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Abstract—Cognitive Networks have been proposed to oppor-
tunistically discover and exploit (temporarily) unused licensed
spectrum bands. For a number of applications, high throughput is
the key figure of merit, while the application is still elastic enough
to be supported at different rates. To this end, the cognitive node
will try to discover and pool together a number of (at the time
available) primary channels to provide a given target throughput.
When a single radio is used for both transmission and channel
scanning, an interesting tradeoff arises: when one or more
channels of the currently available ones are lost (e.g. primary user
returns), should the node start scanning immediately or continue
transmitting over the remaining channels. Using renewal-reward
theory, we show that if the goal is to maximize the average
(long-term) throughput, the answer to this question depends on
the statistics of the channel availability periods. Specifically, for
relatively homogeneous channels, we show that it is optimal to
start scanning immediately, while for heterogeneous channels, it
is often better to defer scanning, even if multiple channels are
lost. Simulations for a range of different channel characteristics
validate our analytical findings and suggest that triggering the
scanning function at the right times, can improve performance
considerably.

Keywords-Cognitive networks, Spectrum sensing, Channel
scanning, Renewal theory.

I. INTRODUCTION

In the last years there has been an increased spectrum

demand from wireless applications and data. Due to the

static spectrum allocation policy, spectrum scarcity is a major

problem in today’s wireless industry. At the same time, a large

portion of the assigned spectrum is underutilized [1]. Dynamic

spectrum access techniques have recently been proposed to

overcome these problems, and Cognitive radio [2] is the

key enabling technology. In a cognitive network, there exist

licensed users which are provided the spectrum from the

regulation authority, as well as users that utilize the spectrum

opportunistically whenever they find it available. The former

ones are known as primary users (PUs), while the later ones are

known as cognitive (secondary) users (SUs). Various spectrum

management functions [3] such as spectrum sensing, spectrum

decision, spectrum sharing, and spectrum mobility, are then

used to enable this seamless sharing.

A cognitive user can use one or more channels when no

other primary users are active in that region. However, as soon
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as a primary user returns to the channel, the SU must interrupt

its transmission at that moment1. Spectrum sensing [4] is a

key feature of cognitive radios. It enables an SU to detect

available frequency bands (not occupied by PUs), as well as

the detection of the PU returning on that channel. Sensing

techniques such as energy detection, matched filter approach,

and waveform sampling [3] have been extensively studied.

Spectrum scanning, on the other hand, decides how to

choose the channels to sense first, among the large number

of possible frequencies a wideband cognitive radio could have

access to. Intuitively, spending time to sense channels which

have a high PU activity, and thus a low probability to be found

available, can waste resources. As a result, there has been a

considerable amount of work regarding the problem of channel

scanning. Most of these works are concerned with finding the

optimal sequence order to scan the channels, so that a certain

parameter is optimized. In [5], authors try to minimize the

scanning time, i.e. to get an available channel in the fastest

way. In [6], the goal is to minimize the probability of link

failure. Some other papers [7], [8] propose greedy algorithms

for the sequence of channel scanning for both reactive and

pro-active spectrum handoff.

Cognitive radios are also capable of utilizing multiple chan-

nels in parallel (“pooling”), in order to increase the aggregate

capacity [9]. In this context, an interesting problem arises

when a single radio is used for both sensing and transmission,

due to the need for low cost, energy, and/or complexity for

small cognitive devices [9]. This means that a node cannot

simultaneously transmit and sense, i.e. when sensing, it must

interrupt its transmission. Should the node then initiate the

scanning function immediately after is loses one of its channels

currently in use? Or should it continue with the channels

left, until one (or more) channels are lost? The tradeoff is

the following: if it chooses to scan, then the capacity on the

remaining available channels is wasted, and nothing useful

is sent; if on the other hand it defers scanning, then it will

transmit for some time at a lower rate (than it potentially

could) and it will then have to scan longer to find more

available channels. This latter intuition suggests that perhaps

it is best to trigger scanning immediately, and maximize the

1We will assume throughout that the “interweave” model of sharing is
used [1].



amount of time one sends at the maximum rate.

