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Abstract—A low-latency, parameter modulation-
estimation feedback protocol for wideband channels is
introduced for both pure line-of-sight and more general
fading channels with several degrees of freedom. One
round of the protocol consists of a data phase and a
control phase and uses non-coherent detection. The
asymptotic optimality in energy efficiency of the protocol
is analyzed and an upper bound on the distortion level
is derived for two-rounds. The proposed scheme as well
as known one-way schemes are compared with classical
and very recent lower-bounds. Both the lower-bounds
and performance evaluation of the feedback protocol
are extended to a multi-channel fading model. The
improvement of the feedback protocol over one-shot
transmission is shown to be very significant on both
line-of-sight and fading channels. 1

Index Terms—Joint source-channel coding, parameter
modulation-estimation, non-coherent detection, distor-
tion

I. INTRODUCTION

In this work, we consider simple parameter
modulation-estimation strategies applicable to future
wireless sensor networks, where the sensor sporadi-
cally sends samples of analog information (tempera-
ture, magnetic field, current, speed, etc.) to a collecting
node. The sensors can be seen as analog-to-digital
converters which are distributed in space and use a
wireless medium to relay their samples to the network.
Such traffic is very low-rate, practically zero-rate,
since in the majority of cases the sampling rate is
very low, basically a few samples per second) and
the available system bandwidth is very large (tens
to hundreds of megahertz). The communication link
from the samplers to the network often requires low-
latency. The latter could arise for two reasons, either
reactivity of an actuating element in the network
or to minimize energy consumption in the sensing
node itself by using discontinuous transmission and
reception. Here the latency of the transmission is

1This paper was presented [in part] at EUSIPCO 2012, European
Signal Processing Conference, August, 27-31, 2012, Bucharest, and
SCC 2013, 9th International ITG Conference on Systems, Commu-
nications and Coding, January 21-24, 2013, Munich, Germany.

directly related to the ”on”-time of communication
circuitry of the sensing node. This example captures
the essense of machine-type communications, which
refers to machines including sensors interconnected
via cellular networks and exchanging information au-
tonomously. It is widely believed that this sort of traffic
will at least be shared with conventional voice and
data communications on current and evolving cellular
communication standards. Depending on the evolving
usage scenarios, the amount of traffic produced by
such low-rate devices could even vastly surpass that of
conventional human communications. The purpose of
this paper is to study modulation strategies for analog
samples applicable to the wireless medium.

Imagine the simplest scenario of one sensor node
tracking a slowly time-varying random sequence and
sending its observations to a receiver over a wireless
channel. The source is denoted by a random variable U
of zero mean and variance σ2

u = 1, representing a sin-
gle realization of the random sequence at a particular
time t. The sensor should be seen as a tiny device with
strict energy constraints. The communication channel
between the sender and the receiver is an additive
white Gaussian noise channel. An important question
is how to efficiently encode the random variable U for
transmission, and what performance can be achieved
upon reconstruction as a function of the energy used
to achieve this transmission. For this scenario, the
slowly time-varying characteristic of the source has
two main impacts on the way the coding problem
should be addressed: firstly, the time between two
observations is long, and the sensor should not wait
for a sequence of observations to encode it. Therefore,
the sensor will encode only one observation before
sending it through the channel. Secondly, for each
source realization the channel can potentially be used
over many signal dimensions, for instance by encoding
over a wide-bandwidth in the frequency-domain. This
corresponds to the case for sensors connected directly
to fourth-generation cellular networks. Hence, we can
reasonably assume that there is no constraint on the
dimensionality of the channel codebook. The latter
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Fig. 1. Single-source Problem

amounts to saying that very low-rate codes should be
used.

A. Addressed Problem and its Background

We consider a system as shown in Figure 1. An
encoder maps one realization of a scalar source letter
U into an N -dimensional vector

√
ES(U,Y) which

is transmitted across a wireless channel and received
as an N -dimensional vector Y. If the encoder makes
use of feedback, we assume that this is causal, in
the sense that the nth dimension of the modulator
is of the form Sn(U,Y) = g(U, Y0, Y1, · · ·Yn−1).
We further assume that the transmitter is subject to
a mean energy constraint E[||S(U,Y)||2] ≤ 1, so
that the overall average energy is E . The receiver
is a mapping function which tries to construct an
estimate Û of U given Y. The fidelity criterion that
we wish to minimize is the MSE distortion defined as
D , E[(U − Û)2],

It is well-known that the linear encoder (i.e. Sm =√
EU ) achieves the best performance under the mean

energy constraint for the special case N = 1 [1]–[3]
and normally-distributed U . In fact, a lower bound on
the distortion over all possible encoders and decoders,
both with and without a feedback link, was easily
derived by Goblick in [1] using classical information
theory, and given by

Dg ≥ e−2E/N0 (1)

where N0/2 is the channel noise variance per dimen-
sion. Note that, the form of (1) is adapted to a discrete-
time complex Gaussian channel with noise variance
N0/2 to make the comparisons easier with lower-
bounds to be introduced in Section V. Goblick’s bound
given above was derived through calculating the rate-
distortion function and the channel capacity since for a
particular source and a channel, the minimum mean-
squared error in reconstructing the source using the
channel output does not depend on the communication
system. The author defined the channel capacity and
the rate-distortion function in terms of the channel
signal-to-noise ratio, more precisely minimum dis-
tortion in estimating the source message is obtained
as a function of the channel signal-to-noise ratio
which leads to the output signal-to-noise ratio in a
continuous-time channel with limited bandwidth. Gob-
lick also proposed a digital scheme shown in Figure 2
where a B bit uniform scalar quantizer is followed by

2B-ary orthogonal modulation to transmit the source U
using the energy E . For this scheme, S(U,Y) = Sm,
where m = 1, 2, · · · , 2B is the quantization index
for the bin containing U . The performance loss with
respect to (1) was heuristically argued to be on the
order of 6-9 dB. At the end of the procedure the
reconstruction error is the sum of the quantization
error and a term proportional to the probability of
error. In [4], [5] this reconstruction error is shown
to be on the order of e−E/3N0 both for coherent and
non-coherent reception, which represents a 7.78 dB
asymptotic energy gap with respect to (1).

