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Abstract. In this paper, we propose to fuse two main enabling features in cog-
nitive radio systems (CRS): spectrum sensing and location awareness in a single
compressed sensing based formalism. In this way we exploit sparse characteris-
tics of primary units to be detected, both in terms of spectrum used and location
occupied. The compressed sensing approach also allows to overcome hardware
limitations, in terms of the incapacity to acquire measurements and signals at the
Nyquist rate when the spectrum to be scanned is large.

Simulation results for realistic network topologies and different compressed
sensing reconstruction algorithms testify to the performance and the feasibility
of the proposed technique to enable in a single formalism the two main features
of cognitive sensor networks.

1. Introduction
Cognitive radio (CR) is a smart wireless communication concept that is able to
promote the efficiency of the spectrum usage by exploiting the free frequency bands
in the spectrum, namely spectrum holes [1, 2].

Detection of spectrum holes, namely spectrum sensing, is the first step towards
implementing a cognitive radio system.

The major problem for spectrum sensing arises in wideband radio, when the
radio is not able to acquire signals at the Nyquist sampling rate due to the cur-
rent limitations in Analog-to-Digital Converter (ADC) technology [3]. Compressive
sensing makes it possible to reconstruct a sparse signal by taking less samples than
Nyquist sampling, and thus wideband spectrum sensing is doable by Compressed
Sensing (CS). A sparse signal or a compressible signal is a signal that is essentially
dependent on a number of degrees of freedom which is smaller than the dimension
of the signal sampled at Nyquist rate. In general, signals of practical interest may
be only nearly sparse [3]. And typically signals in open networks are sparse in the
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frequency domain since depending on location and at some times the percentage of
spectrum occupancy is low due to the idle radios [1, 8].

In CS a signal with a sparse representation in some basis can be recovered
from a small set of nonadaptive linear measurements [9]. A sensing matrix takes
few measurements of the signal, and the original signal can be reconstructed from
the incomplete and contaminated observations accurately and sometimes exactly by
solving a simple convex optimization problem [3, 4]. In [5] and [6] conditions on
this sensing matrix are introduced which are sufficient in order to recover the origi-
nal signal stably. And remarkably, a random matrix fulfills the conditions with high
probability and performs an effective sensing [7, 9].

Another step towards the feasibility and a real implementation of cognitive ra-
dio systems is the problem of location awareness [15,16]. This problem arises when
we do consider a realistic scenario in hybrid overlay/underlay systems [10,11], when
these spectrum opportunities permit cognitive radios to transmit below the primary
users tolerance threshold. In this case, the cognitive radio (CR), have to estimate ro-
bustly the primary users locations in the network in order to adjust its transmission
power function of the estimated location in the network. The knowledge of position
information in CR system (CRS) is also an enabler of location based beamforming
as shown in [18] and also as shown in the ICT-WHERE2 project, a whole framework
of location-aided PHY/MAC layer design for advanced cognitive radios [19] with
novel concepts of spectrum sensing techniques based on location information [20],
to multi-cell multi-user MIMO systems with location based CSIT [21].

In our approach1, we propose to analyze all these arisen problems. During the
problem formulation and when analyzing more deeply the equations related to each
question apart, we will make the link between the formulation of spectrum sensing,
location awareness and the hardware limitation by describing those problems in a
unique compressed sensing formalism.

The paper is organized as follows: In section 2, we start by giving a first
overview on the spectrum sensing techniques. Section 3 is dedicated to introducing
the Compressed Sensing framework we are targeting during the problem formula-
tion. Section 4 is exposing the remonstration techniques we are using to overcome
the sparsity problem. In section 5, we introduce the system model of the considered
CR system and in section 6 we make the link between spectrum sensing and lo-
calization in a common CS formalism. Finally in section 7 we give the simulations
results for realistic CR configuration and in section 8 we conclude on the effective-
ness of the proposed CS approach for sensing/localization in CR systems.