Our goal in this paper is to analyze this tradeoff as a function

of the characteristics of all the channels available to the

SU. We will assume an application that requires a maximum

amount of throughput, but is elastic (i.e. could also operate

at lower rates - e.g. streaming, file downloading, etc.), and

we will try to maximize the average (long-term) throughput

it is offered by the SU. To achieve this, we apply renewal

reward theory [10]. Our contributions can be summarized as

follows: (i) In accordance with the above intuition, we prove

that when channel availability/idle periods are exponentially

distributed with similar mean duration (homogeneous), it is

indeed optimal to scan immediately when a single channel

is lost; (ii) Contrary to the above intuition, when there is

an initial scanning cost, or channel availability periods are

heterogeneous, we prove that it is not optimal to scan im-

mediately, but an optimal threshold exists; (iii) We provide

a method to predict this threshold based on the channel

characteristics, and show that this depends on the coefficient

of variation between the mean availability periods of different

channels; (iv) We provide an online algorithm that can take

advantage of knowledge of which channel was just lost, to

further improve performance; (v) Finally, using simulations,

we provide evidence that our conclusions and algorithms are

valid even when the channel availability durations follow a

general (non-memoryless) distribution.

The paper is organized as follows. In the next section, we

discuss some related work. We present our problem setup and

provide analytical results about the optimal scanning actions,

for a specific class of channel availability distributions (ex-

ponential) in Section III. We then validate our theory against

simulations in Section IV, and also explore the case of general

availability periods. We conclude our work in Section V.

II. RELATED WORK

There has been a large amount of research in the area of

spectrum scanning in cognitive networks. Yet, most of these

papers are concerned with determining the scanning sequence

of the channels to be sensed, in order to optimize certain

system parameters [11], [12], [13], [14]. In [7], the authors

propose an algorithm based on dynamic programming for the

optimal scanning sequence. However, this work refers to pro-

active spectrum mobility schemes, where the spectrum sensing

process is initiated before losing the channel. In [8], a similar

algorithm has been proposed for the reactive spectrum mobility

schemes (like the ones we consider). However, the proposed

algorithm is not optimal and intends to minimize only the time

it takes for a packet to be successfully transmitted assuming

that there will be spectrum handoffs.

In a more related work [5], the authors propose a scanning

sequence in order to minimize the average time to get a

new channel, after the current one in use is being lost. They

prove that this can be accomplished if channels are sorted in

descending order of their probabilities to be found available

(related to the duty cycle of that channel). However, they do

not consider how long the acquired channel will be available
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for (dependent on both the first and second moments of

the availability period [15]). To this end, in [6], a channel

scanning sequence is proposed to minimize the probability of

link failure between two cognitive users, i.e. a transmitter and

a receiver during a transmission session. This can be done

by sorting channels in descending order according to their

expected excess idle periods durations.

Furthermore, [5] does not consider when the scanning

process should be triggered, but rather begins from the start-

ing time of such a scanning with a goal to acquire an

amount of “missing” bandwidth, and investigates the order

of scanning (backup) channels so as to minimize the delay

to acquire the required bandwidth (possibly pooling together

multiple channels). While finding additional channels fast is

an important problem, it is also orthogonal to our problem.

Different scanning sequences (optimal or suboptimal) could be

incorporated into our model, as long as we know the expected

amount of time to acquire L channels using that sequence.

Summarizing, unlike many related works, we consider the

scanning problem in scenarios when multiple channels are

pooled together. More importantly, instead of optimizing the

scanning sequence when scanning is triggered, we investigate

the complementary optimization problem of when to trigger

this scanning function in order to optimize the (long-term)

throughput that can be maintained by the SU. To our best

knowledge, this is the first work in this direction.

III. ANALYSIS

A. Problem Setup

Consider a single channel used by one or more primary

users. We assume that the state of this channel can be either

active (’ON’), i.e. the primary user is active, or idle (’OFF’).

A secondary user can only transmit during an OFF period

(interweave model). The exact duration of the ON and OFF

periods depends on the user behavior, the type of traffic,

system details and protocol interaction. Such details cannot

be known by the secondary user.

We will model the ON-OFF activity pattern of PUs as an

alternating renewal process [10]
(

T
(n)
ON , T

(n)
OFF

)

, n ≥ 1, as

shown in Figure 1. n denotes the number of ON-OFF cycles

elapsed until time t. The duration of any ON (OFF) period

T
(n)
ON

(

T
(n)
OFF

)

, is a random variable distributed according to

some probability distribution FON (FOFF ), and independently

of other ON or OFF periods.

We assume that the spectrum, available to the SU, is divided

into channels with identical bandwidths B. Furthermore, we

consider applications that require a (maximum) bandwith

of C = NB, but could also operate at lower rates. This



Fig. 2. The transmission and scanning phase

could be the case for example, for file downloading or P2P

applications [16], where C (or N ) is dictated by the cognitive

radio technology (not more than N channels can be pooled

together), or multimedia streaming applications with multiple

rate codings [9]. In addition to these N channels used, we

assume there are also other (backup) channels that can be

scanned and used (if available), when one or more of the used

channels are lost. After losing a certain channel, we add it to

the list of backup channels.

