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A Simulator for Data-Intensive Job Scheduling

Matteo Dell’Amico

Abstract

Despite the fact that size-based schedulers can give excellent results in terms of both
average response times and fairness, data-intensive computing execution engines generally
do not employ size-based schedulers, mainly because of the fact that job size is not known
a priori.

In this work, we perform a simulation-based analysis of the performance of size-based
schedulers when they are employed with the workload of typical data-intensive schedules
and with approximated size estimations. We show results that are very promising: even
when size estimation is very imprecise, response times of size-based schedulers can be
definitely smaller than those of simple scheduling techniques such as processor sharing or
FIFO.
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1 Introduction

When scheduling batch jobs – i.e., non-interactive programs – the main goal is
to make sure that jobs are completed as soon as possible, as opposed to scheduling
interactive processes, which should progress at all time. For this reason, the so-
called fair scheduling policies that divide evenly resources between running jobs
are not necessarily the most appropriate for batch jobs.

When the size of a job is known beforehand, size-based policies are effective.
In fact, SRPT [15] is known to obtain the minimum mean sojourn time (i.e., the
time that passes between job submission and their completion) between all jobs;
FSP [6] provides a mean sojourn time close to the one of SRPT while preserving
fairness, in the sense that no jobs completes after the time they would complete if
using a “fair” processor sharing scheduling discipline.

In this work, we study the applicability of size-based scheduling in the field
of big-data batch processing. There are two main peculiarities that apply to such
field, and the goal of this work is to evaluate how they impact on the feasibility of
implementing size-based scheduler in such systems.

1. Job sizes vary by orders of magnitude [2, 14]: between a few seconds and
several hours. This appears beneficial to size-based scheduling solutions,
since giving priority to smaller jobs would entail huge benefits to them with-
out impacting substantially on the completion time of larger ones.

2. Job size is not perfectly known a priori. However, there are several recent
works that are able to estimate job size [1, 13, 16, 17]: this approximate in-
formation can be used to inform scheduling. Of course, when job size is
estimated rather than known in advance, it is impossible to guarantee mini-
mality in all cases.

Lu et al. [8] provide results that analyse experimentally the performance of size-
based schedulers in the presence of size estimation errors. However, those results
are not directly usable in our context, as inter-job arrival times and job sizes are
generated synthetically and they are not representative of our use case; for this
reason, the results of that work cannot be used directly in our case. In addition, the
FSP scheduler [6] which is implemented both in the simulator of Lu et al. and in
our simulator has a degree of freedom when there are size estimation errors (see
Section 2.3); we show experimentally that what could be considered as a minor
implementation detail has major effects on scheduling quality.

Given that the existing related work cannot give us a definite answer to the
question of how job size estimation errors could impact the quality of scheduling
in the context of big data batch system, we built a custom simulator in order to
evaluate that. The simulator, described in detail in Section 2, performs a series of
assumptions that abstracts away from the technicalities and complexity of particu-
lar execution engines (such as, e.g., Hadoop, Spark or Dryad), and we are using it
to drive the design of the HFSP Hadoop size-based scheduler [12].
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The simulation results shown in Section 3 allow us to conclude that size-based
scheduling is very promising for the field we are considering, since, in particular
when the aging technique is applied, it consistently and very significantly outper-
forms both first-come-first-serve and fair-sharing schedulers.

2 Simulator Implementation

Our simulator is written in Python, and it requires the numpy and matplotlib
modules. It is available as free software.1 In the following, we detail the as-
sumptions that lead to our implementation choices, and the way we parse existing
Hadoop traces in order to assign them to our simulator.

2.1 Assumptions

Schedulers for real-world data-intensive execution engines are complex, since
they have to consider a myriad of aspects related to the architectural choices of the
systems at hand. In this work, we take a simple approach that abstracts away from
them, reaping two benefits: the first one is simplicity, letting us define each job
simply as an (arrival time, execution time) pair and letting us implement traditional
scheduling policies exactly as they are defined in the literature; the second one is
generality: our results are not influenced by the details of a given execution engine.
For system-related details, and their evaluation on real workloads, we remand to
our system work describing the HFSP scheduler developed for Hadoop [12], which
is currently the most widely used execution engine for data-intensive systems.

In the following, we outline and motivate our assumptions.

