
INTRODUCING MOTION INFORMATION IN DENSE FEATURE CLASSIFIERS

Claudiu Tănase, Bernard Mérialdo

EURECOM
Campus SophiaTech

450 Route des Chappes
06410 Biot France

ABSTRACT

Semantic concept detection in large scale video collections is
mostly achieved through a static analysis of selected keyframes.
A popular choice for representing the visual content of an im-
age is based on the pooling of local descriptors such as Dense
SIFT. However, simple motion features such as optic flow can
be extracted relatively easy from such keyframes. In this pa-
per we propose an efficient addition to the DSIFT approach
by including information derived from optic flow. Based on
optic flow magnitude, we can estimate for each DSIFT patch
whether it is static or moving. We modify the bag of words
model used traditionally with DSIFT by creating two separate
occurrence histograms instead of one: one for static patches
and one for dynamic patches. We further refine this method
by studying different separation thresholds and soft assign-
ment, as well as different normalization techniques. Classi-
fier score fusion is used to maximize the average precision of
all these variants. Experimental results on the TRECVID Se-
mantic Indexing collection show that by means of classifier
fusion our method increases overall mean average precision
of the DSIFT classifier from 0.061 to 0.106.

1. INTRODUCTION

The TRECVID[1] evaluation campaign is a major challenge
evaluating state of the art research on large scale video col-
lection indexing. In particular, the Semantic Indexing (SIN)
track of TRECVID is a concept classification task where con-
cepts are high level (”mountain”,”Female Person”), mostly
but not exclusively visual (e.g. ”joy”, ”weather”,”amateur
video”). We are investigating ways to improve concept de-
tection in the TRECVID Semantic Indexing Task. In this pa-
per, we are working with the video data and annotations from
the 2011 edition of the TRECVID Semantic Indexing chal-
lenge. We are evaluating 50 concepts, with sparse training
annotations available on a development set containing 119685
sequences, and applied on a test set of 146788 sequences.
We also use the MAP (Mean Average Precision) as perfor-
mance measure, as mentioned in [1]. The traditional Bag-of-
Words approach involves extracting local visual features such

as SIFT from a video keyframe. More recent research suggest
that dense extraction of visual features ultimately gives better
performance[2] than interest points. The extracted features
are clustered using K-means, with a large enough value of
K (typically hundreds or thousands) and the resulting clus-
ter centroids form a codebook. Ultimately, videos are de-
scribed by quantizing the extracted features into a histogram
of codewords by assigning each feature to its nearest code-
word. If the chosen descriptor is SIFT, this method is infor-
mally known as Dense SIFT or DSIFT. The overlapping zones
around keypoints are referred to as patches. In this paper,
we employ simple motion estimation techniques to compute
a motion mask at keyframe level. This motion mask allows
us to separate static SIFT keypoints from SIFT keypoints in
motion and deal which each of these classes separately. We
propose a method based on the construction of two separate
Bag-of-Words histograms for the static and dynamic classes
with concatenation of the resulting feature vectors.
The contribution of this paper is twofold. Firstly, we are
proposing an enrichment of the DSIFT descriptor by adding
motion information. In the process, 3 static-dynamic separa-
tion methods and 3 normalization techniques are tested. Sec-
ondly, we show that linear fusion of the newly obtained de-
scriptor in several flavors can outperform individual descrip-
tor performance and thus help increase the performance of the
retrieval system.

2. RELATED WORK

Traditionally concept detection in TRECVID is done as a fu-
sion of numerous classifiers, mostly visual, but also audio
and metadata-derived[1]. One visual descriptor used in the
overwhelming majority of TRECVID submissions is David
Lowe’s SIFT[3]. In its original iteration SIFT was both an
interest point detector and descriptor. The extrema values of
a difference of gaussians at different scales was used to de-
tect keypoints. However, more recent results[4, 2] in seman-
tic indexing show that dense extraction may give better re-
sults than keypoints, especially in a large data context such
as TRECVID. The extracted features are then processed ac-



Fig. 1. (a) Examples of motion masks extracted using optic flow. Green dots are placed at the position of the SIFT keypoint.
The dots color intensity is proportional to the amount of motion. (b) Separation between static and dynamic patches followed
by the Bag of Words model applied separately on each of the 2 resulting sets of patches. The resulting vectors are concatenated
into the final feature.

