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CHAPTER 1

Introduction

Motivation and Objectives

Over the last decades, we have witnessed a great progress and an increasing need for wireless
communications systems due to customers’ demand of more flexible, wireless, smaller, more
intelligent and practical devices explaining markets invaded by smartphones, personal digital
assistant (PDAs), tablets and netbooks. One area of focus for addressing this challenge is
radio frequency (RF) spectrum. While almost all RF spectrum is allocated [1], most of it
is either unused or underutilized [1]. The current spectrum allocation process for wireless
communications is highly inefficient, leading to significant underutilization of spectrum in
the face of explosive growth in demand. For example, in June 2010, Obama Administration
ordered the National Telecommunications and Information Administration (NTIA) to work
with the Federal Communications Commission (FCC) "to make available a total of 500 MHz
of federal and nonfederal spectrum over the next 10 years, suitable for both mobile and fixed
wireless broadband use" [2]. As a result, the NTIA, FCC, and other organizations are closely
examining the current allocation and usage of RF spectrum to identify candidate spectrum
bands for reallocation, sharing and enabling dynamic spectrum access (DSA).
Historically, cognitive radio (CR) was introduced by Mitola [3, 4], as one of the possible
devices that could be deployed as users equipments and systems in wireless networks to enable
dynamic spectrum access DSA and spectrum sharing. As originally defined, a CR is a self
aware and "intelligent" device that can adapt itself to the wireless environment changes. Such
device is able to detect changes in wireless network to which it is connected and adapt its radio
parameters to the new opportunities that are detected.
Another interesting definition of cognitive radio systems was given by ITU-R in [5]: “a radio
system employing technology that allows the system to obtain knowledge of its operational
and geographical environment, established policies and its internal state; to dynamically and
autonomously adjust its operational parameters and protocols according to its obtained knowl-
edge in order to achieve predefined objectives; and to learn from the results obtained".
The main functions of Cognitive Radios are [6, 7]:

• Spectrum sensing: which is an important requirement towards CR implementation and
feasibility as the CR detects the available spectrum opportunities (also called Spectrum
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Holes or Spectrum White Spaces) as depicted in Figure (1.1). Three main strategies exist
in order to perform spectrum sensing: Transmitter detection (involving PU detection
techniques), cooperative detection (involving centralized and distributed schemes) and
interference based detection.

• Spectrum management: which captures the most satisfying spectrum opportunities in
order to meet both PU (primary users) and SU (secondary users) quality of service
(QoS).

• Spectrum mobility: which involves mechanisms and protocols allowing frequency hopes
and dynamic spectrum use.

• Spectrum sharing: which aims at providing a fair spectrum sharing strategy in order to
serve the maximum number of SUs.

Figure 1.1: Spectrum Opportunities

Another system definition was given by FCC in [8]. In this definition, FCC considers a radio
to be cognitive when it have the following capabilities:

• Frequency Agility: the ability of a radio to change its operating frequency to optimize
use under certain conditions.

• Dynamic Frequency Selection: the ability to sense signals from other nearby transmit-
ters in an effort to choose an optimum operating environment

• Location Awareness: the ability for a device to determine its location and the position of
other transmitters, that would help selecting the appropriate operating parameters such
as transmit power and frequencies allowed at that given location.
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• Negotiated Use: incorporate a mechanism that would enable sharing of spectrum under
the terms of a prearranged agreement between a licensed (primary) and non-licensed
(secondary) users

• Adaptive Modulation: the ability to modify and adapt transmission characteristics and
waveforms to exploit opportunities to use spectrum.

• Transmit Power Control: allows transmission at full power limits when necessary

The main objective of this work is to provide some contributions to the most important fea-
tures enabling cognitive radio technology: spectrum sensing, spectrum awareness and network
discovery through cooperative PU sensing and localization.

Structure and Contributions

The work presented within this thesis 1 fits in the context of spectrum sensing / spectrum
awareness and network discovery mechanisms.
Chapter 1 is dedicated to recall some useful definitions and paradigms of cognitive radio. We
start by presenting the goals and several issues of spectrum sensing then we introduce some
state of the art sensing algorithms. Among those algorithms, we select some reference algo-
rithms to be studied and simulated in terms of performance, receiver operating characteristic,
energy efficiency curves as well as complexity study. Then, our contributions are presented as
following:

• In Chapter 2 [J1, C8-9, C14-15], we propose to study a novel multiband spectrum
sensing technique based on a reconfigurable filter bank. The proposed algorithm locates
some important frequencies in the RF spectrum characterized by transitions from free to
used bands. PU transmission is thus located and sensing is done by means of enhanced
energy detection algorithm.

• Similarly to what was presented by Tian and Giannakis in the context of wideband com-
pressed sensing, in Chapter 3 [C11-12], we present a wideband compressed sensing
algorithm combining our frequency edge location algorithm to compressed sensing for-
malism. The main advantage in our approach is that contrarily to the wavelet approach
of Tian et al, our frequency edge location algorithm is a one shot, online (operating
frame by frame) non iterative algorithm.

1The work presented is funded by European projects: SACRA (spectrum and energy efficiency through multi-
band cognitive radio), SPECTRA (Spectrum and energy efficiency in 4G communication systems and beyond) and
WHERE2 (Wireless Hybrid Enhanced Mobile Radio Estimators).
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• In Chapter 4 [C3, C7], we propose to address the problem of signal classification in
heterogeneous cognitive systems. The approach is a two-step algorithm: first of all,
by means of blind source separation, we separate the mixture of the received signal
at the level of the CR and then, thanks to a hybrid architecture we are able to blindly
discriminate the present standard in a sensed band (LTE, DVB-T or PMSE signals).

• In Chapter 5 [C1], we propose to go further in the analysis of spectrum awareness by
proposing another contribution for co-existence of different standards in the same band
case. Such case occurs when the PU pops back in its bands while the SU is communi-
cating. In this context we propose a Computer-Vision aided Cyclostationary Features
Detection (CV-CFD) algorithm capable of detecting DVB-T or PMSE signals while an
LTE system is transmitting in a considerably small time interval.

• In Chapter 6 [J2, C5-6], we propose to focus on an other main enabling aspect of
CR technology, which is location awareness. In this chapter, we analyze the equations
related to spectrum sensing and PU location estimation with taking into consideration
the hardware limitation that often CR terminals suffer from: Analog to Digital Con-
verters acquiring signals at a sub-Nyquist rate. In this chapter we make the link be-
tween localization, spectrum sensing and compressed sensing. In this framework, we
propose to study sensing/localization using Basis Pursuit (BP), Orthogonal Matching
Pursuit (OMP) and Compressive Sampling Matching Pursuit (CoSaMP). The simula-
tions results in a realistic network topology testify on the effectiveness of the proposed
formalism.

Finally, in Chapter 7 we conclude about the presented work, highlight its limitations and
suggest new research directions.
The work conducted in this thesis lead to several disseminations:
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Spectrum Sensing Techniques for
Cognitive Radio Systems





CHAPTER 2

Spectrum Sensing for Cognitive Radio
Systems

2.1 Introduction

As previously stated, spectrum sensing is the first challenging task that have to be achieved
by the cognitive terminal in order to build a local map of unused resources. In this chapter,
we aim at presenting a deeper look to spectrum sensing in cognitive radio systems. We start
by presenting spectrum sensing principles and challenges. We also present some well-known
state of the art sensing techniques. There actually exist two big families of spectrum sensing
techniques: coherent and blind techniques. In our work we focus on developing blind sensing
techniques. Furthermore, we explicit some examples of feature spectrum sensing algorithms
including the cyclostationary features detector and the autocorrelation based detector, and as
example of blind sensing algorithms including the energy detector, the eigenvalue based de-
tectors. We give in this chapter simulations related to the detectors in order to assess their
performance in different channel conditions. These detectors will serve as reference detectors
for our work.

2.2 Spectrum Sensing Challenges

Before getting into spectrum sensing techniques details, we give some challenges associated
to spectrum sensing for CR:

Sensing Time Spectrum sensing is the phase during which the SU is supposed to decide about
the PU presence/absence in its allocated band. The period of time, that is taken by
the SU to perform this sensing task is called Sensing Time and is challenging for at
least two reasons. In TDD systems, this period is a pure waste of resources for the
SU transmission time as FrameT ime = SensingT ime + TransmissionT ime. Thus,
the sensing time is supposed to be kept as small as possible in order to fully exploit
the available resources. In the other hand, the decision rules (as explained in the next
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sections) are function of sensing time and the longer the sensing period is, the more
reliable the decision is. So here is a first dilemma for spectrum sensing [9].

Complexity Another challenging aspect is the computational complexity, as the more the
spectrum sensing algorithm is computationally demanding, the hardest and more en-
ergy consuming it gets when implemented on real-time systems. That is why one of
the challenges today towards implementing CR systems is to develop low complexity
sensing techniques.

Cooperation In CR systems the problem of shadowing and fading is a prominent issue. As
several nodes in the network could not receive enough power of the PU signal (in case
of energy detection for example) and decide on its absence when it is actually present in
its allocated band. To overcome this issue, multiple SUs can be coordinated to perform
spectrum sensing cooperatively. Several recent works have shown that cooperative spec-
trum sensing can greatly increase the probability of detection in fading channels [10].

Other Challenges Some other challenges that need to be considered while designing effec-
tive spectrum sensing algorithm include: hardware requirements, presence of multiple
SUs, degrees of knowledge about the PUs, coherence times, multi-path and shadowing,
competition, robustness and power consumption [9].

2.3 Spectrum Sensing Goal

The received signal at time n, denoted by yn, can be modeled as:

yn = Ansn + en (2.1)

where An is the transmission channel gain, sn is the transmitted signal sent from the primary
user (PU), and en is an additive noise.
In order to avoid interferences with the primary (licensed) system, the CR needs to sense its
radio environment whenever it wants to access available spectrum resources. The goal of
spectrum sensing is to decide between two conventional hypotheses modeling the spectrum
occupancy:

yn =

{
en H0 : Decide that received signal is only noise
Ansn + en H1 : Decide that received signal is signal plus noise

(2.2)

The sensed sub-band is assumed to be a white area if it contains only a noise component,
as defined in H0; while, once there exist PU signals drowned in noise in a specific band,
as defined in H1, we decide that the band is occupied. The key parameters of all spectrum
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sensing algorithms are the false alarm probability PF and the detection probability PD. PF is
the probability that the sensed sub-band is classified as it contains a PU data while actually it
is only a noise signal, thus PF should be kept as small as possible. On the other hand, PD is
the probability of classifying the sensed sub-band as a PU data when it is truly present, thus
sensing algorithms tend to maximize PD.
In order to design the optimal detector based on Neyman-Pearson criterion, the aim is to
maximize the overall PD under a given overall minimal PF . Based on these definitions, PF is
the probability of the spectrum detector sensing a user signal given the hypothesis H0, and is
given by:

PF = P (H1 | H0) = P ( PU is detected | H0) (2.3)

while PD is the probability of the spectrum detector sensing a user signal under the hypothesis
H1. PD is given by:

PD = 1− PM = 1− P (H0 | H1)

= 1− P ( PU is not detected | H1) (2.4)

where PM indicates the probability of missed detection.
In order to decide about the presence or absence of a signal in a given sensed band, a decision
threshold that is determined based on the required PF needs to be known at the SU. The
threshold γ for a given value of PF is determined by solving the following equation:

PF = P (yn is present | H0) = 1− FH0(γ) (2.5)

where FH0 denotes the cumulative distribution function (CDF) underH0.

2.4 Single Node Spectrum Sensing Techniques

As depicted in Figure (2.1), single node spectrum sensing techniques are divided into two
families [6]:

Non Coherent Single Node Techniques Non coherent spectrum sensing techniques do not
need any coordination, coherence, synchronization between the PU and the SU. Many
techniques have been developed in this context, such as energy detection, eigenvalues
based detection, model selection algorithms, etc. The main advantage of such technique
is their potential blind behavior.

Coherent Single Node Techniques Some other techniques need a perfect synchronization
between PUs and SUs in the network in order to perform sensing. Many techniques
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have been proposed in the literature such as cyclostationary features detection (CFD),
sparsity based CFD, matched filters, pilot based detection, etc. The main drawback of
those techniques is the need of perfect synchronization in the network, but these tech-
niques exploit some apriori PU statistics or features while performing sensing, which
result in more performing techniques.

Figure 2.1: Classification of State of The Art Sensing Techniques

2.4.1 Non Coherent Techniques

Many blind techniques were presented in the state of the art. The most common technique is
Energy Detector (ED) [11] which implementation is as simple as a radiometer. A second tech-
nique is Eigenvalues based Detection [13,14]. More recently, two hybrid detectors combining
Energy Detection and Cyclostationary Features Detection (CFD) was proposed by [18,19,21].
The first detector [18] iteratively adjusts the ED threshold to converge towards the CFD per-
formance. In the second algorithm [19], the CFD is used to estimate noise statistics and feed
the ED threshold. The second detector is shown to outperform conventional CFD.
From these algorithms, we propose to give the mathematical details behind ED and CFD and
to study their performance under different channels conditions.

2.4.1.1 Energy Detection

Energy detection is the most common method for spectrum sensing because of its non-coherency
and extreme low complexity. Energy detector can be simply implemented like spectrum an-
alyzer. The energy detector measures the received energy during a finite time interval and
compares it to a predetermined threshold. That is, the test statistic of the energy detector
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is [11]

ΥED(x) =

p∑
i=1

|xi|2 (2.6)

The performance of the energy detector in additive white Gaussian noise (AWGN) is well-
known, and can be written in closed form. The probability of false alarm is given by

PFA,ED = 1−G
(

2γED
σ2

, p

)
(2.7)

where G is the cumulative distribution function [12] of a χ2 distributed random variable with
2p degrees of freedom, γED is the detection threshold, and σ2 is the noise variance [11].
The energy detector is a blind technique in the sense that it does not require any knowledge
about the PU signal to be detected. On the other hand, for the same reason it does not exploit
any potentially available knowledge about the signal. Moreover, the noise power needs to be
known to set the decision threshold and control the false alarm probability. It is very common
that the noise power levels vary depending on time and location. Consequently, there may be
a need to estimate the noise power from a signal-free data set in order to obtain constant false
alarm probability detector performance.

2.4.1.2 Eignevalues Based Detection

In [13] and [14], two sensing algorithms were suggested. The first is based on the ratio of the
maximum eigenvalue to minimum eigenvalue. The second is based on the ratio of the average
eigenvalue to minimum eigenvalue. Assume that the signal to be detected is highly correlated.
Let R be the covariance matrix of the received signal. Then, under H0, all eigenvalues of R
are equal. However, under H1 some eigenvalues of R will be larger than the others. Detector
exploiting this property, called Eigenvalue Detector (EiD), was proposed in [13], and will be
described briefly afterwards. Consider N observations xn received in a sequence. We define
the sample covariance matrix as:

R̂ =
1

N

N∑
n=1

xnxTn (2.8)

Let λn|n=1,...,N , be the eigenvalues of R. There are two eigenvalue-based detectors proposed
in [13]. The first detector uses the ratio of the largest eigenvalue to the smallest eigenvalue,
and compares it to a threshold. That is, the test statistic of the first proposal of [13] is based on
condition number

ΥEiD(x) =
maxλn
minλn

(2.9)
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The probability of false alarm of the EiD is given by:

PFA,EiD = 1− F1

γEiD
(√

N −√p
)2
−
(√
N − 1−√p

)2
(√
N − 1−√p

) (
1√
N−1

+ 1√
p

) 1
3

 (2.10)

where F1 is the cumulative distribution function (CDF) of the Tracy-Widom distribution of
order 1, N is the number of PU observations and p is the length of each observation. The
distribution function is defined as

F1 = exp

(
−1

2

∫ ∞
t

(
q(u) + (u− t)q2(u)

)
du

)
(2.11)

where q(u) is the solution of the nonlinear Painleve II differential equation

q”(u) = uq(u) + 2q3(u) (2.12)

With the above expressions for the probability of false alarm, the expected detection perfor-
mance can be evaluated.

2.4.2 Coherent Techniques

Many coherent techniques needing synchronization between PUs and SUs were presented in
literature. First of all CFD [15, 17], where the objective is to detect the cyclic signature of
the PU transmission. We may also autocorrelation detectors (ACD) [57] which estimate at
some time lags non null properties of the digitally modulated signals. More recently, in [20], a
compressed sensing (CS) based CFD algorithm was proposed. The goal was detect the cyclic
frequencies by means of CS tools.
From the various coherent techniques, we propose to study CFD and ACD

2.4.2.1 Cyclostationary Features Detection

The most known feature sensing technique is the CFD [15], [17]. Cyclostationary processes
are random processes for which statistical properties such as mean and autocorrelation change
periodically as a function of time. Wireless communication signals typically exhibit cyclosta-
tionary properties at multiple cyclic frequencies that may be related to the carrier frequency,
symbol, chip, code, or hop rates, as well as their harmonics, sums, and differences. These
features can be exploited to design powerful sensing algorithms for cognitive radios. Cy-
clostationary Feature Detectors (CFD) have the potential to distinguish among the PU and
SU signals as they exhibit cyclostationary features at different cyclic frequencies. Moreover,
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random noise commonly does not possess cyclostationary properties. Cyclostationary fea-
ture detection (CFD) has received considerable amount of attention in the literature. Recent
bibliography on cyclostationarity, including a large number of references on cyclostationarity
based detection, is provided in [16]. The cyclic autocorrelation function at some lag l and
some cyclic frequency α can be estimated from samples x by

r̂l(x, α) =
1

p− l

p−l−1∑
n=0

xn+lx
∗
ne
−jαn l ≥ 0 (2.13)

In order to detect cyclostationary features for a given signal, we make the choice of the sta-
tistical test proposed by Dandawate and Giannakis [15]. It has been shown in [15] that under
hypothesis H0, regardless of the distribution of the input data, the distribution of T (x) con-
verges asymptotically to a central χ2 distribution with 2p degrees of freedom where p is an
integer such as p ≥ 1. This makes it possible to analytically calculate the probability of false
alarm for large enough observation length T for a given threshold, leading to an asymptotically
constant false alarm rate test. One can write under H0:

lim
T→∞

ΥCFD(x) = χ2
2p (2.14)

Hence, the (asymptotic) probability of false alarm for this detector with threshold γCFD is
given by

PFA,CD = 1−G
(γCFD

2
,K
)

(2.15)

where G(a, x) is the (lower) incomplete gamma function [12].
The main advantage of the cyclic autocorrelation function is that it differentiates the noise from
modulated signal. Therefore, CFD can perform better than other detectors in discriminating
against noise due to its robustness to the uncertainty in noise. However, it is computationally
complex and requires significantly long observation time.

2.4.2.2 Autocorrelation based Detection

Many communication signals contain redundancy, introduced for example to facilitate syn-
chronization by channel coding or to circumvent inter-symbol interference. This redundancy
occurs as non-zero average autocorrelation at a certain time lag l. The autocorrelation function
at l can be estimated from:

r̂l(y) =
1

p− l

p−l−1∑
n=0

yn+l y
∗
n l ≥ 0 (2.16)
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Any signal, except white noise signal, will have non-zero autocorrelation function values at
specific time lags larger than zero.
To detect the existence/non-existence of OFDM signals we can use functions of the autocorre-
lation lags, where the autocorrelation is based on (5.14). Therefore, the autocorrelation-based
decision statistic is given by [57]

ΥACD(y) =

L∑
l=1

wl
Re {r̂l}
r̂0

(2.17)

where the number of lags, L, is selected to be an odd number. The weighting coefficients wl
could be computed to achieve the optimal performance, and is given by:

wl =
L+ 1 + |l|
L+ 1

(2.18)

With decision threshold γACD, the probability of false alarm of this detector is

PFA,ACD = Q

γACD [γ2
ACD

p
+

1

2p

L∑
l=1

w2
l

]− 1
2

 (2.19)

where Q is the generalized Marcum Q-function [12].

