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Abstract—For the two-user MISO broadcast channel with im-
perfect and delayed channel state information at the transmitter
(CSIT), the work explores the tradeoff between performance, and
CSIT timeliness and quality. The work considers a broad setting
where communication takes place in the presence of a random
fading process, and in the presence of a feedback process that, at
any point in time, provides CSIT estimates - of some arbitrary
quality - for any past, current or future channel realization.
Under standard assumptions, the work derives the degrees-of-
freedom (DoF) region, which is optimal for a large regime
of sufficiently good (but potentially imperfect) delayed CSIT.
This region concisely captures the effect of channel correlations,
the quality of predicted, current, and delayed-CSIT, as well as
concisely captures the effect of the quality of CSIT offered at
any time, about any channel.

The bounds are met with novel schemes which - in the context
of imperfect and delayed CSIT - introduce here for the first
time, encoding and decoding with a phase-Markov structure.
The results hold for a large class of block and non-block fading
channel models, and they unify and extend many prior attempts
to capture the effect of imperfect and delayed feedback. This
generality also allows for consideration of novel pertinent settings,
such as the new periodically evolving feedback setting, where a
gradual accumulation of feedback bits progressively improves
CSIT as time progresses across a finite coherence period.

I. INTRODUCTION

A. Channel model
We consider the multiple-input single-output broadcast

channel (MISO BC) with an M -transmit antenna (M ≥ 2)
transmitter communicating to two receiving users with a single
receive antenna each. Let ht, gt denote the channel of the
first and second user respectively at time t, and let xt denote
the transmitted vector at time t, satisfying a power constraint
E[||xt||2] ≤ P , for some power P which also here takes the
role of the signal-to-noise ratio (SNR). Here ht and gt are
drawn from a random distribution, such that each has zero
mean and identity covariance (spatially uncorrelated), and such
that ht is linearly independent of gt with probability 1.

In this setting, the corresponding received signals at the first
and second user take the form

y
(1)
t = hT

txt + z
(1)
t (1)

y
(2)
t = gT

txt + z
(2)
t (2)
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(t = 1, 2, · · · ), where z(1)
t , z

(2)
t denote the unit power AWGN

noise at the receivers.
In the high-SNR setting of interest, for an achievable rate

pair (R1, R2) for the first and second user respectively, the
corresponding degrees-of-freedom (DoF) pair (d1, d2) is given
by

di = lim
P→∞

Ri
logP

, i = 1, 2

and the corresponding DoF region is then the set of all
achievable DoF pairs.

B. Delay-and-quality effects of feedback

As in many multiuser wireless communications scenarios,
the performance of the broadcast channel depends on the
timeliness and quality of channel state information at the
transmitter (CSIT). This timeliness and quality though may be
reduced by limited-capacity feedback links, which may offer
feedback with consistently low quality and high delays, i.e.,
feedback that offers an inaccurate representation of the true
state of the channel, as well feedback that can only be used
for an insufficient fraction of the communication duration.
The corresponding performance degradation, as compared to
the case of having perfect feedback without delay, forces the
delay-and-quality question of how much feedback quality is
necessary, and when, in order to achieve a certain performance.

C. Channel process and feedback process with predicted,
current, and delayed CSIT

We here consider communication of an infinite duration n,
a channel fading process {ht, gt}nt=1 drawn from a statistical
distribution, and a feedback process that provides CSIT esti-
mates {ĥt,t′ , ĝt,t′}nt,t′=1 (of channel ht, gt) at any time t′ -
before, during, or after materialization of ht, gt at time t -
and does so with quality defined by the statistics of

{(ht − ĥt,t′), (gt − ĝt,t′)}nt,t′=1 (3)

where we consider these estimation errors to have zero-mean
circularly-symmetric complex Gaussian entries.

1) Predicted, current, and delayed CSIT: For the channel
ht, gt at time t, the set of all estimates {ĥt,t′ , ĝt,t′}t′ form
what can be described as the set of delayed CSIT comprising
of estimates that are not available at time t, the set of current
estimates ĥt,t, ĝt,t at time t, and the set of predicted estimates
{ĥt,t′ , ĝt,t′}t′<t. Predicted CSIT may potentially allow for
reduction of the effect of future interference, current CSIT
may be used to orthogonalize the channels of the users, while



delayed CSIT may facilitate retrospective compensation for
the lack of perfect quality feedback.

Any attempt to capture and meet the tradeoff between per-
formance, and feedback timeliness and quality, must naturally
consider the statistics of the channel and of CSIT precision
{(ht−ĥt,t′), (gt−ĝt,t′)}nt,t′=1 at any point, about any channel.

D. Notation, conventions and assumptions

We will use the notation

α
(1)
t ,− lim

P→∞

logE[||ht − ĥt,t||2]

logP
(4)

α
(2)
t ,− lim

P→∞

logE[||gt − ĝt,t||2]

logP
(5)

to describe the current quality exponent for the two users (α(1)
t

is for user 1), while we will use

β
(1)
t ,− lim

P→∞

logE[||ht − ĥt,t+η||2]

logP
(6)

β
(2)
t ,− lim

P→∞

logE[||gt − ĝt,t+η||2]

logP
(7)

- for any sufficiently large but finite integer η > 0 - to denote
the delayed quality exponents for each user. The assumption
that η is finite, reflects the fact that we only consider delayed
CSIT that arrives up to a certain finite time from the moment
the channel materializes. In words, α(1)

t measures the quality
of the CSIT (about ht) that is available at time t, while β(1)

t

measures the (best) quality of the CSIT (about ht) which
arrives strictly after the channel appears, i.e., strictly after time
t (similarly α(2)

t , β
(2)
t for the channel gt of the second user).

It is easy to see that without loss of generality, in the DoF
setting of interest, we can restrict our attention to the range 1

0 ≤ α(i)
t ≤ β

(i)
t ≤ 1 (8)

where β
(i)
t = 1 corresponds to having (essentially) perfect

delayed CSIT for ht, gt, and where α
(1)
t = α

(2)
t = 1,

corresponds to the optimal case of perfect current (full) CSIT.
Furthermore we will use the notation

ᾱ(i) , lim
n→∞

1

n

n∑
t=1

α
(i)
t , β̄(i) , lim

n→∞

1

n

n∑
t=1

β
(i)
t , i = 1, 2

(9)
to denote the average of the quality exponents. At this point
we note that our results, specifically the achievability part, will
hold under the soft assumption that any sufficiently long subse-
quence {α(1)

t }τ+T
t=τ (resp. {α(2)

t }τ+T
t=τ , {β

(1)
t }τ+T

t=τ , {β
(2)
t }τ+T

t=τ )
has an average that converges to the long term average ᾱ(1)

(resp. ᾱ(2), β̄(1), β̄(2)), for any τ and for some finite T that
can be chosen to be sufficiently large to allow for the above
convergence.

1To see this, we recall from [1], [2] that under a peak-power constraint of
P , having CSIT estimation error in the order of P−1 causes no DoF reduction
as compared to the perfect CSIT case. In our DoF high-SNR setting of interest
where P >> n, this same observation also holds under an average power
constraint of P . The fact that α(i)

t ≤ β
(i)
t comes naturally from the fact that

one can recall, at a later time, statistically good estimates.

Throughout this paper, (•)T, (•)H and ||• ||F will denote the
transpose, conjugate transpose and Frobenius norm of a matrix
respectively, while diag(•) will denote a diagonal matrix, ||•||
will denote the Euclidean norm, and | • | will denote the mag-
nitude of a scalar. o(•) comes from the standard Landau nota-
tion, where f(x) = o(g(x)) implies limx→∞ f(x)/g(x) = 0.
We will also use .

= to denote exponential equality, i.e., we

write f(P )
.
= PB to denote lim

P→∞

log f(P )

logP
= B. Similarly

.
≥ and

.
≤ will denote exponential inequalities. Logarithms are

of base 2.
We adhere to the common convention (see [3]–[6]) of

assuming perfect and global knowledge of channel state in-
formation at the receivers (perfect global CSIR), where the
receivers know all channel states and all estimates. We also
adhere to the common convention (see [4], [5], [7], [8])
of assuming that the current estimation error is statistically
independent of current and past estimates, and consequently
the input signal is a function of the message and of the CSIT.
This assumption fits well with many channel models spanning
from the fast fading channel (i.i.d. in time), to the correlated
channel model as this is considered in [8], to the quasi-static
block fading model where the CSIT estimates are successively
refined while the channel remains static (see [1], see also the
discussion in the appendix in Section VIII). Additionally we
consider the entries of each estimation error vector ht − ĥt,t′

(similarly of gt− ĝt,t′ ) to be i.i.d. Gaussian, clarifying though
that we are just referring to the M entries in each such specific
vector ht − ĥt,t′ , and that we do not suggest that the error
entries are i.i.d. in time or across users.

Finally we safely assume that E[||ht − ĥt,t′ ||2] ≤ E[||ht −
ĥt,t′′ ||2] (similarly E[||gt − ĝt,t′ ||2] ≤ E[||gt − ĝt,t′′ ||2]), for
any t′ > t′′. This assumption - which simply suggests that one
can revert back to past estimates of statistically better quality
- is used here for simplicity of notation, and can be removed,
after a small change in the definition of the quality exponents,
without an effect to the main result.

E. Prior work

The delay-and-quality effects of feedback, naturally fall
between the two extreme cases of no CSIT and of full CSIT
(immediately available and perfect CSIT), with full CSIT
allowing for the optimal 1 DoF per user (cf. [9]), while the
absence of any CSIT reduces this to just 1/2 DoF per user
(cf. [10], [11]).

Toward bridging this gap, different works have considered
the use of imperfect and delayed feedback. For example, the
work by Lapidoth, Shamai and Wigger in [7] considered
the case where the amount of feedback is limited to the
extend that the channel-estimation error power does not vanish
with increasing SNR, in the sense that limP→∞(logE[||ht −
ĥt,t||2])/ logP = limP→∞(logE[||gt − ĝt,t||2])/ logP = 0.
In this setting - which corresponds to the case here where
α

(1)
t = α

(2)
t = β

(1)
t = β

(2)
t = 0, ∀t - the work in [7] showed

that the symmetric DoF is upper bounded by 2/3 DoF per
user, again under the assumption that the input signaling is
independent of the estimation error. It is worth noting that



finding the exact DoF in this zero-exponent setting, remains -
to the best of our knowledge - an open problem.

At the other extreme, the work by Caire et al. [2] (see
also the work of Jindal [1], as well as of Lapidoth and
Shamai [12]) showed that having immediately available CSIT
estimates with estimation error power that is in the order of
P−1 - i.e., having − limP→∞(logE[||ht − ĥt,t||2])/ logP =
− limP→∞(logE[||gt − ĝt,t||2])/ logP = 1, corresponding
here to having α(1)

t = α
(2)
t = 1, ∀t - causes no DoF reduction

as compared to the perfect CSIT case, and can thus achieve
the optimal 1 DoF per user.