cording to the Bag of Words paradigm. Adoption of spatio-
temporal and motion features is low but steadily growing since
recently. One notable examples is Laptev’s Spatio-Temporal
Interest Point descriptor[5] (STIP), which detects 3D interest
points using a 3D extension of the Harris operator and de-
scribes them using histograms of oriented gradients and his-
tograms of flow (HOGHOF). Wang’s dense trajectories de-
scriptor [6] extracts and tracks dense features throughout the
entire video volume. This approach is however more suitable
to human action recognition than concept detection, and has a
much higher computational cost than the proposed approach.
Our work also bears some resemblance to SIFT Flow[7], in
that displacements of SIFT patches are extracted, but while
their method estimates the apparent motion between images
representing different scenes, we use ”real” motion informa-
tion from video for describing the image content. Chen’s
MoSIFT[8] is an extension of SIFT that adds in a similar fea-
ture where the gradient is replaced by optic flow. We are not
aware of any published methods that try to combine local 2D
descriptor information with motion information by separating
features into motion categories.

Basic methods[9] for obtaining a foreground mask are
frame differencing, optic flow thresholding and background
modeling. Frame differencing is fast but shows very little
robustness to uniform objects, textureless zones and illumi-
nation changes. Background model methods are far more re-
liable but demand a stationary camera and require a longer
sequence. Optic flow is a good compromise in speed and per-
formance because it requires only a pair of frames instead of
a full sequence and gives relatively accurate estimates on the
displacement.

3. OBTAINING THE MOTION MASK

One way to simulate a stationary camera at frame level is to
compensate for camera motion between frames. We use a
camera stabilization function similar to the one in [10]. This
method does dominant motion compensation by estimating a

homography with RANSAC over detected feature correspon-
dences. This homography is then used to produce a synthetic
motion vector field that models the camera movement which
is used as an initial estimate for the full-frame optic flow using
Farneback’s method[11]. The displacement between the syn-
thetic background motion field and the actual motion field can
then be used as an estimation of foreground objects. One sim-
ple way of doing this is by thresholding the flow magnitude
in each pixel. If the flow magnitude is higher than a prede-
termined threshold, the pixel is in motion and is considered
foreground (see figure 1(a)).

4. CONSTRUCTION OF THE NEW FEATURE

4.1. Codebook construction

The standard approach when classifying using bag-of-features
involves the construction of a codebook. This is usually achieved
by clustering the features using the K-means algorithm using
euclidean distance. Each resulting cluster centroid is consid-
ered a codeword. In this paper, we follow the standard ap-
proach in computing the codebook. We empirically choose
a codebook size of k=500, which we found as a reasonable
compromise between performance and speed.

4.2. Static-dynamic separation

The core of our approach is in the separation between static
and dynamic patches. We do this separation based on the cor-
responding value of compensated optic flow, which we obtain
earlier for the motion mask. Figure 1 (b) shows how this sep-
aration influences the final feature. We experimented with
different variants of separation.
A collection-wide statistic on flow magnitude in all keypoint
positions gives us a distribution of flow velocities. We ex-
clude from this statistic points with zero velocity flow since
these points dominate the distribution without providing any
information, and because failed optic flow estimation would
result in zero flow. The θ1 median of this distribution would



Fig. 2. The functions defining the static and dynamic weight
with respect to flow magnitude in the 3 strategies: fixed
threshold θ1, fixed threshold θ2 and soft assignment with pa-
rameter α

be the value that divides keypoints with slower motion and
keypoints with faster motion into two equal sets. When con-
structing our feature vector, instead of quantizing all DSIFT
features into one occurrence histogram, we separate the fea-
tures based on this threshold and construct two histograms
separately: one for the ”slow” flow, which we call static, and
one for the ”fast” flow which we call dynamic. This is the first
separation strategy.
A second separation strategy used the same rule, but with the
threshold at a minimal level θ2. This causes more patches to
be considered dynamic, and only the patches that are certain
to be stationary as static.
The third strategy involves soft assignment. Using a fixed
threshold value means that patches with a velocity close to
threshold level may fall either on the static or dynamic part,
which creates noise. This can easily be avoided by making a
soft assignment instead of a binary static/dynamic choice. We
achieve this by assigning each patch a static weight ws and a
dynamic weight wd with ws + wd = 1. The flow velocity
v is used to directly determine the dynamic weight by using
a clipped ramp function (see figure 2). The value of the α
parameter has been empirically set.