In this context, we will consider the following problem: A

threshold value L is chosen, such that after any L channels

(out of the N ) are lost we must start scanning and regain

L new channels. What is a good value for L? Note that the

choice of L = 1 corresponds to the usual case where scanning

starts immediately after any of the available channels is lost.

We make here some final remarks about the practical impli-

cations of the above problem setting. We assume that a single

radio and antenna is used. Although such a cognitive radio is

usually wideband (e.g. some 10s of MHz), allowing for more

than 1 channel to be grouped together, even if not adjacent

(using a digital filter), it can only transmit or scan at any

time, but not both (since scanning usually requires changing

the center frequency as well, and introduces switching delays

in the order of ms). In contrast, to detect that one or more

channels out of the used ones is lost (i.e. a PU has started

transmitting), we could just switch the radio periodically to

receive mode (on the same band), take a short time sample

(usually in the order of µs), and do an FFT to identify which

band(s) out of the (up to) N used ones has high enough energy

(implying activity). The energy threshold and the frequency of

such sensing periods pose a tradeoff between the time lost not

transmitting and false positive/negative for PU detection, and

is beyond the scope of this paper. Yet, for the sake of the

subsequent analysis, we can safely ignore these interleaved

sensing periods as they are orders of magnitude shorter, and

assume that PUs are detected correctly.

B. Analytical Model

Figure 2 illustrates our model, assuming that at each instant

at most one channel can be lost. A cycle consists of the tran-

msission phase and the scanning phase. τi represents the time

during which N − i channels are being used for transmission

(i < L). The scanning phase represents the time needed to

regain the L missing channels. The area under the stair-case

curve represents the total amount of data transmitted during

a cycle. Our goal is to maximize the long-term throughput,

namely the size of this area up to a time t, when t is large.

To this end, we will use renewal-reward theory [10]. We

model the process shown in Figure 2 as a renewal process,

where a renewal occurs each time the neccessary N channels

are gathered and we can resume our transmission. A re-

newal cycle consists of two phases: transmission and scanning

phase2. We can define a reward for each cycle as the amount

of data transmitted during the transmission phase of the cycle.

If we denote by R(t) the reward earned by time t, the

average (long-term) throughput is the mean reward rate
R(t)
t

,

which from renewal-reward theory we know it to be

limt→∞

E [R (t)]

t
=

E [R]

E [T ]
. (1)

In Eq.(1), E [R] is the average reward per cycle, while E [T ]
is the average cycle duration. Let’s denote the reward rate by

X . So, the average reward rate is given by

E[X] =
E[R]

E[T ]
. (2)

Our objective is to maximize the average reward rate, that is

the average data rate per cycle, by choosing the right threshold

L, as a function of the OFF (idle) period characteristics of the

channels available to an SU node.

To calculate the values of E[R] and E[T ], we need to

understand the random variables τi. At the beginning of a

transmission phase, N channels are available that were either

already being used, or were found to be available during the

scanning phase. As a result, the remaining availability time

for each of these channels, say channel j, is an excess random

variable (excess OFF period) denoted as T
(e)
OFF,j . Then, τ0

corresponds to the time until any of the N channels is lost,

τ0 = min
(

T
(e)
OFF,1, T

(e)
OFF,2, . . . T

(e)
OFF,N

)

. (3)

Similarly, τ1 denotes the amount of time exactly N − 1

channels are in use (time between the 1st and the 2nd channels

are lost),

τ1 = min
(

T
(e)
OFF,1, T

(e)
OFF,2, . . . T

(e)
OFF,(N−1)

)

. (4)

Similarly for the rest of τi.

We can thus express the average area below the curve (mean

reward) as

E[R] = NB

L
∑

i=0

E[τi]−B

L
∑

i=0

iE[τi]. (5)

The average cycle duration is

E[T ] =
L
∑

i=0

E[τi] + E[Tscan(L)], (6)

where Tscan(L) is the scanning time needed to acquire the

missing channels.

2We stress here that we do not claim this process to be a renewal process,
but rather use the renewal-reward theory as a tool to derive analytical insight
regarding the throughput achievable by different policies. This insight will be
validated against simulations.



We can now say that our goal is to find the threshold value

L that will maximize

E [X] =
C
∑L

i=0 E[τi]−B
∑L

i=0 iE[τi]
∑L

i=0 E[τi] + E[Tscan(L)]
. (7)

This is quite involved in the general case. In the remainder,

we will consider analytically the cases of arbitrary ON periods

and exponential OFF periods (with the same or different mean

durations). The assumption for exponentially distributed OFF

periods is made for analytical tractability. Nevertheless, this

assumption is often not far from reality, as measurements from

[17], [18] suggest that the OFF periods can be approximatted

quite well with exponential distributions. In Section IV, we

will further consider generic OFF periods as well (with in-

creasing and decreasing failure rates).