Quantizer Mod

m = 1, 2, · · · , 2B
√
ESm

ÛU

Fig. 2. Goblick’s Digital Scheme

Several schemes can achieve e−E/3N0 both with
and without coherent detection and for both normally
and uniformly distributed U . For instance, Wozencraft-
Jacobs [6, pg:623-624] use analog pulse position mod-
ulation (PPM) with finite a finite bandwidth pulse
where the delay of the pulse is proportional to the
analog realization of U . The asymptotic performance
of the distortion tends to e−E/3N0 as the bandwidth
goes to infinity [5]. A comparison in [5] with best-
known joint medium-resolution source-channel codes
[7] for high channel to source bandwidth ratios shows
that simple hybrid yet separated joint-source channel
techniques can outperform non-linear mappings. Such
optimization for a different power constraint can be
found in the literature for example in [8] and [9],
where the authors try to bound the optimal number
of quantization bits that minimizes distortion.

More recently, tighter lower-bounds for systems
without feedback are derived by Merhav in [10],
[11] for AWGN channels and discrete-memoryless
channels, respectively. In [10], [12] the best-known
lower bound for the reconstruction fidelity without
feedback, with coherent detection and unlimited chan-
nel bandwidth behaves as e−E/2N0 for uniformly-
distributed U . The author achieves this lower-bound
on the MSE through the threshold defined on the
maximum exponential rate of error probability decay
in estimating |U − Û | rather than concentrating on
the MSE as the performance criterion itself. In order
to prove this threshold on the error probability of
|U − Û |, the author adapts the well-known Ziv-Zakai
bound [13] to the case with M hypotheses instead
of 2 and the derivation proceeds as the Chazan-Zakai
bound [14]. This narrows the asymptotic energy gap
from Goblick’s digital scheme to 1.79 dB. In a recent
study [11], both upper and lower bounds for the best
achievable exponential decay of E|Û − U |m, m ≥ 0
are presented for a discrete memoryless channel.
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In feedback systems, for example cellular networks,
we could clearly imagine the use of reliable feed-
back from the down-link, with vanishing probability
of error, i.e. perfect feedback. Some of the earliest
work in analog transmission of low-bandwidth sources
assumed feedback. Remarkably, stochastic control ap-
proaches [15], [16] can achieve, at least asymptotically,
the lower bound on distortion in (1). This comes at the
expense of delay, since, as in many adaptive systems,
the feedback system must converge to minimize dis-
tortion. Moreover, these approaches are not directly
applicable with non-coherent reception which would
be required in practice to convey small amounts of
information sporadically.

An example of a modern feedback-scheme for
transmitting small amounts of sporadic information
is the random-access procedure [17] in LTE systems,
where a 6-bit message is conveyed using an orthogo-
nal signal set occupying a large physical bandwidth
(PRACH physical random access channel). The so-
called random-access response contains the message
hypothesized by the decoder, among other informa-
tion, which serves either as an acknowledgment or
an indication to retransmit. Although simplified, such
a scheme was originally studied in [18] by Ya-
mamoto which is an adaptation of the earlier work
by Schalkwijk-Barron [19]. Note that, in these works
the analysis with non-coherent detection is not pro-
vided. This type of transmission can exactly model
any low-rate transmission strategy based on orthogonal
modulation. For instance, to further put this in the
context of the random-access procedure LTE systems,
the Sm can represent the so-called PRACH preamble
[20], where m = 0, 1, · · · , 63, and conveys the 6-bit
message (MSG1) described above. The preamble in
LTE is a Zadoff-Chu roots-of-unity sequence which
usually occupies N = 839 signaling dimensions for
B = 6 information bits. Orthogonality over time-
dispersive channels is guaranteed through up to 64
cyclic time-shifts of Sm coupled with the use of a
cyclic extension. For very dispersive channels (i.e.
with delay-spreads longer than the cyclic-shift between
preambles), fewer than 64 (and hence longer) cyclic
time-shifts can be used at the expense of using multiple
preamble sequences which are quasi-orthogonal.

B. Contributions and Outline

The main contribution of this work is to analyze
the use of a Yamamoto-style retransmission protocol
[18] for the transmission of scalar quantized analog
samples in terms of the energy-efficiency as a function
of the reconstruction fidelity. It is shown that there is
a very significant energy benefit coming from the use
of feedback in comparison to one-shot transmission
of the parameter as in Goblick’s digital scheme [1].

The efficient use of such a protocol calls for joint
optimization of the parameter quantization and mod-
ulation. It is important to note that in our scenario
we are driven to assume unknown channels, i.e. non-
coherent reception, in the formulation of the problem.
Since the information content is very small, additional
overhead for channel estimation is not warranted and
thus, it is unreasonable to assume the channel state
(i.e. channel amplitude and phase) be known to either
the transmitter or receiver. The analysis is carried
out for line-of-sight and non line-of-sight channels
and we consider both cases of perfect and imperfect
feedback. We furthermore provide new lower-bounds
on the performance of such feedback-based schemes as
well as numerical evaluation of recent bounds [10] for
one-shot transmission. These bounds allow us to assess
how close the proposed schemes are to fundamental
limits.

In the upcoming section, we describe the channel
models for the addressed problem. In Section III-A, we
introduce a low-latency feedback protocol for a single
source transmitting analog information over a non-
coherent AWGN channel. In spirit, this is very similar
to the first phase of the LTE random-access procedure
described above. The analytical exponential behavior
of the protocol with respect to the reconstruction error
for estimating the source-message is observed and
discussed subject to the energy used by the protocol.
This is followed by the discussion regarding the effect
of the feedback error on the distortion-energy trade-
off made in Subsection III-B. We proceed with the
analysis of a more general wireless channel model
in Section IV. Additionally, for the case of one-shot
transmission without feedback, in Subsection V-A we
extend Merhav’s recent lower-bounds derived in [10]
for the problem addressed here, in order to provide
the tightest numerical lower-bounds on performance.
In Subsection V-B, we provide adaptations of Gob-
lick’s and Merhav’s lower-bounds for the more general
fading channel models. The numerical analysis results
for a chosen configuration of the fading channel model
are given in Section VI together with the results of the
non-coherent AWGN channel. The numerical results
are also contrasted with the best-known theoretical
lower-bounds on the reconstruction fidelity. Compar-
isons between the two channel models are provided in
Section VII for both single-round transmission without
feedback in addition to the improvement achieved with
two rounds of the novel protocol.