A valuable tool toward bridging this gap and further under-
standing the delay-and-quality effects of feedback, came with
the work by Maddah-Ali and Tse in [3] which showed that
arbitrarily delayed feedback can still allow for performance
improvement over the no-CSIT case. In a fast-fading block-
fading setting, the work differentiated between current and
delayed CSIT - with delayed CSIT defined in [3] as the
CSIT which is available after the channel’s coherence period -
and showed that delayed and completely obsolete CSIT, even
without any current CSIT, allows for an improved 2/3 DoF per
user. This setting corresponded to having α(1)

t = α
(2)
t = 0, ∀t,

and the optimal 2/3 DoF was achieved with a scheme that
only asked for delayed CSIT for one out of three channels,
thus corresponding to

β
(i)
t =

{
1 if t = i ( mod 3)

0 otherwise
, i = 1, 2 (10)

and which allowed for β̄(i) = 1/3, for user i = 1, 2. In the
above, where we say t = i (mod 3), we refer to the modulo
operation, i.e., we mean that t = 3k + i for some integer k.

Within the same block-fading context of delayed vs. cur-
rent CSIT, the work by Kobayashi et al., Yang et al.,
and Gou and Jafar [4], [5], [8], quantified the useful-
ness of combining delayed and completely obsolete CSIT
with immediately available but imperfect CSIT of a cer-
tain quality α = − limP→∞(logE[||ht − ĥt,t||2])/ logP =
− limP→∞(logE[||gt − ĝt,t||2])/ logP that remained un-
changed throughout the communication process. In this setting
- which corresponded to having α

(1)
t = α

(2)
t = α, ∀t - the

optimal (2+α)/3 symmetric DoF was achieved with a scheme
that only asked for delayed CSIT for one out of three channels,
thus corresponding to

β
(i)
t =

{
1 if t = i ( mod 3)

α otherwise
(11)

and which allowed for β̄(i) = (1 + 2α)/3, i = 1, 2.
An interesting approach was introduced by Tandon et al.

in [13] who considered the fast-fading two-user MISO BC
setting, where each user’s CSIT changes every coherence
period by alternating between the three extreme states of
perfect current CSIT, perfect delayed CSIT, and no CSIT.

Additionally, Lee and Heath in [14] considered, in the
setting of the quasi-static block-fading channel, the possibility
that current CSIT may be available only after a certain fraction
γ of a finite-duration coherence period Tc.

Other work such as that by Maleki et al. in [6] considered,
again in the MISO BC context, an asymmetric setting where
both users offered perfect delayed CSIT, but where only one
user offered perfect current CSIT while the other user offered
no current CSIT. In this setting - which corresponds to having
α

(1)
t = β

(1)
t = 1, α

(2)
t = 0, ∀t - the optimal DoF corner

point (1, 1/2) (sum-DoF d1 + d2 = 3/2) was achieved with a
scheme that asked for delayed CSIT for every other channel,
specifically corresponding to

β
(2)
t =

{
1 if t = 0 ( mod 2)

0 otherwise.
(12)

Other works, in the context of delayed or imperfect CSIT,
include [15]–[29].

F. Structure of paper

Section II will give the main result of this work by
describing, under the aforementioned common assumptions,
the DoF offered by a CSIT process {ĥt,t′ , ĝt,t′}nt=1,t′=1

of a certain quality, as this is defined by the statistics of
{(ht − ĥt,t′), (gt − ĝt,t′)}nt=1,t′=1. Specifically Theorem 1
provides the optimal DoF for a large range of ‘sufficiently
good’ delayed CSIT, whereas Proposition 1 focuses on the case
of low quality delayed CSIT. In the same section, Corollary 1a
describes the DoF for the symmetric case where ᾱ(1) = ᾱ(2)

and β̄(1) = β̄(2), and immediately after that, Corollary 1b
explores the benefits of symmetry, by quantifying the extent
to which having similar feedback quality for the two users,
offers a benefit over the asymmetric case where one user
has generally more feedback than the other. Corollary 1c
offers insight on the need for delayed CSIT, and shows how,
paradoxically, having reduced ᾱ(1), ᾱ(2) allows - to a certain
extent - for smaller β̄(1), β̄(2). On the other hand, Corollary 1d
offers insight on the need for using predicted channel estimates
(forecasting channel states in advance), by showing that -
in terms of achieving the optimal DoF performance, and in
the presence of sufficiently good delayed CSIT - employing
predicted CSIT is unnecessary.

Section III highlights the newly considered periodically
evolving feedback setting over the quasi-static block fading
channel, where a gradual accumulation of feedback results
in a progressively increasing CSIT quality as time progresses
across a finite coherence period. This setting is powerful as
it captures the many feedback options that one may have in
a block-fading environment where the statistical nature of
feedback remains largely unchanged across coherence peri-
ods. As such, it captures existing settings that have been of
particular interest, such as the Maddah-Ali and Tse setting
in [3], the Yang et al. and Gou and Jafar setting in [4], [5],
the Lee and Heath ‘not-so-delayed CSIT’ setting in [14], and
the asymmetric setting in [6]. In this section we offer examples
which - under very clearly specified assumptions - offer insight
on how many feedback bits to inject, and when, in order to
achieve a certain performance. In the same section, smaller
results and examples offer further insight - again in the context
of periodically evolving feedback over a quasi-static channel
- like for example the result in Corollary 1f which bounds the



quality of current and of delayed CSIT needed to achieve a
certain target symmetric DoF, and in the process offers insight
on when delayed feedback is entirely unnecessary, in the sense
that there is no need to wait for feedback that arrives after
the end of the coherence period of the channel. Similarly
Corollary 1g offers insight on the feedback delays that allow
for a given target symmetric DoF in the presence of constraints
on current and delayed CSIT qualities. Finally Corollary 1h
generalizes the pertinent result in the asymmetric setting in [6].

Section IV corresponds to the achievability part of the
proof, and presents the general communication scheme
that utilizes the available information of a CSIT process
{ĥt,t′ , ĝt,t′}nt=1,t′=1, to achieve the corresponding DoF corner
points. This is done - by properly employing different com-
binations of zero forcing, superposition coding, interference
compressing and broadcasting, as well as specifically tailored
power and rate allocation - in order to transmit private in-
formation, using currently available CSIT estimates to reduce
interference, and using delayed CSIT estimates to alleviate the
effect of past interference. The scheme has a phase-Markov
structure which - in the context of imperfect and delayed
CSIT, was first introduced in [30], [31] - and which quantizes
the accumulated interference of a certain period of time,
broadcasts it in the future, together with common information
that will then help resolve the accumulated interference of the
past.
After the description of the scheme in its general form, and the
explicit description of how the scheme achieves the different
DoF corner points, Section IV-D provides example schemes
- distilled from the general scheme - for specific settings
such as the imperfect-delayed CSIT setting, the (extended)
alternating CSIT setting of Tandon et al. [13], as well as
discusses schemes with finite and small delay.

Section V provides the details of the outer bound, Section VI
offers concluding remarks, the appendices in Section VII and
Section IX offer details on the proofs, while the appendix in
Section VIII offers a discussion on some of the assumptions
employed in this work.

In the end, the above results provide insight on pertinent
questions such as:

• What CSIT feedback quality should be provided, and
when, in order to achieve a certain target DoF perfor-
mance? (Theorem 1)

• When is delayed feedback unnecessary? (Corollary 1f)
• Is there any gain in early prediction of future channels?

(Corollary 1d)
• What current-CSIT and delayed-CSIT qualities suffice to

achieve a certain performance? (Corollary 1f)
• Can imperfect-quality delayed CSIT achieve the same op-

timality that was previously attributed to sending perfect
delayed CSIT? (Corollary 1c)

• How much more valuable are feedback bits that are sent
early, than those sent late? (Section III)

• In the quasi-static block-fading case, is it better to send
less feedback early, or more feedback later? (Section III)

• What is the effect of having asymmetric feedback links,
and when can we have a ‘symmetry gain’? (Corollary 1b)

II. DOF REGION OF THE MISO BC

We proceed with the main DoF results, which are proved
in Section IV (inner bound) and Section V (outer bound).

We here remind the reader of the sequences
{α(1)

t }nt=1, {α
(2)
t }nt=1, {β

(1)
t }nt=1, {β

(2)
t }nt=1 of quality

exponents, as these were defined in (4)-(7), as well as of the
corresponding averages ᾱ(1), ᾱ(2), β̄(1), β̄(2) from (9). We
also remind the reader that we consider communication over
a large time duration n. We henceforth label the users so that
ᾱ(2) ≤ ᾱ(1).

Extending the work in [4] that focused on CSIT with
invariant and symmetric quality, we first proceed to construct
a new DoF outer bound that supports our setting. The proof
can be found in Section V.

Lemma 1: The DoF region of the two-user MISO BC
with a CSIT process {ĥt,t′ , ĝt,t′}nt=1,t′=1 of quality {(ht −
ĥt,t′), (gt − ĝt,t′)}nt=1,t′=1, is upper bounded as

d1 ≤ 1, d2 ≤ 1 (13)

2d1 + d2 ≤ 2 + ᾱ(1) (14)

2d2 + d1 ≤ 2 + ᾱ(2). (15)

The following theorem provides the optimal DoF for a large
range of ‘sufficiently good’ delayed CSIT.

Theorem 1: The optimal DoF region of the two-user MISO
BC with a CSIT process {ĥt,t′ , ĝt,t′}nt=1,t′=1 of quality {(ht−
ĥt,t′), (gt − ĝt,t′)}nt=1,t′=1 is given by

d1 ≤ 1, d2 ≤ 1 (16)

2d1 + d2 ≤ 2 + ᾱ(1) (17)

2d2 + d1 ≤ 2 + ᾱ(2) (18)

for any sufficiently good delayed-CSIT process such that
min{β̄(1), β̄(2)} ≥ min{ 1+ᾱ(1)+ᾱ(2)

3 , 1+ᾱ(2)

2 }.
The achievability part of the proof can be found in Sec-

tion IV which explicitly describes the scheme that achieves
the corresponding corner points that match those of the outer
bound in Lemma 1.

Figure 1 corresponds to the main result in the theorem. The
above result is complemented by the following proposition.
The proof is in Section IV which describes the scheme that
achieves these DoF corner points.