We make here a final remark about scanning. We will

assume that the scanning periods for each channel are con-

sidered to be identical. Additional features could be included

in our theory. The duration of a channel scanning period

is TI , and we also assume that during the scanning period

the probability that other channels are lost is low; this is

reasonable (and also supported by our simulations) since the

scanning period is usually lower than the durations of the

OFF periods for each channel. For example, assume that the

scanning period is TI = 1 ms. For a duty cycle (the ratio of

time the primary user is active on that channel) of 0.5, on

average we need to scan two channels in order to get one

free channel. So, the average scanning time is Ts = 2 ms.

If the OFF periods are exponentially distributed with mean 1

s, then the probability that an available channel will be lost

while scanning is P [TOFF < Ts] = 1− e−Ts = 0.002. While

this value can be larger for some channels with shorter OFF

periods, this is still small enough to ignore it in our analysis

and only reintroduce this in simulations.

Finally, the duration of the scanning phase will also be a

function of the number of channels that must be acquired:

E[Tscan] = l(L)TI , (8)

where l(L) is the average number of channels that need to

be scanned, in order to regain the L missing ones. It is easy

to see that l(L) ≥ L, since one might need to sense more

than one channel to find one that is available. The exact

function depends on the sequencing algorithm, and can be

simply plugged into the above equations. Unless otherwise

stated, we will assume w.l.o.g. throughout that l(L) is linear,

that is, if Ts is the total time to acquire one channel, then kTs

is the total time to acquire k channels.

C. Exponential IID OFF Periods

We will consider first the simpler case of PU activities hav-

ing independent indentically distributed (IID) OFF periods that

are exponentially distributed, with mean E[TOFF ] = 1
λoff

.

The average durations of ON and OFF periods can be inferred

in different ways [18]. Our first result is the following:

Result 1: For channels with homogeneous (i.i.d.) exponentially

distributed OFF periods it is always optimal to scan immedi-

ately after one channel is lost.

To derive this, we start by the fact that for N independent

exponentially distributed random variables X1, X2,. . . , XN

with parameters λ1, λ2,. . . , λN , the expectation of the mini-

mum of these random variables is

E [min (X1, X2, . . . , XN )] =
1

λ1 + λ2 + . . .+ λN

. (9)

Since λi = λoff , ∀i, it holds that

E[τ0] =
1

Nλoff

,

E[τ1] =
1

(N − 1)λoff

,

and similarly for E[τi].
The mean reward for the duration τ0 is

NB

Nλoff

=
B

λoff

. (10)

Similarly, the mean reward for the duration τ1 (i.e. if the node

continues transmitting using the remaining N −1 channels) is

(N − 1)B

(N − 1)λoff

=
B

λoff

. (11)

It is easy to see then that, based on Eq.(7), the following

inequality must hold so that postponing the scanning process

after a channel is lost gives a higher expected rate per cycle,

compared to immediately scanning

B
λoff

1
Nλoff

+ Ts

<

B
λoff

+ B
λoff

1
Nλoff

+ 1
(N−1)λoff

+ 2Ts

. (12)

After rearranging, this gives

Nλoff < (N − 1)λoff , (13)

which can not be satisfied. This proves that we cannot increase

our average throughput by stopping after 2 channels are lost

(instead of 1). Since the above argument holds for any N , it

is easy to see that we can only lose more by increasing L

further, which proves our claim.

So far, we have considered that there is no initial cost for

the scanning process. However, it is expected that switching to

scanning mode (adjust the devices, determine the first channel

to sense, etc.) will incur some initial setup cost, before the

actual sensing process can commence for the first channel.

In this case, we show that, depending on this initial cost, the

optimal value for L (the scanning threshold) might be larger

than 1.

Result 2. For i.i.d. exponentially distributed OFF periods,

where an initial scanning cost T0 exists, scanning immediately

(L = 1) is not optimal when

T0 ≥
1

N(N − 1)λoff

. (14)

The analysis is exactly the same as before, except the factor



T0 added to the scanning time for both policies. Hence the

inequality that needs to be satisfied is

B
λoff

1
Nλoff

+ T0 + Ts

<

B
λoff

+ B
λoff

1
Nλoff

+ 1
(N−1)λoff

+ T0 + 2Ts

. (15)

Rearranging again gives us the above value for T0. When the

setup (initial) scanning cost is higher than this value, then it

is better to not scan immediately, so as to amortize this cost.

As explained earlier, we have assumed that the expected

cost (time) to acquire k channels is linear in k. This could be

the case for example, if the channels to be sensed during the

scanning phase are picked randomly from the list of backup

channels. If a better or optimal sequence is provided (e.g.

as in [5]) then the time to get a second channel would be

higher on average than the time to get the first channel (since,

channels with high availability probability are scanned first).