1Part of the work presented in this paper was accepted and presented in WIMOB 2012 [15], 8th IEEE
International Conference on Wireless and Mobile Computing, Networking and Communications and
CAMAD 2012 [16], IEEE 17th International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks
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2. Related Work
As previously stated, cognitive radio (CR) is presented [12] as a promising technol-
ogy in order to handle this shortage and misuse of spectral resources. According to
FCC, a radio is considered cognitive when it have the following capabilities:
• Frequency Agility: the ability of a radio to change its operating frequency to

optimize use under certain conditions.
• Dynamic Frequency Selection: the ability to sense signals from other nearby

transmitters in an effort to choose an optimum operating environment
• Location Awareness: the ability for a device to determine its location and the

location of other transmitters, that would help selecting the appropriate operat-
ing parameters such as the power and frequency allowed at the given location.
• Negotiated Use: incorporate a mechanism that would enable sharing of spec-

trum under the terms of a prearranged agreement between a licensed (primary)
and non-licensed (secondary) users
• Adaptive Modulation: the ability to modify and adapt transmission character-

istics and waveforms to exploit opportunities to use spectrum.
• Transmit Power Control: allows transmission at full power limits when neces-

sary
The presented work fits in the context of spectrum sensing/localization framework
of Cognitive Radio Systems (CRS) and more precisely cooperative transmitter de-
tection/localization. In this context, many statistical approaches for spectrum sens-
ing have been developed. The most performing one is the cyclostationary features
detection technique [13, 14]. The main advantage of the cyclostationarity detection
is that it can distinguish between noise signal and PU transmitted data. Indeed, noise
has no spectral correlation whereas the modulated signals are usually cyclostation-
ary with non null spectral correlation due to the embedded redundancy in the trans-
mitted signal. The cyclostationary features detector is thus able to distinguish be-
tween noise and PU.

The reference sensing method is the energy detector (ED) [13], as it is the
easiest to implement. Although the ED can be implemented without any need of
apriori knowledge of the PU signal, some difficulties still remain for implementa-
tion. First of all, the only primary user (PU) signal that can be detected is the one
having an energy above some given threshold. So, the threshold selection in itself
can be problematic as the threshold highly depends on the changing noise level and
the interference level. Another challenging issue is that the ED approach cannot
distinguish the PU from the other secondary user (SU) sharing the same channel.
Cyclostationary features detector (CFD) is more robust to noise uncertainty than an
ED. Furthermore, it can work with lower SNR than ED.

More recently, a detector based on the signal space dimension based on the es-
timation of the number of the covariance matrix independent eigenvalues has been
developed [22]. It was presented that one can conclude on the nature of this sig-
nal based on the number of the independent eigenvectors of the observed signal
covariance matrix. The Akaike information criterion (AIC) was chosen in order to
sense the signal presence over the spectrum bandwidth. By analyzing the number of
significant eigenvalues minimizing the AIC criterion, one is able to conclude on the
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nature of the sensed sub-band. Specifically, it is shown that the number of significant
eigenvalues is related to the presence or not of data in the signal.

Still in these state of the art techniques, a key assumption of perfect signals
acquisition is always made. But real world signals and systems are intrinsically
sparse, as sparsity may come from different factors. A first one, which considered in
this paper, is the inability of the ADC to acquire signals at a Nyquist rate resulting in
inaccurate and incomplete data. A second source of sparsity may be that spectrum
use in open wireless networks is sparse, that is to say, few resources are used and in
most of geographic areas and/or period of time, resources are left idle.

3. Compressed Sensing Framework
In this section, we are considering sparse signals /vectors reconstruction.

A given d-dimensional vector is assumed to be s-sparse if it has s or fewer
non zero coordinates, that is to say:

x ∈ Rd, ||x||0 , |supp(x)| ≤ s� d (3.1)

where we denote by ||.||0 the quasi norm and for 1 ≤ p <∞, ||.||p , (
∑d

i=1 |xi|p)1/p

is the usual p-norm. In real world, we won’t encounter perfect sparse signals, but
signals whose coordinates satisfying a power law decay, that’s to say x satisfy the
following equation:

|x∗i | ≤ Ri(−1/q) (3.2)
where x∗ is a non increasingly rearranged version of x, R is some positive constant
and q is satisfying 0 < q < 1. Sparse vectors recovery algorithms tend to reconstruct
sparse vectors from a small set of measurements. Each of these measurements can
be viewed as an inner product between a given vector, say φi ∈ Rd and the vector
x ∈ Rd. Collecting the m measurement in a single matrix, we thus build an m × d
measurement matrix, say Φ = [φ1 ... φm] .