Proposition 1: For a CSIT process {ĥt,t′ , ĝt,t′}nt=1,t′=1 for
which min{β̄(1), β̄(2)} < min{ 1+ᾱ(1)+ᾱ(2)

3 , 1+ᾱ(2)

2 }, the DoF
region is inner bounded by the polygon described by

d1 ≤ 1, d2 ≤ 1 (19)

2d1 + d2 ≤ 2 + ᾱ(1) (20)

2d2 + d1 ≤ 2 + ᾱ(2) (21)

d1 + d2 ≤ 1 + min{β̄(1), β̄(2)}. (22)

Figure 2 corresponds to the result in Proposition 1.
Before proceeding to specific corollaries that offer further

insight, it is worth making a comment on the fact that the
entire complexity of the problem is captured in the quality
exponents.
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Remark 1: The results suggest that the quality exponents
capture - in the setting of interest, and under our assump-
tions - the effect of the statistics of the CSIT precision
{(ht− ĥt,t′), (gt− ĝt,t′)}nt,t′=1. This is indeed the case since
the following two hold. Firstly, given the Gaussianity of the es-
timation errors, the statistics of {(ht−ĥt,t′), (gt−ĝt,t′)}nt,t′=1

are captured by the 2n2× 2n2 covariance matrix2 of the 2n2-
length vector consisting of the elements {(ht − ĥt,t′), (gt −
ĝt,t′)}nt,t′=1. The diagonal entries of this covariance matrix
are simply { 1

ME[||ht−ĥt,t′ ||2], 1
ME[||gt−ĝt,t′ ||2]}nt,t′=1. Sec-

2This size of the covariance matrix reflects the fact that the M entries of
each ht − ĥt,t′ are i.i.d. (similarly of gt − ĝt,t′ ). Please note that we refer
to independence across the spatial dimensions of the channel of one user, and
certainly not across time.
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gon with corner points {(0, 0), (0, 1), (ᾱ, 1), ( 2+ᾱ

3
, 2+ᾱ

3
), (1, ᾱ), (1, 0)}

for β̄ ≥ 1+2ᾱ
3

. For β̄ < 1+2ᾱ
3

, the derived region takes the form of a
polygon with corner points {(0, 0), (0, 1), (ᾱ, 1), (2β̄− ᾱ, 1 + ᾱ− β̄), (1 +
ᾱ− β̄, 2β̄ − ᾱ), (1, ᾱ), (1, 0)}.

ondly, the outer bound has kept open the possibility of any off-
diagonal elements (as we will see in (97), (98)), thus the outer
bound holds irrespective of the off-diagonal elements of this
covariance matrix. Thus, under our assumptions, the essence
of the statistics is captured by {E[||ht − ĥt,t′ ||2],E[||gt −
ĝt,t′ ||2]}nt,t′=1, and its effect is captured - in the high-SNR
regime - by the quality exponents.

1) Symmetric vs. asymmetric feedback: We proceed to
explore the special case of symmetric feedback where the
accumulated feedback quality is similar across users, i.e.,
where the feedback links of user 1 and user 2 share the same
exponent averages ᾱ(1) = ᾱ(2) = ᾱ and β̄(1) = β̄(2) = β̄.
Most existing works, with an exception in [6], fall under this
setting. The following holds directly from Theorem 1 and
Proposition 1.

Corollary 1a (DoF with symmetric feedback): The optimal
DoF region for the symmetric case takes the form

d1 ≤ 1, d2 ≤ 1, 2d1 + d2 ≤ 2 + ᾱ, 2d2 + d1 ≤ 2 + ᾱ

when β̄ ≥ 1+2ᾱ
3 , while when β̄ < 1+2ᾱ

3 this region is inner
bounded by the achievable region

d1 ≤ 1, d2 ≤ 1 (23)
2d1 + d2 ≤ 2 + ᾱ (24)
2d2 + d1 ≤ 2 + ᾱ (25)
d2 + d1 ≤ 1 + β̄. (26)

Figure 3 depicts the DoF region of the two-user MISO BC
with symmetric feedback.

We now quantify the extent to which having symmetric
feedback offers a benefit over the asymmetric case where one
user has generally more feedback than the other. Different
works have identified such instances where having symmetric



feedback offers (‘symmetry gains’) over the asymmetric case
(cf. [13], [6]).

The following broad comparison focuses on the case of
perfect delayed CSIT, and contrasts the symmetric case ᾱ(1) =
ᾱ(2), to the asymmetric case ᾱ(1) 6= ᾱ(2), under an overall
feedback constraint ᾱ(1) + ᾱ(2) = ∆, for any ∆ ∈ (0, 2]. The
comparison is in terms of the optimal sum DoF d1 +d2, where
again we recall that the users are labeled so that ᾱ(1) ≥ ᾱ(2).
The proof is direct from Theorem 1 and Corollary 1a.

Corollary 1b (Symmetric vs. asymmetric feedback):
Consider any fixed ∆, ᾱ(1) + ᾱ(2) in the range (0, 2]. If
2ᾱ(1)−ᾱ(2)−1 ≤ 0, having symmetric feedback (ᾱ(1) = ᾱ(2))
does not offer a sum-DoF gain over the asymmetric feedback
case, while if 2ᾱ(1) − ᾱ(2) − 1 > 0, there is a symmetric
sum-DoF gain and it takes the form 2ᾱ(1)−ᾱ(2)−1

6 .

Example 1: For example, under the constraint that ᾱ(1) +
ᾱ(2) = ∆ = 1, the asymmetric ᾱ(1) = 1, ᾱ(2) = 0 gives an
optimal sum DoF of d1 + d2 = 3/2 (Theorem 1 with perfect
delayed CSIT), whereas the symmetric ᾱ(1) = ᾱ(2) = 0.5
gives d1 +d2 = 5/3, and a sum-DoF gain of 5/3−3/2 = 1/6.

2) Need for delayed feedback: Imperfect vs. perfect delayed
CSIT: We here show that imperfect delayed CSIT can be as
useful as perfect delayed CSIT, and provide insight on the
overall feedback quality (timely and delayed) that is necessary
to achieve a certain DoF performance.

Before proceeding with the result, we recall that the dis-
tinction between timely and delayed CSIT, has to do more
with feedback timing rather than feedback quality, and that
ᾱ(1), ᾱ(2) are more representative of the quality of timely feed-
back, while β̄(1), β̄(2) are more representative of the quality of
the entirety of feedback (timely plus delayed). In this sense,
any attempt to limit the total amount and quality of feedback -
that is communicated during a certain communication process
- must try to limit β̄(1), β̄(2), and not just focus on reducing
ᾱ(1), ᾱ(2). For example, having to always send perfect delayed
CSIT (β(1)

t = β
(2)
t = 1,∀t) does little to reduce the total

amount of feedback, and mainly shifts the time-frame of the
problem, again irrespective of possible savings in ᾱ(1), ᾱ(2).

As we will see though, having reduced ᾱ(1), ᾱ(2) translates
to needing lesser quality delayed feedback, i.e., having reduced
ᾱ(1), ᾱ(2) paradoxically allows - to a certain extent - for
smaller β̄(1), β̄(2). This is quantified in the following. The
proof is direct, as the following simply restates what is in
the Theorem.

Corollary 1c (Imperfect vs. perfect delayed CSIT): A
CSIT process {ĥt,t′ , ĝt,t′}nt=1,t′=1 that offers

min{β̄(1), β̄(2)} ≥ min{1 + ᾱ(1) + ᾱ(2)

3
,

1 + ᾱ(2)

2
} (27)

gives the same DoF as a CSIT process that offers perfect de-
layed CSIT for each channel realization (β(1)

t = β
(2)
t = 1,∀t).

For the symmetric case, having

β̄ ≥ 1 + 2ᾱ

3
(28)

guarantees the same.

It is interesting to note that the expressions in the above
corollary match the amount of delayed CSIT used by schemes
in the past, even though the schemes were not designed with
the expressed purpose of reducing the amount of delayed
CSIT. For example, the Maddah-Ali and Tse scheme in [3]
used delayed CSIT as shown in (10), which happens to match
the above expression in (28). This same expression in (28)
additionally tells us that any combination of CSIT quality
exponents that allows for β̄(1) = β̄(2) ≥ 1/3, will allow for
the same optimal DoF in [3]. The same observation holds for
the schemes in [4], [5] which used delayed CSIT as shown
in (11), which again matches (28), which in turn reveals that
any combination of CSIT quality exponents that allows for
β̄(1) = β̄(2) ≥ (1 + 2ᾱ)/3, will achieve the same optimal
DoF in [4], [5]. Similarly the asymmetric scheme in [6] used
delayed CSIT as shown in (12), which3 matches (27), which
in turn reveals other combinations of CSIT quality exponents
that allow for the same optimal DoF.

3) Need for predicted CSIT: We now shift emphasis from
delayed CSIT to the other extreme of predicted CSIT. As
we recall, we considered a channel process {ht, gt}t and a
CSIT process {ĥt,t′ , ĝt,t′}t,t′ , consisting of estimates ĥt,t′

- available at any time t′ - of the channel ht that materi-
alizes at any time t. We also advocated that we can safely
assume that E[||ht − ĥt,t′ ||2] ≤ E[||ht − ĥt,t′′ ||2] (similarly
E[||gt − ĝt,t′ ||2] ≤ E[||gt − ĝt,t′′ ||2]), for any t′ > t′′, simply
because one can revert back to past estimates of statistically
better quality. This assumption though does not preclude the
possible usefulness of early (predicted) estimates, even if such
estimates are generally of lesser quality than current estimates
(i.e., of lesser quality than estimates that appear during or after
the channel materializes). The following gives insight on this.

Corollary 1d (Need for predicted CSIT): For
sufficiently good delayed CSIT that guarantees
min{β̄(1), β̄(2)} ≥ min{ 1+ᾱ(1)+ᾱ(2)

3 , 1+ᾱ(2)

2 }, there is
no DoF gain in using predicted CSIT. Specifically - for
sufficiently good delayed CSIT, and in order to achieve the
optimal DoF - transmission at a certain time t∗, does not
need to consider any estimate ĥt,t′ of a future channel t > t∗,
where this estimate became available - naturally by prediction
- at any time t′ ≤ t∗ < t.

Proof: The proof is by construction; the designed schemes
do not use predicted estimates, while the tight outer bound
does not preclude the use of such predicted estimates.

III. PERIODICALLY EVOLVING CSIT

We here focus on the block fading setting, and consider a
gradual accumulation of feedback that results in a progres-
sively increasing CSIT quality as time progresses across the
coherence period (Tc channel uses - current CSIT), or at any
time after the end of the coherence period (delayed CSIT)4.

3From (12) we can conclude that the scheme in [6] asks
for β̄(2) = 1/2, β̄(1) = 1, which matches the expres-
sion in (27) since min{β̄(1), β̄(2)} = min{1, 1/2} =

min{ 1+ᾱ(1)+ᾱ(2)

3
,

1+min{ᾱ(1),ᾱ(2)}
2

} = min{ 1+1+0
3

, 1+0
2
} = 1/2.

4This definition of current vs. delayed CSIT, originates from [3], and is the
standard definition adopted by most existing works.



Such gradual improvement could be sought in FDD (fre-
quency division duplex) settings with limited-capacity feed-
back links that can be used more than once during the
coherence period to progressively refine CSIT, as well as in
TDD (time division duplex) settings that use reciprocity-based
estimation that progressively improves over time.

In this setting, the channel remains the same for a finite
duration of Tc channel uses, and the time index is arranged
so that

h`Tc+1 = h`Tc+2 = · · · = h(`+1)Tc

g`Tc+1 = g`Tc+2 = · · · = g(`+1)Tc

for a non-negative integer `. Furthermore feedback quality is
now periodic, as this is reflected in the current-CSIT quality
exponents where

α
(i)
t = α

(i)
`Tc+t

,∀` = 0, 1, 2, · · · , i = 1, 2. (29)

We focus here - simply for the sake of clarity of exposition
- mainly on the symmetric case. In this setting - and after
adopting a periodic time index corresponding to having ` = 0
(cf. (29)) - the feedback quality is now represented by the Tc
current CSIT quality exponents {αt}Tct=1 and by the delayed
CSIT exponent β. Each αt describes the high SNR quality of
the current CSIT estimates at time t ≤ Tc, whereas β captures
the quality of the best CSIT estimates that are received after
the channel has elapsed, i.e., after the coherence period of the
channel. In this setting we have that

0 ≤ α1 ≤ · · · ≤ αTc ≤ β ≤ 1 (30)

where any difference between two consecutive exponents is
due to feedback that was received during that time slot.