2.5 Assessing Performance and Energy Efficiency for Single Node
Spectrum Sensing Techniques

2.5.1 Single Node Performance Evaluation

2.5.1.1 Evaluation Framework

In our evaluation framework we focus on the single node detection techniques. The primary
system used is a DVB-T system. The standard is administered by the European Telecommu-
nications Standards Institute (ETSI) [22]. In DVB-T, there are two modes in 8 MHz channel,
2K and 8K modes, which set the number of carriers in the OFDM symbol. In 2K and 8K
modes there are actually 1,705 or 6,817 subcarriers and subcarriers are approximately 4 or
1 KHz apart, respectively. Three different modulation schemes (QPSK, 16QAM, 64QAM)
can be used. As a digital transmission, DVB-T delivers data at the symbol rate in a series
of discrete blocks. In DVB-T, a coded OFDM (COFDM) transmission technique including
variable length guard interval is used. The choice of the DVB-T system is justified by the fact
that many of the current and especially future wireless systems utilize the OFDM modulation
format. In addition, one target is to study secondary use, i.e. spectrum sensing, of the spec-
trum in the UHF band, extended to TVWS (TV white space) where DVB-T is utilized in the
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frequency range above 470 MHz. The simulation scenarios are generated by using different
combinations of parameters given in Table 2.1. The simulated channel models are AWGN and
Rayleigh channels. Two different scenarios with different properties are chosen to evaluate the

Bandwidth 8MHz
Mode 2K
Guard interval 1/4
Frequency-flat Single path
Sensing time 1.5ms
Location variability 10dB

Table 2.1: Simulated DVB-T signal parameters

spectral detection performance, subject to provide different attributes so that the performance
can be assessed under different conditions, aiming to provide fair conditions before making
conclusions. OFDM is the modulation of choice for the two simulation scenarios to be used
as evaluation tools in this chapter. In OFDM, a wideband channel is divided into a set of nar-
rowband orthogonal subchannels. OFDM modulation is implemented through digital signal
processing via to the FFT algorithm [23].

1. Scenario 1 uses a DVB-T OFDM signal in an AWGN channel. It is assumed that the
detection performance in AWGN will provide a good impression of the performance,
but it is necessary to extend the simulations to include signal distortion due to multipath
and shadow fading.

2. Scenario 2 utilizes the same DVB-T OFDM signal as scenario 1, but to make the simula-
tions more realistic, the signal is subjected to Rayleigh multipath fading and shadowing
following a log normal distribution in addition to the AWGN. The maximum Doppler
shift of the channel is 100Hz and the standard deviation for the log normal shadowing
is 10dB. Since the fading causes the channel to be time variant, it is necessary to apply
longer averaging than in scenario 1 to obtain good simulation results. Thus the number
of iterations in the Monte Carlo simulation is increased from 500 to 1000.

2.5.1.2 Simulation Results

Two key metrics are considered in our evaluation, performance curves (PD Vs. SNR at fixed
PFA and Sensing Period) and Receiver Operating Characteristic (ROC) curves (PD Vs. PFA
at fixed SNR and Sensing Period). The performance curve is the answer to the question: up to
which SNR region can we trust a given detector ? As for IEEE 802.22 compatible scenarios,
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we will look at the performance for PD > 90% and a PFA < 10%. Meanwhile the ROC curve
is the answer to the question: is the detector compliant with the Neyman-Pearson criteria, i.e
does it tend to maximize PD while minimizing PFA ?

Figure (2.2), reports the figures for the first evaluation scenario, i.e transmission over an
AWGN channel. A very first remark could be that for our area of interest (i.e. PD > 90%),
the detectors can be classified as following from the less to most performing: ED, EiD, ACD,
CFD. In subfigure (a), we notice that the ED, EiD, ACD and CFD are trustable up to -5.5dB,
-7.5dB, -10dB and -11dB respectively at PFA = 5% and sensing time of 1.5 ms. Figure (b)
show that at -10dB the only detectors that satisfy the Neyman-Peason criteria are the CFD and
ACD. Figure (2.3), reports the figures for the second evaluation scenario, i.e transmission over
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Figure 2.2: (a) Probability of detection Vs. SNR at fixed PFA = 5% and sensing period of
1.5 ms over an AWGN channel, (b) ROC curve for the SoTA detectors at SNR=-10 dB and
sensing duration of 1.5 ms over an AWGN channel

an Rayleigh channel with multipath fading and shadowing following a log normal distribution
in addition to the AWGN. In subfigure (a), we notice that the ED, EiD, ACD and CFD are
trustable up to 0dB, -1dB, -4dB and -5dB respectively at PFA = 5% and sensing time of 1.5
ms; which, compared to the scenario 1, is a consequent drop in the performance. Figure (b)
show that almost no detector is satisfying the Neyman-Pearson, but still ACD and CFD are
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outperforming ED and EiD .
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Figure 2.3: (a) Probability of detection Vs. SNR at fixed PFA = 5% and sensing period of
1.5 ms over a Rayleigh channel, (b) ROC curve for the SoTA detectors at SNR=-10 dB and
sensing duration of 1.5 ms over a Rayleigh channel

2.5.2 Energy Efficiency

Algorithms complexity are measured in terms complex operations number that the detection
algorithm has to perform in order to complete the decision statistics on the spectrum occu-
pancy.

We summarize the number of multiplications required for each technique in the Table 2.2.
Note that p refers to the number of samples and N to the size of covariance matrix. From this
table, we find that the CFD, ACD and EiD detectors are the most complex among all. While
ED is the least complex among them. For more information about the complexity study of
spectrum sensing methods see [7].
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Sensing Method Complexity
CFD p2 +O(p log(p))

ACD p+O(p log(p))

ED p

EiD Np+O(N3)

Table 2.2: Theoretical complexity analysis [24]

2.5.2.1 Energy Consumption

The energy efficiency of the considered sensing detectors ED, ACD and CFD is computed
assuming the use of ARM Cortex-A8 and Cortex-A9 processor cores. We use the published
energy consumption figures for the Qualcomm Scorpion central processing unit (CPU) of these
ARM processors that is featured in the Snapdragon mobile chipset range [25–27].
Based on the computation complexity values of the chosen sensing algorithm in Table 2.2, we
can then use an embedded processors power usage to estimate the detector’s energy-efficiency.
For example, If we assume that Scorpion CPU can achieve this using one Single Instruction
Multiple Data (SIMD) multiplication and one SIMD addition instruction, and that this is com-
parable to two Dhrystone instructions, then using the DMIPS/mW figures from Table 2.3, we
can estimate how much energy is consumed per detection operation. Figure (2.4) reports the

Benchmark, DMIPS/MHz 2.1
Assumed clock rate 1.0GHz
Total DMIPS 2100
Typical power usage 350mW
Energy Efficiency, DMIPS/mW 6

Table 2.3: Qualcomm SCORPION CPU Details

simulations related to the energy efficiency of the various state of the art detectors. Here the
results in Table 2.2 are confirmed, as we see that for example for non coherent techniques ED
is more energy efficient than EiD; and also for the coherent techniques ACD is more energy
efficient than CFD.

2.6 Cooperative Approaches

As previously stated, sensing can be can be achieved locally (by one SU) or collaboratively
between different SUs. In the literature, cooperation is discussed as a solution to problems
that arise in spectrum sensing due to noise uncertainty, fading, shadowing and hidden node
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Figure 2.4: Energy efficiency of the SoTA Spectrum Sensing Algorithms

problems.
In Figure 2.5, SU 1 is shadowed by a high building over the sensing channel. In this case,
the CR cannot reliably sense the presence of the PU due to the very low SNR of the received
signal. Then, this CR assumes that the observed channel is vacant and begins to access this
channel while the PU is still operating. To address this issue, multiple SUs can be coordinated
to perform spectrum sensing cooperatively.
In addition to the advantages listed before, cooperative sensing decreases the probability of
mis-detections and the probability of false alarms considerably. It can also mitigate the multi-
path fading and shadowing effects, which improves the detection probability. However, the
cooperation causes adverse effects on resource-constrained networks due to the additional
operations and overhead traffic.
Cooperative sensing can be implemented in two ways: centralized or distributed.

Centralized Sensing In centralized sensing, a central unit collects sensing information from
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SU-BS

SU2

SU1

SU3

PU-TX PU-RX

Figure 2.5: Cooperative spectrum sensing in cognitive radio networks: SU 1 is shadowed over
the reporting channel and SU 3 is shadowed over the sensing channel.

SUs, identifies the available spectrum opportunities, and broadcasts this information to
other SUs or directly controls the CR traffic.

The binary hypothesis testing results are gathered at a central place which is known as
access point [28]. In [29], the sensing results are combined in a central node, termed as
master node, for detecting TV channels/PMSE transmissions. Hard and soft information
combining methods are investigated for reducing the probability of missed opportunity.
The results presented in [29] show that soft information-combining outperforms hard
information-combining method in terms of probability of missed detection.

Distributed Sensing In the case of distributed sensing, cognitive nodes share information
among each other but they make their own decisions on part of the spectrum they can
use. Distributed sensing is more advantageous in the sense that there is no need for a
backbone infrastructure.

A distributed collaboration algorithm is proposed in [28]. The collaboration is per-
formed between two SUs. The user closer to primary transmitter, which has better
change of detecting the PU transmission, cooperates with a far away user. An algorithm
for pairing SUs without a centralized mechanism is also proposed. In [30], a distributed
sensing method is proposed where SUs share their sensing information among them-
selves. Only final decisions are shared in order to minimize the network overhead due
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to collaboration.

2.7 Conclusion

This chapter presented the topic of spectrum sensing for CR and explained how spectrum
sensing algorithms can be divided in the two groups of blind and coherent techniques. Some
reference detectors have been presented. An intuitive explanation of the algorithms along with
the important mathematical descriptions should provide the reader with a sound perspective
of common blind and feature spectrum sensing algorithms. This is important as the following
chapter will start analyzing the problems with these algorithms in the low signal to noise ratio
region and also in multi-band context.





CHAPTER 3

Reconfigurable Filter Bank based
Multi-band Detector

3.1 Introduction

This chapter presents a novel technique in spectrum sensing based on a new characterization of
PU signals in wideband communications. First, we have to remind that in CR systems, the first
task to be operated by the SU is sensing and identification of spectrum holes in the wireless
environment. This chapter summarizes the advances in the algebraic approach. We present
the results and the complete framework of the proposed technique based on reconfigurable
filter bank based multi-band detector . Spectrum over a wide frequency band is decomposed
into elementary building blocks of subbands that are well characterized by local irregularities
in frequency. As a powerful mathematical tool for analyzing singularities and edges, the al-
gebraic framework is employed to detect and estimate the local spectral irregular structure,
which carries important information on the frequency locations and power spectral densities
of the sensed subbands.

3.2 Filter Bank Sensing Architectures Background

In litterature, the multiband sensing was addressed in [39], [40], [41]. In this context, we con-
sider a primary communication system (e.g., multicarrier modulation based) operating over a
wideband channel that is divided into K non-overlapping narrowband subbands. In a partic-
ular geographical region and within a particular time interval, some of the K subbands might
not be used by PUs and are available for opportunistic spectrum access as summarized in Fig-
ure (3.1). The detection problem on each subband k is a binary hypothesis testing problem as
choosing between a hypothesis H0, which represents the absence of primary signals, and an
alternative hypothesisH1, which represents the presence of primary signals.
The crucial task of spectrum sensing is to sense the K subbands and identify spectral holes
for opportunistic use. To simplify, we assume that the upper-layer protocols, e.g. the medium
access control (MAC) layer, can guarantee that all cognitive radios stay silent during the de-
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Figure 3.1: Example of multiband channel occupancy

tection interval such that the only spectral power remaining in the air is emitted by the primary
users.

Figure 3.2: Multiband spectrum sensing in cognitive radio systems

3.3 Main Contributions

In order to clearly expose our contribution in the filter bank based sensing for the wideband
scenarios, we summarize them as following:

• Our approach is going a step beyond the fixed boundaries in the SoTA filters, as the
proposed scheme is able to dynamically detect these boundaries.
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• The proposed filters in our scheme are adapted to the input signal and take into consid-
eration noise reduction.

• Our suggested filter bank architecture can dynamically adapt itself to the input signal in
order to track spectrum opportunities.

3.4 Model Assumptions

In this section, we propose to derive a pre-processing block for the formal ED that estimates
and helps denoising the received signal spectrum. In order to enable efficient spectrum sharing,
the first step is to locate the discontinuities in the spectrum in order to highlight the alternate
use of spectrum as shown in Figure (3.1).
First of all, we suppose that the frequency range available in the wireless network is B Hz. B
could be expressed as B = [f0, fK ]. Saying that a wireless network is cognitive, means that
it supports heterogeneous wireless devices that may adopt different wireless technologies for
transmissions over different bands in the considered frequency range. A CR at a particular
place and time needs to sense the wireless environment in order to identify spectrum holes for
opportunistic use.
Since the spectrum usage in radio communications alternates between used and free bands,
the spectrum of each transmission (seen as analytical function) can be viewed by sub-bands
as continuous. Thus, by a direct application of Weierstrass Approximation Theorem [42],
we can stipulate that over sub-band, sensed spectrum can be seen as a concatenation over the
adjacent sub-bands of polynomial functions (a family of polynomials {p}) approximating each
transmission.
We can express the whole spectrum, as perceived at the level of a CR trying to sense a wide-
band of interest, say [f0, fK ], as following:

Y =
K−1∑
k=0

χ[fk,fk+1](f)pk(f − fk) + E (3.1)

where χ[fk,fk+1](f) denotes the indicator function for the frequency band [fk, fk+1], that is if
fk ≤ f ≤ fk+1 then χ[fk,fk+1](f) = 1 and 0 otherwise; pk is the polynomial approximating
the spectrum over the band [fk, fk+1] and E is the corrupting noise. Even though {fk}k=0,..K

are unknown, the model described in Equation (3.1) is still valid, it would be enough to sub-
divide [f0, fK ] not in exact K actual sub-bands but in N uniform bands with a resolution of
b = fK−f0

N . The only assumption that we will make at this level is that: over each band b, one
and only one actual change point fk is present.
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3.5 Spectrum Discontinuities Detection Algorithm

With these new notations, Equation (3.1) can be re-written as:

Y =
K−1∑
k=0

χ[fk,fk+1](f)pk(f − fk) + E

=

N−1∑
n=0

χ[fn,fn+1](f)pn(f − fn) + E

= X + E (3.2)

Where X =
∑N−1

n=0 χ[fn,fn+1](f)pn(f − fn), denotes the noise-free estimate of Y.
We also denote by Xb(f) = X(f + b) for f ∈ Ibn = [0, b], which represent the restriction of
the noise-free spectrum to Ibn (keeping in mind that b = B

N ).
We now can redefine the actual change point fk relatively to Ibn saying that:{

f bk = 0, if Xb(f)is smooth
0 < f bk ≤ b, otherwise

Now, in order to emphasize the spectrum discontinuity behavior, we proceed by deriving Equa-
tion (3.2) in the sense of distributions, we obtain:

dP

dfP
Xb(f) = [Xb(f)](P ) +

P∑
j=1

µP−jδ(f − f bk)(j−1) (3.3)

where: µj , Xb(f)(j)(f bk
+

)−Xb(f)(j)(f bk
−

) is the jump in the derivative at the change point
frequency f bk for the jth derivative ofXb. We note that in the case of absence of a change point
f bk in Ibn, µj = 0 ∀j, and [Xb(f)](P ) represents the regular P th derivative of [Xb(f)]. In order
to proceed clearly, for example we choose P = 2. Here, a second order derivative estimator is
presented. Equation (3.3) thus becomes:

d2

df2
Xb(f) = [Xb(f)](2) +

2∑
j=1

µ2−jδ(f − f bk)(j−1) (3.4)

By making the assumption of the polynomials p being first order polynomials (Weierstrass ap-
proximation theorem: every continuous function defined on an interval [a, b] can be uniformly
approximated as closely as desired by a polynomial function) it will be annihilated after taking
second order derivative, so the first term in (3.4) is annihilated and Equation (3.4) becomes:

d2

df2
Xb(f) = µ1δ(f − f bk)(0) + µ0δ(f − f bk)(1) (3.5)
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In order to solve the equation, problem is transferred into operational domain (it is possible
to solve the equation in Fourier domain too, but it is more complex than in operational do-
main). Here when we mean by operational domain or Laplace transform, the Laplace(Fourier
domain). Thus Equation(3.5) becomes:

s2X̂b(s)− sXb(0)− Ẋb(0) = µ1e
−fbks + sµ0e

−fbks (3.6)

where X̂b(s), Xb(0) and Ẋb(0) are respectively the Laplace transform of Xb(f), initial condi-
tion in 0 and the derivative of the initial condition in 0 of Xb(f). Equivalently we can express
(3.6) as:

ef
b
ks(s2X̂b(s)− sXb(0)− Ẋb(0)) = µ1 + sµ0 (3.7)

ef
b
ksu(s) = µ1 + sµ0 (3.8)

where u(s) = s2X̂b(s)− sXb(0)− Ẋb(0).
By applying the differential operator d2

ds2
(.), we do obtain:

f bk
2
ef

b
ksu(s) + 2f bke

fbksu(s)(1) + ef
b
ksu(s)(2) = 0 (3.9)

f bk
2
u(s) + 2f bku(s)(1) + u(s)(2) = 0 (3.10)

Finally back from u(s) notation:

f bk
2
(s2X̂b(s)− sXb(0)− Ẋb(0)) +

2f bk(s2X̂b(s)− sXb(0)− Ẋb(0))(1) +

(s2X̂b(s)− sXb(0)− Ẋb(0))(2) = 0

(3.11)

To end up with
f bk

2
(s2X̂b(s)− sXb(0)− Ẋb(0)) +

2f bk(s2X̂b(s)− sXb(0))(1) +

(s2X̂b(s))
(2) = 0

(3.12)

Since only the initial condition remains unknown, we suggest to apply the differential operator
d2

ds2
(.) to obtain:

f bk
2
(s2X̂b(s))

(2) + 2f bk(s2X̂b(s))
(3) + (s2X̂b(s))

(4) = 0 (3.13)

We remind that multiplication with sl (in this case l = 2) in operational domain will result
later in derivation in frequency domain, which will result in amplifying noise. We suggest at
this level dividing by sm so that the effect will be the strict inverse, and thus our algorithm will
help eliminate noise with the only condition m > 2. Thus we obtain:

f bk
2
(s2X̂b(s))

2

sm
+

2f bk(s2X̂b(s))
(3)

sm
+

(s2X̂b(s))
(4)

sm
= 0 (3.14)
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Since it remains no unknown parameter and/or factor, we transfer the solved equations back
to the frequency domain. After some computational steps, we can easily show that:

L−1(
(s2X̂b(s))

(κ)

sm
) =

∫ b

0
(
νm−1(b− ν)κ

(m− 1)!
)(2)X(f − ν)dν

=

∫ ∞
0

hκ−1(ν)X(f − ν)dν (3.15)

where

hκ−1(ν) =

{
(ν

m−1(b−ν)κ

(m−1)! )(2), for 0 < ν < b

0, otherwise

and κ = 2, 3, 4.
Finally, denoting φκ−1 = L−1( (s2X̂b(s))

(κ)

sm ), in frequency domain, the actual change point
over each sub-band b, is the one solving the Equation (3.14), that is:

f bk
2
φ1 + f bkφ2 + φ3 = 0 (3.16)

So we have shown that from the proposed model we obtain a simple filtering in order to locate
and reconstruct the boundaries (spectrum change points) of occupied spectrum.
Adopting exactly the same approach, and starting by P = 3 and saying that p is 2nd order, we
obtain:

f bk
3
φ1 + 3f bk

2
φ2 + 3f bkφ3 + φ4 = 0 (3.17)

where:

φκ−2 = L−1(
(s3X̂b(s))

(κ)

sm
)

=

∫ ∞
0

hκ−2(ν)X(f − ν)dν (3.18)

where

hκ−2(ν) =

{
(ν

m−1(b−ν)κ

(m−1)! )
(3)
, for 0 < ν < b

0, otherwise

and κ = 3, 4, 5, 6

A third model can be derived with P = 4, thus p is 3rd order polynomial series. We obtain:

f bk
4
φ1 + 4f bk

3
φ2 + 6f bk

2
φ3 + 4f bkφ4 + φ5 = 0 (3.19)

where:

φκ−3 = L−1(
(s4X̂b(s))

(κ)

sm
)

=

∫ ∞
0

hκ−3(ν)X(f − ν)dν (3.20)
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where

hκ−3(ν) =

{
(ν

m−1(b−ν)κ

(m−1)! )
(4)
, for 0 < ν < b

0, otherwise

and κ = 4, 5, 6, 7, 8.
In this Section, we only present the three first detection algorithms to be used for simulation
parts. We derived a generalized form of this algorithm in [33, 34].
Let’s have a deeper look into Equations (3.16), (3.17) and (3.19). The change point in the
spectrum f bk , relatively to Ibn is solution to those equations. It is easy to see, that since by
construction the φκ series are positive. Then, f bk satisfying equations (3.16), (3.17) and (3.19),
is equivalent to say that over each band Ibn, f bk annihilates ψk(f) =

∏
φκ. The last criteria is

simpler to implement than equations (3.16), (3.17) and (3.19).
We recall at this stage that these equations were derived in a noise free environment. In noisy
environments, in all equations, X is substituted with the noisy observation Y = X +E. Thus
the criteria in equations (3.16), (3.17) and (3.19) would be an ε and not exactly 0.

