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Abstract—We consider the problem of LMMSE estimation
(such as Wiener and Kalman filtering) in the presence of a
number of unknown parameters in the second-order statistics,
that need to be estimated also. This well-known joint filtering and
parameter estimation problem has numerous applications. It is
a hybrid estimation problem in which the signal to be estimated
by linear filtering is random, and the unknown parameters are
deterministic. As the signal is random, it can also be eliminated,
allowing parameter estimation from the marginal distribut ion of
the data. An intriguing question is then the relative performance
of joint vs. marginalized parameter estimation. In this paper, we
consider jointly Gaussian signal and data and we first provide
contributions to Cramer-Rao bounds (CRBs). We characterize
the difference between the Hybrid Fisher Information Matri x
(HFIM) and the classical marginalized FIM on the one hand,
and between the FIM (with CRB asymptotically attained by
ML) and the popular Modified FIM (MFIM, inverse of Mod-
ified CRB) which is a loose bound. We then investigate three
iterative (alternating optimization) joint estimation ap proaches:
Alternating Maximum A Posteriori for Signal and Maximum
Likelihood for parameters (AMAPML), which in spite of a bett er
HFIM suffers from inconsistent parameter bias, Expectation-
Maximization (EM) which converges to (marginalized) ML (but
with AMAPML signal estimate), and Variational Bayes (VB)
which yields an improved signal estimate with the parameter
estimate asymptotically becoming ML.

Index Terms—Joint Estimation, Maximum Likelihood (ML),
Variational Bayes (VB), Expectation-Maximization (EM),
Cramer-Rao Bound (CRB)

I. I NTRODUCTION

In estimation theory, the choice of an estimator depends
closely on the context of the problem. When the unknown
parameters are deterministic, the Maximum Likelihood es-
timator (ML) is often considered the best approach. It is
typically consistent and asymptotically optimal (attaining the
CRB)([1], [2]). For the random case, the Minimum Mean
Squared Error (MMSE) is used and known (in the Gaussian
case) to achieve the Bayesian CRB (BCRB) introduced by
Van Trees [3]. When the MMSE estimate is intractable, it
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is sometimes replaced by the Maximum A posteriori (MAP)
estimator. An other important estimation problem is when
nuisance random parameters are affecting the estimation ofthe
deterministic unknown parameters/signals like in synchroniza-
tion problems[4]. Different scenarios have been considered.
One scenario is to marginalize out the nuisance parameters
which yields the previous problem of ML estimation. In some
cases, the marginalization is intractable or very tedious,so
we resort to joint estimation (MAP/ML, EM, VB...)([5], [6],
[7]), which is also relevant when the random signals are of
interest ([8], [9]). Several bounds were developped to evaluate
estimator performance in this case. A well-known bound is
the MCRB which was introduced for the first time in[10] for
a synchronization problem. In [10], the MCRB was derived
when the wanted parameter is scalar, then extended to the
vectorial case in [11]. In ([10], [11]), the authors prove that
the MCRB is looser than the CRB. A characterization of the
difference in the scalar case is introduced indirectly in [12].
Though it is looser than the CRB, in some problems ([13],
[10], [11]), the MCRB is computationally very interesting
since it can be derived in closed form while this may not
be possible for the CRB. Hence when they coincide, the use
of the MCRB is more practical. To our knowledge, in the
litterature on the MCRB, the probability density function (pdf)
of the nuisance signals is always assumed to be independent
of the deterministic parameters. This hypothesis is relevant in
channel estimation applications where the MCRB is applied
most of the time, and where the pdf of the transmitted symbols
(nuisance parameters) is independent of the channel (synchro-
nization) parameters ([11], [14]). Yet, other applications in
statistical signal processing may not fulfill this condition [15].
Then, it would be of interest to find out the influence of this
new condition on the MCRB/CRB relation, which we explore
in this paper. Another interesting lower bound used for joint
estimation is the hybrid CRB (HCRB). The need for the HCRB
was expressed perhaps for first time in the work of Rockah and
Schultheiss for studying passive source localization in [16].
Ten years later, Reuven and Messer generalized its formulation
in [17] where they extend the Barankin bound to the case of
an unknown hybrid vector. In [18], the HCRB is proved looser