II. CHANNEL MODEL

In this paper, we consider a general multi-channel
wireless model [21, Section 12] where the channel
amplitude and phase correspond to that of a multi-
dimensional Ricean channel where the ratio of the non-
line-of-sight component to the line-of-sight component
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is denoted as α. Let L represent the total number of
statistically independent observations or diversity order
of the transmitted signals and L′ ≤ L denote the num-
ber of observations over which the average received
energy is spread. To a first-order approximation, L′

represents the number of coherence bandwidths and
L/L′ would represent the number of receive antennas.
For example, L = 4, L′ = 2 would correspond to a
dual-antenna receiver with two coherence bandwidths.
The output signal for this channel with a general N -
dimensional channel input

√
ES is given as

Y′l =
√
E/L′

(√
(1− α)ejΦl +

√
αhl

)
S+Zl, (2)

for l = 0, · · · , L − 1 where h ∼ NC(0, 1) which
have the desired statistics in both the frequency and
time dimensions and α is a constant defined in the
range [0, 1]. The random phase sequence Φ is assumed
to be i.i.d. with a uniform distribution defined on
[0, 2π). The N -dimensional vector noise sequence Z
is complex, circularly symmetric with zero-mean and
autocorrelation N0IN×N . Clearly, the channel model
given above by (2) boils down to an AWGN channel
for α = 0 and L′ = 1 with the N -dimensional channel
observation given by

Y =
√
EejΦS + Z (3)

Throughout the paper, the general model given by
(2) and the second model (3) will be referred as the
fading channel and the AWGN channel, respectively.
The following section will introduce a retransmission
feedback protocol and provide an analytical upper
bound on its performance for the AWGN channel. Due
to its complexity the performance of the fading channel
will be provided in Section IV only through numerical
analysis.

III. UPPER BOUNDS ON THE PERFORMANCE OF A
NOVEL FEEDBACK PROTOCOL ON LINE-OF-SIGHT

CHANNELS

A. Reliable feedback without energy cost

Let us consider now a Yamamoto-style protocol [18]
applied to the transmission of isolated analog samples
with non-coherent reception. In the analysis, we first
focus on a simple non-coherent AWGN channel (3).
The protocol consists of two phases, a data phase and a
control phase which can be repeated up to two rounds.
A pictorial representation of the protocol is shown in
Figure 3. In our adaptation the two phases compose
one round of the protocol. During the data phase,
the source message is quantized, transmitted and its
estimate is fed back from the receiver. The source
denoted by U is uniformly distributed over (−

√
3,
√

3)
which guarantees zero mean and unit variance. As in
[1], a source sample is uniformly quantized to B bits

Fig. 3. Pictorial representation of the retransmission protocol.

is encoded into one of 2B N -dimensional messages√
ESm, with m = 1, 2, · · · , 2B .
In this phase the channel observation (3) becomes

YD,i =
√
ED,iejΦiSm + ZD,i (4)

where the subscripts D and i represent the data phase
and the ith round of the protocol for i = 1, 2,
respectively.

After the transmission of the source message, the
receiver feeds m̂ back to the encoder via the noiseless
feedback link. We denote the corresponding error event
by Ei. Square-law detection of the received signal
produces the decision variables Um′ = |〈YD,1,Sm′〉|2
where 〈., .〉 denotes the inner product. Let the projected
noise on Sm′ be denoted by Nm′ = 〈Sm′ ,ZD,1〉, a
complex-valued zero-mean Gaussian random variable
of variance N0. Under the assumption that message
m was transmitted, and given that Sm′ is orthonormal
with respect to Sm for m′ 6= m, the first round
decision variables are given as follows [21, sec.12-1-
2].

Um′ =

{
|
√
ED,1 +Nm|2, for m′=m

|Nm′ |2, for m′ 6= m
(5)

|
√
ED,1 + Nm|2 and |Nm′ |2 are random variables

with non-central chi-square distribution (noncentrality
parameter ED,1) and central chi-square distribution,
respectively. According to (5), the receiver chooses
m̂ = argmaxm̂′ Um′ .

After the data phase, the encoder enters the control
phase and informs the receiver whether or not its
decision was correct via a signal

√
EC,iSC of energy

EC,i if the decision is incorrect and 0 if the decision
was correct where EC,i denotes the energy of the
control phase of the ith round. SC is an arbitary
N -dimensional vector. During the control phase the
receiver observes YC,i =

√
EC,iAejΦiSC + ZC,i

where A takes the value 0 for an ACK and 1 for a
NACK. Let YC,i = 〈YC,i,SC〉 and assume a detector
of the form Â = I

(
|YC,i|2 > λEC,i

)
. Here I(·) and λ

represent the indicator function and a threshold to be

4



optimized that is confined to an interval [0, 1), respec-
tively. Ee→c,i corresponds to an uncorrectable error
since it acknowledges an error as correct decoding and
Ec→e,i represents a mis-detected acknowledged error
declaring correct decoding as incorrect. If the receiver
correctly decodes the control signal and it signals that
the data phase was correct after the completion of the
first round with probability Pr(Ec1)(1− Pr(Ec→e,1)),
the protocol halts, otherwise another identical round
is initiated by the receiver. The retransmission prob-
ability, which is the probability of going on for a
second round, is Pr(E1)(1−Pr(Ee→c,1)). This on-off
signaling guarantees that with probability Pr(Ec1)(1−
Pr(Ec→e,1)) the transmitter will not expend more than
ED,1 joules, which should be close to one. After each
data phase, the receiver computes the ML or MAP
message m̂i(Y1, · · · ,Yi) based on all observations up
to round i with error event Ei for i = 1, 2. The same
control phase is repeated and the protocol is terminated
after two rounds.