4.3. Normalization

Since we use dense feature sampling, this involves that the
number of features sampled in each keyframe is the same (as-
suming all videos have the same resolution). This makes for
an implicit L1 normalization of the resulting histograms: the
sum of the histogram will be equal to the total number of fea-
tures in the shot, which will be constant for all shots. How-
ever, since the principle of our approach is to separate be-
tween static and dynamic zones in the image, the total number
of features in each zone will vary, thus a special normalization

technique is required. We compare 3 normalization strategies:
The first and most simple is the L1 normalization of the static-
dynamic concatenated vector. Each element of the feature
vector is divided by the total sum of the vector.
The second normalization method normalizes the static and
dynamic histograms separately. Each histogram is separately
normalized using L1 norm and the resulting histograms are
then concatenated.
The third method is svmscale[12]. This method works by nor-
malizing components instead of features. Each component of
the feature vector is divided by the total sum of that compo-
nent over all vectors.
The separation and normalization described are reasonably
fast, taking in average 1.48 seconds CPU time per shot.

5. CLASSIFICATION AND FUSION

We use LibSVM to train concept classifiers. We use exponen-
tial χ2 kernels, that have proven in practice to give state of the
art results in visual feature based classification. Specifically,
we use a modification of the binary C-SVM implementation
in LibSVM. We optimize the learning parameters C (main
parameter of a C-SVM), γ (χ2 kernel width) and w1 (weight
of the positive class) through brute force search. Each run is
evaluated by measuring the Average Precision (AP). The final
score of the method is the mean average precision across all
concepts (mAP). For comparison we add the ”default” DSIFT
approach, which simply bypasses the separation stage.
We also experiment with a simple linear fusion technique.
This is done by combining the score of each classifier using a
weighted sum, with weights summing to one. Since the com-
putation of weighted sums and of the mean average precision
are almost instantaneous, a grid search on the weight values
is possible. We experiment with the fusion of 4 best perform-
ing variants, as described in the next section. Each weight is
tested in 0.1 increments.

6. EXPERIMENTAL RESULTS

In the TRECVID training dataset, the threshold values for
flow are θ1 = 14, θ2 = 1, α = 5. As described in section
4.2, θ1 is a corpus-specific median value that splits the set of
displacements into equal static and dynamic sets. Lowering
the α parameter would essentially lower performance by ap-
proaching the threshold = θ2 situation, whereas excessively
increasing it would lead to unbalancing between the static and
dynamic classes. θ2 should function as a noise threshold, and
is chosen based on the precision of optic flow detection.

If we count the ’default’ run, there are 11 valid combina-
tions between separation 4 strategies: default (no separation),
medium threshold, low threshold, and soft assignment and 3
normalization methods: global L1, separate L1 and svmscale.
We exemplify the resulting combinations on 2 concepts: pre-
dominantly static ”Mountain” and a predominantly dynamic



Mountain default trhesh=θ1 thresh=θ2 soft
globalL1 0.13164 0.0297 0.0581 0.0316
sepL1 N/A 0.0045 0.0173 0.0003
svmscale 0.2699 0.2866 0.1808 0.2605
Running default trhesh=θ1 thresh=θ2 soft
globalL1 0.02351 0.001 0.0235 0.0134
sepL1 N/A 0.001 0.0235 0.0009
svmscale 0.01811 0.03843 0.0198 0.0474

Table 1. Average precision of the different separation and
normalization techniques for two concepts

”Running”. Table 1 shows these results.
The general impact on performance is measured by av-

eraging precision over all 50 concepts. Since thresholding
methods and the sepL1 consistently gave lower performance
(see table 1) we have done this only with two of the above
4 separation strategies: ’default’ and ’soft’ and two out of 3
normalization methods: ’globalL1’ and ’svmscale’. The final
run is the best performing linear fusion of the 4. The resulting
average precisions are summarized in the following table:

run default-
globalL1

soft-
globalL1

default-
svmscale

soft-
svmscale

fusion

MAP 0.0615 0.0637 0.0651 0.0701 0.1067

Table 2. Mean average precision of 4 runs and fusion

Note that ”default globalL1” actually means the standard
DSIFT baseline. It is clear to see that both soft assignment
and svmscale normalization improve on the initial approach.
The late fusion experiment improves performance significantly:
in average each concept is improved by 10.05% over the best
single classifier out of the 4 variants. These improved classi-
fiers give a final mean average precision of 0.106 which is an
improvement of 68.33% over the baseline DSIFT.