than the CRB but tighter than the MCRB ([19], [14]). Many
other bounds were proposed, the reader can refer to [3] for
more information. In this paper, we characterize the difference
between the HFIM (the deterministic parameter part) and the
classical FIM in order to understand the influence of the
random signals on optimal parameter estimation. In the next
section we present the general framework of joint and separate
estimation. In section III, we then characterize the differences
(HFIM-FIM) and (FIM-MFIM). In section IV, we analy=ze
the performance of the iterative algorithms AMPAML, EM
and VB and introduce SOELMMSE.

II. JOINTLY GAUSSIAN FRAMEWORK

Let y denote theN × 1 measurement signal on the basis
of which we want to estimate theM × 1 random processx.
However, anL × 1 vector of parametersθ intervenes in the
joint distribution ofy andx and we have a likelihood function
of the formf(y,x|θ) which means MAP forx and ML for θ

ln f(y,x|θ) = ln f(y|x, θ) + ln f(x|θ)
= ln f(y|θ) + ln f(x|y, θ)

(1)

where ln f(y|θ) corresponds to the separate loglikelihood
for the parameters with elimination of the randomx, and
ln f(x|y, θ) is the posterior distribution forx. In this paper
we consider real quantities and zero means. In the jointly
Gaussian zero-mean setting, the whole estimation problem is
characterized by the joint covariance matrixR(θ)

R(θ) =

[
Rxx(θ) Rxy(θ)
Ryx(θ) Ryy(θ)

]
. (2)

A. Separate (/Marginalized/ML) Parameter Estimation

The random vectorx can be integrated out, leading to
marginalized ML estimate forθ, θ̂ML = argmaxθ ln f(y|θ)
with loglikelihood

ln f(y|θ) = −
1

2
ln detRyy(θ)−

1

2
yTR−1

yy(θ)y (3)

This leads to the marginalized Fisher Information MatrixJ(θ)

= −Ey|θ
∂2 ln f(y|θ)

∂θ∂θT
=

1

2
RT

yy,θ(R
−1
yy ⊗R−1

yy)Ryy,θ (4)

whereRθ = ∂vec{R}
∂θT , vec{R} is a column vector obtained by

stacking the consecutive columns ofR, andA⊗B = [AijB]
denotes the Kronecker product of matricesA, B. Since the
ML estimate θ̂ML is consistent, its estimation error̃θML

reaches the Cramer-Rao lower bound (CRB)

RM

θ̃θ̃
(θ) = CRBM = J−1 . (5)

The CRB (so the FIM) is a function ofθ but for notational
convenience, we shall not mention it explicitly.

B. Joint (MAPML) Signal (MAP) and Param. (ML) Estimation

In particular, we get for the posterior distribution

f(x|y, θ) = N (x̂(θ),P (θ)) (6)

wherex̂(θ) = F (θ)y is the LMMSE estimate, and

x̂(θ) = F (θ)y , F (θ) = Rxy(θ) R
−1
yy(θ)

P (θ) =Rx̃x̃(θ) = Rxx(θ)−Rxy(θ) R
−1
yy(θ)Ryx(θ).

(7)

Note that

argmaxx ln f(x|y, θ) = x̂(θ)

maxx ln f(x|y, θ) = − 1
2 ln detP (θ) .