Resource Allocation Jobs are often divided in granular tasks, and schedulers
generally have the duty to allocate those tasks to a discrete number of task slots
available in the cluster. Two assumptions are related to resource allocations.

1. The granularity of tasks is small enough that

(a) whenever a job is preempted, its tasks can be considered to stop work-
ing istantaneously;

(b) the number of tasks per job is much larger than the number of task
slots, so that each job can run in parallel on the whole cluster.

Using smaller tasks is actually advised in order to deal with the problems of
unfairness, stragglers and task size skew [11].

2. The number of task slots is large enough that each job can be allocated to
run on an arbitrary fraction of the total system slots. This assumption lets
us implement perfect “processor-sharing” scheduling, running each pending
job on the same fraction of system resources.

1 https://bitbucket.org/bigfootproject/schedsim

https://bitbucket.org/bigfootproject/schedsim
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Work Conservation We assume that the running time of a job’s tasks is not
influenced by the time or choice of task slot it is run onto. In particular, this means
that each job will require the same amount of total resources, without any penalty
for having been preempted and resumed, disregarding any data locality issues. We
remark that architectures that avoid penalties due to data locality have been pro-
posed and successfully implemented [10].

Error Distribution In this work, we consider log-normally distributed error val-
ues. In particular, a job having size s will be estimated as ŝ = sX , where X is
a random variable with distribution Log-N (0, σ2): the choice of the log-normal
distribution reflects the intuition that an under-estimation ŝ = s/k (k > 1) is as
likely as an over-estimation ŝ = ks. When evaluating the performance of the HFSP
Hadoop scheduler on real jobs containing skew and stragglers, we found that a log-
normal distribution does indeed approximate well the empirically observed values
for estimation error in our case.

2.2 Parsing SWIM .tsv files

SWIM [4] is a well-known tool to generate workloads to test MapReduce sys-
tems; it has been used in academia to validate proposals to improve Hadoop (see
e.g. [3, 18]). SWIM ships with samples of traces from Facebook: for each job j in
those traces, they contain:

1. Job submission time tj ;

2. Input size (from disk) ij ;

3. Size of data “shuffled” on the network sj ;

4. Output size (to disk) oj .

We combine points 2–4 in a single value, representing the number of seconds that
the system would need to execute these jobs if they were running using all the
cluster resources. If the whole system can read and write data from disk at speed d
and send it over the network at speed n, we consider the size of job j as

Sj = d (ij + oj) + nsj .

In our system, rather than specifying d and n, we want however to evaluate
scheduler performance based on a more abstract notion of load. We prefer, there-
fore, to characterize our system as heavily or lightly loaded, and having a given
disk / network performance ratio. We do so by fixing the ratio d/n that represents
the ratio between the aggregate disk and network bandwidth of the whole system
(a value of 1 would represent a system where the network is never the bottleneck
such as Flat Datacenter Storage [10], while a higher value is representative of more
traditional installations) and a load value l that represents the ratio between the
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Name Default Meaning
d/n 4 Ratio between disk and network bandwidth in the system
l 0.9 Average load in the system
σ – Value for error distribution

Tab. 1: Simulator parameters

total size of all jobs and the time passing between the instant t0 of submitting the
first job and te, when the last job is submitted. We obtain the values d and n,
and therefore the value Sj for the size of each job, by solving the following set of
equations: {∑

j Sj =
∑

j d (ij + oj) + nsj = l (te − t0)
d/n = X,

whereX is a user-set value. In the following of the paper, we use default values
of l = 0.9 and d/n = 4, to account for highly loaded systems with more disk
bandwidth than network bandwidth. Table 1 summarizes the system parameters.

2.3 Implemented Schedulers

We implemented four schedulers: FIFO (First In First Out) and PS (Processor
Sharing) are traditional schedulers that do not need size estimation; as size-based
schedulers, we implemented SRPT (Shortest Remaining Processing Time) and FSP
(Fair Sojourn Protocol).

FIFO This basic scheduling discipline is often also known as FCFS (First Come
First Serve). In it, jobs are scheduled the whole resources of the system in the order
of their arrival time. FIFO is known to perform poorly in workloads where jobs
of mixed sizes appear: our experimental results confirm this, showing that FIFO is
the worst-performing scheduling discipline among those implemented.