Theoretically speaking, recovering x from its measurement u = Φx ∈ Rm is
equivalent to solving the l0-minimization problem:

min
z∈Rd

||z||0 subject to Φz = u (3.3)

If x is s-sparse and Φ is one-to-one2 on all 2s-sparse vectors, then the solution of
Equation (3.3) must be the signal x. Indeed, say z is a solution and given the fact that
x is an obvious solution, then z − x must be a kernel of Φ. But z − x is a 2s-sparse
vector and given the assumption that Φ is one-to-one, z = x. Thus, theoretically
speaking the l0-minimization is a perfect solution to the reconstruction problem.
Unfortunately it is shown in literature [24] that the l0-minimization is a NP-Hard
problem and numerically unfeasible.

This problem can be overcome by means of Compressed Sensing (CS). A first
approach is to use Basis Pursuit (BP) algorithm in order to relax the l0-minimization
to an l1-minimization formalism. BP requires stronger hypothesis on Φ, so it has not

2A matrix is told to be one-to-one if it is representing an injective transformation from one space to
another
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only to verify injection on sparse vectors property, but it has been shown that the re-
lationship between m, d and s is given by: m = s logO(1)d. l1 minimization often
relies on linear programming, and since there is no linear bound for such techniques,
BP approaches are quite slowly convergent techniques. The second approach is to
use greedy algorithms such as Orthogonal Matching Pursuit (OMP) [25], Stage-
wise Orthogonal Matching Pursuit (StOMP) [26], or Iterative Thresholding [27,28].
Those approaches are based on the iterative computation of the signal’s support. As
for BP, m, d and s are linked parameters such as: m = O(s log d). Once the sup-
port S of the signal computed, x is reconstructed from the measurement vector u as
x = (ΦS)†u, where ΦS is the restriction of Φ to the columns indexed by S and .†

is the pseudo-inverse operator3. The main advantage of greedy approaches is their
convergence time, as they are faster than BP, but they lose in stability compared to
BP. Another class of CS algorithms recently emerged in order to shorten the gap
between greed algorithms and BP. From these algorithms, we may cite Regularized
Orthogonal Matching Pursuit (ROMP) [30] and Compressive Sampling Matching
Pursuit (CoSaMP) [29]. These two algorithms provide a similar guarantee of stabil-
ity as BP with the same iterative property of fast convergence as greedy algorithms.

4. Reconstruction Algorithms
In our work, we will consider one algorithm per class to be studied for spectrum
sensing and localization purposes. We will thus introduce first of all BP, then OMP
and finally CoSaMP that will be used afterwards for the target applications.

4.1. Basis Pursuit
Since the problem as formulated in Equation (3.3) is an NP-hard problem and nu-
merically unfeasible, let’s introduce a first approach to solve this problem. One may
consider first, a mean square approach to solve the problem.

min
z∈Rd

||z||2 subject to Φz = u (4.1)

Since the minimizer, say x∗, must satisfy Φx∗ = u = Φx, x∗ must be in the
subspace K = x + kerΦ. Actually, x∗, as defined in Equation (4.1) is the exact
contact point between the smallest Euclidian ball centered at the origin and the
subspace K. As shown in Figure (1), in the mean square approach there is no need
to have x∗ coinciding with the actual signal x. This is due to the fact that Euclidian
geometry ball is not a good detector of sparsity.

In this case, in order to solve Equation (3.3), we may opt for an l1 approach.
In this case, x∗ would meet the contact point between the l1 ball (also named octa-
hedron) centered at the origin and the subspace K.

A first idea could be relaxing the problem into an l1 minimization:

min
z∈Rd

||z||1 subject to Φz = u (4.2)

Authors in [5] have proved that for measurement matrices satisfying a certain quan-
titative property called Restricted Isometry Property, l0 and l1 become equivalent.

3Recalling that for a given matrix A, A† = (A∗A)−1A∗
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FIGURE 1. The minimizers to the mean square (left) and l1
(right) approaches.