(8)

Hence due to this separability, as noted in [7],

max
x

ln f(y,x|θ) = ln f(y|θ)−
1

2
ln detP (θ) (9)

which is the compressed joint likelihood which remains to
be optimized w.r.t.θ. The performance for the estimation
of θ in the joint estimation problem is governed by the
so-called Hybrid CRB (HCRB), so called because of the
mix of random and deterministic parameters. If we denote
by w =

[
θT xT

]T
the hybrid vector, the Hybrid Fisher

Information Matrix (HFIM) is defined

J̃ = E

{
∂ ln f (y,x|θ)

∂w

∂ ln f (y,x|θ)

∂wT

}
=

[
J̃θ J̃θ,x

J̃T
θ,x J̃x

]

The HCRB is computed as the (1,1) block ofJ̃−1(θ), which

results in
(
J̃θ − J̃θ,xJ̃

−1
x J̃T

θ,x

)−1

. In [18], the authors prove
that the CRB is tighter than the HCRB. They also provide a
necessary and sufficient condition on the joint pdf to reach
HCRB=CRB. Note however that in terms of performance,
the term− 1

2 ln detP (θ) in (9) is in fact misleading for the
estimation ofθ and leads to a bias that leads to inconsistency
(if M grows withN ) [7]. Hence the HCRB is certainly not
reached by MAPML.

III. C HARACTERIZING THE DIFFERENCES(HFIM-FIM)
AND (FIM-MFIM)

A. Difference between HFIM and FIM

From the relation between the joint and marginalized dis-
tributions in the second line of (1), we compute the Hessian
relative tow and after applying the joint expectation, we get

[
J̃θ J̃θ,x

J̃T
θ,x J̃x

]
=

[
J 0
0 0

]
+

[
G̃θ G̃θ,x

G̃
T

θ,x G̃x

]
(10)

whereG̃ = −Ex,y|θ
∂2 ln f(x|y,θ)

∂w ∂wT . From (10), we deduce the

relation between HCRB−1 and CRB−1 :

HCRB−1 = J̃θ − J̃θ,xJ̃
−1
x J̃T

θ,x

= J + G̃θ − G̃θ,xG̃
−1

x G̃
T

θ,x

= CRB−1 + G̃θ − G̃θ,xG̃
−1

x G̃
T

θ,x (11)

This expression is valid for any distribution and shows that
the hybrid (joint) inverse CRB (information in the presenceof
nuisance parameters) forθ equals the inverse marginal/separate
CRB plus an inverse CRB that would correspond to joint
estimation from the posterior densityf(x|y, θ). In the zero
mean Gaussian case,(G̃θ,x = 0) and the full FIM is

J̃ =

[
1
2R

T
θ (R

−1 ⊗R−1)Rθ 0
0 P−1(θ)

]
.

Then the HCRB−1 is reduced toJ̃θ and



J̃θ = 1
2R

T
θ (R

−1 ⊗R−1)Rθ = CRB−1 + G̃θ

= 1
2R

T
yy,θ(R

−1
yy ⊗R−1

yy)Ryy,θ

+ 1
2P

T
θ (θ)

(
P−1(θ)⊗ P−1(θ)

)
Pθ(θ)

+FT
θ (θ)

(
P−1(θ)⊗Ryy(θ)

)
Fθ(θ).

where the last two terms correspond to the difference in inverse
CRB, and correspond to the information forθ that can be
extracted from the covariance and the mean of the Gaussian
posteriorf(x|y, θ).

B. The Difference between FIM and MFIM

In [12], Moeneclaey computed(MFIM − FIM) for the
casef(x|θ) = f(x), θ scalar and white Gaussian observation
noise. The extension of his result to vectorialθ and general
observation noise covariance (but independent ofθ) Rvv is
straightforward and can be written as follows

J = JM − Ey|θCovx|y,θ

{
∂ ln f (y|x, θ)

∂θ

}
(12)

whereJM = −E∂2 lnf(y|x,θ)
∂θ∂θT denotes the MFIM. Here we

shall extend this to the case off(x|θ). We claim the following
result

J = JM−E

{
−
∂2 ln f (x|y, θ)

∂θ∂θT

}
+E

{
−
∂2 ln f (x|θ)

∂θ∂θT

}

(13)

Proof. The Hessian of the two lines in (1) relative toθ results
in

∂2 lnf(y|x, θ)

∂θ∂θT
+
∂2 lnf (x|θ)

∂θ∂θT
=

∂2 lnf(y|θ)

∂θ∂θT
+
∂2 lnf (x|y, θ)

∂θ∂θT

Applying the E{.} operator over all random variables and
changing the terms in the right side results in the claimed
result.

