applied the process described in Section 2.1
to extract statistical features and translate the traffic into feature vectors (one
vector per host and per observation time window). Because the volume of Skype-
related traffic in D1 was much larger than the traffic we collected from the
remaining popular P2P applications, we under-sampled (at random) the Skype-
related traffic to obtain a smaller, balanced dataset. Also, we under-sampled
from D3 to obtain approximately the same number of labeled instances derived
from P2P and non-P2P traffic. Consequently, our training set for this module
contains roughly the same number of samples from legitimate P2P applications
and from the non-P2P traffic.
Cross-validation To perform cross-validation, we initially excluded D2, and
only considered a balanced version of D1 and D3. As a classifier for the P2P host
detection module we used boosted decision trees. Specifically, we employ Weka
to run 10-fold cross-validation using the J48 decision tree and the AdaBoost
meta-classifier (we set AdaBoost to combine 50 decision trees). We repeated
the same experiment by measuring the features for different values for the time
window length W ranging from 10 to 60 minutes. Due to space constraints, we
only discuss the results for the shortest and longest time windows. For W = 60
minutes, we had 1,885 P2P and 3,779 non-P2P training instances, while for 10
minutes we had 10,856 P2P and 19,437 non-P2P instances. The results in terms
of true positive rate (TP), false positive rate (FP), and area under the ROC curve
(AUC) are summarized in Table 2. As can be seen, the best results are obtained
for the 60 minutes time window, with a 99.5% true positives and a 0.1% false
positives. This was expected, because the more time we wait, the more evidence
we can collect on whether a host is engaging in P2P communications. However,
even at a 10 minutes time window, the classifier perform fairly well, with a true
positive rate close to 98%, a false positive rate of 1.2%, and an AUC of 99.7%.
Botnets Besides cross-validation, we performed two additional sets of experi-
ments. First, we train the P2P host detection classifier (we use J48+AdaBoost)
using D1 and D3, but not D2. Then, given the obtained trained classifier, we
test against the P2P botnet traffic D2. The results of this experiments are sum-
marized in Table 3 (due to space constraints we only show results for W = 10



Table 3. P2P Host Detection: classifi-
cation of P2P botnet traffic instances

Time Win. Botnet Instances TPs IPs detected

60 min
Storm 306 100% 13 out of 13
Zeus 825 92.48% 1 out 1

Waledac 75 100% 3 out 3

10 min
Storm 1,834 100% 13 out of 13
Zeus 4,877 33.46% 1 out of 1

Waledac 444 100% 3 out of 3

Table 4. P2P Host Detection: “leave
one application out” test

time window: 10 minutes

Left out Test on left out app.
app. Instances TPs IPs detected

Skype 99,165 90.26% 9 out of 9

eMule 2,316 100% 2 out of 2

Frostwire 2,316 100% 2 out of 2

µTorrent 2,035 100% 2 out of 2

Vuze 2,035 100% 2 out of 2

and W = 60). As we can see, the P2P host detection classifier can perfectly
classify all the instances of Storm and Waledac traffic. Zeus traffic is somewhat
harder to detect, although when we set the time window for feature extraction
to 40 minutes or higher we can correctly classify more than 90% of all Zeus
traffic instances. We believe this is due to the fact that in our Zeus dataset the
host infected by the Zeus botnet sometimes enters a “dormant phase” in which
the number of established connections decreases significantly. Also, by consider-
ing traffic over different time windows, all the IP addresses related to the P2P
botnets are correctly classified as P2P hosts. That is, if we consider the Zeus-
infected host over a number of consecutive time windows, the Zeus P2P traffic is
correctly identified in at least one time window, allowing us to identify the P2P
host. Therefore, the 33.46% detection rate using 10-minute time windows is not
as low as it may seem, in that the host was labeled as a P2P host at least once
in every three time windows.

Leave-one-out In addition, we performed a number of experiments to assess
the generalization ability of our P2P host classifier. To this end, we again trained
the classifier on D1 and D3. This time, though, we train the classifier multiple
times, and every time we leave out one specific type of P2P traffic from D1. For
example, first we train the classifier while leaving out all Skype traffic from the
training dataset, and then we test the obtained trained classifier on the Skype
traffic that we left out. We repeat this leaving out from D1 one P2P application
at a time (as before, we did not include D2 in the training dataset). The results
of this set of experiments for W = 10 are reported in Table 4. The results show
that we can detect most of the left out applications perfectly in all time windows.
In case of Skype, the classifier can still generalize remarkably well and correctly
classifies more than 90% of the Skype instances using W = 10. Using larger
time windows improves the results further, because the statistical features can
be measured more accurately. Also, the IPs detected column shows that all IP
addresses engaged in P2P communications are correctly classified as P2P hosts.