This could be easily included in our model by adding an extra

cost ∆ to the time to get the second channel in the above

inequalities. Obviously, for the case of no initial scanning cost,

this would not change Result 1. For the case of an initial

scanning cost, it is easy to see that the required condition

changes to

T0 ≥
1

N(N − 1)λoff

+∆. (16)

1) Finding an optimal threshold: We have so far proven

conditions for which scanning immediately is optimal or not.

In the case of IID exponential OFF periods, we can also find

the optimal threshold explicitly. If we assume a threshold L,

the average transmission time during a cycle is

L
∑

i=0

E[τi] =
1

Nλoff

+
1

(N − 1)λoff

+ . . .+
1

(N − i)λoff

. (17)

This gives

L
∑

i=0

E[τi] =
1

λoff

(

1

N
+

1

N − 1
+ . . .+

1

N − L

)

=
1

λoff

L
∑

i=0

1

N − i
. (18)

The last equation can be rewritten as

L
∑

i=0

E[τi] =
1

λoff

(

N
∑

i=1

1

i
−

N−L−1
∑

i=1

1

i

)

. (19)

Using the Euler’s approximation [19] Hn =
∑n

i=1
1
i
= lnn+

1
2n + 0.57721 we obtain

L
∑

i=0

E[τi] =
1

λoff

(HN −HN−L−1) . (20)

After simple calculus operation we can obtain

L
∑

i=0

E[τi] =
1

λoff

(

ln
N

N − L− 1
−

1

2

L+ 1

N (N − L− 1)

)

. (21)

The expected amount of transmitted data before L channels

are lost is

1

Nλoff

C +
1

(N − 1)λoff

(C −B) + . . .

+
1

(N − L)λoff

(C − LB) . (22)

Since C = NB, after rearraning the last equation we obtain

E[R] =
(L+ 1)B

λoff

. (23)

Replacing (21), (23) and (8) into (7) we have

E[X] =

(L+1)B
λoff

1
λoff

(

ln N
N−L−1

− 1
2

L+1
N(N−L−1)

)

+ l(L)TI

. (24)

We could thus differentiate E[X] above, with respect to L

(and round to the closest integer), in order to find the optimal

value, when one exists.

D. Heterogeneous exponentially distributed channels

We have shown that, unless a large enough initial setup cost

for the scanning function exists, when channel OFF periods

are exponential and of similar duration it is always optimal

to scan immediately when any channel is lost. Here, we will

consider the more realistic case of heterogeneous availabil-

ity periods. We will still consider exponential durations to

maintain tractability, and assume that the rate λi
3 for the OFF

duration of channel i is drawn from some distribution (G(λ)).
The main result of this section is the following:

Result 3: For heterogeneous exponentially distributed OFF

periods, it is not always optimal to scan immediately. Instead,

the transmission should proceed with the remaining channels,

if they satisfy the following relation:

c2λ ≥ 1, (25)

where cλ is the (sample) coefficient of variation of the OFF

periods for the channels remaining available.

There are two interesting things to notice about the above

result. First, unlike the homogeneous channel case, scanning

immediately is suboptimal and a better threshold than L = 1
can be found. Second, this threshold increases when the vari-

ability of the pool of channels available to the SU increases.

We will now go ahead and derive this result.

Since the OFF periods are exponential, we can derive the

average throughput for L = 1 (scan immediately) as

E[X1] =

BN∑
i λi

1∑
i λi

+ Ts

. (26)

Assume now that a channel with rate λlost is lost first.

This is a random variable with probability λlost∑
i λi

. If the node

continues transmitting until another channel is lost, then the

average throughput achieved is given by

E[X2|λlost] =

BN∑
i λi

+
B(N−1)∑
i λi−λlost

1∑
i λi

+ 1∑
i λi−λlost

+ 2Ts

. (27)

3From now on, we will denote λoff,i simply as λi.



We would like to uncondition and get the mean value of

E[X2]. If we denote E[X2|λlost] as a function f(λlost), then

we would like to know E[f(λlost)]. Rearranging Eq.(27), we

obtain

E[f (λlost)] = E

[

a− bλlost

c− dλlost

]

, (28)

where
a = B(2N − 1)

∑

i

λi, b = BN,

c = 2
∑

i

λi

(

1 + Ts

∑

i

λi

)

, d = 1 + 2Ts

∑

i

λi.