Notice that Moeneclaey’s result is a special case of (13). In
fact, whenf(x|θ) = f(x), the last term in (13) vanishes and
the second term can be proved easily equal to the covariance
term in (12) when we notice thatEx|y,θ

{
∂ ln f(y|x,θ)

∂θ

}
is

simply equal to∂ ln f(y|θ)
∂θ

. In terms of interpretation, this term
may be interpreted as the difference in information between
x being deterministic or random. The second term is new and
corresponds to the information onθ in the prior distribution
f(x|θ).

C. Performance-CRB Comparison

Let θ̂M refer to the ML estimate and̂θJ to θ̂ in the joint
MAPML estimation withx. Asymptotically (in the amount of
datay), we get

CJ

θ̃θ̃

(i)

≥ CM

θ̃θ̃

(ii)
= CRBM

θ

(iii)

≥ CRBJ
θ (14)

where (ii) is due toθ̂M being consistent, (i) is due to the
bias in and hence inconsistency ofθ̂J (which normally leads
to performance degradation), and (iii) was analyzed above,
though the operational meaning of CRBJ

θ =HCRB is not clear
yet.

IV. I TERATIVE ML A LGORITHMS

A first iterative algorithm is AMAPML (Alternating
MAPML) in which the MAPML loglikelihood (1) gets maxi-
mized by alternating maximization w.r.t.x andθ.

A. EM Algorithm

The Expectation-Maximization algorithm was introduced
to iterate towards the ML estimate while having reduced
complexity iterations [5]. At iterationi+ 1 we get forθ̂

θ̂i+1 = argmax
θ

E
x|y,θ̂i ln f(x,y|θ) (15)

which is usually spelled out in 2 steps:

E step: ln qi+1(θ|y)
.
=
∫
f(x|y, θ̂i) ln f(x,y|θ)dx

M step: θ̂i+1 = argmaxθ ln q
i+1(θ|y)

(16)

where
.
= will denote equality up to ”constants” (which in

this instance could be a function ofy). Depending on the
application, some simplifications may occur. For instance if
the (e.g. AR) parameters of interest only appear inf(x|θ),
then we can useln f(x,y|θ) = ln f(x|θ) + ln f(y|x, θ) =
ln f(x|θ) + ln f(y|x). Then, apart from additive constants,
we get

−2 ln qi+1(θ|y)
.
= tr{R̂i

xxR
−1
xx − I} − ln det(R̂i

xxR
−1
xx)

where R̂i
xx = x̂(θ̂i)x̂T (θ̂i) + P (θ̂i)

(17)
which is the Itakura-Saito distance (ISD) betweenRxx(θ)
and R̂i

xx. In the general case, (16) leads to ISD minimiza-
tion between the joint covariance matrixR(θ) from (2) and
R̂i = E

x|y,θ̂i wwT with wT = [xTyT ]. Now, using the block
UDL factorization

R =

[
I F

0 I

] [
P 0

0 Ryy

] [
I 0

F T I

]
(18)

and considering that both tr{.} and ln det(.) allow cyclic
commutation of the factors in their argument, we get

R−1(θ) R̂i

=

[
P−1

0

0 R−1
yy

] [
I −F

0 I

]
E
x|y,θ̂i

[
x

y

] [
x

y

]T [
I 0

−F T I

]

=

[
P−1

0

0 R−1
yy

]
E
x|y,θ̂i

[
x̃

y

] [
x̃

y

]T
= D−1(θ) D̂i ,

where D(θ) =

[
P (θ) 0

0 Ryy(θ)

]
,

D̂i =

[
P (θ̂i) 0

0 0

]
+

[
x̂(θ̂i)− x̂(θ)

y

] [
x̂(θ̂i)− x̂(θ)

y

]T

(19)
At convergence we get (withθ = θ̂∞)

