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Abstract—We consider the problem of LMMSE estimation
(such as Wiener and Kalman filtering) in the presence of a
number of unknown parameters in the second-order statistis,
that need to be estimated also. This well-known joint filtemg and
parameter estimation problem has numerous applications.tlis
a hybrid estimation problem in which the signal to be estimaed
by linear filtering is random, and the unknown parameters are
deterministic. As the signal is random, it can also be elimiated,
allowing parameter estimation from the marginal distribution of
the data. An intriguing question is then the relative performance
of joint vs. marginalized parameter estimation. In this paper, we
consider jointly Gaussian signal and data and we first provi@
contributions to Cramer-Rao bounds (CRBs). We characterie
the difference between the Hybrid Fisher Information Matrix
(HFIM) and the classical marginalized FIM on the one hand,
and between the FIM (with CRB asymptotically attained by
ML) and the popular Modified FIM (MFIM, inverse of Mod-
ified CRB) which is a loose bound. We then investigate three
iterative (alternating optimization) joint estimation ap proaches:
Alternating Maximum A Posteriori for Signal and Maximum
Likelihood for parameters (AMAPML), which in spite of a bett er
HFIM suffers from inconsistent parameter bias, Expectatin-
Maximization (EM) which converges to (marginalized) ML (but
with AMAPML signal estimate), and Variational Bayes (VB)
which yields an improved signal estimate with the parameter
estimate asymptotically becoming ML.

Index Terms—Joint Estimation, Maximum Likelihood (ML),
Variational Bayes (VB), Expectation-Maximization (EM),
Cramer-Rao Bound (CRB)

I. INTRODUCTION

is sometimes replaced by the Maximum A posteriori (MAP)
estimator. An other important estimation problem is when
nuisance random parameters are affecting the estimatithre of
deterministic unknown parameters/signals like in synolra-

tion problems[4]. Different scenarios have been consitlere
One scenario is to marginalize out the nuisance parameters
which yields the previous problem of ML estimation. In some
cases, the marginalization is intractable or very tedias,

we resort to joint estimation (MAP/ML, EM, VB...)([5], [6],
[7]), which is also relevant when the random signals are of
interest ([8], [9]). Several bounds were developped touaiteal
estimator performance in this case. A well-known bound is
the MCRB which was introduced for the first time in[10] for

a synchronization problem. In [10], the MCRB was derived
when the wanted parameter is scalar, then extended to the
vectorial case in [11]. In ([10], [11]), the authors proveath

the MCRB is looser than the CRB. A characterization of the
difference in the scalar case is introduced indirectly i8][1
Though it is looser than the CRB, in some problems ([13],
[10], [11]), the MCRB is computationally very interesting
since it can be derived in closed form while this may not
be possible for the CRB. Hence when they coincide, the use
of the MCRB is more practical. To our knowledge, in the
litterature on the MCRB, the probability density functiqrdf)

of the nuisance signals is always assumed to be independent
of the deterministic parameters. This hypothesis is releira
channel estimation applications where the MCRB is applied

In estimation theory, the choice of an estimator dependsost of the time, and where the pdf of the transmitted symbols
closely on the context of the problem. When the unknowimuisance parameters) is independent of the channel (synch
parameters are deterministic, the Maximum Likelihood esization) parameters ([11], [14]). Yet, other applicagoim

timator (ML) is often considered the best approach. It
typically consistent and asymptotically optimal (attaiithe

istatistical signal processing may not fulfill this conditifd5].
Then, it would be of interest to find out the influence of this

CRB)([1], [2]). For the random case, the Minimum Meamew condition on the MCRB/CRB relation, which we explore
Squared Error (MMSE) is used and known (in the Gaussiém this paper. Another interesting lower bound used fortjoin
case) to achieve the Bayesian CRB (BCRB) introduced lggtimation is the hybrid CRB (HCRB). The need for the HCRB

Van Trees [3]. When the MMSE estimate is intractable,
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Was expressed perhaps for first time in the work of Rockah and
Schultheiss for studying passive source localization i@].[1
Ten years later, Reuven and Messer generalized its forionlat

in [17] where they extend the Barankin bound to the case of
an unknown hybrid vector. In [18], the HCRB is proved looser



than the CRB but tighter than the MCRB ([19], [14]). ManyNote that
other bounds were proposed, the reader can refer to [3] for argmaxy In f(z|y,0) = 2(0)
more information. In this paper, we characterize the diffee 1

between the HFIM (the deterministic parameter part) and the maxg In f(zly,0) = —zIndet P(0).
classical FIM in order to understand the influence of thidence due to this separability, as noted in [7],
random signals on optimal parameter estimation. In the next 1