This same setting nicely captures the timing of this periodic
feedback. Having for example α1 = 1 simply refers to the case
of perfect (full) CSIT, whereas having αTc = 0 simply means
that no (or very limited) current feedback is sent during the
coherence period of a channel. Similarly having αγTc = 0, γ ∈
[0, 1] simply means that no (or very limited) current feedback
is sent during the first γ fraction of the coherence period5.
For example, having a periodic feedback process that sends
refining feedback, let’s say, two times per coherence period,
at times t = γ1Tc + 1, t = γ2Tc + 1 and never again about
that same channel, will result in having

Before feedback︷ ︸︸ ︷
0 = α1 = · · · = αγ1Tc ≤

After first feedback︷ ︸︸ ︷
αγ1Tc+1 = · · · = αγ2Tc

≤ αγ2Tc+1 = · · · = αTc = β︸ ︷︷ ︸
After second feedback

(31)

whereas if the same feedback system adds some delayed
feedback after the channel elapses, then we simply have that
β ≥ αTc .

One can note that reducing αTc implies a reduced amount
of feedback, about a specific channel, that is sent during the
coherence period of that same channel, whereas reducing β
implies a reduced amount of feedback, during or after the

5Our ignoring here of integer rounding is an abuse of notation that is only
done for the sake of clarity, and it carries no real effect on the result.

channel’s coherence period. Along these lines, reducing β −
αTc implies a reduced amount of feedback, about a specific
fading coefficient, that is sent after the coherence period of
the channel.

Our results capture these issues. The results hold directly
from the previous results in this work, where we now simply
set

ᾱ =
1

Tc

Tc∑
t=1

αt. (32)

The following holds directly from Corollary 1a, for the case
of a periodically evolving feedback process over a quasi-static
channel.

Corollary 1e (Periodically evolving feedback): For a peri-
odic feedback process with {αt}Tct=1 and perfect delayed CSIT
(received at any time after the end of the coherence period),
the optimal DoF region over a block-fading channel is the
polygon with corner points

{(0, 0), (0, 1), (ᾱ, 1), (
2 + ᾱ

3
,

2 + ᾱ

3
), (1, ᾱ), (1, 0)}. (33)

This same optimal region can in fact be achieved even with
imperfect-quality delayed CSIT, as long as β ≥ 1+2ᾱ

3 .

Remark 2 (Feedback quality vs. quantity): While the re-
sults here are in terms of feedback quality rather than in
terms of feedback quantity, there are distinct cases where
the relationship between the two is well defined. Such is the
case when CSIT estimates are derived using basic - and not
necessarily optimal - scalar quantization techniques [32]. In
such cases, which we mention here simply to offer some
insight6, dedicating α logP quantization bits to quantize h
into an estimate ĥ, allows for a mean squared error [32]

E‖h− ĥ‖2 .
= P−α.

Drawing from this, and going back to our previous example,
we consider a periodic feedback process that sends refining
feedback two times per coherence period, by first sending
α′ logP bits of feedback at time t = γ1Tc + 1, then sending
extra α′′ logP bits of feedback at time t = γ2Tc + 1, and
where it finally sends β−(α′+α′′) logP extra bits of refining
feedback, at any point after the coherence period of a channel.
This would result in having

Before feedback︷ ︸︸ ︷
0 = α1 = · · · = αγ1Tc ≤

After first feedback︷ ︸︸ ︷
α′ = αγ1Tc+1 = · · · = αγ2Tc

≤ α′ + α′′ = αγ2Tc+1 = · · · = αTc︸ ︷︷ ︸
After second feedback, before Tc

≤ β︸︷︷︸
After coherence period

.

(34)

As an example, having periodic feedback that sends 4
9 logP

bits of feedback at time t = 1
3Tc + 1, and then sends extra

6We clarify that this relationship between CSIT quality and feedback
quantity, plays no role in the development of the results, and is simply
mentioned in the form of comments that offer intuition. Our focus is on
quality exponents, and we make no optimality claim regarding the number of
quantization bits.



1
9 logP bits of feedback at time t = 2

3Tc + 1, will result in

Before feedback︷ ︸︸ ︷
0 = α1 = · · · = α 1

3Tc
≤

After first feedback︷ ︸︸ ︷
4

9
= α 1

3Tc+1 = · · · = α 2
3Tc

≤ 5

9
= α 2

3Tc+1 = · · · = αTc︸ ︷︷ ︸
After second feedback, before Tc

(35)

which gives ᾱ = (0 + 4/9 + 5/9)/3 = 1/3, which in turn
gives (Corollary 1e) an optimal DoF region which is defined
by the polygon with corner points

{(0, 0), (0, 1), (1/3, 1), (7/9, 7/9), (1, 1/3), (1, 0)}. (36)

One may have noticed that there was no need for extra bits
of (delayed) feedback after the end of the coherence period.
This is because the existing amount and timing of feedback
bits already allowed for

β = αTc = 5/9 =
1 + 2ᾱ

3
=

1 + 2/3

3

which we have seen in Corollary 1e to be as good as perfect
delayed feedback.

Placing our focus back on feedback quality, we proceed
with a corollary that offers insight on the question of what
CSIT quality and timing suffice to achieve a certain DoF
performance. For ease of exposition, we focus on the hardest-
to-achieve DoF point d1 = d2 = d. The proof is again direct.

Corollary 1f (Sufficient feedback for target DoF): Having
ᾱ ≥ 3d − 2 with β ≥ 2d − 1, or having ᾱ ≥ 3d − 2 with
αTc ≥ 2d − 1 (and no extra delayed feedback), suffices to
achieve a symmetric target DoF d1 = d2 = d.

One can see that having ᾱ ≥ 3d − 2 with αTc ≥ 2d − 1
simply means that there is not need to send delayed feedback,
i.e., there is not need to send feedback after the end of the
coherence period.

Another practical aspect that is addressed here, has to do
with feedback delays. Such delays might cause performance
degradation, which might be mitigated if the feedback, albeit
with delays, is of sufficiently good quality. The following
corollary provides some insight on these aspects, by describing
the feedback delays that allow for a given target symmetric
DoF d in the presence of constraints on current and delayed
CSIT qualities. We will be specifically interested in the allow-
able fractional delay of feedback (cf. [14])

γ, arg max
γ′
{αγ′Tc = 0} (37)

i.e., the fraction γ ≤ 1 for which α1 = · · · = αγTc =
0, αγTc+1 > 0. We are also interested to see how this allowable
delay reduces in the presence of a constraint αt ≤ αmax∀t on
timely feedback, or a constraint on β which, as we recall,
may reflect on a constraint on the total number of (current
plus delayed) feedback bits per coherence period. The proof
for the following can be found in the appendix of Section IX.

Corollary 1g (Allowable feedback delay): Under a current
CSIT quality constraint αt ≤ αmax ∀t, a symmetric target

DoF d can be achieved with any fractional delay

γ ≤ 1− 3d− 2

αmax

by setting α1 = · · · = αγTc = 0, αγTc+1 = · · · = αTc =
αmax = 2d− 1 = β.

Under a delayed CSIT quality constraint β ≤ βmax, a target
DoF d can be achieved with any

γ ≤ 1− 3d− 2

βmax

by setting α1 = · · · = αγTc = 0, αγTc+1 = · · · = αTc =
βmax = 2d− 1. Finally under no specific constraint on CSIT
quality, the target DoF d can be achieved with any

γ ≤ 3(1− d)

using perfect (but delayed) feedback sent at t = γTc + 1

α1 = · · · = αγTc = 0︸ ︷︷ ︸
No feedback

, αγTc+1 = · · ·αTc = β = 1︸ ︷︷ ︸
Perfect quality CSIT

.

Example 2: Consider the example where we have a sym-
metric target DoF d1 = d2 = d = 7

9 . This can be achieved
with γ = 3(1 − d) = 2/3 if there is no bound on the
quality exponents, and with γ = 1 − (3d − 2)/αmax = 1/3
if the feedback link only allows for αt ≤ αmax = 1/2, ∀t.
If on the other hand, feedback timeliness is easily obtained,
we can substantially reduce the amount of CSIT and achieve
d = 7

9 with α1 = · · · = αTc = ᾱ = 3d − 2 = 1/3
(β = 1+2ᾱ

3 = 2d− 1 = 5/9).
We now proceed to see how the periodically evolving

feedback setting, incorporates different existing settings of
interest.

A. The periodically evolving setting as a generalization to
existing settings

This periodically-evolving feedback setting is powerful as
it captures the many engineering options that one may have in
a block-fading setting where the nature of feedback remains
largely unchanged across coherence periods. It also captures
and generalizes existing settings that have been of particular
interest, such as the Maddah-Ali and Tse setting in [3], the
Yang et al. and Gou and Jafar setting in [4], [5], the Lee
and Heath ‘not-so-delayed CSIT’ setting in [14], and the
asymmetric setting in [6]. We proceed to highlight some of
these generalizations for different existing settings of interest.

1) Only delayed CSIT - Maddah-Ali and Tse: The Maddah-
Ali and Tse setting in [3] maps to the evolving setting with
αt = 0, t = 1, 2, · · · , Tc and with perfect delayed CSIT.
One direct generalization of [3], that fits into the current
evolving setting, is to consider delayed CSIT with reduced
quality β. From this generalization, we now know that the
same DoF performance of {(0, 0), (0, 1), ( 2

3 ,
2
3 ), (1, 0)}, can

be achieved even if the delayed CSIT sent, is of imperfect
quality, corresponding to any β ≥ 1/3.



2) Delayed CSIT with imperfect current CSIT - Yang et al.
and Gou and Jafar: Similarly the Yang et al. and Gou and
Jafar setting in [4], [5], maps to the evolving setting with
αt = α, t = 1, 2, · · · , Tc and with perfect delayed CSIT.
As above, one direct generalization is to consider imperfect
quality delayed CSIT, and for this we know that the optimal
DoF {(0, 0), (0, 1), ( 2+α

3 , 2+α
3 ), (1, 0)} can be achieved for

any combination of CSIT quality exponents that give ᾱ = α,
and even with imperfect delayed CSIT quality for any β ≥
(1 + 2α)/3.

3) ‘Not-so-delayed’ CSIT - Lee and Heath: The setting
in [14] considers perfect delayed feedback and current perfect
feedback that comes with a fractional delay γ ∈ [0, 1] of the
coherence period, i.e., it considers that perfect feedback always
arrives γTc channel uses after the realization of the channel.
This setting - focusing here on the two-user case - then maps
to the periodically evolving CSIT setting with perfect delayed
CSIT and with

α1 = · · · = αγTc = 0︸ ︷︷ ︸
No feedback

, αγTc+1 = · · · = αTc = 1︸ ︷︷ ︸
Perfect CSIT

. (38)

Some practical generalizations were considered in Corol-
lary 1g which describes the maximum possible delay γ needed
to achieve a specific DoF performance, under constraints on
the CSIT quality.