3.6 Reconfigurable Filter Bank for Spectrum Sensing

Once the frequency boundaries in the wideband spectrum successfully detected, we construct
adapted filters to those boundaries. Over each band [f bk, f

b
k+1], we apply the corresponding

window function given by ψk(f) =
∏
φκ.

The over all detector architecture is given in Figure (3.3). In this figure, the FFT of the received
frame represents the input of our algorithm. As stated in the beginning, the over all band of
interest is divided in N uniform bands with a resolution of b = fK−f0

N and in a parallel way,
we seek the frequency boundary f bk for each band if ever it exist. We map back the frequencies
and apply ψk(f) as a window on each band [f bk, f

b
k+1]. Finally, the used sensing technique is

the conventional energy detector with a length of f bk+1 − f bk samples.
Each stage is called an algebraic detector and have as input the received frame FFT and as
output a single frequency f bk if existing and a window function ψk.
Now, let us derive the key metrics of the proposed sensing algorithm. We resonate on a single
frequency band, as for all others, the formulation is the same.
As stated previously, in spectrum sensing, a binary hypothesis testing is applied to decide on
the presence or not of the PU in his original band [f bk, f

b
k+1] and we obtain:

Tk =


∑fbk+1

f=fbk
|ψk(Ek(f))|2 H0∑fbk+1

f=fbk
|ψk(Xk(f)) + ψk(Ek(f))|2 H1

(3.21)
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Figure 3.3: Proposed Reconfigurable Filter Bank Multi-band Detector

which can be written as:

Tk =


∑fbk+1

f=fbk
|E′k(f)|2 H0∑fbk+1

f=fbk
|X ′k(f) + E′k(f)|2 H1

(3.22)

This last formulation looks quite like the conventional energy detection formulation over an
AWGN. what is left to do in order to use this formalism, is to find the relationship between
σ2
Ek

and σ2
E′k

.

From [41], we have σ2
E′k

= Gkσ
2
Ek

where Gk is the filter energy, i.e: Gk =
∑fbk+1

f=fbk
|ψk(f)2|.

The test statistic Tk underH0 hypothesis can be rewritten as Tk = ηGk
σ2
Ek
2 where η is follow-

ing a χ2 distribution since the real and imaginary parts ofEk follow i.i.d random process each.
Following the central limit theorem, Tk follows asymptotically a normal distribution such as:

Tk ≈ N (δkskGkσ
2
Ek
, δkskG

2
kσ

4
Ek

) (3.23)

where sk = f bk+1 − f bk + 1 is the number of samples per channel and δk denotes the number
of sub-bands for the kth user. In our configuration, we assume a single user per sub-band and
a single sub-band per user. Thus δk = 1.
Finally, we obtain the performance metrics for our proposed detector function of the threshold
γk:
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• Probability of False Alarm:

PFA,k = Pr (Tk > γk|H0)

= Q

(
γk − δkskGkσ2

Ek√
δkskGkσ

2
Ek

)
(3.24)

• Probability of Detection:

PD,k = Pr (Tk > γk|H1)

= Q

(
γk − δkskGk(σ2

Ek
+ σ2

Xk
)

√
δkskGk(σ

2
Ek

+ σ2
Xk

)

)
(3.25)

Where PD,k, is obtained by processing the same way as PFA,k by characterizing the test
statistic Tk under H1. For a constant false alarm rate (CFAR) case, where a target PFA,k is
fixed, we obtain:

• Threshold γk expression:

γk =
[
Q−1(PFA,k)

√
δksk + δksk

]
Gkσ

2
Ek

(3.26)

• Probability of Detection:

PD,k = Q

(
Q−1(PFA,k)

√
δkskσ

2
Ek
− δkskσ2

Xk√
δksk(σ

2
Ek

+ σ2
Xk

)

)
(3.27)

where Q(.) is the tail probability of the standard normal distribution, which can be expressed
in terms of the error function Q(x) = 1

2(1− erf( x√
(2)

))

3.7 Performance Evaluation

First, we assess the sensing performance of the proposed reconfigurable filter bank technique
in single band detection. Then, we apply our sensing technique on several actual measure-
ments to see the impact of spectral estimation using the proposed window function.
Three different scenarios, with different properties are chosen to evaluate spectral detection
performance. All simulation scenarios follow the Monte Carlo principle, where detection
results are obtained as the average of simulations number. For each iteration of the Monte-
Carlo simulation, a test statistic is computed on the basis of the signal samples in one block,
and a binary decision is made by comparing the test statistic to a predetermined detection
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threshold. For the Monte Carlo simulation 1000 iterations are performed in the simulation.
The threshold is computed for the detectors to have a probability of false alarm PFA = 0.05.
Scenario 1: OFDM signal in AWGN channel: we consider a DVB-T OFDM signal in
AWGN channel. Assuming that the detection performance in AWGN provide a good im-
pression of the performance, but it is necessary to extend the simulations to include signal
distortion due to multipath and shadow fading.
Scenario 2: OFDM signal in Rayleigh multipath fading with shadowing: this scenario
uses the same DVB-T OFDM signal as scenario 1, but to make the simulations more realistic,
the signal is subject to Rayleigh multipath fading and shadowing following a log normal dis-
tribution in addition to the AWGN. The maximum Doppler shift of the channel is 100 Hz and
the standard deviation for the log normal shadowing is 10 dB.
Scenario 3: OFDM signal in Rician multipath fading with shadowing: the third simulation
scenario uses also a DVB-T OFDM signal in Rician multipath fading with shadowing. The
K-factor for the Rician fading is 10, which represents a very strong line of sight component.
The maximum Doppler shift of the channel and the standard deviation for the log normal
shadowing are the same as in the second scenario.
Figure (3.4) shows the proposed detection technique in the state of the art techniques. The
important remark to remind at this point is that these reconfigurable filter bank techniques are
belonging to the non-coherent detectors class. Our proposed techniques are energy detection-
based. For the AD1 the performance are close to the ED. For AD2 the performance are
comparable, and to certain extend, better than theEiD. The most interesting result, is forAD3

which have comparable results to the ACD. The last result is remarkably interesting, as with
an energy-based detection we can reach the performance of coherent detection techniques.
Figures (3.5), (3.6), (3.7), report the simulation results of the proposed techniques compared
to the energy detection for respectively scenarios 1 (AWGN Channel), 2 (Rayleigh Channel)
and 3 (Rician Channel). Each of the figures report PD Vs. SNR for ED, AD1, AD2, AD3 at
fixed PFA = 5% and sensing period of 1.5ms. We also derive the ROC curve for the three first
simulated detectors and energy detector at SNR=-10dB and sensing duration of 1.5ms for the
different channels. These figures confirm the first tendency as in Figure (3.4), where by order
of performance (from less to most) we have AD1, ED, AD2, AD3.
In July 2008, EURECOM have performed data acquisition bands specified in Table (3.1):
The parameters on the acquisitions are:

1. 20480 samples

2. Complex I/Q samples

3. Resolution 12 bits.
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Figure 3.4: Probability of detection Vs. SNR at fixed PFA = 5% and sensing period of 1.5
ms over an AWGN channel of the SoTA and Proposed Detector

For each frequency band, we have several acquisitions:

1. A reference one with the RF antenna connector connected to a signal generator which
generates a sinusoid at the center frequency. The reference file is used for IQ balance
correction

2. Other acquisitions where the RF antenna connector connected to a wide band antenna
for real data acquisition.

Figure 3.8 shows the performance of the spectral estimator attached to the reconfigurable
filter bank on (a) GSM signal at 1836 MHz, (b) GSM signal at 930 MHz and (c) DVB-T
signal at 578 MHz. This figure is meant to highlight the capabilities of the filter bank to
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Figure 3.5: (a) Probability of detection Vs. SNR at fixed PFA = 5% and sensing period of 1.5
ms over an AWGN channel, (b) ROC curve for the three first simulated detectors and energy
detector at SNR=-10 dB and sensing duration of 1.5 ms over an AWGN channel

reduce considerably the measurements noise and have "cleaner" signals where one can clearly
distinguish occupied and free bands. This is also important as the enhanced ED have a more
robust behavior towards noise, as it is considerably reduced. This noise reduction comes from
the inner structure of the detector.

3.8 Conclusion

In this chapter, we derived a novel filter bank based sensing techniques for wideband cognitive
radios. The first step was to locate in the sensed RF spectrum some specific frequencies car-
rying valuable information (vacant to occupied channel transmission). Secondly, we derived
some adapted filters to these bands that helped us to reduce acquisition noise and enhance
energy detection over the different bands. Finally, we showed through various simulation set-
tings and actual data how performing and robust the proposed technique is.
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Figure 3.6: (a) Probability of detection Vs. SNR at fixed PFA = 5% and sensing period of 1.5
ms over a Rayleigh channel, (b) ROC curve for the three first simulated detectors and energy
detector at SNR=-10 dB and sensing duration of 1.5 ms over a Rayleigh channel
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Figure 3.7: (a) Probability of detection Vs. SNR at fixed PFA = 5% and sensing period of
1.5 ms over a Rician channel, (b) ROC curve for the three first simulated detectors and energy
detector at SNR=-10 dB and sensing duration of 1.5 ms over a Rician channel

Freq (in MHz) Observations (thanks to a Spectral analyser)
578 DVB
930 GSM
1836 DSC
1875 DCS
2113 UMTS-FDD

Table 3.1: Performed data acquisitions
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Figure 3.8: Performance of the spectral estimator attached to the reconfigurable filter bank on
(a) GSM signal at 1836 MHz, (b) GSM signal at 930 MHz and (c) DVB-T signal at 578 MHz





CHAPTER 4

Compressed Sensing for Wideband
Cognitive Radios

4.1 Introduction

Recently, compressed sensing/compressive sampling (CS) has been considered as a promising
technique to improve and implement cognitive radio (CR) systems. In wideband radio one
may not be able to acquire a signal at the Nyquist sampling rate due to the current limitations
in Analog-to-Digital Converter (ADC) technology [43]. Compressive sensing makes it pos-
sible to reconstruct a sparse signal by taking less samples than Nyquist sampling, and thus
wideband spectrum sensing is doable by CS. A sparse signal or a compressible signal is a sig-
nal that is essentially dependent on a number of degrees of freedom which is smaller than the
dimension of the signal sampled at Nyquist rate. In general, signals of practical interest may
be only nearly sparse [43]. And typically the wireless signals in open networks are sparse in
the frequency domain since depending on location and at some times the percentage of spec-
trum occupancy is low due to the idle radios [3, 48].
In CS a signal with a sparse representation in some basis can be recovered from a small set
of nonadaptive linear measurements [49]. A sensing matrix takes few measurements of the
signal, and the original signal can be reconstructed from the incomplete and contaminated
observations accurately and sometimes exactly by solving a simple convex optimization prob-
lem [43, 44]. In [45] and [46] conditions on this sensing matrix are introduced which are
sufficient in order to recover the original signal stably. And remarkably, a random matrix ful-
fills the conditions with high probability and performs an effective sensing [47, 49].
Apart from reconstructing the original signal, detection is more required and interesting in the
context of cognitive radio. Generally, for detection purposes it is not necessary to reconstruct
the original signal, but only an estimate of the relevant sufficient statistics for the problem at
hand is enough. This leads to less required measurements and lower computational complex-
ity [50]. We are interested to skip the estimation of the original signal and directly use the
measurements for detection purpose, and so reduce the complexity of the system as much as
possible.
In [48] a wavelet-based detection approach using CS to identify the spectrum holes is intro-
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duced. To find the frequency band boundaries they derive a convex optimization formulation
that the solution gives the band boundaries of the spectrum without requiring to reconstruct
the original signal.
In this chapter we develop a combined compressive sampling and spectrum discontinuities de-
tection technique based on algebraic method for the sensing task of identifying the spectrum
holes. The proposed algebraic detector is a linear detector and we would like to feed the algo-
rithm directly with the compressed measurements. For this purpose we find a proper sensing
matrix that gives the possibility of feeding the algebraic detector with the measurements di-
rectly.

4.2 Combined Compressive Sampling and Spectrum Discontinu-
ities Detection

In order to actualize sensing in wide spectrum and to reduce the complexity and power con-
sumption at CR nodes, sampling at a smaller rate than Nyquist rate, while reconstruction or
detection of signal is accurately possible, is a prominent key. Hence, (CS) becomes a promis-
ing solution in realization of cognitive radio. CS enables us to do the sampling at a smaller
rate than Nyquist rate, sometimes much smaller, and accurately reconstruct the sparse signal,
or perform detection or estimation.
The first step of cognitive radio is to sense the spectrum and identify the spectrum holes, or in
other words, detect the occupied frequency bands. Typically the wireless signal in open access
networks is sparse in the frequency domain since depending on location and at some times the
percentage of spectrum occupancy is low due to the idle radios [3, 48]. For example, we can
model the spectrally sparse wideband signals as

s(t) =

N−1∑
j=0

βje
i2πjt/N , t = 0, · · · , N − 1 (4.1)

where N is very large but the number of nonzero coefficients βj is much less than N . In this
sense we can say that the signal is spectrally sparse [47]. Therefore, we would like to imple-
ment spectrum sensing in the context of cognitive radio by performing compressed sensing
combined with distribution discontinuities detection. To avoid signal reconstruction burden
we find a sensing matrix that enables the algebraic detector properly works while accepting
the compressed samples directly as input.
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f0 · · · fN

Figure 4.1: An example of power spectral density vs. the frequency of a spectrally sparse
wideband signal. PSD stands for power spectral density and f is frequency.

4.2.1 Compressed Sensing

Let x ∈ RN be a signal with expansion in an orthonormal basis Ψ as

x(t) =

N−1∑
j=0

αjψj(t), t = 0, · · · , N − 1 (4.2)

where Ψ is N ×N matrix with the waveforms ψj as rows. To use convenient matrix notations
we can write the decomposition as x = Ψα or equivalently, α = Ψ∗x where Ψ∗ denotes
conjugate transpose of Ψ. A signal x is sparse in the Ψ basis if the coefficient sequence α
is supported on a small set. We say that a vector α is S-sparse if its support {j : αj 6= 0}
is of cardinality less or equal to S [43]. Consider that we would like to recover all the N
coefficients of x, vector α, from measurements y about x of the form

ym = 〈x, φm〉 =
N−1∑
n=0

φmnx[n],m = 0, · · · ,M − 1 (4.3)

or
y = Φx = ΦΨα = Θα (4.4)

where we are interested in the case that M � N , and the rows of the M × N sensing
matrix Φ are incoherent with the columns of Ψ. Then it is shown that signal x can accurately
and sometimes exactly be recovered, considering that the recovered signal x? is given by
x? = Ψα?, and α? is the solution to the convex optimization program

min
α̃∈RN

||α̃||l1 subject to ΦΨα̃ = Θα̃ = y (4.5)

where ||α̃||l1 :=
∑N

j=1 |α̃j |. The compressed sensing (CS) theory states that there exists a
measuring factor c > 1 such that only M := cS incoherent measurements y are needed to
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recover x with high probability. We also have to mention that except l1-minimization solution
other methods such as greedy algorithms exist for recovering the sparse signal [44, 50].
In case of noisy measurements, i.e., y = Φx+ e, where e is noise with ||e||l2 ≤ ε, [44] shows
that solution to

min
α̃∈RN

||α̃||l1 subject to ||Θα̃− y||l2 ≤ ε (4.6)

recovers the sparse signal with an error at most proportional to the noise level. Also, [44]
discuss the conditions for stable recovery from noisy measurements.
We are interested in doing the spectrum holes detection using algebraic approach directly from
the compressed measurements without reconstructing the original signal itself. For this reason
we must find out the appropriate sensing matrix according to the detection technique. The
proposed detection technique is a linear algebraic algorithm. This technique uses the Fourier
transform of the observed signal to detect the occupied frequency bands in the observed spec-
trum. Therefore the compressed measurements of the observed signal must keep the linearity
and properties of the original signal in order to apply the detection algorithm successfully on
the compressed measurements. To find the sensing matrix we start by looking at the Fourier
transform of the signal x ∈ RN .

Xl =
N−1∑
n=0

x[n] exp(−ωln), l = 0, · · · , N − 1 (4.7)

where ω = 2πi
N and i is the imaginary unit. The Fourier transform of the measured signal is

Yk =

M−1∑
m=0

y[m] exp(−ωkm), k = 0, · · · ,M − 1. (4.8)

From (4.4) we replace y[m] and we have

Yk =
M−1∑
m=0

(
N−1∑
n=0

φmnx[n]) exp(−ωkm), k = 0, · · · ,M − 1 (4.9)

where φmn denotes the element of Φ at the cross of row m and column n. Then by linearity
properties we have

Yk =
N−1∑
n=0

M−1∑
m=0

φn[m] exp(−ωkm)x[n], k = 0, · · · ,M − 1 (4.10)

where φn[m] denotes the mth element of the nth column vector of Φ, φn, and we see that

M−1∑
m=0

φn[m] exp(−ωkm) = Φ̂nk , k = 0, · · · ,M − 1 (4.11)
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that is the Fourier transform of the nth column vector of Φ, Φ̂n. Then from (4.10) and (4.11)

Yk =

N−1∑
n=0

Φ̂nkx[n], k = 0, · · · ,M − 1. (4.12)

And, as we said, in order to feed the detection algorithm directly by the compressed measure-
ments we seek that

Yk(ω) = aXl(ω), k ∈ {0, · · · ,M − 1}, l ∈ {0, · · · , N − 1} (4.13)

where a > 0 is a constant. From (4.12) and to satisfy (4.13) we find that

Φ̂nk = a exp(−ωzn), z ∈ {1, · · · , N}, k = 0, · · · ,M − 1 (4.14)

and therefore from inverse Fourier transform we have

φn = aδ(n− z), z ∈ {1, · · · , N} (4.15)

which means that any row vector of the sensing matrix is a Dirac function, that is, only one
column of each row is nonzero.
Now that the general format of the sensing matrix is clear, we should find a way to generate
it. The ΦT matrix can be generated by randomly selecting M columns of an identity matrix
IN . Φ is given by transpose of ΦT , and we define a = 1 to make sure that the columns of the
sensing matrix are unit-normed. So the sensing matrix Φ that we achieved has a form like this

Φ ∼

 0 1 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 · · · 0 1 0 0


M×N

. (4.16)

This form of sensing matrix gives us the opportunity to use the compressed measurements
directly as input to the algebraic detection algorithm and thus avoiding the computation com-
plexity of reconstructing the original signal. Following, the algebraic detection technique with
compressed measurements as the input to the algorithm is explained.

4.2.2 Algebraic Detection Based on Compressive Sampling

The algebraic detection (AD) is a new approach based on advanced differential algebra and
operational calculus. In this method, the primary user’s presence is rather casted as a change
point detection in its transmission spectrum. In this approach, the mathematical representation
of the spectrum of the compressed measurements, i.e., the observed signal Yn in frequency
domain, is assumed to be a piecewise P th polynomial signal expressed as following:

Yn =
K∑
k=1

Yk[nk−1, nk](f)× pk(n− nk−1) + En (4.17)
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where Yk[nk−1, nk] is the characteristic function, pk is a polynomial series of order P , En
is the additive corrupting noise, K is the number of subbands defined in the frequency range
of observation interest, and n = f

fs
is the normalized frequency, where fs is the sampling

frequency and f is the signal frequency.
Let us define the clean version of the received signal Sn as:

Sn =
K∑
k=1

Yk[nk−1, nk](f)× pk(n− nk−1) (4.18)

And let b, the frequency band, be such that one and only one change point occurs in the interval
Ib = [nk−1, nk] = [ν, ν + b], ν ≥ 0. Denoting Sν(n) = S(n+ ν), n ∈ [0, b] as the restriction
of the signal in the interval Ib and redefine the change point nν relatively to Ib such as:{

nν = 0 if Sν is continuous
0 < nν ≤ b otherwise

(4.19)

Then, the primary user presence on a sensed sub-band is equivalent to find 0 < nν ≤ b on that
band. The AD gives the opportunity to build a whole family of spectrum sensing detectors,
depending on a given model order P . Depending on this model order, we can show that
performance of the AD is increasing as the order P increases.
The proposed algorithm is implemented as a filter bank which composed of P filters mounted
in a parallel way. The impulse response of each filter is:

hk+1,n =

{
(nl(b−n)P+k)(k)

(l−1)! , 0 < n < b

0, otherwise
(4.20)

where k ∈ [0 · · ·P − 1] and l is chosen such that l > 2 × P . The proposed expression of
hk+1,n, k ∈ [0 · · ·P − 1] is determined by modeling the spectrum with a piecewise regular
signal in frequency domain and casting the problem of spectrum sensing as a change point
detection in the primary user transmission. Finally, in each detected interval [nνi , nνi+1 ], we
compute the following equation:

λk+1 =

nνi+1∑
m=nνi

Wmhk+1,mXm (4.21)

where M is the number of samples of the observed signal, Wm is the weight for numeric
integration defined by: {

W0 = WM = 0.5

Wm = 1 otherwise
(4.22)
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In order to infer whether the primary user is present in its interval, a decision function is
computed as following:

Df = ‖
P∏
k=0

λk+1(nν)‖ (4.23)

The decision is made by comparing the threshold Th to the mean value of the decision function
over the detected intervals.