section we present the general framework of joint and sépara maxn f(y, #[0) =In f(y|0) - SIndet P(6)  (9)
estimation. In section IIl, we then characterize the déferes which is the compressed joint likelihood which remains to
(HFIM-FIM) and (FIM-MFIM). In section IV, we analy=ze

the performance of the iterative algorithms AMPAML, EME? 90F;Emtlﬁsd.Oﬁ:'tﬁs'ti;g%anrf?ggllzrrfeisforOt\?eemiztlrga“tc:]l
and VB and introduce SOELMMSE. J b 9 y

so-called Hybrid CRB (HCRB), so called because of the
[1. JOINTLY GAUSSIAN FRAMEWORK mix of random aan deterministic parameters. If we denote
Let y denote theN x 1 measurement signal on the basi®y w = [0 =”]" the hybrid vector, the Hybrid Fisher
of which we want to estimate th&/ x 1 random process. Information Matrix (HFIM) is defined

(8)

However, anL x 1 vector of parameterg intervenes in the = =
joint distribution ofy andx and we have a likelihood function J = E { oln fa(y, z|f) 61n](;(yT,w|9) } = jﬁf’ {;m
of the form f(y, |0) which means MAP forc and ML for 6 w w 6 ©

In f(y,xz0) = In f(yle,0)+In f(x]0) (1) The HCRB is computed as the (1,1) block.bf ! (), which
1

= In f{ylf) +In f(zly,6) L resultsin(Jy — Jpod g LT )7 . In [18], the authors prove
where In f(y|0) corresponds to the separate loglikelihoo t the CRB i t'7htm h ' the HCRB. Th | id

for the parameters with elimination of the random and atthe IS tighter than the - 'hey aiso provide a
In f(a|y,0) is the posterior distribution fow. In this paper necessary and sufficient condmon. on the joint pdf to reach
we consider real quantities and zero means. In the join CF\;B_CRFi Izo:(;heowevegr t_ha.t '? t(term_slofdperf(f)rm?hnce,
Gaussian zero-mean setting, the whole estimation prokdem € term—3 ‘nde (0) in (9) IS In tact misieading for the

characterized by the joint covariance matfX6) estimation off and leads to a bias that leads to inconsistency

(if M grows with N) [7]. Hence the HCRB is certainly not
R(H) = R (0)  Ray(0) . (2) reached by MAPML.
Ryz(0)  Ryy(0)

A. Separate (/Marginalized/ML) Parameter Estimation I1l. CHARACTERIZING THE DIFFERENCES(HFIM-FIM)
The random vectoer can be integrated out, leading to _ AND (FIM-MFIM)
marginalized ML estimate fof, A5, = argmaxgIn f(y|¢) A. Difference between HFIM and FIM
with loglikelihood From the relation between the joint and marginalized dis-

1 1oy tributions in the second line of (1), we compute the Hessian
In f(yl0) = 3 Indet Ry, (0) — 7Y Ry, (0)y  (3) relative tow and after applying the joint expectation, we get

This leads to the marginalized Fisher Information Matfi¢0) Jo je:c 7o . (;Te Go.e (10)
OInf(ylo) 1 _ _ JI, J.| [0 0] |G G
= —Eyo—5p5ar — — 3 Fuwo(Ryy @ Ryy)Ryys (4) = 2 ba  Ge
A 0" In f(=|y,0)
whereRy = QVS%R}, vec{ R} is a column vector obtained bywhereG = ~Eayp Bul) owT Frolm (10), we deduce the
stacking the consecutive columnsBf andA® B = [A,;B] 'elation between HCRB' and CRB™" :
denoteg the I<Aronef:ker prqduct of matrigAs B Since the HCRB™' = J,-— %,J;%Tw
ML estimate 0,,;, is consistent, its estimation errdt, . - i
reaches the Cramer-Rao lower bound (CRB) = J+Gyp—GpzG, Gy,
~ ~ ~—1~T
RM(9) = CRBY = J! . (5) = CRB™'+Gy—GpaG, Gy, (11)

The CRB (so the FIM) is a function of but for notational This expression is valid for any distribution and shows that
convenience, we shall not mention it explicitly. the hybrid (joint) inverse CRB (information in the presemnde

. . . .__nuisance parameters) féequals the inverse marginal/separate
B. Joint (MAPML) Signal (MAP) and Param. (ML) EStImatlonCRB plusp an inversé ClgB that would corresgpond tg joint