4) Delayed CSIT with current CSIT for just one user -
Maleki, Jafar and Shamai: The evolving setting can be nat-
urally extended to the asymmetric (still periodically-evolving
feedback) setting where ᾱ(1) 6= ᾱ(2) and where the delayed
CSIT exponents β(1), β(2) need not be equal. Such asymmetric
setting would yield a generalization for the asymmetric setting
of Maleki et al. in [6], where both users offered perfect delayed
CSIT, and where only the first user offered perfect current
CSIT, resulting in an optimal DoF corresponding to DoF
corner point (1, 1/2) (sum-DoF d1 + d2 = 3/2). This setting
maps to the periodically evolving CSIT setting with perfect
delayed CSIT and with

α
(1)
t = 1, α

(2)
t = 0, ∀t.

The following corollary offers a broad generalization of the
corresponding result in [6]. The proof is direct since the
following simply adapts the result in the main theorem, to the
periodically evolving setting. This is again for the setting of
sufficiently good delayed CSIT for which min{β(1), β(2)} ≥
min{ 1+ᾱ(1)+ᾱ(2)

3 , 1+ᾱ(2)

2 }.
Corollary 1h (Asymmetric and periodic CSIT): The opti-

mal DoF region is defined by corner points B = (ᾱ(2), 1),
C = ( 2+2ᾱ(1)−ᾱ(2)

3 , 2+2ᾱ(2)−ᾱ(1)

3 ) and D = (1, ᾱ(1)) when-
ever 2ᾱ(1) − ᾱ(2) < 1, else by corner points A = (1, 1+ᾱ(2)

2 )
and B.

As an example, we can see that the same DoF corner point
A = (1, 1/2) derived in [6], can in fact be achieved with
imperfect quality current and delayed CSIT

α
(1)
t = 1/2, α

(2)
t = 0 ∀t ; β(1) = β(2) = 1/2.

Another example could be α(1)
t = 3/4, α

(2)
t = 1/2 ∀t, β(1) =

β(2) = 3/4, which corresponds to an optimal DoF corner point
(1, 3

4 ).

IV. UNIVERSAL ENCODING-DECODING SCHEME

We proceed to describe the universal scheme that
achieves the aforementioned DoF corner points. The chal-
lenge will be to design a scheme of an asymptot-
ically large duration n, that utilizes a CSIT process
{ĥt,t′ , ĝt,t′}nt=1,t′=1 of quality defined by the statistics of
{(ht − ĥt,t′), (gt − ĝt,t′)}nt=1,t′=1. This will be achieved
by focusing on the corresponding quality-exponent sequences
{α(1)

t }nt=1, {α
(2)
t }nt=1, {β

(1)
t }nt=1, {β

(2)
t }nt=1, as these were de-

fined in (4)-(7). The optimal DoF region in Theorem 1
and the additional corner points in Proposition 1, will be
achieved by properly utilizing different combinations of zero
forcing, superposition coding, interference compressing and
broadcasting, as well as proper power and rate allocation.

As previously suggested, this causal scheme does not
require knowledge of future quality exponents, nor does
it use predicted CSIT estimates of future channels. The
transmitter must know though the long term averages
ᾱ(1), ᾱ(2), β̄(1), β̄(2), which - as is commonly assumed of long
term statistics - can be derived.

By ‘feeding’ this universal scheme with the proper param-
eters, we can get schemes that are tailored to the different
specific settings we have discussed. We will see such examples
later in this section.

We remind the reader that the users are labeled so that
ᾱ(2) ≤ ᾱ(1). We also remind the reader of the soft as-
sumption that any sufficiently long subsequence {α(1)

t }τ+T
t=τ

(resp. {α(2)
t }τ+T

t=τ , {β
(1)
t }τ+T

t=τ , {β
(2)
t }τ+T

t=τ ) is assumed to have
an average that converges to the long term average ᾱ(1) (resp.
ᾱ(2), β̄(1), β̄(2)), for a finite T that can be sufficiently large to
allow for this convergence. We briefly note that, as we will see
later, in periodic settings such as those described in Section III,
T need not be large.

We proceed to describe in Section IV-A the encoding part,
and in Section IV-B the decoding part. In Section IV-C we
show how the scheme achieves the different DoF corner
points of interest. Finally in Section IV-D we provide example
instances of our general scheme, for specific cases of particular
interest.

For notational convenience, we will use

ĥt, ĥt,t, ĝt, ĝt,t

ȟt, ĥt,t+η, ǧt, ĝt,t+η

to denote the current and delayed estimates of ht and gt,
respectively7, with corresponding estimation errors being

h̃t,ht − ĥt, g̃t, gt − ĝt (39)

ḧt,ht − ȟt, g̈t, gt − ǧt. (40)

7Recall that η is a sufficiently large but finite integer, corresponding to the
maximum delay allowed for waiting for delayed CSIT.



A. Scheme X : encoding
Scheme X is designed to have S phases, where each phase

has a duration of T channel uses, and where T is finite but
- unless stated otherwise - sufficiently large. Specifically each
phase s (s = 1, 2, · · · , S) will take place over all time slots t
belonging to the set

Bs = {Bs,`,(s−1)2T + `}T`=1, s = 1, · · · , S. (41)

As stated, T is sufficiently large so that
1

T

∑
t∈Bs

α
(i)
t → ᾱ(i),

1

T

∑
t∈Bs

β
(i)
t → β̄(i), s = 1, · · · , S (42)

i = 1, 2. The above allocation in (41) guarantees that there
are T channel uses in between any two neighboring phases.
Having T being sufficiently large allows for the delayed CSIT
corresponding to the channels appearing during phase s, to be
available before the beginning of the phase that we label as
phase s + 1. This implies that T > η (cf. (6),(7)), although
this assumption can be readily removed8. Naturally there is no
silent time, and over the remaining channel uses

t ∈ {(2s− 1)T + `}`=T,s=S`=1,s=1

we simply repeat scheme X with a different message. With n
being generally infinite, S is also infinite (except for specific
instances, some of which are highlighted in Section IV-D).

Remark 3 (Phase-Markov encoding and decoding): The
aforementioned phase-Markov structure of the scheme,
asks that the accumulated quantized interference bits of
phase s, can be broadcasted to both users inside the common
information symbols of the next phase (phase (s + 1)),
while also a certain amount of common information can be
transmitted to both users during phase s, which will then
help resolve the accumulated interference of phase (s− 1).

We proceed to give the general description that holds for
all phases s = 1, 2, · · · , S − 1, except for the last phase S,
which we describe separately afterwards. A brief illustration
can be found in Figure 4 and Figure 5.

1) Phase s, for s = 1, 2, · · · , S−1: We proceed to describe
the way the scheme, in each phase s ∈ [1, S − 1], com-
bines zero forcing and superposition coding, power and rate
allocation, and interference compressing and broadcasting, in
order to transmit private information, using currently available
CSIT estimates to reduce interference, and using delayed CSIT
estimates to alleviate the effect of past interference.

a) Zero forcing and superposition coding: During
phase s, t ∈ Bs, the transmitter sends

xt = wtct + ĝ⊥t at + ĥta
′

t + ĥ
⊥
t bt + ĝtb

′

t (43)

where at, a
′

t are the symbols meant for user 1, bt, b
′

t for user
2, where ct is a common symbol, where e⊥ denotes a unit-
norm vector orthogonal to e, and where wt is a predetermined
randomly-generated vector known by all the nodes.

8The assumption can be removed because we can, instead of splitting time
into two interleaved halves and identifying each half to a message, to instead
split time into more parts, each corresponding to a different message. For a
sufficiently large number of parts, this would allow for the removal of the
assumption that T ≥ η, and the only assumption that would remain would
be that T is large enough so that (42) is satisfied. In periodic settings, such
T can be small.
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Fig. 5. Illustration of coding over a single phase.

b) Power and rate allocation policy: In describing the
power and rates of the symbols in (43), we use the notation

P
(x)
t ,E|xt|2 (44)

to denote the power of xt corresponding to time-slot t, and
we use r(x)

t to denote the prelog factor of the number of bits
r

(x)
t logP − o(logP ) carried by symbol xt at time t.

When in phase s, during time-slot t, the powers and
(normalized) rates are set as

P
(c)
t

.
= P,

P
(a)
t

.
= P δ

(2)
t , r

(a)
t = δ

(2)
t

P
(b)
t

.
= P δ

(1)
t , r

(b)
t = δ

(1)
t

P
(a′)
t

.
= P δ

(2)
t −α

(2)
t , r

(a′)
t = (δ

(2)
t − α

(2)
t )+

P
(b′)
t

.
= P δ

(1)
t −α

(1)
t , r

(b′)
t = (δ

(1)
t − α

(1)
t )+

(45)

where (•)+ ,max{•, 0}.
We design the scheme so that the entirety of common

information symbols {cBs,t}Tt=1, carry

T (1− δ̄) logP − o(logP ) (46)

bits, and design the power parameters {δ(1)
t , δ

(2)
t }t∈Bs to

satisfy

β
(i)
t ≥ δ

(i)
t i = 1, 2, t ∈ Bs (47)

1

T

∑
t∈Bs

δ
(1)
t =

1

T

∑
t∈Bs

δ
(2)
t = δ̄ (48)

1

T

∑
t∈Bs

(δ
(i)
t − α

(i)
t )+ = (δ̄ − ᾱ(i))+ i = 1, 2, (49)

for some δ̄ that will be bounded by

δ̄ ≤ min{β̄(1), β̄(2),
1 + ᾱ(1) + ᾱ(2)

3
,

1 + ᾱ(2)

2
}. (50)

There indeed exist solutions {δ(1)
t , δ

(2)
t }t∈Bs that satisfy the

above, and an explicit solution is shown in Appendix VII-A.
Our solution for power and rate allocation allows that, at
time t, the transmitter need only acquire knowledge of
{α(1)

t , β
(1)
t ;α

(2)
t , β

(2)
t }, in addition to the derived long-term

averages ᾱ(1), ᾱ(2), β̄(1), β̄(2). This nature of the derived so-
lutions is crucial for handling asymmetry (α(1)

t 6= α
(2)
t ,

β
(1)
t 6= β

(2)
t ).
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Fig. 4. Illustration of coding across phases.