4.3 Simulations

4.3.1 Single Node Spectrum Sensing

In this section we investigate the performance of the proposed algorithm in comparison with
the energy detector (ED). First we consider a frequency band in the range of [50, 250]MHz,
in order to compare the compressive sensing using the algebraic method and the wavelet ap-
proach introduced in [48]. The signal is fully described in [48]. During the observed burst of
transmissions in the network, there 6 bands, with frequency boundaries at:
nν

6
n=0 = [50, 120, 170, 200, 220, 224, 250] MHz.

Comparing with the wavelet approach, in the algebraic detection technique change points are
detected only in one shot, while in the wavelets approach, many detections have to be con-
ducted and fused to make a final decision.
Figure 4.2 shows the algebraic detection performance on this signal. Now, comparing the pro-
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Figure 4.2: Edge detection using the algebraic technique. The signal in red is the original sig-
nal, the one in blue is the noisy observation with SNR=-8dB. The black signal is the computed
decision function and the green stars are the detected change points.

posed compressed sensing algorithm to the reference algorithm, let us give some key notes on
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the ED. ED is the most common method for spectrum sensing because of its non-coherency
and low complexity. The energy detector measures the received energy during a finite time
interval and compares it to a predetermined threshold. That is, the test statistic of the energy
detector is:

M∑
m=1

‖ ym ‖2 (4.24)

where M is the number of samples of the received signal y.
Traditional ED can be simply implemented as a spectrum analyzer. A threshold used for
primary user detection is highly susceptible to unknown or changing noise levels. Even if
the threshold would be set adaptively, presence of any in-band interference would confuse the
energy detector.
In order to achieve realistic and well founded simulations, DVB-T signals based on DVB-
T 2K recommendations are used as the signals to be sensed. This choice can be justified
by the fact that almost all licensed primary networks are DVB-T and secondary users are
CR deployed in these networks. The signal parameters are given in Table 4.1. Figure 4.3

Bandwidth 8MHz
Mode 2K
Guard interval 1/4
Channel models AWGN
Frequency-flat Single path
Sensing time 1.5ms

Table 4.1: The transmitted DVB-T primary user signal parameters

shows the performance of the following simulated detectors: energy detector (ED), first order
algebraic detector (AD1), AD1 with compression rate of M/N = 20%, 30%, 40% and 50%

and a second order algebraic detector (AD2) with M/N = 50%. We note that ED, AD1 and
AD50%

2 all have the same complexity and the figure 4.3 shows that AL50%
2 have a much better

performance than ED and at low SNRs it is outperforming AD1.
Another key metric in the sensing problems is the receiver operating characteristics (ROC)
curve which helps giving an idea about the reliability of the proposed technique. For instance
we plot the ROC curve at SNR = −25dB for ED, AD1 and AL50%

2 .
Figure 4.4 shows how reliable the compressed sensing technique is, as the detector operates at
high probability of detection under a low false alarm rate.
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Figure 4.3: PD vs. SNR at PF=0.05; ADP :Algebraic detection of order P ; ED: Energy
detector; MN :Compression ratio.
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Figure 4.4: ROC curve at SNR=−25dB; ADP :Algebraic detection of order P ; ED: Energy
detector; MN :Compression ratio.

4.3.2 Cooperative Sensing

We consider collaborative radios group with size of 1, 5, 10, 20 radios. For each group size,
compressed collaborative detection with different compression ratios, MN = {10%, 20%, 30%},
is simulated and compared to the ED detector with single radio and no compression. Collab-
orative ED is not simulated due to timing issues and since the comparison is still valid with
single radio as will be seen.
Figure 4.5 shows the performance of energy detector (ED) with no compression and first or-
der algebraic detector AD1 with different compression ratios for collaborative groups of size
1, 5, 10 and 20 radios.
We note that only performance of a single radio with compression ratio of 10% is not as good
as performance of ED with single radio and no compression. And for the rest of examples
the performance is better. This is where the complexity of the compressed sensing, i.e., MN , is
much lower than ED, i.e., N . Collaboration among radios greatly improve the detection per-
formance. Also, we note that when the number of collaborations increases the compression
ratio at each radio can be decreased in order to achieve a specific probability of detection PD.
Figure 4.6 shows the probability of detection that is achievable by different number of collab-
orative radios for a compressed sensing ratio of MN = 10% at SNR=−20dB and PF = 0.05.
These results are obtained with Algebraic detection of order P = 1, and using order P = 2
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improves the performance dramatically where complexity increases to 2M fromM . But, still,
for example for M

N = 10%, complexity is much less than complexity of ED, i.e., N . For
M
N = 50% the complexity of compressive sensing technique is same as ED while the perfor-
mance is much better comparing to ED.
As a final word, we can say that the collaborative compressed sensing can decrease the com-
plexity and energy consumption of cognitive radio networks remarkably due to the low sam-
pling rate required for each radio while it makes the cognitive network robust to fading.
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Figure 4.5: Probability of detection, PD, vs. SNR at PF = 0.05. CAD: Compressed sensing
with Algebraic detection of order P = 1. SU: secondary users/collaborative radios.

4.4 Conclusion

We present in this work a new sensing technique which combines compressive sampling and
algebraic method to detect spectrum holes. In a first step, we designed a compressed sensing
matrix which keeps the linear properties of the sampled primary signal. Then, we applied the
compressed measurements to algebraic detector to localize spectrum discontinuities and iden-
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Figure 4.6: Probability of detection, PD, vs. number of collaborative radios (SUs) with com-
pressed sensing of ratio M

N = 10% and Algebraic detection of order P = 1, at SNR=−20dB

and PF = 0.05.

tify spectrum holes. The analysis of the complexity of the proposed technique shows that it can
be dramatically reduced when the model order of the algebraic detector increases. The perfor-
mance comparison at different sampling rates shows that the new designed scheme achieves
better performance than energy detector while preserving a low computational complexity.
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CHAPTER 5

Spectrum Awareness for OFDM-based
Cognitive Radio Systems

5.1 Introduction

The presented work in this chapter fits in the context of spectrum sensing/spectrum sharing
framework for CR networks and more precisely single node detection/ standard identifica-
tion. Related to this work, many statistical approaches for the spectrum sensing part were
developed. As previously stated, one of the most performing sensing techniques is the cy-
clostationary features detection [7, 17]. The main advantage of the cyclostationarity detection
is that it can distinguish between noise signal and PU transmitted data. Indeed, noise has no
spectral correlation whereas the modulated signals are usually cyclostationary with non null
spectral correlation due to the embedded redundancy in the transmitted signal. The reference
sensing technique is the energy detector [7], as it is the easiest to implement and the less com-
plex detection technique. In the other hand, some papers have been dedicate to the signal
identification part [51–53] and decision making [54, 55] where the main focus was to identify
what standard is being used by the PUs rather than simply detecting their presence. In this
Chapter, we present a robust classification technique based on mixed signals separation and
parallel spectrum sensing techniques in order to combine the sensing / classification features
of the CR.

5.2 Targeted Scenarios

The goal of this chapter is to derive a classification scheme for different systems and sig-
nals coexisting in the TV White Spaces (TVWS). The transmitters considered in several CR
networks (example for SACRA/SPECTRA projects) are identified and characterized below:

1. A DVB-T Primary User (PU) which uses OFDM Modulation. As shown later, there are
several DVB-T configurations, depending on

(a) the bandwidth (5 MHz, 6 MHz, 7 MHz, 8 MHz) of the channel being used,
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(b) the modulation (QPSK/QAM/16-QAM/64-QAM) used by the subcarriers from the
OFDM symbol,

(c) the useful symbol and guard periods: system characteristics have been predefined
by standards, and they are fixed known values for the useful TU and guard TG
period (the latter is also called cyclic prefix period).

2. An LTE Secondary User (SU) which uses OFDM Modulation (in DL) and SC-FDMA
(in UL) combined with BPSK/QAM/16-QAM/64-QAM. System characteristics with
fixed symbol and guard periods (TU and TG) have been predefined by 3GPP standard-
ization activities.

3. A PMSE PU which uses QPSK Modulation (400 KHz Bandwidth) or FM Modulation
(200 KHz). Excepting the bandwidth, the system characteristics are not very well de-
fined for PMSE. These devices will further be discussed in latter sections.

In Figure (5.1), terminal UE5 is connected to a base station operating through the licensed
band (2.6GHz), eNB3, and may be authorized to use resources in another band (DD/TVWS)
to communicate with a second base station, eNB1. This use case is based on the spectrum
aggregation concept, introduced in LTE-Advanced standard. The terminal is thus operating in
a heterogeneous network, with OFDM LTE-A, OFDM DVB-T and PMSE signals cohabitating
in the network. From this coexistence came the need to classify each standard in order to
enable the opportunistic use of the TVWS bands. The due tasks of the CR are thus, mixed
signals separation and then classification of each separated signal.

5.3 Proposed Algorithm for Signal Separation in Cognitive Radio
Networks

Let M be the number of terminals in the proposed CRS architecture and N be the number of
source signals.
The received wideband signal can be written as following:

x(t) = A . s(t) + n(t) (5.1)

where x(t) is a M -dimensional vector of the observed signals. s(t) is a N -dimension vec-
tor corresponding to the source signals transmitted by the cognitive radios. The matrix A is
M × N , and denotes the mixing matrix. And n(t) is the additive white noise vector hav-
ing the same size as x(t) Now, in order to proceed with the blind source separation (BSS)
problem, and in order to adopt an independent component analysis (ICA) algorithm we have
first to filter the wideband signal in a band of interest, modulate it to baseband, decorrelate,
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Figure 5.1: Targeted wide-band cognitive radio network scenario

center its data, proceed with the FastICA and finally demodulate back the signal to its original
frequency band.

1. Filtering:
In order to be able to separate the source signals from the mixture present in each sub-
band, we need to analyse each subband separately. Thanks to the frequency edge loca-
tion algorithm, we can sub-divide the wideband signal and thus obtain the frequency bor-
ders. By choosing two consecutive frequencies from the frequency set {fn}, we can con-
struct a filter hBn whereBn = fn−fn−1 is frequency support and fnm = (fn−fn−1)/2

is the center frequency.
Then in order to filter the signals between fn−1 and fn, we get xin: observed signal on
each CR given by:

xin = xi ∗ hBn , i = 1, 2, ..,M (5.2)

where * denotes the convolution operation.

2. Signal Modulation:
As we intend to use some Blind Signal Separation (BSS) processing, and as it is gen-
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erally done in BSS, we modulate high frequency signals back to base band frequency.
Thus we get:

xinL = xin ∗ hModn, i = 1, 2, ..,M (5.3)

where, xinL is the modulated signal on each terminal and hModn represents the modu-
lation carrier according to the estimated frequency edge. From this modulation process,
we finally get a baseband signals matrix

XnL = [xT1nL xT2nL... x
T
mnL... x

T
MnL]T

3. Signals decorrelation and centering:
In order to proceed with BSS and ICA analysis of mixute, we have to make sure that the
vector XnL is uncorrelated and zero mean. Thus we proceed as following:
Centering Phase:

X̃nL = XnL − E[XnL] (5.4)

now that the matrix X̃nL is a zero-mean matrix, we can proceed to make it a non corre-
lated matrix as classically done in BSS and ICA preprocessing. We also chose to ensure
at the output of this process a unity variance for the uncorrelated matrix components.
Whitening Phase:

X̂nL = E . D
−1
2 . ET . X̃nL (5.5)

whereE is the orthogonal matrix of eigenvectors ofE{X̃nL . X̃
T
nL}. D = diag(d1, ..., dM )

is the diagonal matrix containing the eigenvalues of E{X̃nL . X̃
T
nL} .

4. Separation Technique:
Now that the matrix containing mixture signals is well conditioned, we can proceed to
the signal separation step. In FastICA, which is one of the most used techniques for
signals separation, the source signals in baseband, Ŝ, can be derived from the modu-
lated, whitened, centered signal using a separation matrix, say W , as described by the
following equation:

Ŝ = W T . X̂nL (5.6)

In order to briefly describe the separation process, we initially choose an M-dimential
weight vector, say winit. Afterwards, the vectors has to be computed and updated in
order to converge to W . The first component is computed at the first iteration by:

w+
1 = E{X̂nL . g(wTinit . X̂nL)}
− E{g′(wTinit . X̂nL)} . winit

(5.7)
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then we normalize w1 as following:

w1 =
w+

1

‖w+
1 ‖

(5.8)

where g( . ) is a non quadratic function that usually is chosen among: gaussian, hyper-
bolic tangent or a cubic function.
If w1 does not converge, we proceed with equation (5.8) until |wT1 . winit| gets as close
as possile to 1.
Now, that w1 converged,we get by successive iteration the N − 1 (N and M are not
necessarely equal) missing vectors of separation matrix. The kth is computed at the kth

iteration by:
w+
k = E{X̂nL . g(wTk−1 . X̂nL)}
− E{g′(wTk−1 . X̂nL)} . wk−1

(5.9)

then we normalize wk as following:

wk =
w+
k

‖w+
k ‖

(5.10)

Therefore, after all these computations, we obtain the matrix W = [wT1 , wT2 .... , wTN ].
Now, having an estimate of the matrix W , we can compute the source signals and re-
contract S from the observed mixture from 5.6:

Ŝ = W T . X̂nL

where Ŝ = [s̃T1nL s̃T2nL... s̃
T
inL... s̃

T
NnL]T , is the separated signals matrix. Given this

notation, s̃TinL denotes the separated baseband signal vector.

5. Demodulation:
As a final step, we modulate Ŝ back to its original subbands via the demodulation filter
hdemodn constructed from the knowledge of hModn. and thus we get:

s̃in = s̃inL ∗ hdemodn, i = 1, 2, .., N (5.11)

where s̃in denotes the recovered signal vector on the frequency support delimited by
fn−1 and fn. And finally denoting, S̃ = [s̃T1n s̃T2n... s̃

T
in... s̃

T
Nn]T , we do obtain the

recovered signals matrix on each subband [fn−1 , fn].

5.4 The Standards Classification Scheme

5.4.1 Conventional Spectrum Sensing for CRS

In order to model the spectrum sensing problem, let’s suppose that the detector receives signal
yn = Ansn + en, where An models the channel, sn is the transmit signal sent from primary
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user and en is the additive noise. The goal of spectrum sensing, as depicted in Figure (5.2),
is to decide between two conventional hypotheses modeling the spectrum occupancy H0 and
H1 modeling respectively, the decision by the detector of PU signal absence and presence. In
order to make such a decision, the detector implements a scalar test statistic Λ function of the
input signal yn. This test statistic is to be compared to a threshold level γ function of the SNR
and the probability of false alarm PFA and we thus obtain:{

if Λ = F(yn) ≥ γ decide H1

if Λ = F(yn) < γ decide H0
(5.12)

In the proposed classification scheme, we proposed to mount as many parallel detectors as
the number of standards we would like to discriminate. In this work for example, we would
like to focus on two OFDM-based standards (LTE, DVB-T) and PMSE signals (for wireless
microphones), therefore the classifier would have 3 stages.

Figure 5.2: Spectrum Sensing Principles

5.4.2 Robust Signal Classifier for CRS

In this section, we briefly present each signal to be classified and the corresponding test statis-
tic and threshold to be applied for the each detection stage. Since we are considering three
standards, the proposed classifier has to implement three stages as presented in Figure (5.3)
and explained afterwards.

5.4.2.1 LTE signals detection

The algorithm we are adopting is fully described in [58]. To sum-up, the algorithm is based on
the fact that LTE signals exhibit reference signals-introduced second-order cyclostationarity
with the cyclic autocorrelation function (CAF), Rαy (τ) 6= 0 at cyclic frequency α = 0 and
delay τ = DF (DF is the frame duration) for all transmission modes. This property exhibited
by FDD downlink LTE-OFDM transmissions can thus be used to detect presence of LTE
signals. The CAF of the received signal, yn, is estimated from Ns samples at the delay τ and
the CF (cyclic frequency) α and we form the following vector: R̂αy = [Re(Rαy (τ))Im(Rαy (τ))]

in order to compute the test statistic given by:

ΛLTE−CFD = NsR̂
α
y Σ̂−1(R̂αy )t (5.13)
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Figure 5.3: Proposed Standard Classification Scheme

where Σ̂ is the estimate of the R̂αy covariance matrix.
The test statistic ΛLTE−CFD has now to be compared to some threshold value λ to make the
decision. As previously stated, this threshold is function of the probability of false alarm PFA.
In our case, and given the test statistic, a possible definition of PFA could be: the probability
of deciding that the tested frequency α is a CF at delay τ when this is actually not. frequency
is a CF at delay, or : PFA = Pr(ΛLTE−CFD ≥ λ|H0). keeping in mind that ΛLTE−CFD
is following a chi-squared distribution [59], the threshold λ is obtained from the tables of the
chi-squared distribution for a given value of PFA probability.

5.4.2.2 DVB-T signals detection

For the detection of DVB-T signals, a robust algorithm to be applied could be the autocor-
relation based detector (AD). Let us remind the mathematical formulation of AD. It is based
on the fact that many communication signals contain redundancy, introduced for example to
facilitate synchronization, by channel coding or to circumvent inter-symbol interference. This
redundancy occurs as non-zero average autocorrelation at some time lag l. The autocorrelation
function at some lag l can be estimated from:

r̂l(y) =
1

p− l

p−l−1∑
n=0

yn+l y
∗
n l ≥ 0 (5.14)

where p is the length of the PU signal in samples. Any signal except for the white noise case
will have values of the autocorrelation function different from zero at some lags larger than
zero, although some might be exactly zero depending on the zero crossings. In [56], authors
have proposed an autocorrelation-based detector for DVB-T OFDM signals. This detector is
limited to the case when the PU is using DVB-T. To detect the existence/non existence of signal
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we use functions of the autocorrelation lags, where the autocorrelation is based on Equation
(5.14). Therefore, the autocorrelation-based decision statistic is given by [57]

ΛDV BT−AD(y) =
L∑
l=1

wl
Re {r̂l}
r̂0

(5.15)

where the number of lags, L, is selected to be an odd number. The weighting coefficients wl
could be computed to achieve the optimal performance, and is given by:

wl =
L+ 1 + |l|
L+ 1

(5.16)

5.4.2.3 PMSE signals detection

For the PMSE signal, we opt for a wireless-microphones oriented detector the Teager-Kaiser
energy detector for narrowband wireless microphone as presented in [60]. The PMSE signal
as transmitted from the PMSE equipment can be modeled by:

x(t) = A cos(2πf0t+
κf
sm

∫
τ
s(τ)dτ) (5.17)

where where f0 is the carrier frequency, κf the frequency deviation of the FM modulation, and
s(t) the modulating signal having an amplitude of sm. The signal x(t) has a power σ2

x = A2/2.
And the received signal over an AWGN is :

y(t) = x(t) + n(t) (5.18)

In order to derive the test statistic of this detector, The Teager-Kaiser energy operator Ψ is
used to extract directly the energy from the instantaneous signal and is expressed by:

Ψ[y(k)] = Ψ[x(k)] + Ψ[n(k)] + 2Ψ[x(k), n(k)] (5.19)

and since the noise and the signal are uncorrelated, Ψ[x(k), n(k)] = 0. and the test statistic is
the average value of Teager-Kaiser energy operator applied to y(k), expressed as:

ΛPMSE−TKED = E〈Ψ[y(k)]〉 (5.20)

= E〈Ψ[x(k)]〉+ σ2
n (5.21)

For this detector, we will use a Monte-Carlo simulation to derive the desired threshold function
of the PFA.
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5.4.2.4 Combining rule for Classification

So far, the choice made for each detectors was based on the criterion that each sensing tech-
nique should be suitable for only one standard. That is why the choice for DVB-T was the au-
tocorrelation detector (DVBT-AD) that highlights the DVB-T characteristics among the other
standards; and for LTE we opted for the second order cyclostationary feature detector (LTE-
CFD); and finally for PMSE signal we used the Teager-Kaiser energy operator (PMSE-TKED)
that is convenient for narrowband signals. In order to combine the outputs of these standard-
dedicated detectors, we will fuse the data from different stages of OFDM-based techniques as
in Equation (5.22).
In Equation (5.22), for the two first decisions, we won’t focus on TKED output, as if it is an
LTE or DVB-T signal it has an output energy greater than the threshold, so its output is H)1.
We will focus rather on the outputs of the CFD and the AD in order to discriminate between
LTE and DVB-T respectively. We will focus on TKED only when the CFD and AD give both
null hypothesis testing resultsH0.



if
ΛDVBT−AD

γAD
≥ 1 and

ΛLTE−CFD
γCFD

< 1 decide HDV B−T

if
ΛLTE−CFD

γCFD
≥ 1 and

ΛDVBT−AD
γAD

< 1 decide HLTE

if
ΛPMSE−TKED

γTKED
≥ 1 and

ΛDVBT−AD
γAD

< 1 and
ΛLTE−CFD

γCFD
< 1 decide HPMSE

(5.22)

5.5 Simulations and Results

5.5.1 Simulation Settings

We define two scenarios to evaluate the proposed solution:

• Scenario 1: In this scenario, we use DVB-T and LTE OFDM signals plus a QPSK
wireless microphone as PMSE signal over an AWGN channel. It is assumed that the
detection performance in AWGN will provide a good impression of the performance,
but it is necessary to extend the simulations to include signal distortion due to multipath
and shadow fading.