Other non-P2P instances Besides the cross-validation experiments, to fur-
ther asses the false positives generated by our system we tested the P2P host
detection classifier over the portion of the non-P2P traffic dataset that was left
out from training (due to under-sampling). For W = 60 minutes we obtained a
FP rate of 0.29%. With W = 10 minutes, we obtained a FP rate of 1.19%.



3.3 Evaluation of P2P Traffic Categorization
In this Section, we evaluate the P2P traffic categorization module. First, we sep-
arately evaluate the one-class classifiers used to learn single application profiles
(E1) and the auxiliary P2P traffic disambiguation module (E2). Then, we eval-
uate the entire P2P traffic categorization module in a scenario that replicates
the intended use of PeerRush after deployment (E3).

In all our experiments, we translate a host’s traffic into statistical features
using the process described in Section 2.2. Similar to the evaluation of the P2P
host detection module presented in Section 3.2, we experiment with values of
the time windows W ranging from 10 to 60 minutes, although due to space
constraints we can only discuss a sub-set of the obtained results.
(E1) P2P Application Profiles As mentioned in Section 2.2, each appli-
cation profile is modeled using a one-class classifier. Specifically, we experiment
with the Parzen, KNN, and Gaussian data description classifiers detailed in [20]
and implemented in [19]. To build a one-class classifier (i.e., an application pro-
file) for Skype traffic, for example, we use part of the Skype traffic from D1 as
a target training dataset, and a subset of non-Skype traffic from the other legit-
imate P2P applications (again from D1) as an outlier validation dataset. This
validation dataset is used for setting the classifier’s detection threshold so to ob-
tain ≤ 1% false positives (i.e., non-Skype traffic instances erroneously classified
as Skype). Then we use the remaining portion of the Skype and non-Skype traffic
from D1 that we did not use for training and threshold setting to estimate the
FP, TP, and AUC. We repeat the same process for each P2P application in D1
and P2P botnets in D2. Each experiment is run with a 10-fold cross-validation
setting for each of the considered one-class classifiers. The results of these ex-
periments are summarized in Table 5. The “#Inst.” column shows the overall
number of target instances available for each traffic class.

Besides experimenting with different one-class classifiers, we also evaluated
different combinations of features and different feature transformation algo-
rithms, namely principal component analysis (PCA) and feature scaling (Scal.).
The “Configuration” column in Table 5 shows, for each different time window,
the best classifier and feature configuration. For example, the first row of results
related to Skype reports the following configuration: “60min; KNN; 32 feat.;
PCA”. This means that the best application profile for Skype when considering
a 60 minutes traffic time window was obtained using the KNN algorithm, 32
features (out of all possible 160 features we extract from the traffic characteris-
tics), and by applying the PCA feature transformation. In the remaining rows,
“Scal.” indicates features scaling, while “-” indicates no feature transformation.

Notice that because we use one-class classifiers, each application profile can
be built independently from other profiles. Therefore, we can train and deploy
different optimal classifier configurations depending on the target P2P applica-
tion and desired time window W for traffic analysis. For example, for a time
window of 60 minutes, we can use a KNN classifier with 32 features transformed
using PCA for Skype, and a Parzen classifier with 16 scaled features for eMule.
This gives us a remarkable degree of flexibility in building the application pro-
files, compared to multi-class classifiers, because in the latter case we would be



Table 5. One-Class Classification Results

App. #Inst. Configuration TP FP AUC

Skype
526 60min; KNN; 32 feat.; PCA 96.54% 0.74% 0.998
579 10min; Parzen; 16 feat.; - 91.27% 1.00% 0.978

eMule
387 60min; Parzen; 16 feat; Scal. 90.64% 0.92% 0.989
483 10min; KNN; 8 feat.; PCA 88.40% 1.16% 0.961

Frostwire
382 60min; KNN; 12 feat.; PCA 85.58% 0.96% 0.966
467 10min; KNN; 8 feat.; PCA 92.68% 1.25% 0.989

µTorrent
370 60min; KNN; 8 feat.; - 92.94% 1.30% 0.948
609 10min; Parzen; 4 feat.; Scal. 94.55% 1.24% 0.992