After transmission, the received signals take the form

y
(1)
t = hT

twtct︸ ︷︷ ︸
P

+hT

t ĝ
⊥
t at︸ ︷︷ ︸

P δ
(2)
t

+ hT

t ĥta
′

t︸ ︷︷ ︸
P δ

(2)
t −α

(2)
t

+ z
(1)
t︸︷︷︸
P 0

+

ι̌
(1)
t︷ ︸︸ ︷

ȟ
T

t(ĥ
⊥
t bt + ĝtb

′

t)︸ ︷︷ ︸
P δ

(1)
t −α

(1)
t

+

ι
(1)
t −ι̌

(1)
t︷ ︸︸ ︷

ḧ
T

t(ĥ
⊥
t bt + ĝtb

′

t)︸ ︷︷ ︸
P δ

(1)
t −β

(1)
t ≤P 0

(51)

y
(2)
t = gT

twtct︸ ︷︷ ︸
P

+ gT

t ĥ
⊥
t bt︸ ︷︷ ︸

P δ
(1)
t

+ gT

t ĝtb
′

t︸ ︷︷ ︸
P δ

(1)
t −α

(1)
t

+ z
(2)
t︸︷︷︸
P 0

+

ι̌
(2)
t︷ ︸︸ ︷

ǧT

t(ĝ
⊥
t at + ĥta

′

t)︸ ︷︷ ︸
P δ

(2)
t −α

(2)
t

+

ι
(2)
t −ι̌

(2)
t︷ ︸︸ ︷

g̈T

t(ĝ
⊥
t at + ĥta

′

t)︸ ︷︷ ︸
P δ

(2)
t −β

(2)
t ≤P 0

(52)

where

ι
(1)
t ,hT

t(ĥ
⊥
t bt + ĝtb

′

t), ι
(2)
t , gT

t(ĝ
⊥
t at + ĥta

′

t) (53)

denote the interference at user 1 and user 2 respectively, and
where

ι̌
(1)
t , ȟ

T

t(ĥ
⊥
t bt + ĝtb

′

t), ι̌
(2)
t , ǧT

t(ĝ
⊥
t at + ĥta

′

t) (54)

denote the transmitter’s delayed estimates of ι(1)
t , ι

(2)
t . In the

above - where under each term we noted the order of the
summand’s average power - we considered that

E|ι̌(1)
t |2 =E|ȟT

t ĥ
⊥
t bt|2 + E|ȟT

t ĝtb
′

t|2

=E|(ĥ
T

t + h̃
T

t − ḧ
T

t)ĥ
⊥
t bt|2 + E|ȟT

t ĝtb
′

t|2

=E|(h̃
T

t−ḧ
T

t)ĥ
⊥
t bt|2+E|ȟT

t ĝtb
′

t|2
.
=P δ

(1)
t −α

(1)
t

E|ι̌(2)
t |2 =E|(g̃T

t−g̈T

t)ĝ
⊥
t at|2+E|ǧT

t ĥta
′

t|2
.
=P δ

(2)
t −α

(2)
t . (55)

c) Quantizing and broadcasting the accumulated inter-
ference: After the end of phase s and before the beginning of
the next phase - which starts T channel uses after the end of
phase s, i.e., after the accumulation of all delayed CSIT - the
transmitter reconstructs ι̌(1)

t , ι̌
(2)
t , t ∈ Bs using its knowledge

of delayed CSIT, and quantizes these into

¯̌ι
(1)
t = ι̌

(1)
t − ι̃

(1)
t , ¯̌ι

(2)
t = ι̌

(2)
t − ι̃

(2)
t (56)

TABLE I
BITS CARRIED BY PRIVATE SYMBOLS, COMMON SYMBOLS, AND BY THE

QUANTIZED INTERFERENCE, FOR PHASE s, s = 1, 2, · · · , S − 1.

Total bits (× logP )
Private symbols for user 1 T (δ̄ + (δ̄ − ᾱ(2))+)

Private symbols for user 2 T (δ̄ + (δ̄ − ᾱ(1))+)
Common symbols T (1− δ̄)

Quantized interference T ((δ̄ − ᾱ(1))+ + (δ̄ − ᾱ(2))+)

with (δ
(1)
t −α

(1)
t )+ logP and (δ

(2)
t −α

(2)
t )+ logP quantization

bits respectively, allowing for bounded power of quantization
noise ι̃(1)

t , ι̃
(2)
t , i.e, allowing for

E|ι̃(2)
t |2

.
= E|ι̃(1)

t |2
.
= 1

since E|ι̌(2)
t |2

.
= P δ

(2)
t −α

(2)
t , E|ι̌(1)

t |2
.
= P δ

(1)
t −α

(1)
t (cf. [32]).

Then the transmitter evenly splits the∑
t∈Bs

(
(δ

(1)
t − α

(1)
t )+ + (δ

(2)
t − α

(2)
t )+

)
logP (57)

quantization bits into the common symbols {ct}t∈Bs+1 that
will be transmitted during the next phase (phase s + 1),
conveying these quantization bits together with other new
information bits for the users.

This transmission of {ct}t∈Bs+1
in the next phase, will help

each of the users cancel the dominant part of the interference,
and it will also serve as an extra observation (which will in
turn enable the creation of a corresponding MIMO channel
- see (69) later on) that allows for decoding of all private
information of that same user. Table I summarizes the number
of bits carried by private symbols, common symbols, and by
the quantized interference, for phase s, s = 1, 2, · · · , S − 1.

We now proceed with the description of encoding over the
last phase S.

2) Phase S: The last phase, in addition to communicating
new private symbols, conveys the remaining accumulated
interference from the previous phase, and does so in a manner
that allows for termination at the end of this phase.

During this last phase, the transmitter sends

xt = wtct + ĝ⊥t at + ĥ
⊥
t bt (58)

t ∈ BS , with power and rates set as

P
(c)
t

.
= P, P

(a)
t

.
= Pα

(2)
t , P

(b)
t

.
= P δ

(1)
t

r
(a)
t = α

(2)
t , r

(b)
t = δ

(1)
t .

(59)
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With the entirety of common information symbols {cBS,`}T`=1

now carrying9

T (1− ᾱ(2)) logP − o(logP ) (60)

bits, the power parameters {δ(1)
t }t∈BS are designed such that

α
(1)
t ≥ δ

(1)
t ∀t (61)

1

T

∑
t∈BS

δ
(1)
t = ᾱ(2). (62)

The solution to the above problem is similar to that in
(47),(48),(49).

This concludes the part of encoding. After transmission, the
received signals are then of the form

y
(1)
t = hT

twtct︸ ︷︷ ︸
P

+hT

t ĝ
⊥
t at︸ ︷︷ ︸

Pα
(2)
t

+ h̃
T

t ĥ
⊥
t bt︸ ︷︷ ︸

≤P 0

+ z
(1)
t︸︷︷︸
P 0

(63)

y
(2)
t = gT

twtct︸ ︷︷ ︸
P

+ g̃T

t ĝ
⊥
t at︸ ︷︷ ︸
P 0

+ gT

t ĥ
⊥
t bt︸ ︷︷ ︸

P δ
(1)
t

+ z
(2)
t︸︷︷︸
P 0

. (64)

We now move to describe decoding at both receivers, where
this decoding part has a Markov chain structure (see Figure 6),
similar to the encoding part.

B. Scheme X : decoding

As it may be apparent (more details will be shown in
Section IV-C), the power and rate allocation in (47),(48),(49)
guarantees that the quantized interference accumulated during
phase s (s = 1, · · · , S−1) has fewer bits than the load of the
common symbols transmitted during the next phase (cf. (57)).
Consequently decoding of the common symbols during a cer-
tain phase, helps recover the interference accumulated during
the previous phase. As a result, decoding moves backwards,
from the last to the first phase.

9We remind the reader of the definition of Bs,` (cf. (41)) which denotes the
`th element of set Bs consisting of all time indexes of phase s. For example,
saying that t = B1,` simply means that t = `.

1) Phase S: At the end of phase S, we consider
joint decoding of all common symbols [cBS,1 , · · · , cBS,T ]T.
Specifically user i, i = 1, 2, decodes the corresponding
common-information vector using its received signal vector
[y

(i)
BS,1 , y

(i)
BS,2 , · · · , y

(i)
BS,T ]T, and does so by treating the other

signals as noise. We now note that the accumulated mutual
information satisfies

I([cBS,1 , · · · , cBS,T ]T; [y
(1)
BS,1 , · · · , y

(1)
BS,T ]T)

= log
∏
t∈BS

P 1−α(2)
t − o(logP )

= T (1− ᾱ(2)) logP − o(logP )

I([cBS,1 , · · · , cBS,T ]T; [y
(2)
BS,1 , · · · , y

(2)
BS,T ]T)

= log
∏
t∈BS

P 1−δ(1)t − o(logP )

= T (1− ᾱ(2)) logP − o(logP ) (65)

(cf. (61),(62)), to conclude that both users can reliably decode
all

T (1− ᾱ(2)) logP − o(logP ) (66)

bits in the common information vector [cBS,1 , · · · , cBS,T ]T.
This is proved in Lemma 2 in the appendix of Section VII-B,
which in fact guarantees that both users will be able to decode
the amount of feedback bits described in (66), even for finite
and small T . This is done to ensure the validity of the schemes
also for finite T , and is achieved by employing specific lattice
codes that have good properties in the finite-duration high-
SNR regime. The details for this step can be found in the
aforementioned appendix.

After decoding [cBS,1 , · · · , cBS,T ]T, user 1 removes hT

twtct
from the received signal in (63), to decode at. Similarly user 2
removes gT

twtct from its received signal in (64), to decode bt.
Now we go back one phase and utilize knowledge of

{ct}t∈BS , to decode the corresponding symbols.
2) Phase s, s = S−1, S−2, · · · , 1: We here describe, for

phase s, the actions of interference reconstruction, interference
cancelation, joint decoding of common information symbols,
and decoding of private information symbols, in the order they
happen.

a) Interference reconstruction: In this phase (phase s),
each user employs knowledge of {ct}t∈Bs+1

from phase s +
1, to reconstruct the delayed estimates of all the interference
accumulated in phase s, i.e., to reconstruct {¯̌ι(2)

t , ¯̌ι
(1)
t }t∈Bs .

b) Interference cancelation: Now with knowledge of
{¯̌ι(2)
t , ¯̌ι

(1)
t }t∈Bs , each user can remove - up to noise level -

all the interference ι(i)t , t ∈ Bs, by subtracting the delayed
interference estimates ¯̌ι

(i)
t from y

(i)
t .

c) Joint decoding of common information symbols: At
this point, user i decodes the common information vector
cs,[cBs,1 , · · · , cBs,T ]T from its (modified) received signal
vector [y

(i)
Bs,1 − ¯̌ι

(i)
Bs,1 , · · · , y

(i)
Bs,T − ¯̌ι

(i)
Bs,T ]T by treating the other

signals as noise. The accumulated mutual information then



satisfies

I(cs; [y
(1)
Bs,1 − ¯̌ι

(1)
Bs,1 , · · · , y

(1)
Bs,T − ¯̌ι

(1)
Bs,T ]T)

= log
∏
t∈Bs

P 1−δ(2)t − o(logP ) = T (1− δ̄) logP − o(logP )

I(cs; [y
(2)
Bs,1 − ¯̌ι

(2)
Bs,1 , · · · , y

(2)
Bs,T − ¯̌ι

(2)
Bs,T ]T)

= log
∏
t∈Bs

P 1−δ(1)t − o(logP ) = T (1− δ̄) logP − o(logP )

(67)

(cf. (47)-(52)), and we conclude that both users can reliably
decode all

T (1− δ̄) logP − o(logP ) (68)

bits of the common information vector cs. The details for this
step, can again be found in the appendix of Section VII-B.