In particular, we get for the posterior distribution estimation from the posterior densif§(z|y,6). In the zero
f(zly,0) = N(@(0), P(6)) (6) mean Gaussian cas@sy . = 0) and the full FIM is
wherez(d) = F(0) y is the LMMSE estimate, and J = 3R (R @ R™")Ry (1)( :
~ 0 P~(0
z(0) =F(0)y, F(0) = Ryy(0) R;;(@)

P(0) = R35(0) = Ruw(0) — Ray(6) R;;(Q)Ryw (). Q) Then the HCRB! is reduced taJ, and



Jo=iRI(R'©@R "Ry =CRB™' + G IV. I TERATIVE ML A LGORITHMS

= 3Ry, o(Ryy © Ry )Ry A first iterative algorithm is AMAPML (Alternating
+2PL(0) (P~1(0) @ P~1(8)) Py(0) MAPML) in which the MAPML loglikelihood (1) gets maxi-
+FT(0) (P—1(9) ® Ryy(e)) Fy(0). mized by alternating maximization w.r4& andé.

where the last two terms correspond to the difference inseve A- EM Algorithm

CRB, and correspond to the information férthat can be = The Expectation-Maximization algorithm was introduced
extracted from the covariance and the mean of the Gaussfaniterate towards the ML estimate while having reduced
posteriorf(z|y, 0). complexity iterations [5]. At iteration + 1 we get ford

B. The Difference between FIM and MFIM gitt = argmax E, 5 In f(z,y|0) (15)
In [12], Moeneclaey computet\/ FIM — FIM) for the \hich is usually spelled out in 2 steps:

casef(x|f) = f(x), 6 scalar and white Gaussian observation - _ N

noise. The extension of his result to vectorfabnd general ~ E step:ing'*'(0ly) = [ f(x|y,0") In f(z, y|0)dx

observation noise covariance (but independen®)of?,, is M Step:§i+1 = arg maxy In ¢+ (0]y)
straightforward and can be written as follows

(16)

5 where = will denote equality up to "constants” (which in

In f (y|z, 0 o i i i

J—Ju —Eygc*ovaﬂ{ f(yl )} (12) this instance could be a function gf). Depending on the -
00 application, some simplifications may occur. For instarfce i

2 the (e.g. AR) parameters of interest only appearfimx|6),
_ _ g9 Inf(y|=,0)
Wk?e"re JtM d_th' F; tﬁeaeT deréOtE\}:/ thle 'MFtLM.f I-||Iere. W€ then we can usén f(z,y|0) = In f(z|f) + In f(y|z,0) =
shall extend this to the case $fx|f). We claim the following 1, ¢(19) 1 1n f(y|a). Then, apart from additive constants,
result we get
2 2 . ~. ~.
J = Jy—E %%W% E {_%ﬁ”} ~2Ing" " (0ly) = r{ R, Ryl — I} — Indet(RL, Ry)
where Ri_ = #(6))zT (6°) + P(6")
(13) o (17)
Proof. The Hessian of the two lines in (1) relativedaesults which is the Itakura-Saito distance (ISD) betwe),, (0)
in and R’ . In the general case, (16) leads to ISD minimiza-
O*Inf(ylz,0) O*Inf(x|d) 0?Inf(yld) 0?Inf(x|y,d) tion between the joint covariance matrR(¢) from (2) and
9000T 9000T 00007 9000T R = E.iydi ww? with w? = [£Ty]. Now, using the block

Applying the E{.} operator over all random variables and/DL factorization
changing the terms in the right side results in the claimed r=|1 F P 0 I o (18)
result. O 0 I 0 Ry, || FI' I

Notice that Moeneclaey’s result is a special case of (13). #d considering that both {t and Indet(.) allow cyclic
fact, whenf(z|0) = f(z), the last term in (13) vanishes andgcommutation of the factors in their argument, we get
the second term can be proved easily equal to the covarian%—l(g) R

i : d1n f(y|x,0) :
term in (12) when we notice thak,, g {739 } is [P oo I _F . 21 T217T I 0
simply equal to%éy‘”. In terms of interpretation, this term 0 R;; o I zlyd |y | |y _FT 1
may be interpreted as the difference in information between { -1 9 ] #1117
e 3] 3]

x being deterministic or random. The second term is new ane= 4
) . . . L 0 R
corresponds to the information @hin the prior distribution vy

f(]0). where D(6) = [
C. Performance-CRB Comparison ~ S o~ AT
Let O™ refer to the ML estimate and’ to @ in the joint D' = [P(9 ) 0] + {m( )= m(&)} [m(e )= m(o)]