The above expectation depends on the distribution of λi values

and is not easy to calculate in the general case. We can use

however Jensen’s inequality to convert this to a function of

E[λlost] itself. We thus check for the convexity of the function

f (λlost). It’s second derivative is

f
′′

(λlost) =
2d (ad− bc)

(c− dλlost)
3
. (29)

We can easily prove that the term c−dλlost is always larger

than 0. For convexity, the term in the numerator must satisfy

ad− bc = B
∑

i

λi

[

2(N − 1)Ts

∑

i

λi − 1

]

> 0.

This implies that the function f (λlost) is always convex under

the condition Ts

∑

i λi ≥ 1
2(N−1) . This condition could be

satisfied when the number of channels N used is large and/or

when there are enough “bad” channels in the pool of available

ones, so that the product Ts

∑

i λi exceeds 1 (“bad” channels

would correspond to channels with quick fluctations between

ON and OFF states, unlike e.g. the case of TV white spaces).

Using Jensen’s inequality [10], and the convexity of f(λlost)
(E[f(x)] ≥ f(E[x])), we can now replace the necessary con-

dition for the L = 1 to not be optimal

E [X1] ≤ E [f (λlost)] , (30)

with the sufficient condition

E [X1] ≤ f (E [λlost]) . (31)

This yields

a− bE[λlost]

c− dE[λlost]
≥

BN

1 + Ts

∑

i λi

. (32)

After solving the above inequation we obtain

E[λlost] ≥
2bc− a(d+ 1)

b(d− 1)
, (33)

and replacing the expressions for a, b, c, and d we get

E[λlost] ≥
1 + Ts

∑

i λi

NTs

. (34)

This already provides a condition related to the statistics of

the existing and the lost channels. If it holds that Ts

∑

i λi >>

1, from Eq.(34) we get

E[λlost] ≥

∑

i λi

N
. (35)

However, since the probability of losing a channel is propor-

tional to its OFF period rate λ, E[λlost] is always greater than

the sample average of the current N channels
∑

i λi

N
, and it is

always better (on average) to continue transmitting.

The second case of interest is when Ts

∑

i λi ≥ 1
2(N−1) ,

but it is not larger than 1. The average rate of the first lost

channel is

E[λlost] =
∑

i

λi
λi

∑

i λi

=

∑

i λ
2
i

∑

i λi

. (36)

Replacing Eq.(36) into Eq.(34) we have
∑

i λ
2
i

∑

i λi

≥
1 + Ts

∑

i λi

NTs

. (37)

After some simple calculus steps we get

1
N

∑

i λ
2
i

1
N2

(
∑

i λi

)2
≥

1 + Ts

∑

i λi

Ts

∑

i λi

. (38)

On the left hand side of Eq.(38) we have the ratio of the second

moment of the rates of the OFF periods for the channels in

use and the square of their means. This can be written through

the coefficient of variaton c2v = V ar(X)

(E[X])2
as

c2λ + 1 ≥
1

Ts

∑

i λi

+ 1 ≥ 2. (39)

This means that the coefficient of variation must fullfill the

condition

c2λ ≥ 1. (40)

It is important to note that the above conditions we derived

are sufficient, but not necessary. We may be allowing a lot

of slack through the step where we use Jensen’s inequality.

However, our goal was to show that, contrary to the homoge-

neous case, scanning less frequently (but for more channels)

can improve performance. The fact that we can find rea-

sonable regimes for channel characteristics where this holds,

despite the stricter condition, only strengthens our argument.

Furthermore, while the above result proves conditions for the

existence of a (non-trivial) scanning threshold, it could also be

used in a recursive manner to derive the optimal threshold. We

can already predict from the above theory that this threshold

will increase when the variability of the channels accessible by

the SU increases. In the remainder we will call this approach

the offline algorithm. This algorithm maximizes the expected

throughput, given that the threshold must be chosen only once

and at the beginning.

E. The online (adaptive) algorithm

Based on the above insight, we can also take advantage

of knowledge of which channel was in fact lost and propose

a simple algorithm that we expect to further improve the

average throughput. We will call this the online algorithm. The

purpose of this algorithm is to decide about the threshold “on

the fly”, depending on which channel we lose. The condition

regarding the lost channel can be derived departing from the

comparison of E[X1] < X2 from Eq.(26) and Eq.(27). Solving

this inequality, as before, we obtain



λlost >
1 + Ts

∑N
i=1 λi

NTs

. (41)

If the channel we lose has duration rates for the OFF periods

that are larger than the right hand side of Eq.(41), then it is

better to keep transmitting after losing that channel. Similarly,

if for the second lost channel the above inequality still holds,

transmission is not stopped. If after losing the ith channel, the

above inequality does not hold any more, then we start to scan

until we regain the missing i channels.