PS This technique is the considered a “fair” scheduling disciplines: when there
are n pending jobs, each of them is allocated 1/n-th of the system resources. While
this guarantees that all pending jobs progress, none of them progresses quickly. As
a result, in loaded systems PS tends to result in many scheduled processes, each of
them progressing slowly.

SRPT This technique, in absence of size estimation errors, minimize the metric
of mean sojourn time [15] – i.e., the time that passes between a job’s submission
and its completion. It does so by assigning all system resources to the pending job
that requires the least remaining amount of work to complete, therefore minimizing
the number of pending jobs at each moment. SRPT differs from SJF (Shortest Job
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First) in that the arrival of a new job having size smaller than the remaining amount
of work of a running one will preempt the running one.

While SRPT optimizes mean sojourn time, it may not be fair, since large run-
ning jobs may be denied access to resources for long if smaller jobs are constantly
submitted. In realistic use cases and in the absence of errors, however, this phe-
nomenon is known to be unlikely [5].

FSP This scheduling discipline, proposed by Friedman and Henderson [6], com-
bines the fairness guarantees of PS with the performance improvements obtained
through size-based scheduling. It is similar in concept to SRPT, but priority is
given to jobs with the smallest remaining processing time in a virtual emulated
system which is running PS. The solution of virtually decreasing the size of jobs
even when they are not scheduled is called job aging, and it avoids the starvation
that could happen in SRPT. In particular, the aging applied by FSP guarantees fair-
ness in the sense that (in the absence of size estimation errors) jobs in FSP are
guaranteed to complete not later than in PS. The same mechanism of FSP has been
also proposed under the name of fair queuing [9] and Vifi [7].

When considering size estimation errors, the definition of FSP gives a degree
of freedom to the implementation: what to do when one or more pending job are
“late”, i.e. they reach a virtual size of zero? The fairness properties of FSP guar-
antee that this will never happen if there are no size estimation errors; however,
when job size is underestimated, this is a rather common event. In this case, we
implemented two alternative policies:

• FSP+FIFO, which schedules late job according to a FIFO policy: late jobs
have priority over all other pending jobs, and the first one to reach a virtual
size of zero obtains all system resources;

• FSP+PS, which shares equally the system resources between late jobs: they
have priority over all other pending jobs and each of the n late jobs get 1/n-
th of the system resources.

Our experimental results, shown in the following section, highlight how this ap-
pearingly minor detail has major effects on the performance of the scheduler.

3 Simulation Results

After describing the implementation of our simulator, we are now ready to
show our simulation results on the three workloads made available with the SWIM
tool [2]:

• FB09-0: a trace from Facebook in 2009, containing 5,894 jobs.

• FB09-1: again a trace from Facebook in 2009, containing 6,638 jobs.

• FB10: a 2010 trace with 24,442 jobs.
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Fig. 3.1: Sojourn versus σ on the FB09-0 workload.
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Fig. 3.2: Sojourn versus σ on the FB09-1 workload.

All results shown in this section are obtained by running 100 simulation runs for
each combination of input file, values of σ, and settings for l and d/n. Since, for
given values of l and d/n, the trace is fixed, what changes between simulation
runs are only estimation errors. Therefore, multiple simulation runs are not needed
when there is no size estimation errors and for the FIFO and PS schedulers.

3.1 Sojourn versus σ

We start by investigating the impact of the σ value which describes the mag-
nitude of errors, on mean sojourn time. Figures 3.1, 3.2, and 3.3 show a box-plot
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Fig. 3.3: Sojourn versus σ on the FB10 workload.
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(highlighting the median and the most important percentiles) for mean sojourn
times over the 100 experiment runs, for varying values of σ. Since sojourn times
vary by orders of magnitude, here and in the following of the sections, they are
plotted on a logarithmic scale.

We can at first see that the FIFO scheduler, in this case where job sizes differ
by orders of magnitude, performs much worse than all other scheduling primitives:
therefore, it can be regarded as essentially a worst case. By guaranteeing that each
pending job progresses, PS results in a sojourn time which is orders of magnitude
better. For this reason, we consider the performance of PS as an “acceptable” one,
and good performance whatever is able to outperform PS.