The error probability at the end of the second round
is defined and consequently bounded by

Pe = Pr(E1) Pr(Ee→c,1)+

Pr(E1)(1− Pr(Ee→c,1)) Pr(E2|E1)+

(1− Pr(E1)) Pr(Ec→e,1) Pr(E2|Ec1)

(a)

≤ Pr(E1) Pr(Ee→c,1) + Pr(E2). (6)

In step (a) the conclusive expression is obtained
through bounding Pr(Ec→e,1) and (1 − Pr(Ee→c,1))
by 1. ZC,i = 〈SC ,ZC,i〉 is defined as a circularly-
symmetric Gaussian zero-mean random variable
with variance N0. The probability of an uncor-
rectable error in round i, which is defined as
Pr
(
|
√
EC,i + ZC,i|2 ≤ λEc,i

)
, is obtained as

Pr(Ee→c,i) = 1−Q1

(√
2EC,i
N0

,

√
2λEC,i
N0

)
, (7)

where Q1(α, β) is the first-order Marcum-Q func-
tion. Furthermore, we have the recent bound on the
Q1(α, β) for α > β from [22, eq:4] which is very
useful for bounding (7) as

Pr(Ee→c,i) ≤ 1/2 exp

(
− (
√
λ− 1)2EC,i
N0

)
. (8)

The probability of a mis-detected acknowledged error
is obtained as

Pr(Ec→e,i) = Pr
(
|ZC,i|2 > λEC,i

)
= e−

λEC,i
N0 . (9)

The second round decision variables U
(2)
m′ can be

obtained cumulatively through

U
(2)
m′ = Um′ + | < YD,2,Sm′ > |2. (10)

where Um′ is given by (5). The receiver chooses
m̂ = argmaxm̂′ U

(2)
m′ over all possible sequences as

in the first round. The probability of error for binary
orthogonal signaling is defined in [21, eq:12.1-24] as

P2(j) ≤ 1

22j−1
e−γ/2

j−1∑
n=0

cn

(γ
2

)n
(11)

where cn = 1/n!
∑j−1−n
k=0

(
2j − 1

k

)
and γ represents

the signal to noise ratio. The probability of making an
error on a particular round j, Pr(Ej) ≤ 2BP2(j) can
be derived using (11) and given for the first and the
second rounds by

Pr(E1) ≤ 2B−1e−
ED,1
2N0 , (12)

Pr(E2) ≤ 2B−3

(
1 + 3

ED,1 + ED,2
N0

)
e−
ED,1+ED,2

2N0 .

(13)
Naturally, (12) and (13) are obtained using the first
and the second round decision variables, respectively.

The reconstruction error of the source message is
obtained by calculating the mean squared error dis-
tortion through D = Dq(1 − Pe) + DePe where Dq
and De represent the quantization distortion and the
MSE distortion for the case where an error was made,
respectively. For a uniform source U on (−

√
3,
√

3)
and B > 2, the distortion for any round N is bounded
by

D (E , N0,N , λ) ≤ 2−2B(1− Pe) + 2Pe. (14)

A detailed derivation of the distortion terms in (14) is
provided in Appendix VIII-A. The following subsec-
tions III-A1 and III-A2 respectively discuss the bound
given above by (14) in the absence and presence of a
feedback link in the system.

1) The performance of the protocol without feed-
back : For the case of N = 1, i.e. the protocol ter-
minates without retransmission, we obtain the bound
on the reconstruction error in estimating the message
of U as given in the following. The error probability
defined by (6) consists of the probability of making an
error in the first round Pr(E1) solely, since there is no
use of the control phase given that there will not be a
second round to retransmit the message. Thus, through

substitution of Pe ≤ 2B−1e−
ED,1
2N0 into the distortion

bound given by (14), we obtain the following bound

D (E , N0, 1, λ) ≤ e−2B ln 2 + eB ln 2−
ED,1
2N0 . (15)

Through setting the two exponentials in (15) equal,
it can be clearly seen that 2−B is in the same order

of e−
ED,1
6N0 . In other words, the upper bound (15) is

obtained as D (E , N0, 1, λ) ≤ 2e−
ED,1
3N0 for a single

round.
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2) The performance of the protocol exploiting feed-
back : At the end of the second round the resulting
distortion is given by

D (E , N0, 2, λ) ≤

e−2B ln 2 + e(B−1) ln 2−
ED,1
2N0
−(1+λ−2

√
λ)
EC,1
N0

+

(
1 + 3

ED,1 + ED,2
N0

)
e(B−2) ln 2−

ED,1+ED,2
2N0 (16)

through substituting (6) with (12), (13) and (8) for
i = 1 into the distortion (14). By equating the three
exponentials of (16) we have EC,1 =

ED,2
2(1+λ−2

√
λ)

. In
order for Pr(E1) to be exponentially bounded away
from zero so that E can be made arbitrarily close to
ED,1, we define ED,2 = (2 − µ)ED,1 where µ is an
arbitrary constant confined to (0, 2). Finally, we obtain
the final form of the bound on the distortion at the end
of the second round as given by

D (E , N0, 2, λ) ≤ e−
ED,1(1−µ/3)

N0

(
3 + 3

ED,1 + ED,2
N0

)
.

(17)
Note that, at the end of the second round, 2−B is in
the same order of e−

ED,1(1−µ/3)
2N0 .

Let ED,2 denote the required energy for retransmis-
sion, which is the energy to be used in the data phase
of the second round. The average energy used by the
protocol after two rounds is

E = ED,1 + Pr(E1)EC,1 + (Pr(E1)(1− Pr(Ee→c,1))

+ (1− Pr(E1)) Pr(Ec→e,1))ED,2. (18)

Clearly if Pr(E1) is small, then the protocol achieves
marginally more than ED,1 joules per source symbol.
It is worth mentioning that (1) and the limiting expres-
sion in [15, eq.15] is achieved within a factor of 1/2 in
the energy using only two rounds and, moreover, with
non-coherent reception. Even though it is possible to

obtain e−
2ED,1
N0 (i.e. twice better than the performance

in (17)) by changing the relationship between the
energies used in the different rounds, this causes the
average energy used by the protocol to exceed the
energy used in the data phase of the first round. As
a result in this case, the proposed protocol could not
achieve the error exponent in (1).

In Section III-B, we investigate the case when
the feedback link from the decoder to the encoder
is not perfect and discuss the effect of a possible
error in feedback on the exponential behavior of the
reconstruction error. Note that, for modeling systems
where both the transmitter and receiver are subject to
the constraints on energy usage, one would have to
consider the energy consumption of the feedback link,
and we also shed some light on this issue in Section
III-B.