D−1(θ) D̂∞ =

[
I 0

0 R−1
yy(θ)yy

T

]
. (20)

Hence this convergence to the ISD betweenRyy(θ) andyyT

and hence to the ML loglikelihood. Actually,ln qi(θ|y) does
not measure exactly the ISD betweenR(θ) andR̂i, but

−2 ln qi+1(θ|y)
.
= ln det(R(θ)) + tr{R−1(θ) R̂i} (21)



which also converges to the ML loglikelihood. The difference
betweenqi+1(θ|y) and the ISD is due to the fact that both
R(θ) and R̂i depend onθ, leading to the difference term
ln det(R̂i).

B. Variational Bayes (VB) Approach

Even thoughln f(x|y, θ) is quadratic andln f(θ|y) is
asymptotically quadratic, the jointln f(x, θ|y) contains prod-
ucts of both quadratic terms and hence is not Gaussian.
Variational Bayes is an approach to approximate the true joint
posterior pdf by a product form

f(x, θ|y) ≈ q(x|y) q(θ|y) . (22)

The factors in the product are obtained by minimizing the
Kullback-Leibler distance between the two sides of (22),
leading to implicit equations that can be iterated:

ln qi+1(θ|y)
.
=

∫
qi(x|y) ln f(x, θ,y) dx

ln qi+1(x|y)
.
=

∫
qi+1(θ|y) ln f(x, θ,y) dθ

(23)

which can be solved iteratively. Apart from approximating the
true posterior pdf by a factored form, one can furthermore
require the factors to be of a certain parametric form. In
the case considered here however,q(x|y) is automatically
Gaussian, whereas we shall forceq(θ|y) to be Gaussian.
This is done by taking the mean and covariance of the RHS
in (23). Note that asymptotically,q(θ|y) becomes Gaussian
automatically. Also note thatq(x|y) and q(θ|y) are not the
marginals off(x, θ|y). They are factors of which the product
attempts to approximate the joint pdf as well as possible.
The equalities in (23) should be interpreted as up to additive
”constants” (possibly functions ofy). Hence f(x, θ|y) is
equivalent tof(x, θ,y) in (23). Finally, VB is an approach that
normally applies to the fully Bayesian case in which bothx

andθ are considered random. However, we shall consider the
prior f(θ) to be uniform so thatf(x,y, θ) becomes equivalent
to f(x,y|θ).

The EM algorithm can be viewed as a limiting case of
the VB approach, in whichθ is treated as deterministic and
hence can be viewed as random with priorf(θ′) = δ(θ′ − θ)
(where θ is the unknown true value). As a result also the
posterior becomes of the formq(θ|y) = δ(θ− θ̂) and hence is
characterized solely by the point estimateθ̂. Under some regu-
larity conditions, the EM estimate is known to converge to the
(separate) ML estimate and hence has the same performance.
EM can be viewed as a case of VB in whichqi(θ|y) is forced
to be of the formδ(θ− θ̂i) in the M step. The best approxima-
tion is obviously obtained for̂θi = argmaxθ q

i(θ|y) where
qi(θ|y) is obtained from the first equation in (23). If now
furthermoreqi(θ|y) = δ(θ− θ̂i), then we get from the second
equation in (23)ln qi(x|y)

.
=
∫
δ(θ − θ̂i) ln f(x,y|θ) dθ =

ln f(x,y|θ̂i)
.
= ln f(x|y, θ̂i) sincef(y|θ̂i) does not depend

on x. Hence qi(x|y) = f(x|θ̂i,y). This finally leads to
θ̂i+1 = argmaxθ

∫
f(x|y, θ̂i) ln f(x,y|θ) dx for EM.