• Scenario 2: In this case, we use the same signals as Scenario 1, but to make the simula-
tions more realistic, the signal is subjected to Rayleigh multipath fading and shadowing
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following a log normal distribution in addition to the AWGN. The maximum Doppler
shift of the channel is 100Hz and the standard deviation for the log normal shadowing
is 10dB.

The simulation parameters used in this section for the DVB-T signals are are given in Ta-
ble 5.1 [61, 62], while LTE signals are of bandwidth 10 MHz and using short cyclic prefix
(CP). For more details on LTE parameters see ref [63], [64] and [65] for LTE specifications
and simulations. And as far as PMSE signals are concerned a QPSK narrowband signal was
considered for the simulation of wireless microphones.

Bandwidth 8MHz
Mode 2K
Guard interval 1/4
Channel AWGN
Classification time 25ms

Table 5.1: The chosen DVB-T primary user signal parameters

5.5.2 Simulation Results

Figures (5.4) and (5.5), report the results of the two simulated scenarios. A general remark
that could be made is that the DVB-T classification outperforms LTE and PMSE. That is fully
comprehensible as for DVB-T the detection is made using the autocorrelation function of the
whole signal, but for LTE we only made it for the RS (reference signals) which makes the
correlation length lower than the DVB-T one; and this gets worst for PMSE as the signal
itself is a narrowband one (Bandwidth ≤ 400KHz). In Figure (5.4), the classification is
done over an AWGN channel for 25 ms acquisition which is meant to give a first overview of
the classifier performance and in Figure (5.5), for the same period the classification scheme
is tested under a more realistic channel model, a Rayleigh multipath fading and shadowing
following a log normal distribution in addition to the AWGN. The maximum Doppler shift of
the channel is 100Hz and the standard deviation for the log normal shadowing is 10dB.

5.6 Conclusion

In this Chapter we presented a novel robust classification scheme. The use-case considered
was a heterogenous network configuration projects case which, without any loss of generalities
can be extended to any other cognitive network scenario. The robustness of the proposed
classifier resides in the choice of the sensing algorithm for each standard. Here the AD was
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Figure 5.4: Probability of correct classification (PC) Vs. Signal to Noise Ratio (SNR) for a
Probability of False Alarm PFA = 10−3 and classification period of 25 ms: Scenario 1

chosen for DVB-T because it was assumed to be the best detector exploiting the OFDM DVB-
T properties and so is the choice for CFD for OFDM LTE standard, but since the PMSE signals
are quite hard to model in terms of statistics, we opted for the exploitation of the narrowband
property of those signals.
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Figure 5.5: Probability of correct classification (PC) Vs. Signal to Noise Ratio (SNR) for a
Probability of False Alarm PFA = 10−3 and classification period of 25 ms: Scenario 2



CHAPTER 6

A Computer Vision OFDM-based
Signal Classification Approach for

Cognitive Radio Applications

6.1 Introduction

The first goal of this chapter is to identify classification methods for different systems with
specific parameters and signal characteristics and operating in the TV White Spaces. The
transmitters considered in our scenario are identified and characterized below:

1. A DVB-T Primary User (PU) which uses OFDM Modulation. As shown later, there are
several DVB-T configurations, depending on

(a) the bandwidth (5 MHz, 6 MHz, 7 MHz, 8 MHz) of the channel being used,

(b) the modulation (QPSK/QAM/16-QAM/64-QAM) used by the subcarriers from the
OFDM symbol,

(c) the useful symbol and guard periods: system characteristics are predefined by
standards, and they are fixed known values for the useful TU and guard TG period
(the latter is also called cyclic prefix period).

2. An LTE Secondary User (SU) which uses OFDM Modulation (in DL) and SC-FDMA
(in UL) combined with BPSK/QAM/16-QAM/64-QAM. System characteristics with
fixed symbol and guard periods (TU and TG) are predefined by 3GPP standardization
activities.

3. A PMSE PU which uses QPSK Modulation (400 KHz Bandwidth) or FM Modulation
(200 KHz). Excepting the bandwidth, the system characteristics are not very well de-
fined for PMSE. These devices will further be discussed in latter sections.

The second goal of this chapter is to define the specifications for the signal classification algo-
rithms to be used by the cognitive radios. The purpose of classification in the CRS context is



70
Chapter 6. A Computer Vision OFDM-based Signal Classification Approach for

Cognitive Radio Applications

to discriminate between multiple systems transmitting at the same time, in the same frequency
band. From all the possible discrimination scenarios (i.e., between SUs, between SUs and
PUs, between PUs), we have further selected only one (i.e., between SUs and PUs), which
seems to be the most relevant one.
Even if the coexistence between SUs (SU/SU coexistence) is a very interesting case, the LTE
coexistence should be addressed only for the inter-operator coexistence context. This state-
ment is justified by the fact that intra-operator coexistence could easily be managed by a higher
entity which deals with resource management (the eNodeBs are connected through the X2 in-
terfaces and can easily deal with the intra-operator resource allocation), so the operator will
use his own frequency spectrum without employing any classification techniques. Therefore,
only the inter-operator coexistence could justify the classification, but it is out of scope of this
work.
The coexistence of different PUs (PU/PU coexistence) seems to be not very realistic because,
by definition, a PU occupies a licensed frequency band and 2 given PUs are not sharing the
same licensed frequency band.
Regarding the coexistence between SUs and PUs (i.e., SU/PU coexistence), we assume that
the SU should leave the opportunistic spectrum band once the PU starts transmitting. However,
since the SU performs detection before opportunistically accessing the spectrum, the only valid
classification scenario is when the PU is not present (or is not detected), the SU system starts
communicating in the TVWS, and at a given unknown time, a PU starts retransmitting or starts
transmitting for the first time. In this scenario, the SU system has to perform classification in
order to discriminate signals coming from its own system and PU transmissions.
The classification is therefore necessary for a SU in order to discriminate between its own
network and a PU that started to use the same spectrum at a given time, and without any quiet
period made by the SU system.

6.2 Cyclostationarity for LTE, DVB-T and PMSE

The autocorrelation functionRrr (t, τ) of the received signal r (t), in our considered scenarios
r (t) = rLTE(t) + rDV BT (t) + n(t) or r (t) = rLTE(t) + rPMSE(t) + n(t), with n(t) the
white additive Gaussian noise, rLTE(t)the received LTE signal from own secondary system,
while rDV BT (t) and rPMSE(t)are representing the incumbent PU signals, can be represented
by Fourier series expansion as

Rrr (t, τ) =
∑
α∈ψ

Rαrr (τ) exp (j2παt)

where α is a cyclic frequency, ψ is the entire set of cyclic frequencies, and Rαrr (τ) is the
Fourier coefficient, also called Cyclic Autocorrelation Function (CAF). The CAF of the second
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order autocorrelation function can be written as
Rαrr (τ) = lim

T→∞
1
T

∫ T
2

−T
2

r(t)r∗(t− τ) exp (−j2παt) dt =

= lim
T→∞

1
T

∫ T
2

−T
2

r∗(t)r(t+ τ) exp (−j2παt) dt

When we refer to CAF we usually refer to the second order CAF described by the previous
equation, but in its time-discrete form is : Rαrr (d) = 1

Nr

∑Nr−1
n=0 r∗(n)r(n+d) exp(−j2παn∆t).

Here the delay d is normalized by the sampling frequency ∆t, and Nr represents the number
of available samples.
The Generalized Likelihood Ratio Test (GLRT) algorithm for cyclostationary features detec-
tion (CFD) is computing the covariance matrix

∑
r α as in [59]. Based on this covariance

matrix, the method further computes the test statistic N · rαrr(τ) · (
∑

r(α))−1 · rαrr(τ)T , where
rαrr(τ) = [Re (Rαrr (τ)) , Im (Rαrr (τ))]. The test statistic is then compared to a threshold
γ [66], computed with the help of the following equation:

PFA,t arg et = 1− Γ(1, γ/2).

where Γ is the incomplete gamma function. In our simulations we have considered the target
false alarm probability used for signal classificationPFA,t arg et = 0.1.
The table below presents examples of the cyclic frequencies adequate for the most common
types of secondary and primary user signals [67]:

Type of Signal Cyclic Frequencies (First) τ
OFDM k/TS , k = ± 0,1,2,. . . ± TU
FM ± 2f0 Does not matter
QPSK k/TS , k = ± 0,1,2,. . . ± (1/2)TS for k=1

Table 6.1: Cyclic frequencies for different signal types

For an OFDM signal, the peaks in the Cyclic Autocorrelation Function (CAF) are dependent
on TU and total symbol duration which is TS=TU+TCP . The CAF will exhibit peaks for
τ=±TU and α= k/(TU+TCP ), k=± 0,1,2, etc. For a sum of multiple OFDM signals with
different parameters (different TU and different TS), multiple distinct peaks should appear on
the cyclic autocorrelation function. Therefore, in general, cyclostationary detection may also
be used for signal classification.
For normal cyclic prefix (LTE) there are 2 types of guard periods: for the first symbol TCP /TU=10/128;
and for the rest of the symbols TCP /TU =9/128. The LTE cyclic prefix is very small, thus de-
creasing the cyclostationary properties.
For PMSE QPSK, the bandwidth is BW=400 KHz (or 600 KHz). The symbol period is
TS=(1+Roll-Off-Factor)/BW if Nyquist filter is being used. Our cyclostationary tests are con-
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Figure 6.1: DVB-T and LTE signal classification using CAF

sidering different roll-off factors. The cyclic frequencies are appearing for multiple of 1/ TS .
The cyclic peaks are present for delays τ =± TS /2 (depending on the configuration);
For PMSE FM, the bandwidth BW=200 KHz. The PMSE system has to be carefully calibrated
with respect to Carlson formula and required PMSE spectrum mask, meaning that a modula-
tion index m=1.69 has to be used. Cyclic frequencies are present at ±2f0 (residual carrier
frequency in the considered band). It is important to mention that FM exhibits cyclostationary
peaks for delays ±1/2f when sinusoidal modulated signal is being used. This explains the
presence of the secondary lobes.

6.3 DVB-T Signal Classification when LTE System is Transmit-
ting

In Figure (6.1), we show that CAF DVB-T and CAF LTE characteristics are different. For LTE
we have considered a 10 MHz system configuration with normal cyclic prefix, while for DVB-
T we have considered an 8 MHz – 2k mode. The figure is showing that DVB-T classification
is possible when LTE system is transmitting. In Table 6.2, using two different values for the
Noise Figure (NF) and the 10 MHz LTE configuration, we have derived two values of SNRmin
for DVB-T:

• -18.86 dB if the NF = 7 dB
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Signal
Band-
width

Pmin Filter
Bandwidth

Noise
Density
(KT)

NF SNRmin

DVB-
T

7.6 MHz -114
dBm

8 MHz=69 dBHz
(for subband
splitting)

-174 dB-
m/Hz

7 dB -16 dB

DVB-
T

7.6 MHz -114
dBm

3.84x4=15.36
MHz=71.86
dBHz

-174 dB-
m/Hz

7 dB -18.86 dB

DVB-
T

7.6 MHz -114
dBm

3.84x4=15.36
MHz=71.86
dBHz

-174dBm/Hz 3 dB -14.86 dB

Table 6.2: DVB-T SNRmin requirement for classification, under 10 MHz LTE system config-
uration

• -14.86 dB if the NF = 3 dB.

Figure (6.2) shows that 50 ms time is not sufficient for DVB-T classification when LTE is
transmitting, if the NF is too high. However, for systems with 3 dB NF, the SNR required might
be reached in cases when SNR LTE is sufficiently low. However, Figure (6.3) clearly shows
that 250 ms classification time is sufficient for DVB-T classification when LTE is transmitting
(SNR LTE is 0dB), for both NF=3dB and NF=7dB .

6.4 Computer Vision aided Signal Classification

6.4.1 Computer Vision Tools

The proposed approach uses two non-linear image processing tools to enhance the accuracy
of PU signals detection at the SU side. Those tools are:

• Morphological Reconstruction (MR). MR involves the use of non-linear image pro-
cessing tools (e.g., erosion and dilation) to reconstruct an original image "marker" of
unknown information about its features into a new image "mask" of parts that can be
easily extracted and represented by meaningful information [68]. Moreover, the use of
MR will smooth out spurious points that may cause false detections [69].

• Extraction of connected components. The detection of OFDM signals that belong
to different standards involve searching the generated "mask" for objects/regions that
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Figure 6.2: DVB-T classification, when LTE system is communicating, for 50 ms classification
time
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Figure 6.3: DVB-T classification, when LTE system is communicating, for 250 ms classifica-
tion time
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share specific features of the different OFDM standards. For example Figure (6.6) and
Figure((6.7) demonstrate the "marker" image and the morphologically reconstructed
"mask" image using an 8 point-connectivity region search [68].

6.4.2 Computer Vision aided Cycolstationary Features Detection

Figure (6.4) shows a block diagram of the proposed CV-CFD detection scheme. First, the
autocorrelation function of the sensed input signal y(t) is computed then processed using
two non-linear image processing tools. A suitable threshold value is calculated based on the
output image energy and that is how the final signal detection decision is made. For example,

Figure 6.4: Signal detection flow.

Figure (6.5) shows the autocorrelation function of a noise free DVB-T signals. The locations
of the autocorrelation peaks are specific to the DVB-T standards. This feature can be used
to improve the detection of those signals in presence of other OFDM-based signals such as
LTE or WiMAX that have their autocorrelation peaks at different locations [56]. Extracting
the (f, α) plane from Figure 6.5, we obtain for the "marker" DVB-T signal at SNR = -5dB
in Figure (6.6). The peaks location correspond to the highly contrasted regions in that plane,
we can observe four regions in the (f, α) plane that the CV techniques help to emphasize
compared to the remaining parts of the image. Figure 6.6 is considered as the input of the
computer vision algorithms. The output is shown in Figure 6.7. Finally, the threshold value
is calculated from the energy present in the new image,Figure (6.7), looking at the expected
peak positions for specific wireless standards in the image provided by the CV tools. The x-
and y-axis in Figures (6.6) and (6.7) represent the frequency f and the cyclic frequency α,
respectively.

6.4.3 CV-CFD as a Sensing Technique

In this section we simulate the detection of two OFDM-based DVB-T systems using three
spectrum sensing detectors. The combined CV-CFD, conventional CFD, and ED. The simula-
tion parameters used for the DVB-T signals are given in Table 6.3:
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Figure 6.5: Cyclic Autocorrelation Function for DVB-T signal example computed according
to Equation (5.14)

Bandwidth 8MHz
Mode 2K
Guard interval 1/4
Channel AWGN
Sensing time 1.5ms

Table 6.3: The chosen DVB-T primary user signal parameters

Figure 6.8 shows the signal detection performance for the conventional CFD and the computer
vision aided cyclostationary features detector (CV-CFD) for DVB-T. This figure clearly shows
the significant CV-CFD performance compared with that of the conventional CFD. For exam-
ple, in Figure 6.8, a performance gain of 5 dB is achieved at PFA = 0.05, for DVB-T. In Figure
6.8, a performance gain of 5 dB is achieved at PFA = 0.05. In addition, the proposed CV-CFD
offers the best performance at low SNR conditions.

6.4.4 Improving Classification through Computer Vision

We use exactly the same formalism as in Section (5.3), but using the novel improvements in the
CFD. For the classification of DVB-T while LTE is transmitting, we obtain the curve reported
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Figure 6.6: Original "marker" image of the DVB-T signal for the (f, α) plane at SNR = -5dB

in Figure (6.9) where 125 ms are enough this time in order to meet standards specifications for
DVB-T signals classification.

6.5 Conclusion

The objective of this study was to detect while receiving and decoding data (very strong con-
straint), but in this case the choice of the sensing time will not affect the Quality of Service.
The advantage of using classification instead of QP is that the classification time can be (the-
oretically) as long as possible.
Our conclusion is also that the requirements proposed by FCC for sensing can be adapted to
classification. Please also note that the classification requirement depends on the following
parameters:

• Sensing time;

• NF (Noise Figure of the amplification chain from LTE Rx);

• LTE configuration – which gives the sampling frequency being used and the detection
BW size;
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Figure 6.7: The "mask" image of Figure 6.6 for the (f, α) plane at SNR = -5dB.

• The amount of DVB-T/PMSE captured in the analyzed BW.

For 10 MHz Bandwidth (Very Wide Band), classification time is considerably shortened from
250 ms to 125 ms in order to meet the system requirements for DVB-T sensing.
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CHAPTER 7

Cooperative Spectrum Sensing and
Localization in Cognitive Radio

7.1 Introduction

Cognitive radio is a smart wireless communication concept that is able to promote the effi-
ciency of the spectrum usage by exploiting the free frequency bands in the spectrum, namely
spectrum holes [3, 4].
Detection of spectrum holes is of the first steps of implementing a cognitive radio system and
is called spectrum sensing.
The major problem that arises in wideband radio, is the fact that one may not be able to
acquire a signal at the Nyquist sampling rate due to the current limitations in Analog-to-Digital
Converter (ADC) technology [43]. Compressive sensing makes it possible to reconstruct a
sparse signal by taking less samples than Nyquist sampling, and thus wideband spectrum
sensing is doable by Compressed Sensing (CS).
Another step towards the feasibility and a real implementation of cognitive radio systems is the
problem of location awareness [70, 71]. This problem arises when we do consider a realistic
scenario in hybrid overlay/underlay systems, when these spectrum opportunities permit cogni-
tive radios to transmit below the primary users tolerance threshold. In this case, the cognitive
radio, have to estimate robustly the primary users locations in the network in order to adjust its
transmission power function of the estimated location in the network. The knowledge of po-
sition information in CRS is also an enabler of location based beamforming as shown in [73]
and also as shown in ICT-WHERE2 project, a whole framework of location-aided PHY/-
MAC layer design for advanced cognitive radios [74] with novel concepts of spectrum sensing
techniques based on location information [75], to multi-cell multi-user MIMO systems with
location based CSIT [76].
In our approach1, we propose to analyze all these arisen problems. During the problem for-

1Part of the work presented in this chapter was accepted and presented in WIMOB 2012 [70], 8th IEEE Interna-
tional Conference on Wireless and Mobile Computing, Networking and Communications and CAMAD 2012 [71],
IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Net-
works
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mulation and when analyzing more deeply the equations related to each question apart, we
will make the link between the formulation of spectrum sensing, location awareness and the
hardware limitation by describing those problems in a unique compressed sensing formalism.