In accordance with intuition, we see that increasing the error rate is detrimental
to the performance of size-based schedulers. However, SRPT does not handle
errors terribly well, when compared to FSP. We consider this is due to the fact that
even large estimation errors are, in the long run, corrected by aging: this avoids that
even widely over-estimated jobs are scheduled very late. In addition, we observe
that there is a notable difference in terms of performance between FSP+FIFO –
which exhibits a few “outlier” experiment runs where mean sojourn time is much
higher – and FSP+PS, where performance is consistent between experiment runs.
We explain this with the fact that severe underestimation errors can result in long
jobs being scheduled too early in both cases, but while this does not produces
catastrophic effects in FSP+PS, where all “late” jobs progress, in FSP+FIFO, even
“late” jobs may do not progress for relevant amounts of time. We conclude that
FSP+PS is the best performing scheduling strategy between those examined in the
case of errors.

What is perhaps most surprising from these results is actually the robustness of
size-based schedulers, and in particular of FSP+PS, to size estimation errors: even
when σ = 1, where in around half of the cases there is an over- or under-estimation
by a factor of 2 or more, FSP+PS consistently and significantly outperforms the PS
scheduler. This lets us conclude that, according to the traces we have at hand, size-
based scheduling, and in particular FSP+PS, appear very resilient to estimation
errors.

3.2 Sojourn versus load

We now turn our attention to the performance of scheduler when varying load.
In this case, we plot the average of mean sojourn time between experiment intervals
(we do not plot box-plots or confidence intervals for readability), and we vary the
l parameter between 0.1 and 2.

In Figure 3.4 on the following page, we show how mean sojourn time increases
when increasing the load in the absence of size estimation errors: we can see that
sojourn time increases smoothly as load grows in all the three datasets that we
consider. Again, we confirm that FIFO can be considered a worst case, with a
mean sojourn time which is orders of magnitude longer in all cases. We can also
notice that FSP and SRPT perfom in a remarkably similar way: even when there
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Fig. 3.4: Sojourn versus load: no error.
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Fig. 3.5: Sojourn versus load: σ = 0.5.

are no size estimation errors, FSP’s fairness guarantee comes at what appears to
be a negligible cost in term of mean sojourn time. These results confirm those
obtained by Friedman and Henderson [6].

Figure 3.5 shows instead the evolution of main sojourn times for different val-
ues of load and σ = 0.5. Obviously, in this case the results of FIFO and PS do
not change: we keep them for reference. We confirm that, even when varying load,
FSP+PS always performs best. SRPT and FSP+FIFO both suffer from the pres-
ence of error, as we already remarked in Section 3.1, but when load grows beyond
1, differences between algorithms start to become smaller. The reason for such
phenomenon is matter for further study.

3.3 Sojourn versus d/n

We conclude our analysis by evaluating the sensitivity of the system to the d/n
parameter. Figures 3.6 and 3.7 on the following page show that the d/n parameter,
required to create the workloads in our format, doesn’t play an important role with
respect to scheduling. We notice, however, that the FSP+FIFO line is much less
flat than the others: the quite random presence of outlier experiments with very
large sojourn times (as already observed in Section 3.1) makes the results of this
case more noisy.
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Fig. 3.6: Sojourn versus d/n: no error.
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Fig. 3.7: Sojourn versus d/n: σ = 0.5

4 Conclusions

This work provides a simulation-based exploration about the applicability of
size-based schedulers in the field of data-intensive computing, based both on load
characteristics from application traces and on the fact that job size can only be ap-
proximated. Our results are very promising, as they show that size-based schedul-
ing is very beneficial even when job size can only be approximated very roughly.
Our simulator is available as free software, and we used these simulation results
to help us in the design of the HFSP Hadoop scheduler [12], which is available as
free software as well.2

We consider this as work in progress, as there are various other points we are
going to explore. To have a better view at the fairness obtained by the different
schedulers, we want to examine slowdown, that is the ratio between a job’s size
and its sojourn time; we want to perform a more focused analysis of the three
datasets we are currently examining in order to better understand the difference in
terms of experimental results between them; finally, we want to perform a closer in-
spection to the difference in performance between the FSP+PS and the FSP+FIFO
schedulers, in order to obtain a clearer view of their difference in performance, and
investigate whether better solutions are possible.

2 https://bitbucket.org/bigfootproject/hfsp

https://bitbucket.org/bigfootproject/hfsp
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