4.2. Orthogonal Matching Pursuit
OMP is based on subgaussian measurement matrices to reconstruct sparse signals. If
Φ is verifying such condition (subgaussian property), then Φ∗Φ is close to identity.
In this case, a non-zero coordinate of xwould maximize the observation y = Φ∗Φx,
and that’s how we iteratively reconstruct the support of x. OMP is shown to be fast
but not as stable as BP.

Algorithm (1) give the pseudocode for OMP implementation.

Algorithm 1 Orthogonal Matching Pursuit (OMP) pseudocode

Require: Measurement matrix Φ, measurement vector u = Φx, sparsity level s
1: Initialize: As a first step, initialize I = ∅ and the residual r = u

repeat s times:
2: Identify: Select the largest coordinate λ of y = Φ∗r in absolute value. Break

ties lexicographically.
3: Update: Add the coordinate λ to the index set: I ← I

⋃
λ and update the

residual according to:

x̂ = arg min
z
‖ u−Φ|Iz ‖2; r = u−Φx̂ (4.3)

4: return Index set I ∈ 1, ..., d

Once the support I of the signal x is found, the estimate x̂ can be reconstructed
as: x̂ = Φ†Iu. The algorithm simplicity allows a fast reconstruction as it iterates s
times and over each iteration, it selects one among d elements in O(d) time and
multiplies by Φ∗ in a O(md) time period and finally solves a least squares problem
in O(s2d). So the cost of such technique is O(smd) operations.

4.3. Compressive Sampling Matching Pursuit
As far as the CoSaMP algorithm is concerned, the sampling operator Φ is sup-
posed to satisfy the Restricted Isometry Property 4 and each s coordinates of signal
y = Φ∗Φx, also called proxy signal, are close in terms of Euclidian norm to the s
corresponding coordinates of x.

The algorithm operates according to the following steps:

4For more information and a complete description of RIP please refer to [32]
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1. Identification: The algorithm takes the residual as a proxy and locates its
highest coordinates.

2. Support merging: At the iteration k, the set of recently identified coordinates
is merged withe the set from iteration k − 1

3. Estimation: Based on the set of coordinates, the algorithm performs a least
square to determine an approximation of the target signal

4. Pruning: In the estimated signal from least squares, the algorithm retains only
the highest coordinates.

5. Sample updating: The samples are updates so that they integrate the residual
part.

Algorithm 2 Compressive Sampling Matching Pursuit (CoSaMP) pseudocode

Require: Measurement matrix Φ, measurement vector u = Φx, sparsity level s
1: Initialize: Set a0 = 0, v = u, k = 0.

Repeat the following steps while increasing k until achieving halt criterion.
2: Signal Proxy: Set y = Φ∗v, Ω = suppy2s and merge the support T =

Ω
⋃

suppak−1

3: Signal Estimation: Solving a least squares problem, set: b|T = Φ†Tu and
b|Tc = 0

4: Prune: Preparing the next iteration, set ak = bs
5: Sample Update: Update the samples by: v = u−Φak

6: return s-sparse reconstructed vector x̂ = a

4.4. Compressed Sensing for Spectrum Sensing and Primary Users Localiza-
tion

In this paper, we will use the above framework in order to solve two major issues
enabling CR: spectrum sensing and terminals localization. In order to do so, we will
tend in our analysis to express the upcoming equations as following:

y = Φx (4.4)

where y ∈ RM is the measured entity, Φ ∈ RM×N : the measurement matrix and
x ∈ RN the K-sparse vector to be reconstructed.

According to Restricted Isometry Property definition, Φ would verify the RIP
if: M ≥ O(K log(N/K)).

5. System Model
In the considered system model, we will suppose that we do dispose ofNch available
channels in a wideband wireless network. Over a large geographic area, letNp be the
number of deployed primary users using a different channel each. In this large area,
we disperse Nc cognitive radios that will cooperate to locate PUs in the network
and detect their channels usage and states. The measures made by these cognitive
terminals will then be sent to the fusion center. In order to enable SUs transmissions,
the secondary network have to be aware of the availability and the state of each
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channel. Thus, SUs have to estimate which channels are occupied and to identify
the PUs transmission powers and locations.