7.2 Compressed Sensing Framework

In this section, we are considering sparse signals /vectors reconstruction.
A given d-dimensional vector is assumed to be s-sparse if it has s or fewer non zero coordi-
nates, that is to say:

x ∈ Rd, ||x||0 , |supp(x)| ≤ s� d (7.1)

where we denote by ||.||0 the quasi norm and for 1 ≤ p < ∞, ||.||p ,
∑d

i=1(|xi|p)1/p is
the usual p-norm. In real world, we won’t encounter perfect sparse signals, but signals whose
coordinates satisfying a power law decay, that’s to say x satisfy the following equation:

|x∗i | ≤ Ri(−1/q) (7.2)

where x∗ is a non increasingly rearranged version of x, R is some positive constant and q is
satisfying 0 < q < 1. Sparse vectors recovery algorithms tend to reconstruct sparse vectors
from a small set of measurements. Each of these measurements can be viewed as an inner
product between a given vector, say φi ∈ Rd and the vector x ∈ Rd. Collecting the m
measurement in a single matrix, we thus build an m × d measurement matrix, say Φ =

[φ1 ... φm] .
Theoretically speaking, recovering x from its measurement u = Φx ∈ Rm is equivalent to
solving the l0-minimization problem:

min
z∈Rd

||z||0 subject to Φz = u (7.3)

If x is s-sparse and Φ is one-to-one2 on all 2s-sparse vectors, then the solution of Equation
(7.3) must be the signal x. Indeed, say z is a solution and given the fact that x is an obvious
solution, then z − x must be a kernel of Φ. But z − x is a 2s-sparse vector and given the
assumption that Φ is one-to-one, z = x. Thus, theoretically speaking the l0-minimization is a
perfect solution to the reconstruction problem. Unfortunately it is shown in literature [79] that
the l0-minimization is a NP-Hard problem and numerically unfeasible.
This problem can be overcome by means of Compressed Sensing (CS). A first approach is to
use Basis Pursuit (BP) algorithm in order to relax the l0-minimization to an l1-minimization
formalism. BP requires stronger hypothesis on Φ, so it has not only to verify injection on

2A matrix is told to be one-to-one if it is representing an injective transformation from one space to another
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sparse vectors property, but it has been shown that the relationship betweenm, d and s is given
by: m = s logO(1)d. l1 minimization often relies on linear programming, and since there is
no linear bound for such techniques, BP approaches are quite slowly convergent techniques.
The second approach is to use greedy algorithms such as Orthogonal Matching Pursuit (OMP)
[80], Stagewise Orthogonal Matching Pursuit (StOMP) [81], or Iterative Thresholding [82,83].
Those approaches are based on the iterative computation of the signal’s support. As for BP,
m, d and s are linked parameters such as: m = O(s log d). Once the support S of the signal
computed, x is reconstructed from the measurement vector u as x = (ΦS)†u, where ΦS is
the restriction of Φ to the columns indexed by S and .† is the pseudo-inverse operator3. The
main advantage of greedy approaches is their convergence time, as they are faster than BP,
but they lose in stability compared to BP. Another class of CS algorithms recently emerged in
order to shorten the gap between greed algorithms and BP. From these algorithms, we may cite
Regularized Orthogonal Matching Pursuit (ROMP) [85] and Compressive Sampling Matching
Pursuit (CoSaMP) [84]. These two algorithms provide a similar guarantees of stability as BP
with the same iterative property of fast convergence as greedy algorithms.

7.3 Reconstruction Algorithms

In our work, we will consider one algorithm per class to be studied for spectrum sensing and
localization purposes. We will thus introduce first of all BP, then OMP and finally CoSaMP
that will be used afterwards for the target applications.

7.3.1 Basis Pursuit

Since the problem as formulated in Equation (7.3) is an NP-hard problem and numerically
unfeasible, let’s introduce a first approach to solve this problem. One may consider first, a
mean square approach to solve the problem.

min
z∈Rd

||z||2 subject to Φz = u (7.4)

Since the minimizer, say x∗, must satisfy Φx∗ = u = Φx, x∗ must be in the subspace
K = x + kerΦ. Actually, x∗, as defined in Equation (7.4) is the exact contact point between
the smallest Euclidian ball centered at the origin and the subspace K. As shown in Figure
(7.1), in the mean square approach there is no need to have x∗ coinciding with the actual
signal x. This is due to the fact that Euclidian geometry ball is not a good detector of sparsity.

3Recalling that for a given matrix A, A† = (A∗A)−1A∗
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X*

X

X*X =

Figure 7.1: The minimizers to the mean square (left) and l1 (right) approaches.

In this case, in order to solve Equation (7.3), we may opt for an l1 approach. In this case,
x∗ would meet the contact point between the l1 ball (also named octahedron) centered at the
origin and the subspace K.
A first idea could be relaxing the problem into an l1 minimization:

min
z∈Rd

||z||1 subject to Φz = u (7.5)

Authors in [45] have proved that for measurement matrices satisfying a certain quantitative
property called Restricted Isometry Property, l0 and l1 become equivalent.

7.3.2 Orthogonal Matching Pursuit

OMP is based on subgaussian measurement matrices to reconstruct sparse signals. If Φ is
verifying such condition (subgaussian property), then Φ∗Φ is close to identity. In this case,
a non-zero coordinate of x would maximize the observation y = Φ∗Φx, and that’s how we
iteratively reconstruct the support of x. OMP is shown to be fast but not as stable as BP.
Algorithm (1) give the pseudocode for OMP implementation.
Once the support I of the signal x is found, the estimate x̂ can be reconstructed as: x̂ =

Φ†Iu. The algorithm simplicity allows a fast reconstruction as it iterates s times and over each
iteration, it selects one among d elements in O(d) time and multiplies by Φ∗ in a O(md) time
period and finally solves a least squares problem in O(s2d). So the cost of such technique is
O(smd) operations.

7.3.3 Compressive Sampling Matching Pursuit

As far as the CoSaMP algorithm is concerned, the sampling operator Φ is supposed to satisfy
the Restricted Isometry Property 4 and each s coordinates of signal y = Φ∗Φx, also called
proxy signal, are close in terms of Euclidian norm to the s corresponding coordinates of x.

4For more information and a complete description of RIP please refer to [87]
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Algorithm 1 Orthogonal Matching Pursuit (OMP) pseudocode
Require: Measurement matrix Φ, measurement vector u = Φx, sparsity level s

1: Initialize: As a first step, initialize I = ∅ and the residual r = u

repeat s times:
2: Identify: Select the largest coordinate λ of y = Φ∗r in absolute value. Break ties lexico-

graphically.
3: Update: Add the coordinate λ to the index set: I ← I

⋃
λ and update the residual

according to:
x̂ = arg min

z
‖ u−Φ|Iz ‖2; r = u−Φx̂ (7.6)

4: return Index set I ∈ 1, ..., d

The algorithm operates according to the following steps:

1. Identification: The algorithm takes the residual as a proxy and locates its highest coor-
dinates.

2. Support merging: At the iteration k, the set of recently identified coordinates is merged
withe the set from iteration k − 1

3. Estimation: Based on the set of coordinates, the algorithm performs a least square to
determine an approximation of the target signal

4. Pruning: In the estimated signal from least squares, the algorithm retains only the
highest coordinates.

5. Sample updating: The samples are updates so that they integrate the residual part.

Algorithm 2 Compressive Sampling Matching Pursuit (CoSaMP) pseudocode
Require: Measurement matrix Φ, measurement vector u = Φx, sparsity level s

1: Initialize: Set a0 = 0, v = u, k = 0.
Repeat the following steps while increasing k until achieving halt criterion.

2: Signal Proxy: Set y = Φ∗v, Ω = suppy2s and merge the support T = Ω
⋃

suppak−1

3: Signal Estimation: Solving a least squares problem, set: b|T = Φ†Tu and b|Tc = 0

4: Prune: Preparing the next iteration, set ak = bs
5: Sample Update: Update the samples by: v = u−Φak

6: return s-sparse reconstructed vector x̂ = a



90 Chapter 7. Cooperative Spectrum Sensing and Localization in Cognitive Radio

7.3.4 Compressed Sensing for Spectrum Sensing and Primary Users Localiza-
tion

In this chapter, we will use the above framework in order to solve two major issues enabling
CR: spectrum sensing and terminals localization. In order to do so, we will tend in our analysis
to express the upcoming equations as following:

y = Φx (7.7)

where y ∈ RM is the measured entity, Φ ∈ RM×N : the measurement matrix and x ∈ RN the
K-sparse vector to be reconstructed.
According to Restricted Isometry Property definition, Φ would verify the RIP if: M ≥
O(K log(N/K)).

7.4 System Model

In the considered system model, we will suppose that we do dispose of Nch available chan-
nels in a wideband wireless network. Over a large geographic area, let Np be the number of
deployed primary users using a different channel each. In this large area, we disperse Nc cog-
nitive radios that will cooperate to locate PUs in the network and detect their channels usage
and states. The measures made by these cognitive terminals will then be sent to the fusion
center. In order to enable SUs transmissions, the secondary network have to be aware of the
availability and the state of each channel. Thus, SUs have to estimate which channels are
occupied and to identify the PUs transmission powers and locations.
For our system, we adopt the path loss model, given by:

L(f, d) = P0 + 20 lg(f) + 10n lg(d) [dB] (7.8)

where: P0 is a constant related to antennas gain; f is the channel frequency; n is the path loss
exponent; d is the distance separating the transmitting and receiving nodes and lg(.) = log10(.)

In our case, we dispose of Nch channels, thus f would be assumed the central frequency of
each band, i.e f ∈ {f0, f1..., fNch−1}.
Let’s keep in mind that the path loss is related to the unknown channel and location of the PU.
The received signal power is a combination of the unknown transmit power with the path loss
expressed in Equation(7.8).
Our task is to infer from the received signal at the cognitive terminals all these unknown, but
valuable, information about the primary users.
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7.5 Compressed Sensing For Cognitive Radio Applications

7.5.1 Spectrum Sensing

For discrete signals, the time domain samples t are used to construct the spectrum in frequency
domain using directly the DFT transform:

f = Ft (7.9)

where F is the normalized DFT matrix.
As stated previously, the sparsity in this context may come from the inability of the ADC to
acquire signals at a Nyquist rate. The time samples t are thus acquired at a sub-Nyquist rate
which may result in a sparse vector.
We will thus directly apply the CS formalism with the different introduced algorithms to re-
construct the original time domain transmitted signal and spectrum sensing will be achieved
using energy detection.

7.5.2 Location Estimation based on Compressed Sensing

Once spectrum reconstructed and spectrum sensing achieved, more information can be derived
while looking deeper into channels occupied by primary users.
Let’s assume that in a certain wide area, PUs are located at coordinates (xpm, ypn); where
xpm ∈ {0,∆xp, ...(M − 1)∆xp} are M possible x axis positions (abscissæ) of the PUs 5;
ypm ∈ {0,∆yp, ...(N − 1)∆yp} are N possible y axis positions (ordinates) of the PUs; ∆xp

and ∆yp are respectively the resolutions over x and y axis. Here, we do impose and suppose
to the PU coordinates to be in discrete M ×N dictionary (which, actually, is always true). It
is good to remind at this level that the exact positions of the Np PUs {(xpi, ypi) ; i ∈ [1..Np]}
are unknown to our problem.
TheNc CRs positions in the network are located at positions: {(ai, bi) ; i ∈ [1..Nc]} (on which
we do not impose being in a finite set, even if they necessarily are).
For the kth CR, sensing the ith channel, the contribution of the PU located at the (xpm, ypn)

position on the received PSD is:

Rk,i(m,n) = P (m,n, i)× 10L(fi,d(m,n,k))/10

d(m,n, k) =
√

(xpm − ak)2 + (ypn − bk)2
(7.10)

whereP (m,n, i) is the power transmitted by a PU using the ith channel, located at (xpm, ypn);
fi is the center frequency of the ith channel; d(m,n, k) represents the distance between the
kth CR and the the PU located at (xpm, ypn).

5When we say xpm ∈ {0,∆xp, ...(M − 1)∆xp}, that does not mean that there are M PUs, but it means that
Np primary users abscissæ (for ordinates as well) do actually have a finite "dictionary"
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The total received power over all the existing PUs, i.e over the M × N possible positions of
the PUs, can be formulated as following:

Yk,i =
∑

m

∑
nRk,i(m,n)

Yk,i =
∑

m

∑
n 10L(fi,d(m,n,k))/10 × P (m,n, i)

Yk,i =
−→
L T (k, i)

−→
P (i)

(7.11)

where
−→
P (i) is the vector containing the transmission power of the over all M ×N grid over

the ith channel; and
−→
L (k, i) is the path loss vector computed according to Equation(7.8) from

all PU possible positions at the level of the kth CR, on the ith channel.
−→
L (k, i) = 10

−→
L dB(k,i)/10

and :
−→
L dB(k, i) = [L(fi, d(0, 0, k)), L(fi, d(1, 0, k)),

..L(fi, d(m,n, k)), ..L(fi, d(M,N, k))]T

(7.12)

Let’s denote by
−→
Y k = [Yk,1..Yk,Nch ]T , the received signal power vector at the level of the

kth CR over the Nch available channels. This according to Equation(7.11), and adopting the
previous notation can be expressed as:

−→
Yk = Lk

−→
P (7.13)

where
−→
P is the vector containing the transmission power of the M ×N grid of PU locations

over the Nch available channels of the NC deployed CRs:
−→
P k = [

−→
P T (i1),

−→
P T (i2), ..,

−→
P T (iNC )]T (7.14)

The matrix Lk, is the fading gain matrix grouping at the level of the kth CR the loss path
contributions of the M ×N PU positions. The jth row of Lk is:

Lk(j) = [
−→
0 ,
−→
0 , ...,

−→
L T (k, j),

−→
0 , ..,

−→
0 ] (7.15)

Combining all the equations describing the NC CR system, we do obtain:
−→
Y = L

−→
P (7.16)

Where
−→
Y = [

−→
Y1
T , ...,

−−→
YNC

T ]T and L = [L1, ...,LNC
]

The equation we ended with in Equation(7.16), reminds us of Equation (7.7) of the CS formal-
ism we introduced previously: as

−→
P is an unknown but sparse vector because over the M ×N

area we’ve been considering, only NP PUs are deployed in this area.
The two stages, spectrum sensing and localization, seem then to be attached to the same CS
framework we’ve introduced before.
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7.5.3 Joint Spectrum Sensing and Primary User Localization

We’ve shown till now that both problems: sensing and localization can separately be solved
using CS formalism. It is now easy for us to combine these two operations.
The joint framework, would consider this dual sensin/localization problem as a 3D image
reconstruction from sparse observation. The x and y axis of this unknown image are the PU
location information and the z axis would represent the sensed channel occupancy information
and the value of a given pixel at (x, y, z) is the reconstructed transmit power.

7.6 Simulations and Results

For our analysis, we suggest a realistic network simulation. In the considered CRS we deploy
5 PUs and 3 SUs. The 3 deployed CRs are attempting to communicate opportunistically and
thus will perform the sensing and localization task.
A hexagonal cellular system functioning at 1.8GHz with a secondary cell of radius R =

1000m and a primary protection area of radius Rp = 600m is considered. Secondary trans-
mitters may communicate with their respective receivers of distances d < Rp from the BS.
We assume that the PUs and the SUs are randomly distributed in a two-dimensional plane as
shown in Figure 7.2. The BS is placed at the center (0, 0). The distance, d(m,n, k), from the
k-th SU to the PU (m,n) is given by

d(m,n, k) =
√

(xpm − ak)2 + (ypn − bk)2 (7.17)

where (xpm , ypn) are the coordinates of the PU and (ak, bk) the coordinates of the k-th CR. The
channel gains are based on the COST-231 Hata model [86] including log-normal shadowing
with standard deviation of 10dB, plus fast-fading assumed to be i.i.d. circularly symmetric
with distribution CN (0, 1). The basic path loss for the COST-231 Hata model is in dB in an
urban area at a distance d is:

L(f, d) = 46.3 + 33.9 log10(fc)− 13.82 log10(hb)−
AM + (44.9− 6.55 log10(hb)) log10(d) + CM

(7.18)

where fc is the carrier frequency equal to 1.5GHz and hb is the base antenna height equal to
50 meters. The distance d is computed using the formula (7.17). CM is 0dB for medium sized
cities and suburbs and is 3dB for metropolitan areas. In the simulations, we use CM = 0dB.
The AM is defined for urban environment as:

AM = 3.20 (log10(11.75hm))2 − 4.97 (7.19)
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Figure 7.2: Two-dimensional plane of the cognitive radio system topology with five primary
users and three secondary users.

where hm is the mobile antenna height equal to 10 meters. The shadowing variations of the
path loss can be calculated from the log-normal distribution

g(x | σ) =
1

σ
√

2π
exp

(
−x2

2σ2

)
(7.20)

where σ is the variability of the signal equal to 10dB. The shadowing variation is computed us-
ing the Matlabr function randn. Shadowing reflects the differences in the measured received
signal power with relation to the theoretical value calculated by path loss formulas. Averaging
over many received signal power values for the same distance, however, yields the exact value
given by path loss.
Furthermore, for channels distribution, we suppose that the total number of available channels
is in [1,2,..,20] channels and each of the five PUs is communicating over a single different
channel.

7.6.1 Simulation Results

Figures (7.3) and (7.4) give an example of spectrum reconstruction MSE at 50% sparsity for
the simulated algorithms and the impact of sparsity level on spectrum reconstruction MSE.
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The very fist remark that we can give here is that the simulation results are in line with the
theoretical aspects related to BP, OMP and CoSaMP. As we explained at the very beginning,
performance related to BP is expected to overcome OMP, which is the case in Figure (7.3)
and CoSaMP is shown both in theory and simulations to outperform OMP, but it is still not as
efficient as BP.
Figure (7.4) is assessing the impact of sparsity level on spectrum reconstruction MSE. Here
we clearly see that results are coherent with the definition we gave of sparsity, saying that
“a d-dimensional vector is assumed to be s-sparse if it has s or fewer non zero coordinates".
According to this definition, the more sparse the vector is, the largest its support is, so the less
the reconstruction MSE would be, which is perfectly in line with the results reported in figure
(7.4).
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Figure 7.3: Example of Spectrum Reconstruction MSE at 50% sparsity level for BP, OMP,
CoSaMP

Figures (7.5) and (7.6) give an example of PU location estimation at 50% sparsity for the
simulated algorithms and the impact of sparsity level on PU location estimation error at 0 dB.
Figure (7.5) gives an overview of PU location estimation error at 50% sparsity level for BP,
OMP and CoSaMP. Here we validate again the previous results, as the tendency of BP outper-
forming CoSaMP and OMP is confirmed. The same for Figure (7.6), where we clearly see the
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Figure 7.4: Impact of sparsity on spectrum reconstruction MSE at 0 dB

more signal is sparse (in the sense the more we have non-zero entries), the more robust the PU
localization is.
Assuming a 15 meters limit of “good localization" bound, Figure (7.5), show that the idea
of cooperative localization could be exploited up to -3 dB, -2 dB, and 1 dB for BP, CoSaMP
and OMP respectively. These performance are obtained for totally autonomous GPS free
techniques and with absolutely no need of extra overhead data exchange in the network.

7.7 Conclusion

This work presents a first look towards a combined spectrum sensing and localization task.
These two tasks are fundamental in order to enable cognition in wireless networks. With the
combination of the two tasks, we also considered a realistic data acquisition constraint, which
is sparsity due to the ADC technology limits. Simulation results of the proposed technique
show promising and interesting results for compressed sensing techniques applied to this for-
malism.
The formalism that we derived in this chapter is the starting point of a whole location aided
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Figure 7.5: Error on PU location estimation at 50% sparsity level for BP, OMP, CoSaMP

cognitive radio framework we are developing within the FP7 WHERE-2 project. In this frame-
work, once the radio map is built thanks to the sensing and localization asks, the CRs are thus
able to communicate in the available bands in the available directions and thus the proposed
framework is a key enabler of SDMA (Space Division Multiple Access) systems. And this
formalism can also be exploited for the D2D (device to device) communication, as the CRs
can communicate directly with each others while the fusion center can play the role of the
control entity in the network.



98 Chapter 7. Cooperative Spectrum Sensing and Localization in Cognitive Radio

20 30 40 50 60 70 80
5

10

15

20

25

30

Sparsity level (%)

P
U

 lo
ca

tio
n 

er
ro

r 
(m

)

 

 
BP
OMP
CoSaMP

Figure 7.6: Impact of sparsity on PU location estimation at 0 dB



CHAPTER 8

Conclusions and Future Directions

8.1 Summary

In this work, we addressed several aspects related to cognitive radio technology:

• First of all, we presented a novel multiband detector that is blindly capable to locate the
edges of the PU communication in the RF spectrum and thus allowing a more efficient
use of the spectrum by exploiting all its fragmented parts, guard intervals, etc.. The
proposed architecture is also interesting as the proposed filters take into account noise
reduction and thus allow multiple applications of the proposed framework. We have
shown through various simulation scenarios and actual measurements how efficient and
performing the proposed enhanced energy detector attached to this framework is.

• The second contribution is also related to wideband compressed spectrum sensing. The
improvement compared to the state of the art techniques resides in the fact that the
proposed frequency edge location algorithm is a non-iterative, one shot and online algo-
rithm. The performance of this technique was compared to the state of the art technique
and shows some improvements.

• The third contribution is related to spectrum awareness. In this contribution we derived a
novel classification technique in heterogeneous cognitive radio scenario. This classifier
is based on mixed signal separation and multiple parallel sensing techniques for DVB-T,
LTE and PMSE signals. Each detector was selected in order to optimize the detection
relatively to a given standard. A fusion rule was derived as a combination of likelihood
ratios to highlight at each time a unique standard.