A special case would be if there exists the relation

Ts

∑

i λi >> 1. Then, (41) reduces to

λlost >

∑

i λi

N
. (42)

Then, if the lost channel is worse (has higher λ) than the

average of the channels in use, then it is better to resume

transmission. This is rather intuitive, since by getting rid of

channels with low availability we are left only with the ones

with high availability, and if we decide to scan instead, the

new channel is expected to only make the mean rate of the

channel pool worse, on average. On the other hand, if we lose

a good channel then we should interrupt, since the rest of the

channels are probably worse than average and scanning could

improve this situation.

There are a number of important design decisions involved

in implementing this algorithm in practice, but this is beyond

the scope of this paper.

IV. SIMULATION RESULTS

A. Homogeneous channels

We have already seen in Section III that for i.i.d. exponen-

tially distributed OFF periods, it is better to start scanning

immediately. So, there is no threshold value that provides

higher data rate. In that case, it is better to scan as soon as we

lose the first channel. Fig. 3 shows the average throughput for

a radio that uses N = 5 channels to transmit its data. The ON

periods for the primary users activities in all the channels are

identical and chosen from a uniform distribution in the range

between 10 and 20 s−1. The OFF periods are also identical for

all the channels with the average duration of 1
λoff

= 1 s. The

number of backup channels is large enough. Unless otherwise

stated, the channel bandwidth is 1 MHz, while the sensing

period for each channel is 1 ms for all the scenarios. We

scan channels from the backup list sequentially one at a time.

The x axis gives the threshold value used in each case. From

Fig. 3 we can observe that the best result is achieved if we

start scanning right away after losing the first channel, and by

increasing the threshold value the average data rate decreases.

Throughout this section we will user MATLAB as simulation

tool.

Fig. 4 illustrates the dependence of the average data rate per

cycle on the threshold value for i.i.d. exponentially distributed

OFF periods, where λoff = 1 s−1. We show the effect for

a larger number of channels in use (N = 10). The other

parameters are identical to the scenario of Fig. 3. Here also,

the plot proves our claim that there is no threshold value

that provides better results in terms of the data rate for

exponentially i.i.d. channels.

B. Initial cost

As we have shown in Section III when an initial (setup)

scanning cost exists, the optimal threshold might move from

L = 1 to higher values. Fig. 5 illustrates the case when

the initial cost value is 0.06 s, that is slightly higher than

the theoretical minimum value obtained from our theory (14).

The other parameters are exactly the same as those from the

scenario which corresponds to Fig. 3. From Fig. 5 we can see

that the threshold value that provides the best result is L = 2.

By intuition, if the initial scanning cost is higher, then the

ideal threshold value moves towards higher values. If the initial

cost is 0.26 s, then the dependence of the average data rate

per cycle on the threshold value is depicted in Fig. 6. All the

simulation parameters are the same as in Fig. 5. From this plot

we can observe that the best result is achieved for a threshold

value of L = 3. As expected, by increasing the initial cost,

the ideal threshold value has been increased, too.

C. Heterogeneous channels

Now, we will consider the case with channels where the

OFF periods are not drawn from identically exponential dis-

tributions. Fig. 7 shows the average throughput for the scenario

with 15 channels. The OFF periods of these channels are

independent exponentially distributed with different λ’s. The

values of the channel parameters λi are drawn from a uniform

distribution in the interval [1, 200] s−1. There is no initial

scanning cost, and the sensing period is 1 ms. From Fig. 7

we can observe that the ideal threshold value is L = 7. This

was also expected, because from that point on the condition

Ts

∑

i λi ≥
1

2(N−1) , does not hold anymore.

Fig. 8 illustrates the average throughput for the same

simulation scenario as in Fig. 7, with the exception that the

upper bound of λ’s is 50s−1. The ideal threshold value is now

L = 4. From this plot we can observe that the throughput

is higher compared to the case of Fig. 7, because we have

channels with higher durations of their OFF periods. It is also

interesting to observe that the threshold value that provides

maximum data rates has decreased. This is because of the fact

that the variability of channels has been decreased compared

to the previous case. Or, in other words, there is less difference

between the channels in terms of their utility.

To further enhance our previous claim, let us consider

the case when we have only good channels, i.e. channels

whose OFF periods are with relatively long durations. For

that purpose we will again consider the scenario in which we

use 15 channels, with heterogeneous exponentially distributed

OFF periods. The inverses of the mean durations for the OFF

periods of different channels (λi), are drawn from a Bounded

Pareto distribution with shape parameter α = 1.2, lower bound

of 0.1s−1, and upper bound equal to 1s−1. We pick λ’s from

a different distribution to give another proof that our theory

is correct. The average throughput for this case is shown in
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Fig. 4. Homogeneous exp. channels
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Fig. 5. Initial scanning cost
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Fig. 6. Initial scanning cost
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Fig. 7. Heterogeneous exp. channels
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Fig. 8. Heterogeneous exp. channels
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Fig. 9. Heterogenerous exp. channels with low var.
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Fig. 10. Throughputs for different policies

Fig. 9. For these parameter values the data rate is decreased

by increasing the threshold value. So, the best thing to do is to

start scanning after the first lost channel. This is a consequence

of the low coefficient of variation for the channels’ OFF period

durations.