B. Unreliable feedback with and without energy cost

One might consider the case of an imperfect feed-
back link in the system described and analyzed above.
Let m, m̂ and ˆ̂m denote the transmitted message,
the messages decoded at the receiver and transmitter
(after the feedback phase), respectively. Then Pfb,1

represents the following error probability Pr( ˆ̂m =
m|m̂ 6= m) whereas Pfb,2 = Pr( ˆ̂m 6= m|m̂ = m).
The overall energy used by the protocol in this scenario
becomes

E = ED,1 + EC,1 Pr(E1) (1− Pfb,1)

+ ED,2 [Pr(E1)(1− Pfb,1) + (1− Pr(E1))Pfb,2]
(19)

whereas the error probability at the end of the second
round yields as given on the top of the next page by
(20). In step (a) of (20), (1−Pfb,1), (1−Pr(Ee→c,1))
and Pr(Ec→e,1) are upper bounded by 1. Clearly, if
we set Pfb,1 = Pfb,2 = 0 this case boils down to
the perfect feedback scenario studied in the previous
part, Section III-A and the expressions on average
energy (19) and the error probability (20) yield (18)
and (6), respectively. Now, we apply the modified error
probability (20) to the overall distortion term (14).
In order to obtain the same exponential behavior of
e−ED,1/N0 like in (17), Pfb,1 should be upper-bounded

by the uncorrectable error 1
2e−

(
√
λ−1)2EC,1
N0 given earlier

by (7). With respect to the energy consumption, we
can say that in addition to the error probability in
the first round, vanishing Pfb,2 guarantees the energy
consumed by two rounds of the protocol to be upper
bounded by the energy that is used by the data phase
of the first round, i.e. ED,1.

In order to characterize the amount of the required
energy for feedback, we consider an explicit scheme
for feedback. The receiver uses waveform Sm̂ on the
feedback link with energy Efb so that the received
signal yields

Yfb =
√
EfbejΦSm̂ + Z. (21)

In order to determine if message m was received
correctly, the transmitter projects on waveform Sm and
computes the statistic Ufb = |〈Yfb,Sm〉|2 which is
compared to a threshold λfbEfb where λfb ∈ [0, 1).
Then the feedback probability Pfb,1 is given by

Pfb,1 = Pr
(
|〈Yfb,Sm〉|2 ≥ λfbEfb

)
= e−

λfbEfb
N0 .

(22)
As a result, in order for Pfb,1 to be on the same
exponential order as Pr(Ee→c,1), we require that
Efb = 1−µ/2

λfb
ED,1 and that the energy used by the

protocol approaches λfb+1−µ/2
λfb

ED,1.
The main conclusion is that when we account for the

energy consumption required by the feedback link, it
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Pe = Pr(E1)(1− Pfb,1) Pr(Ee→c,1) + Pr(E1)Pfb,1 + Pr(E1)(1− Pfb,1)(1− Pr(Ee→c,1)) Pr(E2|E1)

+ [(1− Pr(E1))(1− Pfb,2) Pr(Ec→e,1) + (1− Pr(E1))Pfb,2(1− Pr(Ee→c,1)] Pr(E2|Ec1)
(a)

≤ Pr(E1) (Pr(Ee→c,1) + Pfb,1) + Pr(E2). (20)

reduces the reconstruction fidelity in a non-negligible
manner under a total energy constraint. In the primary
application scenario considered here, namely energy-
constrained sensors transmitting to cellular basesta-
tions, we believe that this does not pose a significant
problem. Basestations are power constrained and not
short-term energy constrained and if the aggregate
downlink traffic dedicated to feedback for sensors
is an order of magnitude less than other downlink
services, this energy consumption is insigificant. If
such schemes were to be used for transmission be-
tween energy-constrained devices, the benefits may be
significantly reduced.

IV. MORE GENERAL WIRELESS CHANNELS

We consider now the fading channel introduced in
Section II by (2) and adapt this system to our re-
transmission feedback protocol proposed and analyzed
in the previous section. In this fading channel model
the output signal (2) in the data phase on channel l
becomes

Y′D,i,l =√
ED,i/L′

(√
(1− α)ejΦi,l +

√
αhi,l

)
Sm + Zi,l,

(23)

where hi ∼ NC(0, 1). For this model, only the
statistics of the mis-detected acknowledged error event
is unchanged and is as given by (9). The probability
of an uncorrectable error is given by (24) on the
top of the next page. The error probabilities Pr(E1)
and Pr(E2) corresponding to the first and second
rounds, respectively are derived using an adaptation
of [21, eq:12.1-22], which is given by (25) where j is
the round index, In is the modified Bessel function
of order n, v = u

2E(N0+αE) and γ = E/L′N0. u
is the first decision variable with a non-central chi-
square distribution having 2L degrees of freedom and
non-centrality parameter s2 = E(1 − α). Note that
the probability PM (j) given by (25) reduces to [21,
eq:12.1-22] for α = 0. In the fading channel case,
the protocol provides a more significant improvement
when going from one to two rounds, due to the added
diversity. Here it should be expected that the use of
more than two rounds could be even more beneficial,
unlike the AWGN case. The use of many rounds,

however, will incur a non-coherent combining loss,
despite the added diversity.

The upper bound on the reconstruction error given
in Section III by (14) is adapted to the current model
and by substituting (25) and (24), the following bound
on the distortion at the end of the second round is
obtained.

D (E , N0, 2, λ) ≤ 2−2B(1− Pe) + 2Pe

≤ 2−2B + 2 [PM (1) Pr(Ee→c,1) + PM (2)] (26)

In Section VI, we provide numerical evaluation results
of the upper bound given above for different values of
α for 0.5 and 0.1 since it is not possible to give an
analytical result and discuss the improvement to be
gained in two rounds through comparing (26) versus
the distortion to be achieved in a single round without
feedback, i.e. D ≤ 2−2B + 2PM (1).

V. LOWER BOUNDS ON DISTORTION

In this part, we present lower bounds on the recon-
struction error in estimating the source message that
is transmitted over both types of channels (2) and (3)
using information and estimation theoretic techniques.