After decoding cs, user 1 removes hT

twtct from y
(1)
t − ¯̌ι

(1)
t ,

while user 2 removes gT
twtct from y

(2)
t − ¯̌ι

(1)
t , t ∈ Bs.

d) Decoding of private information symbols: After re-
moving the interference, and decoding and subtracting out the
common symbols, each user now decodes its private informa-
tion symbols of phase s. Using knowledge of {¯̌ι(2)

t , ¯̌ι
(1)
t }t∈Bs ,

user 1 will use the estimate ¯̌ι
(2)
t (of ι̌(2)

t ) as an extra observation
which, together with the observation y(1)

t −hT

twtct− ¯̌ι
(1)
t , will

allow for decoding of both at and a
′

t, t ∈ Bs. Specifically
user 1, at each instance t, can ‘see’ a 2 × 2 MIMO channel
of the form[

y
(1)
t − hT

twtct − ¯̌ι
(1)
t

¯̌ι
(2)
t

]
=

[
hT

t

ǧT

t

] [
ĝ⊥t ĥt

] [at
a
′

t

]
+

[
z̃

(1)
t

−ι̃(2)
t

]
(69)

where
z̃

(1)
t = ḧ

T

t(ĥ
⊥
t bt + ĝtb

′

t) + z
(1)
t + ι̃

(1)
t .

The fact that E|z̃(1)
t |2

.
= 1, allows for decoding of at

and a
′

t, corresponding to the aforementioned rates r
(a)
t =

δ
(2)
t , r

(a′)
t = (δ

(2)
t − α

(2)
t )+, t ∈ Bs. Similar actions are

taken by user 2, allowing for decoding of bt and b
′

t, again
with r(b)

t = δ
(1)
t , r

(a′)
t = (δ

(1)
t − α

(1)
t )+, t ∈ Bs.

At this point, each user has decoded all the information
symbols (common and private) corresponding to phase s, goes
back one phase (to phase s − 1) to utilize its knowledge of
{ct}t∈Bs , and decodes the common and private symbols of that
phase. The whole decoding effort naturally terminates after
decoding of the symbols in the first phase.

C. Scheme X : Calculating the achieved DoF

In the following DoF calculation we will consider two
separate cases. Case 1 will correspond to

2ᾱ(1) − ᾱ(2) < 1 (70)

which in turn implies that ᾱ(1) ≤ 1+ᾱ(1)+ᾱ(2)

3 ≤ 1+ᾱ(2)

2 , while
case 2 will correspond to

2ᾱ(1) − ᾱ(2) ≥ 1 (71)

which in turn implies that ᾱ(1) ≥ 1+ᾱ(1)+ᾱ(2)

3 ≥ 1+ᾱ(2)

2 . We
recall that the users are labeled so that ᾱ(1) ≥ ᾱ(2).

1) Generic DoF point: To calibrate the DoF per-
formance, we first note that for any fixed δ̄ ≤
min{β̄(1), β̄(2), 1+ᾱ(1)+ᾱ(2)

3 , 1+ᾱ(2)

2 } (cf. (50)), the rate and
power allocation in (47),(48),(49) (as this policy is explicitly
described in the appendix of Section VII-A) tells us that, the
total amount of information, for user 1, in the private symbols
of a certain phase s < S, is equal to(

δ̄ + (δ̄ − ᾱ(2))+
)
T logP (72)

bits, while for user 2 this is(
δ̄ + (δ̄ − ᾱ(1))+

)
T logP (73)

bits.
The next step is to see how much interference there is

to load onto common symbols. Given the power and rate
allocation in (47),(48),(49),(50), it is guaranteed that the
accumulated quantized interference in a phase s < S (cf. (57))
has

(
(δ̄ − ᾱ(1))+ + (δ̄ − ᾱ(2))+

)
T logP bits, which can be

carried by the common symbols of the next phase (s + 1)
since they can carry a total of

(
1− δ̄

)
T logP bits (cf. (46)).

This leaves an extra space of ∆comT logP bits in the common
symbols, where

∆com , 1− δ̄ − (δ̄ − ᾱ(1))+ − (δ̄ − ᾱ(2))+ (74)

is guaranteed to be non-negative for any given δ̄ ≤
min{β̄(1), β̄(2), 1+ᾱ(1)+ᾱ(2)

3 , 1+ᾱ(2)

2 }. This extra space can be
split between the two users, by allocating ω∆comT logP
bits for the message of user 1, and the remaining (1 −
ω)∆comT logP bits for the message of user 2, for some
ω ∈ [0, 1].

Consequently the above, combined with the information
stored in private symbols (cf. (72),(73)), allows for

d1 = δ̄ + (δ̄ − ᾱ(2))+ + ω∆com (75)

d2 = δ̄ + (δ̄ − ᾱ(1))+ + (1− ω)∆com. (76)

The above considers that S is large, and thus removes the
effect of having a last phase that carries less new message
information. In the following, we will achieve different corner
points by accordingly setting the value of ω ∈ [0, 1] and of
δ̄ ≤ min{β̄(1), β̄(2), 1+ᾱ(1)+ᾱ(2)

3 , 1+ᾱ(2)

2 }.
2) DoF corner points in Theorem 1: To achieved the DoF

region in Theorem 1, we will show how to achieve the
following DoF corner points (see also Table II)

A =
(
1,

1 + ᾱ(2)

2

)
(77)

B =
(
ᾱ(2), 1

)
(78)

C =
(2 + 2ᾱ(1) − ᾱ(2)

3
,

2 + 2ᾱ(2) − ᾱ(1)

3

)
(79)

D =
(
1, ᾱ(1)

)
. (80)

To achieve the DoF region of Theorem 1 we need sufficiently
good (but certainly not perfect) delayed CSIT such that

min{β̄(1), β̄(2)} ≥ min{1 + ᾱ(1) + ᾱ(2)

3
,

1 + ᾱ(2)

2
} (81)



TABLE II
OPTIMAL CORNER POINTS SUMMARY, FOR SUFFICIENTLY GOOD DELAYED

CSIT SUCH THAT min{β̄(1), β̄(2)} ≥ min{ 1+ᾱ(1)+ᾱ(2)

3
, 1+ᾱ(2)

2
}.

Cases Corner points δ̄ ω

Case 1 C 1+ᾱ(1)+ᾱ(2)

3
0

D ᾱ(1) 1

B ᾱ(2) 0

Case 2 B ᾱ(2) 0

A 1+ᾱ(2)

2
0

TABLE III
DOF INNER BOUND CORNER POINTS, FOR DELAYED CSIT SUCH THAT

min{β̄(1), β̄(2)} < min{ 1+ᾱ(1)+ᾱ(2)

3
, 1+ᾱ(2)

2
}.

Cases Corner points

Case 1 and case of min{β̄(1), β̄(2)} ≥ ᾱ(1) E,F,B,D

Case 1 and case of min{β̄(1), β̄(2)} < ᾱ(1) B,E,G

Case 2 B,E,G

(cf. Theorem 1), which in turn implies that (cf. (50))

δ̄ ≤ min{1 + ᾱ(1) + ᾱ(2)

3
,

1 + ᾱ(2)

2
}.

Under the condition of (81), the DoF corner points are
achievable by setting the value of ω ∈ [0, 1] and of δ̄ ≤
min{ 1+ᾱ(1)+ᾱ(2)

3 , 1+ᾱ(2)

2 } as in Table II.
Specifically when (81) and (70) hold, we achieve DoF

point B by setting ω = 0, δ̄ = ᾱ(2) which indeed gives
(cf. (74),(75),(76))

d1 = δ̄ + (δ̄ − ᾱ(2))+ = ᾱ(2)

d2 = δ̄ + (δ̄ − ᾱ(1))+ + ∆com = ᾱ(2) + 1− ᾱ(2) = 1.

To achieve DoF point D we set ω = 1 and δ̄ = ᾱ(1) and get

d1 = δ̄ + (δ̄ − ᾱ(2))+ + ∆com = ᾱ(1) + 1− ᾱ(1) = 1

d2 = δ̄ + (δ̄ − ᾱ(1))+ = ᾱ(1)

while to achieve DoF point C we set ω = 0 and δ̄ =
1+ᾱ(1)+ᾱ(2)

3 and get

d1 = δ̄ + (δ̄ − ᾱ(2))+ =
2 + 2ᾱ(1) − ᾱ(2)

3

d2 = δ̄ + (δ̄ − ᾱ(1))+ + ∆com =
2 + 2ᾱ(2) − ᾱ(1)

3
.

On the other hand, when (71) (case 2) and (81) hold, to
achieve DoF point B we set ω = 0 and δ̄ = ᾱ(2) as before,
while to achieve DoF point A, we set ω = 0 and δ̄ = 1+ᾱ(2)

2 .
Finally the entire DoF region of Theorem 1 is achieved

using time sharing between these corner points.
3) DoF corner points of Proposition 1: Now we focus on

the DoF points of Proposition 1 (see Table III). These are the

points we label as DoF points B and D, as these were defined
in (78) and (80), as well as three new DoF points

E =
(
2 min{β̄(1), β̄(2)} − ᾱ(2), 1 + ᾱ(2) −min{β̄(1), β̄(2)}

)
(82)

F =
(
1 + ᾱ(1) −min{β̄(1), β̄(2)}, 2 min{β̄(1), β̄(2)} − ᾱ(1)

)
(83)

G =
(
1,min{β̄(1), β̄(2)}

)
. (84)

As stated in the proposition, we are interested in the regime
of reduced-quality delayed CSIT, as this is defined by

min{β̄(1), β̄(2)} < min{1 + ᾱ(1) + ᾱ(2)

3
,

1 + ᾱ(2)

2
} (85)

and which implies that δ̄ ≤ min{β̄(1), β̄(2)} (cf. (50)). In
addition to the two cases in (70),(71), we now additionally
consider the cases where

min{β̄(1), β̄(2)} ≥ ᾱ(1) (86)

min{β̄(1), β̄(2)} < ᾱ(1). (87)

When (70),(85) and (86) hold, we set ω = 0, δ̄ = ᾱ(2) as
before to achieve DoF point B. To achieve point D, we set
ω = 1 and δ̄ = ᾱ(1) as before, whereas to achieve point E,
we set ω = 0, δ̄ = min{β̄(1), β̄(2)} to get (cf. (74), (75), (76))

d1 = δ̄ + (δ̄ − ᾱ(2))+ = 2 min{β̄(1), β̄(2)} − ᾱ(2)

d2 = δ̄ + (δ̄ − ᾱ(1))+ + ∆com = 1 + ᾱ(2) −min{β̄(1), β̄(2)}.

Finally to achieve DoF point F , we set ω = 1 and δ̄ =
min{β̄(1), β̄(2)}.

When (70),(85) and (87) hold, we achieve points B and E
with the same parameters as before, while to achieve point G,
we set ω = 1, δ̄ = min{β̄(1), β̄(2)}.

Similarly when (71) and (85) hold, we achieve points
B,E,G by setting ω and δ̄ as above.

Finally the entire DoF region of Proposition 1 is achieved
with time sharing between the corner points.

D. Scheme X : examples

We proceed to provide example instances of our general
scheme, for specific cases of particular interest.