Now consider the actual VB updates (23) with Gaussian
qi(θ|y) = N (θ̂i,Ci

θ). Motivated by asymptotics we shall

determine the Gaussian approximation by a 2nd order Taylor
series expansion

ln qi+1(θ|y)
.
= gi(θ)

.
= − 1

2 (θ−θ̂i+1)T (Ci+1
θ )−1(θ−θ̂i+1)

.
= gi(θ̂i) + (θ−θ̂i)T ∂gi(θ̂i)

∂θ
+ 1

2 (θ−θ̂i)T ∂2gi(θ̂i)
∂θ ∂θT (θ−θ̂i)

(24)
Equating the last two lines yields

θ̂i+1= θ̂i+Ci+1
θ

∂ ln gi(θ̂i)

∂θ
, Ci+1

θ =

(
−
∂2 ln gi(θ̂i)

∂θ ∂θT

)−1

.(25)

This converges to a point̂θV for which ∂ ln gi(θ̂V )
∂θ

= 0 and
for which fV (θ|y) = N (θ̂V ,CV

θ ). Now, we have forgi(θ) in
(24), from (23):

gi(θ) = Eqi(x|y) ln f(x,y|θ)

= ln f(y|θ) + Eqi(x|y) ln f(x|y, θ)

.
= − 1

2 ln det(R(θ)) − 1
2 Eqi(x|y)

[
x

y

]T
R−1(θ)

[
x

y

]

= − 1
2 [ln det(R(θ)) + tr{R−1(θ) R̂i}]

(26)
where now R̂i = Eqi(x|y) wwT with wT = [xTyT ].
Hence, the computation ofgi(θ) in VB is identical to that
in EM except thatf(x|y, θ̂i) in EM is replaced byqi(x|y)
in VB. However, asymptotically, for the second-order ex-
pansion in (24),q(x|y) can equivalently be replaced by
f(x|y, θ̂i). Hence, asymptotically there is no information
for θ in Eq(x|y) ln f(x|y, θ) and fV (θ|y) = fE(θ|y) =

fM (θ|y) = N (θ̂M ,CRBM ). If VB for θ̂ is asymptotically
equivalent to ML, nevertheless

• this establishes that asymptotically one can not do better
than ML (and CRBM !),

• the convergence behavior of the VB iterations may be
more interesting,

• non-asymptotically, the VB performance may be better
than ML.

So we get for̂θ

• AMAPML: θ̂ from x̂ only (as if x̂ = x), x̂ from θ̂ only
(as if θ̂ = θ). AMAPML converges to joint MAPML.

• EM: θ̂ from x̂ and x̃, x̂ from θ̂.
EM converges to the marginalized ML approach.

• VB: θ̂ from x̂ and x̃, x̂ from θ̂ and θ̃. Asymptotically
same performance as ML and EM (hence efficient).

Note: all these iterative algorithms only require one iteration
to converge if initialized with a consistent̂θ.

We get for the VB update ofq(x|y) = N (x̂,Cx), from
(23):

ln qi(x|y)
.
=
∫
qi(θ|y) ln f(x, θ,y) dθ

.
=
∫
qi(θ|y) ln f(x|y, θ) dθ

.
= − 1

2 Eqi(θ|y)(x− Fy)TP−1(x− Fy)
.
= Eqi(θ|y){y

TF TP−1x− 1
2x

TP−1x}
.
= − 1

2 (x− x̂i)T (Ci
x)

−1(x− x̂i)

(27)



where the Gaussian pdf comes out automatically. So we get

x̂i = Ci
x

(
Eqi(θ|y) P

−1(θ)F (θ)
)
y, Ci

x =
(
Eqi(θ|y)P

−1(θ)
)−1

(28)
which can be computed (asymptotically) by second-order
expansions inθ of P−1(θ) andP−1(θ)F (θ).