A. AWGN Channel

The first set of bounds all rely on channel state
knowledge at the receiving end which clearly is also
a bound for the case where the channel phases are
unknown. The simplest bound is Goblick’s bound
which in our case of a uniform random variable on
[−
√

3,
√

3) is given by

DG(E , N0) ≥ 6

πe
e−

2E
N0 . (27)

For the case of a single round without feedback we
use the recent bounds from Merhav in [10] which are
adaptations of the Ziv-Zakai lower-bound on mean-
squared error for parameter modulation-estimation
[13]. We consider only the case of zero-rate transmis-
sion in the context of [10] and adapt the results to
the normalized uniform distribution considered here.
We have the following bound on the distribution of
distortion

Pr

(
|U − Û | >

√
3

M

)
≥
√

3

M
Q

(√
E
N0

M

M − 2

)
.

(28)
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Pr(Ee→c,i) = Pr

(
L−1∑
l=0

|
√

(1− α)EC,i/L′ejΦi,l +
√
αEC,i/L′hi,l + ZC,i,l|2 ≤ λLEC,i/L′

)

= 1−QL

(√
2L(1− α)EC,i
αEC,i + L′N0

,

√
2Lλ(1− α)EC,i
αEC,i + L′N0

)
. (24)

PM (j) = 1−
∫ ∞

0

(
1− e−v(1+αγ)

jL−1∑
k=0

(v(1 + αγ))k

k!

)M−1

[
v

(
1 + αγ

γ(1− α)

)] jL−1
2

e−v−
γ(1−α)
(1+αγ) IjL−1

(
2

√
vγ(1− α)

1 + αγ

)
(25)

The right-hand side of (28) is the weakest version of
Shannon’s lower-bound on M -ary transmission over
an AWGN channel [23, eq. 82]. Through the use of
the Chebyshev inequality, this results in the following
lower-bound on the distortion

DM1(E , N0) ≥ max
M

3
√

3

M3
Q

(√
E
N0

M

M − 2

)
. (29)

A tighter version makes use of Shannon’s best bound
[23, eq. 81] and yields

DM2(E , N0) ≥ max
M

6
√

3

M4

M∑
n=2

Q

(√
E
N0

n

n− 1

)
.

(30)
As suggested in [10, eq.23] an even tighter version
based on [23, eq. 81] is derived using (31) as given
on the top of the current page for any suitably large
M . Numerical evaluation of the lower bounds intro-
duced above and their comparison with the proposed
transmission strategies are given in Section VI.

1) Relationships with classical conjectures on opti-
mal signal sets: It is worth pointing out that certain
classical and more recent results on the validity of
conjectures on optimal signal sets are strongly related
to the problem at hand and could provide tighter
numerical lower-bounds on the reconstruction fidelity.
In Merhav’s bounding technique for the parameter
modulation-estimation problem he relies on zero-rate
lower-bounds on the probability of error (e.g. in [10,
eq. 21]) in characterizing the tail-function of the
estimation error at discrete values of its argument.
For coherent detection on AWGN channels, it was
long conjectured that the regular simplex was an
optimal signal set for M -ary signaling in M − 1
dimensions (i.e. without a bandwidth constraint). This
was disproved by Steiner in [24] for the so-called
Strong Simplex Conjecture which corresponds to the
average energy constraint used here. The so-called
Weak Simplex Conjecture is the classical conjecture
[25] for equal-energy signaling which still has not
been disproved and is valid for M = 2, 3. It is

largely considered to be true for all M , and from
a numerical perspective, was shown to be valid for
M ≤ 8 in [26]. From a numerical perspective, the
use of the constructive techniques in [26] for finding
optimal signal sets could be used instead of Shannon’s
lower bound in (31). Although this will not provide an
asymptotic difference, it could lead to tighter bounds
for low signal-to-noise ratios. For the equal-energy
case, it may be sufficient to use the error probability
of the regular simplex in (31), at least if we limit the
sum to M ≤ 8. Even if the Weak Simplex Conjecture
is false, it is highly unlikely that any other signal set
will provide a noticeable numerical difference in (31).

The equivalent equal-energy conjecture for non-
coherent detection [27] also remains unproven. But
it is reasonable for numerical purposes to use the
error probability of orthogonal modulation with non-
coherent detection as an approximate lower-bound.
Using [27, eq. 28] instead of Shannon’s lower bound
in (31), we obtain

DM4(E ,M,N0) ≥
√

3

M3
(5M + 1)PM

+
√

3

M−1∑
i=2

(
5i− 4

(i− 1)3
− 5i+ 1

i3

)
Pi (32)

where

Pi =

i−1∑
n=1

(−1)n+1

(
i− 1

n

)
1

n+ 1
exp

[
− n

n+ 1

E
N0

]
(33)

which, strictly speaking, is only a true bound for equal-
energy signaling and M = 2, subject to the validity of
the classical conjecture. Note that (32) will have the
same asymptotic behavior as (31).

2) Comments on variable-energy signaling: It is
reasonable to expect that the use of variable-energy
signaling (even orthogonal) can help close the 1.76dB
asymptotic gap between (15) and (31) and the 3dB
gap between (16) and (27). This is because with
equal-energy signaling, erroneous decisions can lead
to distortions at the peak or on the order of a bit with
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DM3(E ,M,N0) = 2

∫ 2
√

3

0

d∆ ·∆(2
√

3− (
⌊
2
√

3/∆
⌋
− 1)∆) · Pr

(
|U − Û | > ∆

)
≥ 2

(∫ √3/M

0

d∆ ·∆(2
√

3− (M − 1)∆) Pr
(
|U − Û | >

√
3/M

)
+

M∑
i=3

∫ √3/(i−1)

√
3/i

d∆ ·∆(2
√

3− (i− 1)∆) Pr
(
|U − Û | >

√
3/(i− 1)

))

=

√
3

M4
(5M + 1)

M∑
n=2

Q

(√
E
N0

n

n− 1

)
+
√

3

M−1∑
i=2

(
5i− 4

(i− 1)4
− 5i+ 1

i4

) i∑
n=2

Q

(√
E
N0

n

n− 1

)
. (31)

equal probability. A more judicious choice of energy
distribution across the signal set would choose the
energy difference between points according to their
pairwise distortion. High distortion error events would
then be less likely than low distortion error events.