Vuze
376 60min; KNN; 8 feat.; - 91.92% 0.95% 0.979
514 10min; KNN; 8 feat.; PCA 84.18% 1.17% 0.964

Storm
162 60min; Parzen; 16 feat.; - 100% 0% 1.000
391 10min; Parzen; 12 feat.; PCA 100% 0% 1.000

Zeus
375 60min; KNN; 4 feat.; - 97.29% 0.99% 0.996
188 10min; KNN;12 feat.; - 94.53% 0.79% 0.976

Waledac 37 60min; Gaussian; 12 feat.; PCA99.99% 0.90% 0.998

limited to using the same algorithm and set of features for all application profiles.
Furthermore, using multi-class classifiers makes identifying P2P traffic that does
not match any of the profiles (i.e., “unknown” P2P traffic) more straightforward.

Table 5 shows that for most applications we can achieve a TP rate of more
than 90% with an FP rate close to or below 1%. In particular, all traffic related
to P2P botnets can be accurately categorized with very high true positive rates
and low false positives. These results hold in most cases even for time windows
of W = 10 minutes, with the exception of Waledac, for which we were not
able to build a comparably accurate application profile using a 10 minutes time
window, since we did not have enough target instances to train a classifier (this
unsatisfactory result is omitted from Table 5).
(E2) P2P Traffic Disambiguation When a traffic instance (i.e., the feature
vector extracted from the traffic generated by a host within a given time window)
is classified as target by more than one application profile, we can use the traf-
fic disambiguation module to try to break the tie. The disambiguation module
(see Section 2) consists of a multi-class classifier based on the Random Forest
algorithm combining 100 decision trees. In this case, we use all 160 features
computed as described in Section 2.2 without any feature transformation. We
independently tested the disambiguation module using 10-fold cross-validation.
On average, we obtained an accuracy of 98.6% for a time window of 60 minutes,
98.3% for 40 minutes, 97.5% for 20 minutes, and 96.7% for 10 minutes.
(E3) Overall Module Evaluation In this section we aim to show how the
P2P categorization module performs overall, and how robust it is to noise. To this
end, we first split the D1 dataset into two parts: (i) a training set consisting of
80% of the traffic instances (randomly selected) that we use for training the single
application profiles, automatically learn their categorization thresholds, and to
train the disambiguation module; (ii) a test set consisting of the remaining 20%
of the traffic instances.

To test both the accuracy and robustness of PeerRush’s categorization mod-
ule, we also perform experiments by artificially adding noise to the traffic in-
stances in the test dataset. In doing so, we consider the case in which non-P2P
traffic is misclassified by the P2P host detection module and not completely
filtered out through the management flow identification process described in



Section 2.2. To obtain noisy traffic we processed the entire D3 dataset (about
5 days of traffic from 910 distinct source IP addresses) to identify all flows that
resemble P2P management flows. To simulate a worst case scenario, we took all
the noisy management-like flows we could obtain, and we randomly added these
flows to all the P2P traffic instances in the 20% test dataset described above.
Effectively, we simulated the scenario in which the traffic generated by a known
P2P host is overlapped with non-P2P traffic from one or more randomly selected
hosts from our departmental network.

For each test instance fed to the categorization module, we have the following
possible outcomes: (1) the instance is assigned the correct P2P application label;
(2) no application profile “matches”, and the P2P traffic instance is therefore
labeled as “unknown”; (3) more than one profile “matches”, and the instance is
sent to the disambiguation module. Table 6 and Table 7 report a summary of the
obtained results related to the 20% test dataset with and without extra added
noise, considering W = 60 minutes. For example, Table 7 shows that over 90%
of the Skype-related traffic instances can be correctly labeled as being generated
by Skype with 1.29% FP, even in the presence of added noise.

Overall, 45 out of 732 (6.15%) of the noisy test traffic instances were classified
as “unknown”, 32 instances were passed to the disambiguation module and all of
them were classified perfectly. Finally, only 5 out of 732 instances were eventually
misclassified as belonging to the wrong P2P application. It is worth noting that
an administrator could handle the “unknown” and misclassified instances by
relying on the categorization results for a given P2P host across more than one
time window. For example, a P2P host that is running eMule may be categorized
as “unknown” in one given time window, but has a very high chance of being
correctly labeled as eMule in subsequent windows, because the true positive rate
for eMule traffic is above 93%. In fact, in our experiments, by considering the
output of the categorization module over more than one single time window we
were always able to attribute the P2P traffic in our test to the correct application.