Asymptotically, whenq(θ|y) becomesf(θ|y), x̂V attains a
CRB corresponding to the following FIM

JV
xx = −Ex,θ|y

∂2f(x,y,θ)
∂x∂xT

= −Ex,θ|y
∂2f(x|y,θ)
∂x∂xT = Eθ|yP

−1(θ)
(29)

So, asymptotically,CV
x =

(
JV
xx

)−1
. Note that the VB update

of q(x|y) is non-iterative inx, due to the quadratic nature
of ln f(x|y, θ): q(x|y) is just a function ofq(θ|y) (whereas
qi+1(θ|y) depends on bothqi(x|y) and qi(θ|y)). Hence the
VB update for x is an extension of LMMSE estimation,
accounting for the model parameterθ inaccuracies. There has
been some work in recent years to account for the channel
estimation error in LMMSE receiver design [20].

C. Second-Order Extended LMMSE (SOELMMSE)

One instance of LMMSE estimation is the Kalman Filter
(KF). In the literature, variations on the KF theme have been
derived to handle the joint filtering and parameter estimation
problem, such as e.g. the widely used EM-KF algorithm ([21],
[22], [23]). Another well-known variation is the Extended KF
(EKF) algorithm, which can handle general nonlinear state
space models. In this case, the state is extended with the
unknown parameters, rendering the new state update equation
nonlinear. A third derivation is the truncated Second-Order
EKF (SOEKF) introduced by [24], [25] in which nonlinearities
are expanded up to second order, third and higher order
statistics being neglected. A corrected derivation of thisfilter
is presented in [26]. In ([25], [27]), the Gaussian SOEKF
is derived in which fourth-order terms in the Taylor series
expansions are retained and approximated by assuming that the
underlying joint probability distribution is Gaussian. Hence,
various variations exist on the SOEKF theme.

Inspired by this state of the art, one possible extension
of LMMSE to account for parameter estimation performance
would be to optimize a linear estimatorF in x̂ = F y on the
basis of an extended MSE criterion:

MSE= Eθ|y Ex|y,θ||x− F y||2 (30)

leading to

F =
(

Eθ|y Rxy(θ)
) (

Eθ|y Ryy(θ)
)−1

(31)

whereRxy(θ) = Ex|y,θxyT etc., which would be applica-
ble also in the case of non-Gaussianf(x|y, θ) and f(θ|y).
Another possible approach would be to consider a jointly
Gaussianq(x, θ|y).

REFERENCES

[1] H. L. Van Trees,Detection, Estimation, and Modulation Theory, Part I.
Wiley-Interscience, 2001.

[2] A. Wald, “Note on the Consistency of the Maximum Likelihood Esti-
mate,” The Annals of Mathematical Statistics, vol. 20, no. 4, pp. 595–
601, Dec. 1949.

[3] H. Van Trees and K. Bell,Bayesian Bounds for Parameter Estimation
and Nonlinear Filtering/Tracking. Wiley-IEEE Press, 2007.

[4] W. Lindsey, Synchronization Systems in Communication and Control.
Pearson Education Ltd, 1972.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood
from incomplete data via the EM algorithm,”Journal of the Royal
Statistical Society, Series B, vol. 39, no. 1, pp. 1–38, 1977.

[6] M. Beal, “Variational Algorithms for Approximate Bayesian Inference,”
PHD, University of Cambridge, UK, 2003.

[7] A. Yeredor, “The Joint MAP-ML Criterion and its Relationto ML and
to Extended Least-Squares,”IEEE Trans. Signal Processing, Dec. 2000.

[8] A. Guarnieri and S. Tebaldini, “Hybrid cramer-rao bounds for crustal
displacement field estimators in sar interferometry,”Signal Processing
Letters, IEEE, vol. 14, no. 12, pp. 1012–1015, 2007.

[9] P. Tichavsky and K. Wong, “Quasi-fluid-mechanics-basedquasi-
bayesian crame acute;r-rao bounds for deformed towed-array direction
finding,” Signal Processing, IEEE Transactions on, vol. 52, no. 1, pp.
36–47, 2004.