B. Fading Channel

We consider the same two lower bounds on per-
formance considered in the previous part. Merhav’s
bounding technique must be computed numerically in
this case, as the upper bound (26) is presented in an an-
alytical form. Merhav’s results are applied to Rayleigh
fading which is generalized here to channels with a
line-of-sight component and more degrees-of-freedom.
We also adapt the classical bound from Goblick [1] to
a fading channel. Both of these techniques assume that
the channel is known to the receiver and the distortion
is averaged over all realizations of the random channel
coefficients.

Merhav’s bound (31) becomes

DM3(E ,M,N0) ≥ EaDM3(aE ,M,N0) (34)

where a =
∑L−1
i=0 |

√
1− α+

√
αhi,l|2 is a non-central

chi-square distributed random variable with the non-
centrality parameter (1−α)L, 2L degrees of freedom
and with the variance of the 2L underlying Gaussian
random variables given by σ2 = α/2. Its p.d.f. is given
below.

f(a) =
1

α

(
a

(1− α)L

)L−1
2

exp

(
−a+ (1− α)L

α

)
IL−1

(
2

√
a(1− α)L

α

)
. (35)

The behavior of the lower-bound (34) is presented
numerically in the upcoming section.

The wireless adaptation of the Goblick bound (1)
tries to capture the scenario considered in the achiev-
able scheme (Section III), namely that a finite number
of channel of realizations (or block-fading model) is
exploited by the transmission strategy. To this end,

we consider observations comprising N signaling di-
mensions split into R blocks of size N/R. Let xk be
the codeword in block k and constrain its energy as
E||xk||2 ≤ E/R. Each block witnesses an independent
and identically distributed fading amplitude. We show
in Appendix VIII-B that the distortion is bounded
below by

D ≥ 6

πe
(1 + 4αE/RN0)

−LR

exp

{
−2(1− α)LE/N0

1 + 4αE/RN0

}
. (36)

VI. NUMERICAL EVALUATION

In this section, we provide numerical evaluation
results for the bounds introduced in Sections III, IV
and V. In Figure (4) we show the bound given by (14)
for two rounds and different values of B from 6 to 14.
The convex hull of these curves should be compared
with the Goblick-bound given by (27) which is valid
for systems with feedback. The curves labeled as the
single-round scheme without feedback represent the
upper bound (15). The convex hull of these curves
should be compared with the Merhav bounds which
are valid only without feedback. In Figure (4), the
lower bounds given by equations (29), (30) and (31)
are called as Merhav bound 1, 2 and 3, respectively.
Firstly we see the significant effect of using the novel
feedback protocol with respect to the reconstruction
fidelity. The latter clearly provides an improvement in
terms of distortion or approximately 3 dB in energy
efficiency. We do not quite see the predicted 3dB gap
(around 4.5 dB for 14-bits) in energy-efficiency with
respect to the outer-bound with a known channel, even
with a very high-resolution quantization level. Tighter
bounding techniques for the case with feedback in
addition to variable-energy schemes should therefore
be considered for future work. The tightest of the
Merhav bounds is clearly (31) but also does not
quite predict the 1.7 dB asymptotic gap. Although
not shown, numerical analysis also confirmed the
asymptotic result given in Section III by (17) regarding
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the use of twice as much energy in the second round
in comparison to the first.

E/N
0
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one-round (no feedback)

Fig. 4. Numerical evaluation of the upper and lower bounds on
distortion for different values of B in an AWGN channel.

E/N
0
 (dB)

0 5 10 15 20 25 30 35 40

D
 (

d
B

)

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Merhav Bound

Goblick bound R=2

Goblick bound R=1

one-round (no feedback)

two-rounds
B=3

B=4

B=5

B=6

Fig. 5. Numerical evaluation of the distortion for B from 3 to 6 in
a wireless channel for α = 0.1, Lp = 1, L = 1

The upper-bound in (26) is depicted in Figures (5),
(6) and (7) for several values of B for the cases of
α = 0.1 and α = 0.5 and both high (L = 4) and
low diversity orders (L = 1). In all cases we see a
very significant effect (≥10dB in energy-efficiency) in
using a two-round feedback protocol compared to a
one-shot transmission, and this still holds even in the
case of a strong line-of-sight component (α = 0.1).
Both types of lower-bounds are looser in the case
of the fading channels, and especially in the high-
diversity case (Figure (7)). This can be attributed to
the non-coherent combining loss which is not captured
by the bounds which assume known channels. This
motivates the search for better lower-bounds assuming
unknown channels in their formulation.
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Fig. 6. Numerical evaluation of the distortion for B from 3 to 6 in
a wireless channel for α = 0.5, Lp = 1, L = 1
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Fig. 7. Numerical evaluation of the derived bounds for B from 3
to 6 in a wireless channel for α = 0.5, Lp = 2, L = 4

VII. CONCLUSION

We introduced a low-latency feedback protocol for
the transmission of a single random variable over a
wide-band channel and provided upper bounds on its
performance with non-coherent detection on both pure
line-of-sight and more general fading channels. The
protocol and transmission strategy can be used for
future energy-limited sensors making use of broadband
cellular networks. We showed that the improvement
over a one-shot transmission is on the order of 3-
4 dB and asymptotically 4.7 dB. We have also in-
cluded a discussion regarding the case of imperfect
feedback and its effect on the trade-off between the
required energy for the protocol and the reconstruction
error in estimating the source message. We showed
that in this case, if the energy consumption required
by the feedback link is accounted, this reduces the
reconstruction fidelity. Additionally, numerical evalu-
ation of Merhav’s recent lower-bounds for one-shot
transmission are included and the tightest variant using
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his techniques is determined. Both the bounds and
performance evaluation of the feedback protocol have
been extended to a multi-channel fading model. The
improvement of the feedback protocol over one-shot
transmission is even more significant than in the line-
of-sight case. We further suggest that tighter bounding
techniques which rely on unknown channels should be
found for the fading channel. Furthermore, schemes
using variable-energy transmission should be consid-
ered to close the gap with the lower-bounds.