For our system, we adopt the path loss model, given by:

L(f, d) = P0 + 20 lg(f) + 10n lg(d) [dB] (5.1)

where: P0 is a constant related to antennas gain; f is the channel frequency; n is the
path loss exponent; d is the distance separating the transmitting and receiving nodes
and lg(.) = log10(.)

In our case, we dispose of Nch channels, thus f would be assumed the central
frequency of each band, i.e f ∈ {f0, f1..., fNch−1}.

Let’s keep in mind that the path loss is related to the unknown channel and
location of the PU. The received signal power is a combination of the unknown
transmit power with the path loss expressed in Equation(5.1).

Our task is to infer from the received signal at the cognitive terminals all these
unknown, but valuable, information about the primary users.

6. Compressed Sensing For Cognitive Radio Applications
6.1. Spectrum Sensing
For discrete signals, the time domain samples t are used to construct the spectrum
in frequency domain using directly the DFT transform:

f = Ft (6.1)

where F is the normalized DFT matrix.
As stated previously, the sparsity in this context may come from the inability

of the ADC to acquire signals at a Nyquist rate. The time samples t are thus acquired
at a sub-Nyquist rate which may result in a sparse vector.

We will thus directly apply the CS formalism with the different introduced
algorithms to reconstruct the original time domain transmitted signal and spectrum
sensing will be achieved using energy detection.

6.2. Location Estimation based on Compressed Sensing
Once spectrum reconstructed and spectrum sensing achieved, more information can
be derived while looking deeper into channels occupied by primary users.

Let’s assume that in a certain wide area, PUs are located at coordinates (xpm, ypn);
where xpm ∈ {0,∆xp, ...(M − 1)∆xp} are M possible x axis positions (abscissæ)
of the PUs 5; ypm ∈ {0,∆yp, ...(N − 1)∆yp} are N possible y axis positions (or-
dinates) of the PUs; ∆xp and ∆yp are respectively the resolutions over x and y axis.
Here, we do impose and suppose to the PU coordinates to be in discrete M × N
dictionary (which, actually, is always true). It is good to remind at this level that
the exact positions of the Np PUs {(xpi, ypi) ; i ∈ [1..Np]} are unknown to our
problem.

5When we say xpm ∈ {0,∆xp, ...(M − 1)∆xp}, that does not mean that there are M PUs, but it
means that Np primary users abscissæ (for ordinates as well) do actually have a finite ”dictionary”
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The Nc CRs positions in the network are located at positions: {(ai, bi) ; i ∈
[1..Nc]} (on which we do not impose being in a finite set, even if they necessarily
are).

For the kth CR, sensing the ith channel, the contribution of the PU located at
the (xpm, ypn) position on the received PSD is:

Rk,i(m,n) = P (m,n, i)× 10L(fi,d(m,n,k))/10

d(m,n, k) =
√

(xpm − ak)2 + (ypn − bk)2
(6.2)

where P (m,n, i) is the power transmitted by a PU using the ith channel, located at
(xpm, ypn); fi is the center frequency of the ith channel; d(m,n, k) represents the
distance between the kth CR and the the PU located at (xpm, ypn).

The total received power over all the existing PUs, i.e over theM×N possible
positions of the PUs, can be formulated as following:

Yk,i =
∑

m

∑
nRk,i(m,n)

Yk,i =
∑

m

∑
n 10L(fi,d(m,n,k))/10 × P (m,n, i)

Yk,i = LT (k, i)P (i)

(6.3)

where P (i) is the vector containing the transmission power of the over all M ×N
grid over the ith channel; and L(k, i) is the path loss vector computed according to
Equation(5.1) from all PU possible positions at the level of the kth CR, on the ith

channel.
L(k, i) = 10LdB(k,i)/10

and :
LdB(k, i) = [L(fi, d(0, 0, k)), L(fi, d(1, 0, k)),
..L(fi, d(m,n, k)), ..L(fi, d(M,N, k))]T

(6.4)

Let’s denote by Yk = [Yk,1..Yk,Nch
]T , the received signal power vector at the level

of the kth CR over theNch available channels. This according to Equation(6.3), and
adopting the previous notation can be expressed as:

Yk = LkP (6.5)

where P is the vector containing the transmission power of the M ×N grid of PU
locations over the Nch available channels of the NC deployed CRs:

Pk = [PT (i1), PT (i2), .., PT (iNC
)]T (6.6)

The matrix Lk, is the fading gain matrix grouping at the level of the kth CR the loss
path contributions of the M ×N PU positions. The jth row of Lk is:

Lk(j) = [0, 0, ..., LT (k, j), 0, .., 0] (6.7)

Combining all the equations describing the NC CR system, we do obtain:

Y = LP (6.8)

Where Y = [Y1
T , ..., YNC

T ]T and L = [L1, ...,LNC
]

The equation we ended with in Equation(6.8), reminds us of Equation (4.4) of
the CS formalism we introduced previously: as P is an unknown but sparse vector
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because over the M ×N area we’ve been considering, only NP PUs are deployed
in this area.

The two stages, spectrum sensing and localization, seem then to be attached
to the same CS framework we’ve introduced before.

6.3. Joint Spectrum Sensing and Primary User Localization
We’ve shown till now that both problems: sensing and localization can separately be
solved using CS formalism. It is now easy for us to combine these two operations.

The joint framework, would consider this dual sensin/localization problem as a
3D image reconstruction from sparse observation. The x and y axis of this unknown
image are the PU location information and the z axis would represent the sensed
channel occupancy information and the value of a given pixel at (x, y, z) is the
reconstructed transmit power.

7. Simulations and Results
For our analysis, we suggest a realistic network simulation. In the considered CRS
we deploy 5 PUs and 3 SUs. The 3 deployed CRs are attempting to communicate
opportunistically and thus will perform the sensing and localization task.

A hexagonal cellular system functioning at 1.8GHz with a secondary cell of
radius R = 1000m and a primary protection area of radius Rp = 600m is con-
sidered. Secondary transmitters may communicate with their respective receivers of
distances d < Rp from the BS. We assume that the PUs and the SUs are randomly
distributed in a two-dimensional plane as shown in Figure 2. The BS is placed at the
center (0, 0). The distance, d(m,n, k), from the k-th SU to the PU (m,n) is given
by

d(m,n, k) =
√

(xpm − ak)2 + (ypn − bk)2 (7.1)

where (xpm , ypn) are the coordinates of the PU and (ak, bk) the coordinates of the
k-th CR. The channel gains are based on the COST-231 Hata model [31] including
log-normal shadowing with standard deviation of 10dB, plus fast-fading assumed to
be i.i.d. circularly symmetric with distribution CN (0, 1). The basic path loss for the
COST-231 Hata model is in dB in an urban area at a distance d is:

L(f, d) = 46.3 + 33.9 log10(fc)− 13.82 log10(hb)−
AM + (44.9− 6.55 log10(hb)) log10(d) + CM

(7.2)

where fc is the carrier frequency equal to 1.5GHz and hb is the base antenna height
equal to 50 meters. The distance d is computed using the formula (7.1). CM is
0dB for medium sized cities and suburbs and is 3dB for metropolitan areas. In the
simulations, we use CM = 0dB. The AM is defined for urban environment as:

AM = 3.20 (log10(11.75hm))
2 − 4.97 (7.3)

where hm is the mobile antenna height equal to 10 meters. The shadowing variations
of the path loss can be calculated from the log-normal distribution

g(x | σ) =
1

σ
√

2π
exp

(
−x2

2σ2

)
(7.4)
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FIGURE 2. Two-dimensional plane of the cognitive radio system
topology with five primary users and three secondary users.

where σ is the variability of the signal equal to 10dB. The shadowing variation is
computed using the Matlabr function randn. Shadowing reflects the differences in
the measured received signal power with relation to the theoretical value calculated
by path loss formulas. Averaging over many received signal power values for the
same distance, however, yields the exact value given by path loss.

Furthermore, for channels distribution, we suppose that the total number of
available channels is in [1,2,..,20] channels and each of the five PUs is communicat-
ing over a single different channel.