As we can see by comparing Table 6 and Table 7, the extra noise added to the
P2P traffic instances causes a decrease in the accuracy of the P2P traffic cate-
gorization module. However, in most cases the degradation is fairly limited. The
noise has a more negative impact on the categorization of Storm and Waledac,
in particular. Notice, though, that the results reported in Table 7 are again re-
lated to single traffic instances (i.e., a single time window). This means that if a
Storm- or Waledac-infected host connects to its botnet for longer than one time
window, which is most likely the case since malware often makes itself permanent
into the compromised systems, the probability of correct categorization would
increase. Therefore, even in the scenario in which each P2P host is also running
other network applications that may introduce noise in the management flow
identification and feature extraction process, we can accurately detect the P2P
traffic, and still achieve satisfactory categorization results.

We also wanted to determine how PeerRush’s categorization module would
deal with noise due to detection errors in the P2P host detection module. To this
end, we further tested the classifier using traffic from the non-P2P traffic dataset



that were misclassified as P2P by the P2P host detection module. We found that
considering a time window of 60 minutes, only 35 traffic instances misclassified
by the P2P host detection module passed the management flow discovery filter.
Of these, 33 were classified as “unknown” by the categorization module, one was
misclassified as both Skype and µTorrent, and one was misclassified as Zeus.

Table 6. 80/20 experiments

time window: 60 minutes

Application TP FP AUC

Skype 100% 0.86% 1

eMule 93.59% 1.44% 0.9968

Frostwire 88.31% 0.97% 0.9873

µTorrent 96.97% 1% 0.9789

Vuze 93.1% 0.7% 0.9938

Storm 100% 0% 1

Zeus 96.69% 1.26% 0.9964

Waledac 57.14% 0.83% 0.9420

Classified as “unknown”: 3.96% (29 out of 732)
Misclassified as other P2P: 0% (0 out of 732)
Disambiguation needed: 4.64% (34 out of 732)
· Correctly disambiguated: 33, Incorrectly disambiguated: 1

Total misclassified as other P2P: 0.14% (1 out of 732)

Table 7. 80/20 with extra noise

time window: 60 minutes

Application TP FP AUC

Skype 90.4% 1.29% 0.9891

eMule 94.87% 2.39% 0.9935

Frostwire 94.73% 0.48% 0.9927

µTorrent 98.99% 0.66% 0.9997

Vuze 93.22% 3.02% 0.9873

Storm 45.45% 0% 0.7273

Zeus 97.32% 0.72% 0.9991

Waledac 40% 0.8% 0.8610

Classified as “unknown”: 6.15% (45 out of 732)
Misclassified as other P2P: 0.68% (5 out of 732)
Disambiguation needed: 4.37% (32 out of 732)
· Correctly disambiguated: 32, Incorrectly disambiguated: 0

Total misclassified as other P2P: 0.68% (5 out of 732)

4 Discussion

PeerRush is intentionally built using a modular approach, which allows for more
flexibility. For example, as shown in Section 3, it may be best to use a differ-
ent number of features and different classification algorithms to learn the traffic
profile of different P2P applications. To build the profile for a new P2P applica-
tion we can apply a model selection process, which is commonly used for other
machine learning tasks, to find the best classifier configuration for the job, and
then we can plug it directly into PeerRush.

One parameter that has direct influence on all the system modules is the
observation time window used to split and translate the network traffic into
instances (or feature vectors). It is important to notice that while different mod-
ules need to extract different statistical features from the same time window,
all features can be extracted incrementally, and each given module can simply
use the appropriate subset of all the extracted features for its own classification
purposes. Also, while all modules perform quite well in most cases by setting
the time window length to 10 minutes, the results tend to improve for larger
time windows, because this allows the feature extraction process to collect more
evidence. Therefore, fixing the observation time window at 60 minutes for all
modules may be a good choice. However, this choice depends on the desired
trade-off between the detection time and the categorization accuracy.

It is possible that a host may be running more than one P2P application at
the same time (or there may be a NAT device that effectively aggregates multiple
single hosts), in which case the traffic patterns of these applications may overlap
and prevent a match of the profiles. Therefore, PeerRush may categorize these
cases as unknown P2P traffic. However, in many practical cases not all P2P
applications will be active at the same time. Therefore, the analysis of traffic
across different time windows applied by PeerRush may still allow for effectively



distinguishing among P2P applications. However, notice that even in the cases
when a host continuously runs more than one active P2P application at the
same time, the host will be detected as a P2P host, although its P2P traffic may
be classified as “unknown” and may therefore require further analysis by the
network administrator.