D. The adaptive algorithm

Having validated our analytical conclusions that an optimal

threshold exists when channels are heterogeneous, we now

turn our attention to the proposed adaptive (online) algorithm

to see if it can further improve performance. The number of

channels in use is 15. The rates of the OFF periods are drawn

from the uniform distribution in the interval 0.1 to 100 s−1.

Fig. 10 shows the data rates for three cases:

1) Threshold L = 1,

2) The ideal threshold for the offline algorithm, and

3) Online (adaptive) algorithm with the variable threshold.

The (offline) ideal threshold that provides maximum data

rate (case 2) is L = 5. From Fig. 10 we can observe that our

proposed online algorithm provides the highest average data

rate per cycle. This is a consequence of the fact that we make

the decision when to start scanning on the fly, depending on

which channel we have lost. For the offline algorithm though,

we must make the decision in advance, based on the average

characteristics of the pool of channels and the expected quality

of the lost ones. It can happen that a channel with average

long duration is lost before a bad channel, which gives rise to

this difference between the offline and online algorithms. We

can also observe that the data rate is lowest if we trigger the

scanning immediately.

E. Generic OFF periods

So far, we have only considered channels with exponen-

tial OFF periods in both analysis and simulations. While it

is difficult to investigate analytically threshold policies for

generic OFF periods, we can do so using simulations. Fig. 11

shows the average data rate for different threshold values

for homogeneous OFF periods (uniformly distributed) with

average duration of 1 s, and average ON duration of 0.1 s.

There are 10 channels in use. We can observe that there does

not exist a threshold value that provides higher average data

rate compared to immediate scanning. This is consistent with

the exponential homogeneous scenario, where it is also better

to scan immediately. In Fig. 12 there are 8 channels in use,

each with uniformly distributed OFF periods. Furthermore, this

is a heterogeneous scenario where the mean OFF period for
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Fig. 11. Homogeneous uniform
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Fig. 12. Heterogeneous uniform
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Fig. 13. Homogeneous Pareto
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Fig. 14. Heterogeneous Pareto

each channel can be in the range 0.1 to 100 s−1. For this

case, as in the exponential heterogeneous case, an optimal

threshold larger than one (L = 3) exists. The optimal value of

the threshold depends on the failure rate of the distribution for

the OFF periods. The uniform distribution has an increasing

failure rate, so as time goes on, the probability that a channel

in use will be available in the future is lower. Hence, we would

expect that the threshold value is not too high (L = 3), since

we lose quite quickly the good channels.

Fig. 13 shows the average throughput for homogeneous

Pareto distributed OFF periods with shape parameter α = 1.2,

and with the rest of parameters identical to the scenario

of Fig. 11. Here also, we can see that no ideal threshold

value higher than 1 exists. This also means that it is not a

sufficient condition for a threshold to exist, that the durations

of homogeneous OFF periods to be drawn from a distribution

with decreasing failure rate. Figure 14 shows the throughput

for heterogeneous Pareto distributed OFF periods with the

same average as in Fig. 12, and with identical number of

channels (N = 8). The ideal threshold value in this case

is L = 4, which is larger than that in Fig. 12. This can be

explained as follows. Pareto distribution belongs to the class

of distributions with decreasing failure rate, as opposed to the

uniform distribution which has increasing arrival rate. This

means that as time goes on, the chances to lose a good channel

are lower and lower.

V. CONCLUSION

In this paper, we have analyzed the spectrum scanning

process in cognitive radio networks and explored the ways to

maximize the average throughput rate. We have introduced the

notion of a threshold value as the number of channels we are

allowed to lose, before the initiation of the scanning procedure.

This threshold value provides the best results in terms of the

average data rate. It is proven that no such threshold value

exists for the case of homogeneous (i.i.d.) channels if there

is no initial cost to be paid at the beginning of the scanning

process. However, this value exists for heterogeneous indepen-

dent channels and its value depends on the variability of the

OFF periods of the channels in use. We have also proposed

an adaptive algorithm that determines the moments when to

stop transmission depending on which channel was lost, and

have shown by simulations that this algorithm provides the

highest throughput. In future work, we intend to extend our

theoretical analysis to the generic OFF periods, as well as to

consider joint scanning and sequencing optimization.
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