For simulations, we generate a random sequence with 5 of the 20 channels (a
single channel per user is assumed), where the amplitude (PSD) is also randomly
generated per user. This generated spectrum is then fixed once and for all in the
simulations. For spectrum sensing, in order to model the ADC imperfections, we
generate a random M × N matrix as stated in [3, 4] and the spase signal is then
the generated signal passed through the random matrix plus a white noise at a given
SNR. After this generation of the sparse noisy signal, we process using the several
reconstruction algorithms and compute the spectrum reconstruction error. For loca-
tion estimation, distance is derived using the CS proposed formalism with pathloss
expression given in (7.2). Unlike spectrum generation, here noise is implicitly in-
herited from the received noisy signal.
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7.1. Simulation Results
Figures (3) and (4) give an example of spectrum reconstruction MSE6 at 50% spar-
sity for the simulated algorithms and the impact of sparsity level on spectrum re-
construction MSE.

The very fist remark that we can give here is that the simulation results are in
line with the theoretical aspects related to BP, OMP and CoSaMP. As we explained
at the very beginning, performance related to BP is expected to overcome OMP,
which is the case in Figure (3) and CoSaMP is shown both in theory and simulations
to outperform OMP, but it is still not as efficient as BP.

Figure (4) is assessing the impact of sparsity level on spectrum reconstruction
MSE. Here we clearly see that results are coherent with the definition we gave of
sparsity, saying that “a d-dimensional vector is assumed to be s-sparse if it has s or
fewer non zero coordinates”. According to this definition, the more sparse the vector
is, the largest its support is, so the less the reconstruction MSE would be, which is
perfectly in line with the results reported in figure (4).

−20 −18 −16 −14 −12 −10 −8 −6
10

−3

10
−2

10
−1

10
0

10
1

SNR [dB]

S
pe

ct
ru

m
 re

co
ns

tru
ct

io
n 

M
S

E

 

 
BP at 50%
OMP at 50%
CoSaMP at 50%

FIGURE 3. Example of Spectrum Reconstruction MSE at 50%
sparsity level for BP, OMP, CoSaMP

6We recall the definition of Mean Square Error as: MSE = ||X − X̂||2, where X is the original
observation and X̂ is the reconstructed signal



Cooperative Sensing and Localization in CRS using CS 13

20 30 40 50 60 70 80
10

−2

10
−1

10
0

10
1

Sparsity level (%)

S
pe

ct
ru

m
 R

ec
on

st
ru

ct
io

n 
M

S
E

 

 
BP
OMP
CoSaMP

FIGURE 4. Impact of sparsity on spectrum reconstruction MSE
at 0 dB

Figures (5) and (6) give an example of PU location estimation at 50% spar-
sity for the simulated algorithms and the impact of sparsity level on PU location
estimation error at 0 dB.

Figure (5) gives an overview of PU location estimation error at 50% sparsity
level for BP, OMP and CoSaMP. Here we validate again the previous results, as
the tendency of BP outperforming CoSaMP and OMP is confirmed. The same for
Figure (6), where we clearly see the more signal is sparse (in the sense the more we
have non-zero entries), the more robust the PU localization is.

Assuming a 15 meters limit of “good localization” bound, Figure (5), show
that the idea of cooperative localization could be exploited up to -3 dB, -2 dB, and
1 dB for BP, CoSaMP and OMP respectively. These performance are obtained for
totally autonomous GPS free techniques and with absolutely no need of extra over-
head data exchange in the network.

8. Conclusion
This work presents a first look towards a combined spectrum sensing and localiza-
tion task. These two tasks are fundamental in order to enable cognition in wireless
networks. With the combination of the two tasks, we also considered a realistic data
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FIGURE 5. Error on PU location estimation at 50% sparsity level
for BP, OMP, CoSaMP

acquisition constraint, which is sparsity due to the ADC technology limits. Simu-
lation results of the proposed technique show promising and interesting results for
compressed sensing techniques applied to this formalism.

The formalism that we derived here is the starting point of a whole location
aided cognitive radio framework that is being developed within the FP7 WHERE2
project. In this framework, once the radio map [33] is built thanks to the sensing and
localization tasks, the CRS are thus able to communicate in the available bands in
the available directions and thus the proposed framework is a key enabler for SDMA
(Space Division Multiple Access) systems and spatial versions of CR paradigms
(underlay, overlay, interweave). This formalism can also be exploited for D2D (de-
vice to device) communication, as the CRs can communicate directly with each
other while a fusion center can play the role of the control entity in the network.
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