PO) 0 }

MAPML estimation withaz. Asymptotically (in the amount of 0 0 (19)

datay), we get At convergence we get (with = 6>)
(@) (i) (iid)
cl > cM @ crpM > CRB/ 14 1y pe — |1 0
o5 = Caa y > ) (14) D6 D> = |, R-1(0)yyT | (20)
where (i) is due to§* being consistent, (i) is due to theHence this convergence to the ISD betwdep, (4) andyy”

bias in and hence inconsistency @f (which normally leads oo ;
to performance degradation), and (iii) was analyzed abO\?end hence to the ML loglikelihood. Actuallin ¢'(6]y) does

though the operational meaning of CRB-HCRB is not clear not measgre exactly the ISD betwesif) andRA,l but
yet. —21Ing"™(0)y) = Indet(R(9)) + tr{R"*(9) R'} (21)



which also converges to the ML loglikelihood. The differencdetermine the Gaussian approximation by a 2nd order Taylor
betweenqi“:1 (Aly) and the ISD is due to the fact that bottseries expansion
R(9) and R’ depend ond, leading to the difference term . . ~ . ~

( ) p g In qz+1(9|y) - 91(9) - _%(9_91+1)T(Cé+1)71(9_91+1)

In det(ﬁi). o s
= 4i(0 9_p\T 298 | 1g_gi T 9%g"(0") 0
B. Variational Bayes (VB) Approach g'(6") + ) e+l )" oo ( ) (24)
Even thoughln f(z|y,0) is quadratic andn f(f|y) is Equating the last two lines yields
asymptotically quadratic, the joitt f(x, #]y) contains prod- s N
ucts of both quadratic terms and hence is not Gaussiagi+1_gi | i+t Olng'(¢") citl = <_3 11191(91)) 25)

Variational Bayes is an approach to approximate the trug joi B 00 060 00T
posterior pdf by a product form .
This converges to a poirf;tV for which %}9) = 0 and
(=, 0ly) ~ q(@ly) a(Oly) - (22) " for which FV(0ly) = N(0Y,CY). Now, we have for‘(6) in
The factors in the product are obtained by minimizing the24), from (23):
Kullback-Leibler distance between the two sides of (22), gi(0) = Eyi (aly) In f (@, y]0)

leading to implicit equations that can be iterated:

In g™ 0ly) = [d'(zly)In f(z,0,y)dx 23) .
g laly) = [ (0ly) In f(x,0,y)db = _lindet(R6)) - & Eyary) m R(0) m
which can be solved iteratively. Apart from approximatihg t = —L[lndet(R(0)) + tr{R1(0) ﬁi}]
. 2
true posterior pdf by a factored form, one can furthermore (26)
require the factors to be of a certain parametric form. lyhere now Bi = Eqi(aly) ww? with w” = [2Ty"].

the case considered here howevgfr|y) is automatically Hence, the computation of'(¢) in VB is identical to that
Gaussian, whereas we shall forgéd|y) to be Gaussian. in EM except thatf(:v|y,§i) in EM is replaced byy (z|y)
This is done by taking the mean and covariance of the RH$ vB. However, asymptotically, for the second-order ex-
in (23). Note that asymptotically(¢|y) becomes Gaussianpansion in (24),q(z|y) can equivalently be replaced by
automatically. Also note thaj(x|y) and ¢(f|y) are not the f(x|y §7). Hence, asymptotically there is no information
marginals off(x, 8|y). They are factors of which the productqgr 9 in Ey(aly) In f(z|y,0) and fV(0ly) = fE(0ly) =
attempts to approximate the joint pdf as well as possiblj:M(9|y) _ N(@M’CRBM)_ If VB for 4 is asymptotically
The equalities in (23) should be interpreted as up to adﬂiti‘équivalent to ML, nevertheless

"constants” (possibly functions ofy). Hence f(x,0ly) is
equivalenttof (x, 0, y) in (23). Finally, VB is an approach that
normally applies to the fully Bayesian case in which bath
andd are considered random. However, we shall consider the” more interesting

prior f(0) to be uniform so thaf (z, y, ) becomes equivalent « non-asymptotically, the VB performance may be better

to f(z,yl0).
The EM algorithm can be viewed as a limiting case of than ML.

the VB approach, in whicld is treated as deterministic andSC We get ford R
hence can be viewed as random with prjg#’) = 6(¢’ — )  « AMAPML: @ from Z only (as ifz = ), & from # only
(where ¢ is the unknown true value). As a result also the (as if = 6). AMAPML converges to joint MAPML.
posterior becomes of the forp{6|y) = §(¢—6) and henceis « EM: 6 from z andz, = from 6.