[10] A. D’Andrea, U. Mengali, and R. Reggiannini, “The Modified Cramer-
Rao Bound and its Application to Synchronization Problems,” IEEE
Trans. Communications, Feb/Mar/Apr 1994.

[11] F. Gini, R. Reggiannini, and U. Mengali, “The Modified Cramer-Rao
Bound in Vector Parameter Estimation,”IEEE Trans. Communications,
Jan. 1998.

[12] M. Moeneclaey, “On the True and the Modified Cramer-Rao Bounds
for the Estimation of a Scalar Parameter in the Presence of Nuisance
Parameters,”IEEE Trans. Communications, Nov. 1998.

[13] S. Narasimhan and J. L. Krolik, “Fundamental limits on acoustic source
range estimation performance in uncertain ocean channels,” The Journal
of the Acoustical Society of America, vol. 97, no. 1, pp. 215–226, 1995.

[14] F. Gini and R. Reggiannini, “On the use of Cramer-Rao-like Bounds in
the Presence of Random Nuisance Parameters,”IEEE Trans. Communi-
cations, Dec. 2000.

[15] S. Bay, B. Geller, A. Renaux, J. P. Barbot, and J. Brossier, “On the hybrid
cramr rao bound and its application to dynamical phase estimation,”
Signal Processing Letters, IEEE, vol. 15, pp. 453–456, 2008.

[16] Y. Rockah and P. Schultheiss, “Array shape calibrationusing sources
in unknown locations–part i: Far-field sources,”Acoustics, Speech and
Signal Processing, IEEE Transactions on, vol. 35, no. 3, pp. 286–299,
Mar .1987.

[17] I. Reuven and H. Messer, “A Barankin-type Lower Bound onthe Esti-
mation Error of a Hybrid Parameter Vector,”IEEE Trans. Information
Theory, Mar. 1997.

[18] Y. Noam and H. Messer, “Notes on the Tightness of the Hybrid Cramer
Rao Lower Bound,”IEEE Trans. Signal Processing, june 2009.

[19] E. M.-W. B. Z. Bobrovsky and M. Zakai, “Some classes of global
cramrrao bounds,”The Annals of Statistics, vol. 15, no. 4, pp. 1421
–1438, Dec. 1987.

[20] P. Piantanida, S. Sadough, and P. Duhamel, “On the Outage Capacity of
a Practical Decoder Accounting for Channel Estimation Inaccuracies,”
IEEE Trans. Communications, May 2009.

[21] C. Couvreur and Y. Bresler, “Decomposition of a mixtureof Gaussian
AR processes,”Acoustics, Speech, and Signal Processing, IEEE Inter-
national Conference on, vol. 3, pp. 1605–1608, 1995.

[22] W. Gao, T. S., and J. Lehnert, “Diversity combining for DS/SS systems
with time-varying, correlated fading branches,”Communications, IEEE
Transactions on, vol. 51, no. 2, pp. 284–295, Feb 2003.

[23] M. Feder and E. Weinstein, “Parameter estimation of superimposed sig-
nals using the EM algorithm ,”Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 36, no. 4, pp. 477–489, Apr 1988.

[24] R. D. Bass, V. D. Norum, and L. Swartz, “Optimal multichannel
nonlinear filtering,”J. Mufh. Anal. Appl., vol. 16, pp. 152 – 164, 1966.

[25] A. H. Jazwinski,Stochastic processes and filtering theory, 1970.
[26] R. Henriksen, “The truncated second-order nonlinear filter revisited,”

Automatic Control, IEEE Transactions on, vol. 27, no. 1, pp. 247 –
251, feb 1982.

[27] M. Athans, R. Wishner, and A. Bertolini, “Suboptimal state estimation
for continuous-time nonlinear systems from discrete noisymeasure-
ments,” Automatic Control, IEEE Transactions on, vol. 13, no. 5, pp.
504 – 514, oct 1968.