Botnet developers could try to introduce noise (e.g., dummy packets or ran-
dom padding) into the management flows to alter the distribution of BPP and
IPDs. This may cause a “mismatch” with a previously learned application profile
for the botnet. In this case, PeerRush would still very likely detect the P2P bot-
net hosts as running a P2P application, because the features used by the P2P
host detection module are intrinsic to P2P traffic in general (see Section 2.1
and the results in Table 4) and are harder to evade. However, the P2P traffic
categorization module may classify the P2P botnet traffic as “unknown”, thus
requiring further analysis to differentiate the botnet traffic from other possible
types of P2P traffic. Because P2P botnet hosts may for example engage in send-
ing large volumes of spam emails, be involved in a distributed denial-of-service
(DDoS) attack, or download executable binaries to update the botnet software,
one possible way to distinguish P2P traffic related to botnets is to monitor for
other suspicious network activities originating from the detected P2P hosts [5].

The developer of a new P2P application, including P2P botnets, may at-
tempt to model its P2P traffic following the behavior of other legitimate P2P
applications. Because some networks may consider most P2P applications (legit-
imate or not) as unwanted, the developer may be restricted to mimic a specific
type of P2P traffic that is likely to be allowed in most networks (e.g., Skype
traffic). However, while possible, morphing the traffic to mimic other protocols
may require significant effort [14].

5 Related Work

While P2P traffic detection has been a topic of much research, P2P traffic cat-
egorization has received very little attention. Because of space limitations, we
cannot mention all related work here and we therefore refer the reader to a re-
cent survey by Gomes et al. [4]. In the following, we limit our discussion to the
most relevant work on P2P traffic categorization, and on P2P botnet detection.

Hu et al. [9] use flow statistics to build traffic behavior profiles for P2P appli-
cations. However, [9] does not attempt to separate P2P control and data transfer
traffic. Because data transfer patterns are highly dependent on user behavior,
the approach proposed [9] may not generalize well to P2P traffic generated by
different users. Furthermore, [9] is limited to modeling and categorizing only two
benign non-encrypted P2P applications (BitTorrent and PPLive), and does not
consider at all malicious P2P applications. Unlike [9], PeerRush categorizes P2P
applications based on an analysis of their P2P control traffic, which captures
fundamental properties of the P2P protocol in use and is therefore less suscepti-
ble to different application usage patterns. Furthermore, we show that PeerRush
can accurately categorize many different P2P applications, including encrypted
traffic and different modern P2P botnets.



In [6], Haq et al. discuss the importance of detecting and categorizing P2P
traffic to improve the accuracy of intrusion detection systems. However, they
propose to classify P2P traffic using deep packet inspection, which does not
work well in case of encrypted P2P traffic. More recently, a number of studies
have addressed the problem of detecting P2P botnets [5, 22, 23]. However, all
these works focus on P2P botnet detection, and cannot categorize the detected
malicious traffic and attribute them to a specific botnet family. PeerRush is
different because it focuses on detecting and categorizing unwanted P2P traffic
in general, including a large variety of legitimate P2P applications and botnets.

Coskun et al. [2] proposed to discover hosts belonging to a P2P botnet from
a seed of compromised hosts. Similarly, [15] analyzes communication graphs to
identify P2P botnet nodes. These works focus solely on P2P botnets detection.

6 Conclusion

We presented PeerRush, a novel system for the identification of unwanted P2P
traffic. We showed that PeerRush can accurately categorize P2P traffic and at-
tribute it to specific P2P applications, including malicious applications such as
P2P botnets. We performed an extensive evaluation of the system over a vari-
ety of P2P traffic datasets. Our results show that PeerRush can detect all the
considered types of P2P traffic with up to 99.5% true positives and 0.1% false
positives. Furthermore, PeerRush can attribute the P2P traffic to a specific P2P
application with a misclassification rate of 0.68% or less.

Acknowledgments

We would like to thank Brett Mayers for his contribution to collecting the P2P
traffic datasets, and the anonymous reviewers for their constructive comments.
This material is based in part upon work supported by the National Science
Foundation under Grant No. CNS-1149051. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation.