• Another contribution to spectrum awareness was proposed as an interdisciplinary tech-
nique of signal classification inheriting some image processing tools. We have derived
several applications of the proposed technique. First of all, as a spectrum sensing tech-
nique, and we’ve shown how performing this technique is, with improvements of nearly
50% compared to the CFD original technique. A second application was for signal clas-
sification. Here the targeted usecase is detecting the PU system (DVB-T, PMSE) while
SU is transmitting (LTE). We have shown how performing the proposed technique is in
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terms of reducing classification period while taking into account standard recommenda-
tions in terms of noise level.

• The last presented contribution is a network discovery-like mechanism for cognitive ra-
dio systems based on compressed sensing (CS). In this chapter, we formulated spectrum
sensing and localization of PU transmitters in a CS formalism. Sparsity is exploited in
both ways: for spectrum sensing, sparsity is due to the fact that ADC are generally not
able to acquire signals at Nyquist rate and this incomplete/inaccurate signal acquisition
can be recovered by means of compressed sensing. A second aspect of sparsity is con-
sidered for localization. Indeed when building the PU transmitters map by means of
path loss model, the derived matrix characterizing PU transmissions is a sparse matrix
in the sense that only few inputs are non null. We can thus apply the same CS algorithms
to recover these positions.

8.2 Limitations

Although some interesting results were presented in the contributions, some limitations also
exist.

• In the first contribution, we clearly see that the enhancement of the conventional filter
bank spectrum sensing come with an extra cost. This is due to the computation of
the frequency boundaries and the extra filters we are deriving in order to help noise
reduction. The energy efficiency is also lost when we use high order polynomials in the
per-band spectrum model.

• In the CS formalism that was presented, the limitation is in the form of the derived
matrix, as it very specific for this application and context and also we are loosing too
much in generality because the CS matrix is deterministic.

• The mixed signal separation and classification algorithm proposed in Chapter 5 is based
on FastICA algorithm which is an iterative, time consuming time, energy consuming
task and offline operation. The major other assumption made here is that the cognitive
terminal have enough degrees of freedom to perform this separation.

• In Chapter 6, it is true that the required time for classification is divided by two almost,
which is a great improvement, but still the complexity introduced by the Computer
Vision tools used is also significant and time consuming.

• In Chapter 7, the used framework is obviously a LOS configuration where the PU is in
its protection area and the cognitive terminals avoid transmitting in the PU bands. The
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problem is that in real world systems, PUs and SUs are not distributed in this way. Still
some use cases of D2D or M2M communications could exploit this framework. The
other problem is that Primary transmitters are supposed to be fixed infrastructures so,
how an open issue is how to further exploit this framework to meet at least pedestrian
mobility ?

8.3 Future Directions

Still some issues and some ideas can complete the presented work:

• Spectrum Sensing: The future of spectrum sensing in cognitive radio systems is energy
efficient blind techniques which will be complimentary to geolocation data-bases based
spectrum sensing. For these hybrid architectures, we have an ongoing work of blind
model selection algorithm using Variational Bayes.

• Spectrum Awareness: Some issues are still left open in spectrum awareness especially
in reducing detection time of incumbent transmission. In the proposed techniques there
is some improvement in the detection time but at the price of adding complexity to the
over all system.

• Towards Green Communications: Another interesting direction that is bringing Cogni-
tive Radio into the spot lights again is (Cognitive) Green Communications. PHY Layer
algorithms in addition to MAC mechanisms are studied subject to the energy consump-
tion minimization. This aspect is quite interesting to see as these constraints of energy
saving (especially in the user equipment side) are the key parameters toward seeing
cognitive terminals invading markets in a near future.
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APPENDIX A

Resume en Francais

A.1 Introduction

Au cours des dernières décennies, nous avons assisté à de grands progrès et à un besoin crois-
sant de systèmes de communication sans fil en raison de la demande des clients de disposer
de dispositifs plus souples, sans fil, plus petits, plus intelligents et pratiques expliquant les
marchés envahis par les smartphones, les assistants numériques personnels (PDA), tablettes et
netbooks. Le spectre des fréquences radioélectriques (RF) est l’un des domaines d’attention
pour relever ce défi. Alors que presque tout le spectre RF est attribué [1], il est en grande partie
inutilisé ou sous-utilisé [1]. Le processus actuel d’attribution de spectre pour les communica-
tions sans fil est très inefficace, ce qui entraîne une sous-utilisation importante du spectre face
à une croissance explosive de la demande. Par exemple, en juin 2010, l’administration Obama
a ordonné à la NTIA de collaborer avec la Commission fédérale de la communication (FCC)
"pour mettre à disposition un total de 500 MHz de spectre fédéral et non fédéral au cours des
dix prochaines années pour l’utilisation large bande sans fil fixe et fixe "[2]. En conséquence, la
NTIA, la FCC et d’autres organisations examinent de près l’attribution et l’utilisation actuelles
du spectre RF pour identifier les bandes de spectre candidates à la réallocation, au partage et à
l’accès dynamique au spectre (DSA).
Historiquement, la radio cognitive (RC) a été introduite par Mitola [3, 4], en tant qu’un
des moyens possibles qui pourrait être déployé en tant qu’appareils ou systèmes en réseau
sans fil et offrant un accès dynamique au spectre et au partage du spectre. Tel que défini à
l’origine, un CR est un appareil conscient et autonome qui peut s’adapter aux changements de
l’environnement sans fil. De tels dispositifs permettent de modifier facilement les paramètres
sans fil d’un réseau et d’adapter leurs paramètres radio aux nouvelles opportunités détectées.
L’UIT-R a donné une autre définition intéressante des systèmes de radiocommunication cog-
nitifs dans [5]: Â«un système de radiocommunication utilisant une technologie qui permet au
système de connaître son environnement opérationnel et géographique, ses politiques établies
et son état interne; à ajuster de manière dynamique et autonome ses paramètres d’exploitation
et ses protocoles en fonction de ses connaissances acquises afin d’atteindre des objectifs
prédéfinis; et d’apprendre des résultats obtenus ".
Les fonctions principales des radios cognitives sont [6,7]:
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1. Détection du spectre: ce qui est une exigence importante pour la mise en œuvre et la
faisabilité de la radiocommunication, car celle-ci détecte les opportunités de spectre
disponibles (également appelées Spectrum Holes or Spectrum White Spaces). Trois
stratégies existantes existent pour effectuer la détection du spectre: Détection d’émetteur
(impliquant la détection de PU techniques), la détection coopérative (impliquant des
systèmes centralisés et distribués) et la détection basée sur les interférences.

2. Gestion du spectre: qui capture les opportunités de spectre les plus satisfaisantes afin
de satisfaire à la fois la qualité de service (QoS) des unités de traitement (PU) et de la
SU (utilisateurs secondaires).

3. Spectrummobilité: ce qui implique des mécanismes et des protocoles autorisant la
fréquence des sauts de fréquence et l’utilisation du spectre dynamique.

4. Partage du spectre: vise à fournir une stratégie de partage juste du spectre afin de
desservir un maximum de SU.

Une autre définition du système a été donnée par FCC dans [8]. Dans cette définition, FCC
considère une radio comme étant cognitive lorsqu’elle présente les fonctionnalités suivantes:

1. Agilité de fréquence: capacité d’une radio à modifier sa fréquence de fonctionnement
afin d’optimiser son utilisation dans certaines conditions.

2. Sélection dynamique de fréquence: possibilité de détecter les signaux d’autres émet-
teurs proches afin de choisir un environnement de fonctionnement optimal

3. Emplacement Attention: possibilité pour un pays de déterminer son emplacement et
l’emplacement d’autres émetteurs, ce qui aiderait à sélectionner les paramètres de fonc-
tionnement appropriés, tels que la puissance d’émission et les fréquences autorisées à
cet emplacement donné.

4. Utilisation négociée: incorpore un mécanisme qui permettrait le partage du spectre selon
les termes d’un accord préalable conclu entre un utilisateur autorisé (utilisateur princi-
pal) et des utilisateurs non agréés (utilisateur secondaire).

5. Modulation adaptative: capacité de modifier et d’adapter les caractéristiques de trans-
mission et les formes d’onde afin d’exploiter les possibilités d’utilisation du spectre.

6. Contrôle de la puissance de transmission: permet une transmission à pleine puissance
lorsque nécessaire
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L’objectif principal de ce travail est de fournir quelques contributions aux fonctions les plus
importantes permettant la reconnaissance des technologies de pointe: la détection de spectres,
la reconnaissance du spectre et la découverte de réseaux grâce à la détection et à la localisation
coopératives de PU.
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A.2 Structure et contributions

Les travaux présentés dans cette thèse 1 s’inscrivent dans le contexte des mécanismes de dé-
tection / détection du spectre et de découverte du réseau.

1. Le chapitre 1 est consacré à rappeler certaines définitions et paradigmes utiles de la
radio cognitive. Nous commençons par présenter les objectifs et plusieurs problèmes
de détection du spectre, puis nous introduisons des algorithmes de détection de pointe.
Parmi ces algorithmes, nous sélectionnons des algorithmes de référence à étudier et à
simuler en termes de performances, de caractéristiques de fonctionnement du récepteur,
de courbes d’efficacité énergétique et d’étude de la complexité. Ensuite, nos contribu-
tions sont présentées comme suit:

2. Au chapitre 2 [J1, C8-9, C14-15], nous proposons d’étudier une nouvelle technique de
détection du spectre multibande basée sur une banque de filtres reconfigurable. L’algorithme
proposé localise certaines fréquences importantes dans le spectre RF caractérisé par des
transitions à partir de bandes utilisées. La transmission des PU est ainsi localisée et la
détection est effectuée au moyen d’un algorithme de détection d’énergie amélioré. De
la même manière que ce qui a été présenté parTianand et Giannakis dans le contexte du
capteur pressé à large bande,

3. chapitre 3 [C11-12], nous présentons un algorithme de détection compressé à large
bande combinant notre algorithme de localisation de bord de fréquence à la détection
comprimée du malisme. Le principal avantage de notre approche est que, contrairement
à l’approche en ondelettes de Tian et al., Notre algorithme de localisation des fronts de
fréquence est un algorithme non itératif, en ligne (de fonctionnement image par image).

4. Au chapitre 4 [C3, C7], nous proposons de traiter le problème de la classi?cation des
signaux dans des systèmes cognitifs hétérogènes. L’approche est un algorithme en deux
étapes: tout d’abord, au moyen d’une séparation aveugle des sources, nous séparons le
mélange du signal reçu au niveau du CR, puis, grâce à une architecture hybride, nous
sommes en mesure de discriminer aveuglément le présent. standard dans une bande
détectée (signaux LTE, DVB-T ou PMSE).

5. Au chapitre 5 [C1], nous proposons d’aller plus loin dans l’analyse de la connaissance
du spectre en proposant une autre contribution pour la coexistence de normes différentes
dans le même cas de bande. Ce cas se produit lorsque l’unité centrale réapparaît dans
ses bandes pendant que le SU communie. Dans ce contexte, nous proposons un système
cyclostationnaire assisté par Computer-Vision. Algorithme de détection (CV-CFD) ca-
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pable de détecter les signaux DVB-T ou PMSE lorsqu’un système LTE transmet dans
un intervalle de temps considérablement réduit.

6. Au chapitre 6 [J2, C5-6], nous proposons de mettre l’accent sur un autre aspect principal
de la technologie CR, à savoir la connaissance de l’emplacement. Dans ce chapitre, nous
analysons les équations liées à la détection du spectre et à l’estimation de l’emplacement
des unités centrales en tenant compte de la limitation matérielle dont souffrent souvent
les terminaux CR: Convertisseurs analogiques-numériques acquérant des signaux à une
vitesse inférieure à Nyquist. Dans ce chapitre, nous établissons un lien entre la localisa-
tion, la détection du spectre et la détection comprimée. Dans ce cadre, nous proposons
d’étudier la détection / localisation à l’aide de la poursuite de base (BP), de la poursuite
d’appariement orthogonal (OMP) et de la poursuite de correspondance par échantillon-
nage compressif (CoSaMP). Les simulations effectuées dans une topologie de réseau
réaliste témoignent de l’efficacité du formalisme proposé.

7. Enfin, au chapitre 7, nous concluons sur le travail présenté, soulignons ses limites et
suggérons de nouvelles orientations de recherche.
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A.3 Détecteur multibande basé sur banc de filter reconfigurable

Ce chapitre présente une nouvelle technique de détection du spectre basée sur une nouvelle
caractérisation des signaux PU dans les communications à large bande. Nous devons d’abord
rappeler que, dans les systèmes CR, la première tâche à exécuter par le SU consiste à dé-
tecter et à identifier les trous du spectre dans l’environnement sans fil. Ce chapitre résume
les progrès de l’approche algébrique. Nous présentons les résultats et le cadre complet de la
technique proposée basée sur un détecteur multibande reposant sur une banque de ? ltres recon
? gurable. Le spectre sur une large bande de fréquence est décomposé en blocs élémentaires
de sous-bandes bien caractérisées par des irrégularités de fréquence locales. En tant qu’outil
mathématique puissant pour l’analyse des singularités et des arêtes, le cadre algébrique est
utilisé pour détecter et estimer la structure spectrale irrégulière locale, qui contient des infor-
mations importantes sur les emplacements de fréquence et les densités spectrales de puissance
des sous-bandes détectées.
Dans ce chapitre, nous avons mis au point une nouvelle technique de détection basée sur
une banque de filtres pour les radios cognitives à large bande. La première étape consistait
à localiser dans le spectre RF détecté des fréquences spécifiques portant des informations
précieuses (transmission entre canaux vacants et canaux occupés). Deuxièmement, nous avons
dérivé des filtres adaptés à ces bandes qui nous ont aidés à réduire le bruit d’acquisition et à
améliorer la détection d’énergie sur les différentes bandes. Enfin, nous avons montré à travers
divers réglages de simulation et données réelles la performance et la robustesse de la technique
proposée.
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A.4 Détection comprimée pour les radios cognitives à large bande

Récemment, l’échantillonnage à détection / compression comprimée (CS) a été considéré
comme une technique prometteuse pour améliorer et mettre en œuvre des systèmes de ra-
dio cognitive (CR). En radio large bande, on peut ne pas être en mesure d’acquérir un signal
au taux d’échantillonnage de Nyquist en raison des limitations actuelles de la technologie du
convertisseur analogique-numérique (CAN) [43]. La détection par compression permet de re-
construire un signal épars en prenant moins d’échantillons que l’échantillonnage de Nyquist.
La détection du spectre à large bande est donc réalisable par CS. Un signal épars ou com-
pressible est un signal qui dépend essentiellement d’un nombre de degrés de liberté inférieur
à la dimension du signal échantillonné à la fréquence de Nyquist. En général, les signaux
d’intérêt pratique peuvent n’être que presque rares [43]. De plus, généralement, les signaux
sans fil dans les réseaux ouverts sont rares dans le domaine des fréquences car, en fonction de
l’emplacement et parfois du pourcentage d’occupation du spectre, les fréquences radio inac-
tives sont faibles [3, 48].

Dans CS, un signal avec une représentation fragmentée sur une certaine base peut être récupéré
à partir d’un petit ensemble de mesures linéaires non adaptatives [49]. Une matrice de détec-
tion effectue peu de mesures du signal et le signal original peut être reconstruit avec précision
et parfois avec précision à partir d’observations incomplètes et contaminées en résolvant un
simple problème d’optimisation convexe [43,44]. Dans [45] et [46], on introduit sur cette
matrice de détection des conditions suffisantes pour récupérer le signal d’origine de manière
stable. Et remarquablement, une matrice aléatoire remplit les conditions avec une probabilité
élevée et effectue une détection efficace [47,49].

Outre la reconstruction du signal d’origine, la détection est plus nécessaire et intéressante dans
le contexte de la radio cognitive. En règle générale, il n’est pas nécessaire, pour la détection,
de reconstruire le signal d’origine, mais une estimation des statistiques suffisantes pour le
problème en question suffit. Ceci conduit à moins de mesures requises et à une complexité de
calcul inférieure [50]. Nous souhaitons ignorer l’estimation du signal original et utiliser di-
rectement les mesures à des fins de détection, afin de réduire autant que possible la complexité
du système.

Dans [48], une approche de détection par ondelettes utilisant CS pour identifier les trous du
spectre est introduite. Pour trouver les limites de bande de fréquences, ils développent une
formulation d’optimisation convexe selon laquelle la solution donne les limites de bande du
spectre sans qu’il soit nécessaire de reconstruire le signal d’origine.

En particulier, développez une combinaison d’échantillons ou de spectres de spectre avec une
technique de détection basée sur une méthode algébrique pour la tâche de détection consistant
à identifier les trous du spectre. Le détecteur algébrique proposé est un détecteur linéaire et
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nous souhaitons alimenter directement l’algorithme avec les mesures comprimées. À cette
fin, nous trouvons une matrice de détection appropriée qui permet d’alimenter directement le
détecteur algébrique avec les mesures.
Nous présentons dans ce travail une nouvelle technique de détection combinant échantillon-
nage compressif et méthode algébrique pour détecter les trous du spectre. Dans une première
étape, nous avons conçu une matrice de détection comprimée, qui conserve les propriétés
linéaires du signal primaire échantillonné. Ensuite, nous avons appliqué les mesures com-
primées au détecteur algébrique pour localiser les discontinuités du spectre et identifier les
trous du spectre. L’analyse de la complexité de la technique proposée montre qu’elle peut
être considérablement réduite lorsque l’ordre des modèles du détecteur algébrique augmente.
La comparaison des performances à différentes fréquences d’échantillonnage montre que le
nouveau schéma conçu offre de meilleures performances que les détecteurs d’énergie, tout en
préservant une faible complexité de calcul.
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A.5 Identification de spectre pour les systèmes de radio cognitive
basés sur la modulation OFDM

Les travaux présentés dans ce chapitre s’inscrivent dans le contexte de la détection du spectre
/ du partage du spectre pour les réseaux CR et plus précisément de la détection / identifica-
tion d’un nœud unique. En rapport avec ce travail, de nombreuses approches statistiques pour
la partie détection de spectre ont été développées. Comme indiqué précédemment, l’une des
techniques de détection les plus performantes est la détection de caractéristiques cyclostation-
naires [7,17]. Le principal avantage de la détection de cyclostationnarité est qu’elle peut faire
la distinction entre un signal de bruit et des données transmises par PU. En effet, le bruit n’a
pas de corrélation spectrale alors que les signaux modulés sont généralement cyclostation-
naires avec une corrélation spectrale non nulle due à la redondance intégrée dans le signal
transmis. La technique de détection de référence est le détecteur d’énergie [7], car c’est la
technique de détection la plus facile à mettre en œuvre et la moins complexe. D’autre part,
certains articles ont été consacrés à la partie relative à l’identification du signal [51–53] et
à la prise de décision [54,55], l’accent étant mis sur l’identification de la norme utilisée par
les PU plutôt que sur la simple détection de leur présence. Dans ce chapitre, nous présen-
tons une technique de classification robuste basée sur des techniques de séparation de signaux
mixtes et de détection de spectre parallèle afin de combiner les caractéristiques de détection /
classification du CR.
Dans ce chapitre, nous avons présenté un nouveau schéma de classi?cation robuste. Le cas
d’utilisation considéré est un projet de ? guration de con ? guration en réseau wasaheterogen
qui, sans perte de généralité, peut être étendu à tout autre scénario de réseau cognitif. La
robustesse du classificateur proposé réside dans le choix de l’algorithme de détection pour
chaque norme. Dans ce cas, l’AD a été choisi pour le DVB-T parce qu’il était supposé être
le meilleur détecteur exploitant les propriétés OFBD DVB-T et l’authentique choix de CDF
pour le standard ODF, mais nous avons opté pour l’exploitation de la propriété de bande de
ces signaux.
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A.6 Une approche de la classification des signaux basée sur la
computer vision pour les applications de radio cognitive

Le premier objectif de ce chapitre est d’identifier les méthodes de classification de différents
systèmes avec des paramètres et des caractéristiques de signal spécifiques, fonctionnant dans
les espaces blancs du téléviseur. Les émetteurs considérés dans notre scénario sont identifiés
et caractérisés ci-dessous:

1. Un utilisateur principal (UP) DVB-T qui utilise la modulation OFDM. Comme on le
verra plus tard, il existe plusieurs configurations DVB-T, en fonction de

(a) la largeur de bande (5 MHz, 6 MHz, 7 MHz, 8 MHz) du canal utilisé,

(b) la modulation (QPSK / QAM / 16-QAM / 64-QAM) utilisée par les sous-porteuses
à partir du symbole OFDM,

(c) les symboles utiles et les périodes de garde: les caractéristiques du système sont
prédéfinies par des normes, ainsi que des valeurs ? xes connues pour la période
utile TU et TG de garde (cette dernière est également appelée période de préfixe
cyclique).