7. CONCLUSIONS

It is easy to observe from table 1 that separate L1 normaliza-
tion is not beneficial. The explanation could be that keyframes
containing very little motion have few dynamic patches. Sep-
arate L1 normalization artificially boosts the weight of these
dynamic patches so that overall, static and dynamic end up
having the same weight.

Results confirm that the best combination is soft assign-
ment separation with svmscale normalization. We conclude
that this is due to the fact that component based normalization
deals with static and dynamic features indiscriminately. Also,
svmscale mitigates the problem of having very little motion
information.

In this paper we have shown that straightforward motion
analysis methods can significantly improve the performances
of established visual descriptors. We have proposed the usage

of 3 static-dynamic feature separation strategies, as well as 3
normalization methods for the resulting features. Thus, using
simple and fast motion estimation methods and with the help
of efficient linear classifier fusion we increase the MAP of
DSIFT from 0.061 to 0.106.

8. REFERENCES

[1] P. Over, G. Awad, J. Fiscus, B. Antonishek, M. Michel, A.F.
Smeaton, W. Kraaij, G. Quénot, et al., “An overview of
the goals, tasks, data, evaluation mechanisms and metrics,”
in TRECVID 2011-TREC Video Retrieval Evaluation Online,
2011.

[2] H. Wang, M.M. Ullah, A. Klaser, I. Laptev, C. Schmid, et al.,
“Evaluation of local spatio-temporal features for action recog-
nition,” in BMVC 2009-British Machine Vision Conference,
2009.

[3] D.G. Lowe, “Object recognition from local scale-invariant fea-
tures,” in Computer Vision, 1999. The Proceedings of the Sev-
enth IEEE International Conference on. Ieee, 1999, vol. 2, pp.
1150–1157.

[4] David Gorisse and Frédéric Precioso, “IRIM at TRECVID
2010: Semantic Indexing and Instance Search,” in TREC on-
line proceedings, Gaithersburg, United States, Nov. 2010, pp. –
, GDR ISIS.

[5] I. Laptev and T. Lindeberg, “Space-time interest points,”
in Computer Vision, 2003. Proceedings. Ninth IEEE Interna-
tional Conference on, oct. 2003, pp. 432 –439 vol.1.

[6] H. Wang, A. Klaser, C. Schmid, and C.L. Liu, “Action recog-
nition by dense trajectories,” in Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011,
pp. 3169–3176.

[7] Ce Liu, Jenny Yuen, and Antonio Torralba, “Sift flow: Dense
correspondence across scenes and its applications,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol.
33, no. 5, pp. 978–994, 2011.

[8] M. Chen and A. Hauptmann, “Mosift: Recognizing human
actions in surveillance videos,” Tech. Rep. CMU-CS-09-161,
Carnegie Mellon University, 2009.

[9] Massimo Piccardi, “Background subtraction techniques: a re-
view,” in Systems, Man and Cybernetics, 2004 IEEE Interna-
tional Conference on. IEEE, 2004, vol. 4, pp. 3099–3104.

[10] N. Ikizler-Cinbis and S. Sclaroff, “Object, scene and actions:
Combining multiple features for human action recognition,”
Computer Vision–ECCV 2010, pp. 494–507, 2010.

[11] Gunnar Farnebäck, “Two-frame motion estimation based on
polynomial expansion,” Image Analysis, pp. 363–370, 2003.

[12] Chih-Chung Chang and Chih-Jen Lin, “LIBSVM: A library
for support vector machines,” ACM Transactions on Intelligent
Systems and Technology, vol. 2, pp. 27:1–27:27, 2011.