References

1. J. Buford, H. Yu, and E. K. Lua. P2P Networking and Applications. Morgan
Kaufmann Publishers Inc., 2008.

2. B. Coskun, S. Dietrich, and N. Memon. Friends of an enemy: identifying local
members of peer-to-peer botnets using mutual contacts. In Proceedings of the 26th
Annual Computer Security Applications Conference, ACSAC ’10, 2010.

3. M. Egele, T. Scholte, E. Kirda, and C. Kruegel. A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv., 44(2):6:1–6:42, March
2008.

4. J. V. Gomes, P. R. M. Inacio, M. Pereira, M. M. Freire, and P. P. Monteiro.
Detection and classification of peer-to-peer traffic: A survey. ACM Computing
Surveys, 2012.



5. G. Gu, R. Perdisci, J. Zhang, and W. Lee. Botminer: Clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In Proceedings of
the 17th conference on Usenix Security Symposium, SS’08, 2008.

6. I. Ul Haq, S. Ali, H. Khan, and S. A. Khayam. What is the impact of P2P traffic
on anomaly detection? In 13th International Conference on Recent Advances in
Intrusion Detection, RAID’10, 2010.

7. B. Hayes. Skype: A practical security analysis. http://www.sans.org/reading_

room/whitepapers/voip/skype-practical-security-analysis_32918.
8. T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling. Measurements and

mitigation of peer-to-peer-based botnets: a case study on storm worm. In 1st
Usenix Workshop on Large-Scale Exploits and Emergent Threats, LEET’08, 2008.

9. Y. Hu, D.M. Chiu, and J. C. S. Lui. Profiling and identification of P2P traffic.
Comput. Netw., 53(6):849–863, April 2009.

10. T. Karagiannis, A. Broido, M. Faloutsos, and Kc Claffy. Transport layer identi-
fication of p2p traffic. In Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement, IMC ’04, 2004.

11. T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc: multilevel traffic clas-
sification in the dark. SIGCOMM Comput. Commun. Rev., 35(4), aug 2005.

12. A. Lelli. Zeusbot/spyeye p2p updated, fortifying
the botnet. http://www.symantec.com/connect/blogs/

zeusbotspyeye-p2p-updated-fortifying-botnet.
13. A. Madhukar and C. Williamson. A longitudinal study of p2p traffic classification.

In Proceedings of the 14th IEEE International Symposium on Modeling, Analysis,
and Simulation, MASCOTS ’06, 2006.

14. H. Mohajeri Moghaddam, M. Derakhshani B. Li, and I. Goldberg. SkypeMorph:
Protocol obfuscation for tor bridges. Tech. Report CACR 2012-08.

15. S. Nagaraja, P. Mittal, C.Y. Hong, M. Caesar, and N. Borisov. Botgrep: finding
p2p bots with structured graph analysis. In Proceedings of the 19th USENIX
conference on Security, USENIX Security’10, 2010.

16. C. Nunnery, G. Sinclair, and B. B. Kang. Tumbling down the rabbit hole: exploring
the idiosyncrasies of botmaster systems in a multi-tier botnet infrastructure. In
Proceedings of the 3rd USENIX conference on Large-scale exploits and emergent
threats: botnets, spyware, worms, and more, LEET’10, 2010.

17. S. Sen, O. Spatscheck, and D. Wang. Accurate, scalable in-network identification
of p2p traffic using application signatures. In Proceedings of the 13th international
conference on World Wide Web, WWW ’04, 2004.

18. D. Stutzbach and R. Rejaie. Understanding churn in peer-to-peer networks. In
Proceedings of the 6th ACM SIGCOMM conference on Internet measurement, IMC
’06, 2006.

19. D.M.J. Tax. DDtools, the data description toolbox for Matlab. v1.9.1 http:

//prlab.tudelft.nl/david-tax/dd_tools.html.
20. D.M.J. Tax. One-class classification. 2001. Ph.D. Thesis, TU Delft.
21. H.S. Wu, N.F. Huang, and G.H. Lin. Identifying the use of data/voice/video-based

p2p traffic by dns-query behavior. In Proceedings of the 2009 IEEE international
conference on Communications, ICC’09, 2009.

22. T.F. Yen and M. K. Reiter. Are your hosts trading or plotting? telling p2p file-
sharing and bots apart. In Proceedings of the 2010 IEEE 30th International Con-
ference on Distributed Computing Systems, ICDCS ’10, 2010.

23. J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo. Detecting stealthy P2P
botnets using statistical traffic fingerprints. In Proceedings of the 2011 IEEE/IFIP
41st International Conference on Dependable Systems&Networks, DSN ’11, 2011.