2. Un utilisateur secondaire LTE (SU) utilisant la modulation OFDM (en DL) et SC-
FDMA (en UL) associé à BPSK / QAM / 16-QAM / 64-QAM. Les caractéristiques
du système avec symboles et périodes de garde fixes (TU et TG) sont prédéfinies par les
activités de normalisation 3GPP.

3. Un PMSE PU utilisant la modulation QPSK (bande passante de 400 KHz) ou FM (200
KHz). Hormis la bande passante, les caractéristiques du système ne sont pas très bien
définies pour PMSE. Ces dispositifs seront discutés plus en détail dans les dernières
sections.

Le deuxième objectif de ce chapitre est de définir les spécifications des algorithmes de classi-
fication des signaux à utiliser par les radios cognitives. La classification dans le contexte CRS
a pour but de faire la distinction entre plusieurs systèmes émettant en même temps, dans la
même bande de fréquences. Parmi tous les scénarios de discrimination possibles (c’est-à-dire
entre les SU, entre les SU et les PU, entre les PU), nous avons en outre sélectionné un seul
(c.-à-d. Entre les SU et les PU), qui semble être le plus pertinent.
Même si la coexistence entre SU (SU / SU) est un cas très intéressant, la coexistence LTE
ne devrait être traitée que dans le contexte de coexistence entre opérateurs. Cette déclaration
est justifiée par le fait que les opérateurs existants peuvent aisément être gérés par une entité
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supérieure qui gère la gestion des ressources (les eNodeB sont connectés via des interfaces X2
et peuvent facilement gérer l’allocation de ressources intra-opérateur). L’opérateur utilisera
son propre spectre de fréquences sans recourir à aucune technique de classification. Par con-
séquent, seule la coexistence entre opérateurs peut justifier la classi ? cation, mais elle sort du
cadre de ce travail.
La coexistence de différentes PU (coexistence PU / PU) semble peu réaliste, car, par définition,
une PU occupe une bande de fréquences sous licence et 2 unités données ne partagent pas la
même bande de fréquences sous licence.
En ce qui concerne la coexistence entre les SU et les PU (c’est-à-dire la coexistence SU /
PU), nous supposons que le SU devrait viser le point de vue opportuniste et ensuite le PU
commencer à émettre. Cependant, pour que la détection fonctionne avant d’accéder au spectre
de façon opportuniste, le scénario de classification unique est valide lorsque la PU n’est pas
présente (ou n’est pas détectée), le système SU commence à communiquer avec TVWS et,
à l’heure inconnue, à un UP, il transmet une communication pour le premier temps. Dans
ce scénario, le système SU doit procéder à une classification afin de discriminer les signaux
provenant de son propre système et de ses transmissions PU.
La classification est donc nécessaire pour un SU afin de faire la distinction entre son propre
réseau et un PU qui commençait à utiliser le même spectre à un moment donné et sans aucune
période de repos établie par le système du SU.
L’objectif de cette étude était de détecter lors de la réception et du décodage des données
(contrainte très forte), mais dans ce cas, le choix du temps de détection n’affectera pas la
qualité de service. L’avantage d’utiliser la classification au lieu de QP est que le temps de
classification peut être (théoriquement) aussi long que possible.
Notre conclusion est également que les exigences proposées par la FCC en matière de détec-
tion peuvent être adaptées à la classi ? cation. Veuillez également noter que l’exigence de
classification dépend des paramètres suivants:

1. Temps de détection;

2. NF (figure de bruit de la chaîne d’amplification de LTE Rx);

3. Configuration LTE - qui donne la fréquence d’échantillonnage utilisée et la taille de
BW de détection;

4. La quantité de DVB-T / PMSE capturée dans le BW analysé.

Pour une largeur de bande de 10 MHz (bande très large), le temps de classification est consid-
érablement réduit de 250 ms à 125 ms afin de répondre aux exigences du système en matière
de détection DVB-T.
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A.7 Détection spectrale et localisation coopératives dans la radio
cognitive

La radio cognitive est un concept de communication intelligente sans fil capable de promouvoir
l’efficacité de l’utilisation du spectre en exploitant les bandes de fréquence libres du spectre, à
savoir les trous de spectre [3,4].

La détection des trous dans le spectre est l’une des premières étapes de la mise en œuvre d’un
système de radiocommunication cognitif. Elle est appelée détection de spectre.

Le problème majeur qui se pose dans le domaine de la radio à large bande est le fait qu’il est
possible que l’on ne puisse pas acquérir un signal au-dessus de la sélection d’un échantillon-
nage en utilisant les limites actuelles de la technologie du convertisseur analogique-numérique
(ADC) [43]. La détection par compression permet de reconstruire un signal épars en prenant
moins d’échantillons que l’échantillonnage de Nyquist. La détection à spectre large bande est
donc réalisable par Compressed Sensing (CS). Un autre aspect de la faisabilité et de la mise en
œuvre concrète des systèmes de communication reconnus est le problème de la connaissance
de la localisation [70, 71]. Ce problème se pose lorsque nous envisageons un scénario réal-
iste dans les systèmes hybrides superposition / sous-couche, lorsque ces possibilités de spectre
permettent aux radios cognitives de transmettre en deçà du seuil de tolérance des utilisateurs
principaux. Dans ce cas, la radio cognitive doit vérifier de manière fiable que les utilisateurs
principaux se trouvent dans le réseau pour adapter sa fonction de puissance de transmission à
l’emplacement estimé dans le réseau. La connaissance des informations de position dans CRS
facilite également la formation de faisceaux en fonction de la localisation, comme indiqué
dans [73] et dans le projet ICT-WHERE2, un ensemble complet de techniques de localisation
de PHY / -MAC aidées par la localisation [74] avec de nouvelles techniques de simulation de
la perspective informations [75], vers des systèmes MIMO multicellules et multi-utilisateurs
avec CSIT basé sur la localisation [76].

Dans notre approche1, nous proposons d’analyser tous ces problèmes. Lors de la formulation
du problème et en analysant plus en profondeur les équations liées à chaque question, nous
établirons le lien entre la formulation de la détection du spectre, la connaissance de la locali-
sation et la limitation matérielle en décrivant ces problèmes dans un formalisme de détection
compressé unique.

Ce travail présente un premier regard vers une tâche combinée de détection du spectre et
de localisation. Ces deux tâches sont fondamentales pour permettre la connaissance dans
les réseaux sans fil. Avec la combinaison des deux tâches, nous avons également pris en
compte une contrainte d’acquisition de données réaliste, qui est faible en raison des limites
de la technologie ADC. Les résultats de simulation de la technique proposée montrent des
résultats prometteurs et intéressants pour les techniques de détection comprimées appliquées
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à ce formalisme.
Le formalisme que nous avons élaboré dans ce chapitre est le point de départ de tout un lieu,
grâce à la connaissance du cadre de travail, au développement du projet FP7WHERE-2. Dans
ce cadre, une fois que la carte radio est construite grâce aux demandes de détection et de
localisation, les CR sont donc en mesure de communiquer dans les bandes disponibles dans
les directions disponibles. Le cadre proposé est donc un élément clé de l’accès multiple par
division (SDMA). systèmes. Et ce formalisme peut également être exploité pour la communi-
cation D2D (appareil à appareil), car les CR peuvent communiquer directement les uns avec
les autres tandis que le centre de fusion peut jouer le rôle d’entité de contrôle dans le réseau.
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A.8 Résumé

Dans ce travail, nous avons abordé plusieurs aspects liés à la technologie de la radio cognitive:

Tout d’abord, nous avons présenté un nouveau détecteur multibande capable de localiser à
l’aveugle les limites de la communication PU dans le spectre RF, permettant ainsi une utili-
sation plus efficace du spectre en exploitant toutes ses parties fragmentées, ses intervalles de
garde, etc. L’architecture proposée est également intéressante car les filtres proposés prennent
en compte la réduction du bruit et permettent ainsi de multiples applications du cadre proposé.
Nous avons montré à travers divers scénarios de simulation et mesures réelles l’efficacité et la
performance du détecteur d’énergie amélioré proposé, associé à ce cadre.

La deuxième contribution est également liée à la détection du spectre compressé à large bande.
L’amélioration par rapport aux techniques de pointe réside dans le fait que l’algorithme de
localisation de bord de fréquence proposé est un algorithme non itératif, unique et en ligne. La
performance de cette technique a été comparée à la technique de pointe et présente quelques
améliorations.

La troisième contribution est liée à la sensibilisation au spectre. Dans cette contribution,
nous avons développé une nouvelle technique de classification dans un scénario radio cognitif
hétérogène. Ce classi ? cateur est basé sur la séparation de signaux mixte et de multiples
techniques de détection parallèle pour les signaux DVB-T, LTE et PMSE. Chaque détecteur
a été sélectionné afin d’optimiser la détection par rapport à un standard donné. Une règle de
fusion a été dérivée comme une combinaison de ratios de vraisemblance permettant de mettre
en évidence à chaque fois une norme unique.

Une autre contribution à la connaissance du spectre a été proposée en tant que technique inter-
disciplinaire de la classification des signaux héritant de certains outils de traitement d’images.
Nous avons dérivé plusieurs applications de la technique proposée. Tout d’abord, en tant que
technique de détection du spectre, nous avons montré à quel point cette technique était per-
formante, avec des améliorations de près de 50% par rapport à la technique originale CFD.
Une deuxième application concernait la classification du signal. Ici, l’usage ciblé détecte le
système PU (DVB-T, PMSE) pendant que SU transmet (LTE). Nous avons montré à quel point
la technique proposée est performante en termes de réduction de la période de classification
tout en tenant compte des recommandations standard en termes de niveau de bruit.

La dernière contribution présentée est un mécanisme semblable à la découverte de réseau
pour les systèmes de radiocommunication cognitifs basé sur la détection comprimée (CS).
Dans ce chapitre, nous avons formulé la détection du spectre et la localisation d’émetteurs
PU dans un formalisme CS. La densité est exploitée dans les deux sens: pour la détection
du spectre, la faible densité est due au fait que les CAN ne sont généralement pas en mesure
d’acquérir des signaux à la vitesse de Nyquist et cette acquisition de signaux incomplète /
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inexacte peut être récupérée au moyen d’une détection comprimée. Un deuxième aspect de la
clarté est pris en compte pour la localisation. En effet, lors de la construction de la carte des
émetteurs PU à l’aide d’un modèle d’affaiblissement de trajet, la matrice dérivée caractérisant
les transmissions PU est une matrice creuse au sens où seules quelques entrées sont non nulles.
Nous pouvons donc appliquer le même algorithme pour récupérer ces positions.
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A.9 Limites

Bien que certains résultats intéressants aient été présentés dans les contributions, certaines
limitations existent également.
Dans la première contribution, nous voyons clairement que l’amélioration de la détection du

spectre des banques de filtres classiques entraîne des coûts supplémentaires. Ceci est dû au
calcul des limites de fréquence et des extra-filtres que nous dérivons afin d’aider à la réduction
du bruit. L’ef ? cacité énergétique est également perdue lorsque nous utilisons des polynômes
d’ordre élevé dans le modèle de spectre par bande.
Dans le formalisme CS qui a été présenté, la limitation est sous la forme de la matrice dérivée,
car elle est très spécifique pour cette application et ce contexte et nous perdons trop en général
car la matrice CS est déterministe.
L’algorithme de séparation et de classification de signaux mixtes proposé au chapitre 5 est

basé sur l’algorithme FastICA, qui est une tâche itérative, consommant beaucoup de temps,
consomme de l’énergie et fonctionne de manière flexible. L’autre hypothèse majeure retenue
ici est que le terminal cognitif a suffisamment de degrés de liberté pour effectuer cette sépara-
tion.
Au chapitre 6, il est vrai que le temps requis pour la classification est presque divisé par

deux, ce qui représente un progrès considérable, mais la complexité introduite par les outils
de Vision par Ordinateur utilisés est également importante et prend beaucoup de temps.
Dans le chapitre 7, le cadre utilisé est évidemment une configuration LOS dans laquelle la PU
se trouve dans sa zone de protection et les terminaux cognitifs évitent de transmettre dans les
bandes de la PU. Le problème est que dans les systèmes du monde réel, les unités centrales et
les unités d’organisation ne sont pas distribuées de cette manière. Certains cas d’utilisation des
communications D2D ou M2M pourraient encore exploiter ce cadre. L’autre problème est que
les émetteurs primaires sont supposés être des infrastructures ? xées. Alors, comment savoir
comment exploiter davantage ce cadre pour répondre au moins à la mobilité des piétons?
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A.10 Directions futures

Encore quelques problèmes et quelques idées peuvent compléter le travail présenté:
Détection du spectre: L’avenir de la détection du spectre dans les systèmes de radiocom-

munication cognitifs réside dans les techniques aveugles à haute efficacité énergétique qui
complèteront la détection du spectre basée sur des bases de données de géolocalisation. Pour
ces architectures hybrides, nous avons un travail en cours sur un algorithme de sélection de
modèle aveugle utilisant Variational Bayes.
Sensibilisation au spectre: Certains problèmes restent en suspens dans la sensibilisation au

spectre, notamment en ce qui concerne la réduction du temps de détection de la transmission
par l’opérateur historique. Dans les techniques proposées, il y a une certaine amélioration du
temps de détection mais au prix d’ajouter de la complexité à l’ensemble du système.
Vers des communications vertes: Une autre direction intéressante qui ramène Cognitive Radio
à la lumière des projecteurs est la communication (cognitive) verte. Les algorithmes de couche
PHY, en plus des mécanismes MAC, sont étudiés sous réserve de la minimisation de la con-
sommation d’énergie. Cet aspect est assez intéressant à voir car ces contraintes d’économie
d’énergie (en particulier du côté de l’équipement utilisateur) sont les paramètres clés pour voir
les terminaux cognitifs envahir les marchés dans un proche avenir.





APPENDIX B

Considered Signals Physical
Parameters

B.1 LTE System considerations

The LTE system considerations are useful for 2 distinct reasons:

1. The classification device has to classify PU signals, without erroneously classifying
LTE SU instead. For this purpose, one has to know the LTE symbol period and the LTE
useful period.

2. The classification device has to be a User Equipment, which means that the clock fre-
quency and the bandwidth configurations are LTE compliant. As we will further show
in the next paragraphs, each system configuration has distinct parameters. The most
important ones are the sampling frequency (for a given sensing time, the number of
samples impacts the classification) and the system bandwidth (which impacts the total
amount of noise captured by the classification device).

B.1.1 LTE Physical Parameters

As being specified by 3GPP, the LTE system can be configured to different frequency bands:
1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, 20 MHz. Corresponding to these frequency
bands to be used, the IFFT lengths are: 128, 256, 512, 1024, 1536, and 2048 respectively.
Similarly, for reasons related to the legacy with UMTS, the sampling frequency is multiple
of UMTS chip period: 3.84/2 MHz, 3.84 MHz, 2x3.84 MHz, 4x3.84 MHz, 6x3.84 MHz, and
8x3.84 MHz respectively.
It is important to mention that IFFT length is a multiple of 2 for practical implementation
issues, but the system itself will not use all the subcarriers. Corresponding to different system
configurations, the number of subcarriers being used is: 73, 181, 301, 601, 901 and 1201
respectively, with the middle one called DC subcarrier (and which normally has less energy).
As the LTE system bandwidth increases, the total number of the resources increases as well.
Therefore, according to the LTE bandwidth being used, the number of resource blocks per
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symbol is: 6, 30, 50, 100, 150 and 200 respectively. Modulations used by the LTE systems
are QPSK, 16-QAM, and 64-QAM. Depending on the channel, LTE system has the following
modulation schemes:

Physical channel Modulation schemes
PDSCH QPSK, 16QAM, 64QAM
PMCH QPSK, 16QAM, 64QAM
PHICH BPSK
PUCCH BPSK, QPSK, BPSK+QPSK

Table B.1: LTE Modulation Schemes

Related to the frame structure, there are 20 slots of 0.5 ms in one frame. It is also important
to mention that the OFDM symbol is composed from a useful period and a cyclic prefix (see
D2.1 for further explanations). However, different from DVB-T, for LTE systems the use-
ful period is constant (TU=1/(15 KHz)=66,66 µs) but cyclic prefix is not. There are several
configurations described below:

1. Normal CP (7 symbols per slot)

(a) TCP=5.21 µs for the first OFDM symbol from one slot;

(b) TCP=4.69 µs for the last 6 OFDM symbols from one slot.

(c) Extended CP (6 symbols per slot): TCP=16.67 µs.

(d) MBSFN only (7.5 kHz subcarrier spacing), the OFDM useful symbol has TU=133.33
µs, and the cyclic prefix has TCP=33.33 µs – R9 feature (3 symbols per slot)

B.1.2 Cyclic Prefix (CP) in LTE

As stated in the previous section, for the normal CP configuration, the CP is not constant.
The figure below resumes the impact of having distinct CPs and different sampling rates for
different LTE BW configurations.
This configuration, of course, will impact the classification properties of LTE systems. Please
note that based on this configuration, we have developed an LTE signal generator (for nor-
mal and extended CP), and we have used this configuration for different simulations results
presented in this chapter.

B.2 Primary User Considerations

This section describes the DVB-T and PMSE (QPSK and FM) signal parameters. The param-
eters described in this chapter have been further used for classification purposes. However,
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Figure B.1: LTE cyclic prefix and symbol length in number of samples

please note that the classification has to be implemented in the UE LTE device, which means
that the PU signals have to be sampled at LTE frequency rate. We have therefore developed
primary user signal generators, and we have used these generators for different simulations
presented in this chapter.

B.2.1 DVB-T Physical Parameters

The guard interval precedes every OFDM symbol and it helps mitigating the inter-symbol
interference. Echoes of the previous symbol should abate within the guard interval. Otherwise
the echoes would disturb the following OFDM symbol and increase the Bit Error Ratio (BER).
Therefore, the required length of the guard interval depends on the application to be covered.
An OFDM symbol is composed of two parts: a useful part with duration TU and a guard
interval with a duration TCP . The guard interval consists in a cyclic continuation of the useful
part, TU , and is inserted before it. A longer guard interval could compensate longer echoes
[18]:

• lengthening the guard interval without changing the absolute duration of the useful in-
terval would accordingly decrease the channel capacity, thus reducing the deliverable
bit rate;

• alternatively, lengthening both the guard interval and the useful interval would not bring
any penalty to the channel capacity, but would make the signal processing more diffi-
cult because of the higher number of carriers that would result from the larger symbol
duration.

In summary, the following parameters can be chosen in the DVB-T system:

• code rate of inner error protection: 1/2, 2/3, 3/4, 5/6, 7/8.

• carrier modulation: QPSK – 2 bit per carrier; 16-QAM – 4 bit; or 64-QAM – 6 bit.
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• guard interval length: 1/4, 1/8, 1/16, 1/32.

• modulation parameter ?1 for non-hierarchical; 2 or 4 for hierarchical.

• FFT length which can be related to the number of carriers:

– 2k mode with 1 705 carriers,

– 4k mode with 3409 carriers (DVB-T handheld),

– 8k mode with 6 817 carriers.

• TU /TS : 4/5, 8/9, 16/17 or 32/33 depending on guard interval.

According to [19] the useful symbol period TU of DVB-T is:

• For 8 MHz DVB-T channel:

– 896 µs (8k mode),

– 448 µs (4k mode),

– 224 µs (2k mode)

• For 7 MHz DVB-T channel:

– 1024 µs (8k mode),

– 512 µs (4k mode),

– 256 µs (2k mode)

• For 6 MHz DVB-T channel:

– 1194,667 µs (8k mode),

– 597,333 µs (4k mode)

– 298,6667 µs (2k mode)

• For 5 MHz DVB-T channel (normative):

– 1433,6 µs (8k mode),

– 716,8 µs (4k mode),

– 358,4 µs (2k mode).

DVB-T Cyclic Prefix can be: 1/4, 1/8, 1/16 or 1/32. In our simulations we have considered 8
MHz DVB-T with useful symbol 224 µs and CP 1/4 (TCP=TU /4).
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B.2.2 PMSE Signal Parameters

The following documents provide technical information on Radio microphones: ERC Report
42 [20] and ERC Report 88 [21]. During 1991, ETSI was requested to update T/R 20-06 and
this work has resulted in three standards [20]:
1. ETS 300 422 Radio Equipment and Systems (RES); Technical characteristics and test
methods for radio microphones in the 25 MHz to 3 GHz frequency range
2. ETS 300 454 Radio Equipment and Systems (RES); Wide band audio links; Technical
characteristics and test methods
3. ETS 300 445 Radio Equipment and Systems (RES); Electro-Magnetic Compatibility (EMC)
standard for radio microphones and similar Radio Frequency (RF) audio link equipment
Also, another interesting report useful for the PMSE information regarding the standardization
is [9] on PU protection for TVWS. In this report it can be found that PMSE can be analogical
or digital, with different frequency bandwidths.
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