VIII. APPENDIX

A. Derivation of the Distortion De
Let u be a realization of the random variable U and

û denote its estimate. The distortion for the error case
De = E[(u− û)2|û in error] is defined as follows

E[(u− û)2|û in error] = E[u2|û in error]

+ E[û2|û in error]− 2E[uû|û in error]. (37)

The variance E[u2] equals 1 by definition whereas
E[û2|û in error] and E[uû|û in error] are derived as
follows, respectively.

E[û2|û in error]
(a)
=

1

2B − 1

2B−1−1∑
i=0

(
i
√

3

2B−1
+

√
3

2B−2

)2

=
3

2B − 1
2−2B

2B−1−1∑
i=0

(2i+ 1)2 (38)

Since U is distributed uniformly over (−
√

3,
√

3),
there are 2B bins with a size of 21−B√3 on each side
of the origin. Conditioned on û being in error, there
are as a total of both sides of the origin 2B − 1 bins
left for û to fall in. The midpoint of the ith bin and
the distance between two adjacent bins is used in step
(a) of (38) to obtain the variance of û for the error
case.

E[uû|û in error] =

∫
u>0

p(u)du

(E[ûu|û in error, U = u] + E[ûu|û in error, U = −u])

=

∫
u>0

1

2
√

3
du (E[ûu|û in error, U = u]

+E[ûu|û in error, U = −u])

(b)
=

1

2
√

3

2B−1−1∑
i=0

∫
u∈Bi

du 1

2B − 1

∑
j s.t.ûj /∈Bi

uûj −
1

2B − 1

∑
j s.t.−ûj /∈Bi

uûj


=

1

2
√

3

2B−1−1∑
i=0

∫
u∈Bi

du

(
1

2B − 1
(−ûi)−

1

2B − 1
ûi

)

= − 1√
3(2B − 1)

2B−1−1∑
i=0

ûi

∫
u∈Bi

duu

= − 1√
3(2B − 1)

2B−1−1∑
i=0

(
i
√

3

2B−1
+

√
3

2B−2

)[
u2

2

]
u∈Bi

= − 1

2
√

3(2B − 1)

2B−1−1∑
i=0

3
√

322−3B(2i+ 1)2

= −3(21−3B)

2B − 1

2B−1−1∑
i=0

(2i+ 1)2

(39)

In step (b) of (39), Bi is the bin corresponding to
(i21−B√3, (i+ 1)21−B√3) and each sum reduces to
a single term as −ûi and ûi in the following step. The
distortion conditioned on û being in error (37) yields

De = 1 +
3

2B − 1
2−2B

2B−1−1∑
i=0

(2i+ 1)2

+
3

2B − 1
(22−3B)

2B−1−1∑
i=0

(2i+ 1)2

= 1 +
3

2B − 1
(2−2B + 22−3B)

2B−1−1∑
i=0

(2i+ 1)2

≤ 2, for B > 2 (40)

Note that De decays as B increases. On the other hand,
the quantization distortion Dq is simply the variance
within a single bin which is 2−2B .

B. Wireless Adaptation of the Goblick Bound

In order to derive a lower bound the distortion level
of the wireless channel with feedback, we define the
model Yr,k =

√
hrXr,k + Zr,k, k = 1, · · · , N/R,

r = 1, · · · , R where Yr,k, Xr,k, hr and Zr,k are
the channel output, input, complex fadig amplitude
and the noise terms, respectively. We start with
two different expansions of the mutual information
I(U ;Y| {Hr = hr, r = 1, · · · , R}) which are equated
and given as follows.

I(U ;Y| {Hr = hr}) = h(U |{Hr = hr})
− h(U − Û ({Hr = hr}) |Y, {Hr = hr})
(a)
= h(U)− h(U − Û ({Hr = hr}) |Y, {Hr = hr},

Û ({Hr = hr}))
≥ h(U)− h(U − Û ({Hr = hr}))
(b)
=

1

2
log 12− 1

2
log(2πeD(h))

=
1

2
log

(
6

πe

1

D(h)

)
(41)

11



where D(h) represents D ({Hr = hr}). In step (a)
given the independence between U and {Hr = hr},
the conditional entropy equals the entropy of the
source. In step (b) the entropy of a uniform source
defined on (−

√
3,
√

3) is substituted. For the second
expansion we have

I(U ;Y| {Hr = hr}) = h(Y| {Hr = hr})
− h(Y|U, {Hr = hr})

=

R∑
r=1

N/R∑
k=1

h(Yr,k|Y k−1
r , Y N1 , · · · , Y Nr−1, {Hr = hr})

−
R∑
r=1

N/R∑
k=1

h(Yr,k|Y k−1
r , Y N1 , · · · , Y Nr−1, U, {Hr = hr})

=

R∑
r=1

N/R∑
k=1

h(Yr,k|Y k−1
r , Y N1 , · · · , Y Nr−1, {Hr = hr})

−
R∑
r=1

N/R∑
k=1

h(Yr,k|Y k−1
r , Y N1 , · · · , Y Nr−1, U,X, {Hr = hr})

=

R∑
r=1

N/R∑
k=1

h(Xr,k

√
hr + Zr,k|Y k−1

r , Y N1 , · · · , Y Nr−1,

{Hr = hr})−
R∑
r=1

N/R∑
k=1

h(Zr,k)

≤
R∑
r=1

N/R∑
k=1

log 2πe
(
N0 + Er,k|hr|2

)
−

R∑
r=1

N/R∑
k=1

log 2πeN0

(c)
=

R∑
r=1

N

R
log

(
1 +

R

N

Er|hr|2
N0

)

≤
R∑
r=1

Er|hr|2
N0

. (42)

In step (c) we used the following property log(1+x) ≤
x. Equating the two expansions (41) and (42) yields

D(h) ≥ 6

πe
e−2

∑R
r=1 Er|hr|

2/N0 (43)

which can be re-written as D(h) ≥
6
πee
−2 E

RN0

∑R
r=1 |hr|

2

with Er = E/R ∀r. The
average distortion D = E[D(h)] is therefore lower
bounded by the moment generating function of |h|2,
as shown below by M|h|2(t), with t = −2E/N0.

M|h|2(t) =

6

πe

R∏
r=1

(1 + 4αE/RN0)
−L

exp

{
−2(1− α)LE/RN0

1 + 4αE/RN0

}
(44)

The final form of the lower bound (43) is given in
Section V-B by (36).
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