characterized solely by the point estimétéJnder some regu- EM converges to the marginalized ML approach.
larity conditions, the EM estimate is known to converge ® th « VB: ¢ from z andz,  from # and 6. Asymptotically
(separate) ML estimate and hence has the same performance. same performance as ML and EM (hence efficient).
EM can be viewed as a case of VB in whigt{d|y) is forced Note: all these iterative algorithms only require one iiera
to be of the formy(§ —6") in the M step. The best approxima-to converge if initialized with a consistefit

tion is obviously obtained fof = argmax, ¢'(f|ly) where  We get for the VB update of(z|y) = N (z,C,), from
¢'(fly) is obtained from the first equation in (23). If now(23):
furthermoreg’(6|y) = 6(6 — 6*), then we get from the second
equation in (23)n ¢‘(zly) = [ §(6 — 6°) In f(x,y|d)do =

« this establishes that asymptotically one can not do better
than ML (and CRB'}),
the convergence behavior of the VB iterations may be

In ¢'(zly) = [¢'(Oly) In f(x,0,y)do

In f(z,y|0") = In f(z|y,6) since f(y|¢") does not depend = [4¢'(0ly) In f(x|y,0)do
on x. Hence qz(mJy) = [f(x[¢",y). This finally leads to = L E gy (@ — Fy)"P~\(x — Fy) (27)
6"t = argmaxy [ f(x|y.0") In f(z,y|0) dx for EM. _ PR L e

Now consider the actual VB updates (23) with Gaussian = Epopiy" F Pz — qu” P~}

¢'(0ly) = N(6",C}). Motivated by asymptotics we shall = _L(@—a")T(CL) (x— &)



where the Gaussian pdf comes out automatically. So we gep]

&' = CL, (Egioly) P O)F(9) y, CL = (Egio) P(0)

(28)

which can be computed (asymptotically) by second-order

expansions ird of P~1(9) and P~1(6) F(0).
Asymptotically, wheny(6|y) becomesf (d|y), " attains a
CRB corresponding to the following FIM

9’ f(=.,y,6)
z,0|Y ~ 9zdxT

2 f(x|y, _
w79|ya_gm(aiyfe) = Egy P~1(0)

J;/m =-E
(29)
- E

So, asymptoticallyCY

(J;/m)fl. Note that the VB update

(4]

(6]
(7]
(8]

El

of ¢(x|y) is non-iterative inz, due to the quadratic nature

of In f(x|y, 0): q(x|y) is just a function ofg(f|y) (whereas
q"T(0ly) depends on both’(x|y) andq¢'(d|y)). Hence the

VB update forax is an extension of LMMSE estimation,

[10]

(11]

accounting for the model parameteinaccuracies. There has
been some work in recent years to account for the chanr[‘iezh

estimation error in LMMSE receiver design [20].
C. Second-Order Extended LMMSE (SOELMMSE)

[13]

One instance of LMMSE estimation is the Kalman Filter
(KF). In the literature, variations on the KF theme have beemn)

derived to handle the joint filtering and parameter estiomati

problem, such as e.g. the widely used EM-KF algorithm ([2
[22], [23]). Another well-known variation is the Extended-K

Lhs)

(EKF) algorithm, which can handle general nonlinear state

space models. In this case, the state is extended with

e

unknown parameters, rendering the new state update eguatio
nonlinear. A third derivation is the truncated Second-®rde

EKF (SOEKF) introduced by [24], [25] in which nonlineargie 17

are expanded up to second order, third and higher order

statistics being neglected. A corrected derivation of fitiisr

is presented in [26]. In ([25], [27]), the Gaussian SOEKF19

(18]

is derived in which fourth-order terms in the Taylor series
expansions are retained and approximated by assumindnthat t

underlying joint probability distribution is Gaussian. e,
various variations exist on the SOEKF theme.

[20]

Inspired by this state of the art, one possible extensit#i]
of LMMSE to account for parameter estimation performance

would be to optimize a linear estimat®t in © = F y on the
basis of an extended MSE criterion:

MSE = Egy Ezjyollz — Fyl® (30)
leading to

F= ( E9|y Rwy(o)) ( E0|y Ryy(e)) - (31)

[22]

[23]

[24]

where Ry (0) = Egyoxy” etc., which would be applica- [29]

ble also in the case of non-Gaussifx|y, ) and f(6]y).

Another possible approach would be to consider a jointly

Gaussiany(x, f]y).
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