1) Fixed and imperfect quality delayed CSIT, no current
CSIT: We consider the case of no current CSIT (α(i)

t =
0, ∀t, i) and of imperfect delayed CSIT of an unchanged
quality β ≤ 1. We focus on the case of β = 1/3. The universal
scheme - with these parameters - achieves the optimal DoF by
achieving the optimal DoF corner point (d1 = 2

3 , d2 = 2
3 ), as

in the case of [3] which assumed that the delayed feedback of
a channel could be sent with perfect quality.

For this case of β(i)
t = 1/3, α

(i)
t = 0, we have ᾱ(1) =

ᾱ(2) = 0, β̄(1) = β̄(2) = 1/3. Toward designing the scheme,
we set δ̄ = 1/3 (cf. (50)). For the case of block fading where
we can rewrite the time index to reflect a unit coherence
period, delayed CSIT is simply the CSIT that comes during the
next coherence period, i.e., during the next time slot. Given
the assumption of i.i.d. fading employed in [3], we can set
η = 1 (cf. (6),(7)), which allows for a simpler variant of our
scheme where now the phases have duration T = 1. In this



TABLE IV
BITS CARRIED BY PRIVATE SYMBOLS, COMMON SYMBOLS, AND BY THE

QUANTIZED INTERFERENCE, FOR PHASE s = 1, 2, · · · , S − 1.

Total bits (logP )
Private symbols for user 1 2/3
Private symbols for user 2 2/3

Common symbols 2/3
Quantized interference 2/3

simplified variant, the transmitted signal (cf. (43)) takes the
simple form

xt = wtct +

[
at
a
′

t

]
+

[
bt
b
′

t

]
with the power and rates of the symbols (cf. (45)) set as

P
(c)
t

.
= P, r

(c)
t = 1− 1/3

P
(a)
t

.
= P

(a′)
t

.
= P

(b)
t

.
= P

(b′)
t

.
= P 1/3

r
(a)
t = r

(a′)
t = r

(b)
t = r

(b′)
t = 1/3.

(88)

During each phase, the transmitter quantizes - as instructed
in (57) - the interference accumulated in that phase, with
a quantization rate of 2/3 logP , which is mapped into the
common symbol ct+1 that will be transmitted in the next phase
(at time-slot t + 1). For large enough communication length,
simple calculations can show that this can achieve the optimal
DoF (d1 = 2

3 , d2 = 2
3 ), and can do so with imperfect quality

CSIT. Table IV summarizes the rates associated to the symbols
in this scheme.

2) Alternating between two current-CSIT states: In the
context of the two-user MISO BC with spatially and tem-
porally i.i.d. fading and M = 2, the work in [13] considered
the alternating CSIT setting where CSIT for the two users
alternates between perfect current CSIT (labeled here as state
P ), perfect delayed CSIT (D), or no CSIT (N ). In this
setting where Ii denoted the CSIT state for the channel of
user i at any given time (I1, I2 ∈ {P,D,N}), the work
in [13] considered communication where, for a fraction λI1I2
of the time, the CSIT states are equal to I1, I2 (state I1 for
the first user, state I2 for the second user). The same work
focused on the symmetric case where λI1I2 = λI2I1 . For
λP ,

∑
I2∈{P,D,N} λPI2 being the fraction of the time where

one user has perfect CSIT, and λD ,
∑
I2∈{P,D,N} λDI2 being

the fraction of the time where one user had delayed CSIT, the
work in [13] characterized the optimal DoF region to take the
form

d1 ≤ 1, d1 ≤ 1,

d1 + 2d2 ≤ 2 + λP

d2 + 2d1 ≤ 2 + λP

d1 + d2 ≤ 1 + λP + λD.

The above setting corresponds to our symmetric setting where
α

(1)
t , β

(1)
t , α

(2)
t , β

(2)
t ∈ {0, 1}, ∀t, and where

λP = ᾱ(1) = ᾱ(2) (89)
λD = β̄(1) − ᾱ(1) = β̄(2) − ᾱ(2) (90)

TABLE V
BITS CARRIED BY PRIVATE SYMBOLS, COMMON SYMBOLS, AND BY THE
QUANTIZED INTERFERENCE, FOR PHASE s, s = 1, 2, · · · , S − 1, OF THE

ALTERNATING CSIT SCHEME.

Total bits (× logP )
Private symbols for user 1 (7× 2)/8
Private symbols for user 2 (7× 2)/8

Common symbols (1× 2)/4
Quantized interference (1× 2)/4

in which case our DoF inner bound matches the above, and as
a result, for any β̄ ≥ 1+2ᾱ

3 , Theorem 1 generalizes [13] to any
set of quality exponents, avoiding the symmetry assumption,
as well as easing on the i.i.d. block-fading assumption.

The universal scheme described in this section, can be
directly applied to optimally implement more general alter-
nating CSIT settings. We here offer an example where, in the
presence of sufficiently good delayed CSIT, the current CSIT
of the two users alternates between two quality exponents
equal to 1

2 and 3
4 , i.e.,

t = 1 t = 2 t = 3 t = 4 · · ·
α

(1)
t = 1

2
3
4

1
2

3
4 · · ·

α
(2)
t = 3

4
1
2

3
4

1
2 · · ·

In this case, which corresponds to having ᾱ(1) = ᾱ(2) = 5/8,
we can choose any delayed CSIT process that gives β̄(1) =
β̄(2) = 3/4 which suffices (see Corollary 1c) to achieve the
optimal DoF region by achieving the optimal DoF point (d1 =
7
8 , d2 = 7

8 ).
Toward designing the scheme, we set δ̄ = 3/4. For this

example, and again considering a block-fading fast-fading
setting (unit-length coherence period), the scheme can have
phases with duration T = 2. The transmitted signal (cf. (43))
now takes the form

xt = wtct + ĝ⊥t at + ĥta
′

t + ĥ
⊥
t bt + ĝtb

′

t

with power and rates of the symbols being set as instructed
in (45). Again as instructed by the general description of the
scheme, at the end of phase s = 1, 2, · · · , S−1, the transmitter
quantizes the interference accumulated during that phase, and
does so using a total of 2(1/8 + 1/8) logP quantization
bits (cf. (57)). These bits are then mapped into the common
symbols that will be transmitted in the next phase. For a large
number of phases, the proposed scheme achieves the optimal
DoF point (d1 = 7

8 , d2 = 7
8 ). Table V summarizes the rates

associated to the symbols in this scheme.
3) Schemes with short duration: We recall that the Maddah-

Ali and Tse scheme [3], employs β(i)
1 = 1, β

(i)
2 = β

(i)
3 =

α
(i)
1 = α

(i)
2 = α

(i)
3 = 0, i = 1, 2, and achieves the optimal

DoF with only one phase (T = 3 channel uses, i.e., 3
coherence periods). This is done because the information bits
of the quantized interference, ‘fit’ inside the common symbols
of a single phase.

There are of course many other cases where this can happen.



One such example would be the case where

t = 1 t = 2 t = 3 t = 4 · · ·
α

(1)
t = 0 0 1

4 0 · · ·
β

(1)
t = 1 1

4
1
4 0 · · ·

α
(2)
t = 0 1

4 0 0 · · ·
β

(2)
t = 1 1

4
1
4 0 · · ·

where a single-phase (T = 4 time-slot) scheme, can achieve
the optimal DoF corner point (d1 = 11

16 , d2 = 11
16 ), again

because the information bits of the quantized interference, can
fit in the common symbols of the same phase.

V. PROOF OF OUTER BOUND LEMMA

Proof: Let W1,W2 respectively denote the messages for
the first and second user, and let R1, R2 denote the two users’
rates. Each user sends their message over n channel uses,
where n is large. For ease of exposition we introduce the
following notation.

St,

[
hT

t

gT
t

]
, Št,

[
ȟ

T

t

ǧT

t

]
, Ŝt,

[
ĥ

T

t

ĝT

t

]
, zt,

[
z

(1)
t

z
(2)
t

]
y

(i)
[n] , {y

(i)
t }nt=1, i = 1, 2

Ω[n] , {St, Št, Ŝt}nt=1.

The first step is to construct a degraded BC by providing the
first user with complete and immediately available information
on the second user’s received signal. In this improved scenario,
the following bounds hold.

nR1

= H(W1)

= H(W1|Ω[n])

≤ I(W1; y
(1)
[n] , y

(2)
[n] |Ω[n]) + nεn (91)

≤ I(W1;W2, y
(1)
[n] , y

(2)
[n] |Ω[n]) + nεn

= I(W1; y
(1)
[n] , y

(2)
[n] |W2,Ω[n]) + nεn

= h(y
(1)
[n] , y

(2)
[n] |W2,Ω[n])− h(y

(1)
[n] , y

(2)
[n] |W1,W2,Ω[n])︸ ︷︷ ︸
no(logP )

+nεn

=

n∑
t=1

h(y
(1)
t , y

(2)
t |y

(1)
[t−1], y

(2)
[t−1],W2,Ω[n]) + no(logP ) + nεn

(92)

where (91) results from Fano’s inequality, where y(i)
0 was set

to zero by convention, and where the last equality follows
from the entropy chain rule and the fact that the knowledge
of {W1,W2,Ω[n])} implies knowledge of {y(1)

[n] , y
(2)
[n] } up to

noise level.

Similarly

nR2

= H(W2)

≤ I(W2; y
(2)
[n] |Ω[n]) + nεn (93)

= h(y
(2)
[n] |Ω[n])︸ ︷︷ ︸

≤n logP+no(logP )

−h(y
(2)
[n] |W2,Ω[n]) + nεn (94)

≤ −
n∑
t=1

h(y
(2)
t |y

(2)
[t−1],W2,Ω[n])+n logP+no(logP )+ nεn

(95)

≤ −
n∑
t=1

h(y
(2)
t |y

(1)
[t−1], y

(2)
[t−1],W2,Ω[n])

+ n logP + no(logP ) + nεn (96)

where (95) follows from the entropy chain rule and from the
fact that received signals are scalars, while the last step is due
to the fact that conditioning reduces entropy.

Now given (92) and (96), we upper bound R1 + 2R2 as

n(R1 + 2R2) ≤ 2n logP + no(logP ) + 3nεn

+

n∑
t=1

(
h(y

(1)
t , y

(2)
t |U, St, Ŝt)− 2h(y

(2)
t |U, St, Ŝt)

)
(97)

where
U ,{y(1)

[t−1], y
(2)
[t−1],W2,Ω[n]} \ St, Ŝt

and where each term h(y
(1)
t , y

(2)
t |U, St, Ŝt) −

2h(y
(2)
t |U, St, Ŝt) in the summation, can be upper bounded

as

h(y
(1)
t , y

(2)
t |U, St, Ŝt)− 2h(y

(2)
t |U, St, Ŝt)

≤ max
PXt

E[tr(XtXH
t )]≤P

[
h(y

(1)
t , y

(2)
t |U, St, Ŝt)− 2h(y

(2)
t |U, St, Ŝt)

]
≤ EŜt max

PXt

E[tr(XtXH
t )]≤P

ESt|Ŝt
[
h(y

(1)
t , y

(2)
t |U, St = St, Ŝt = Ŝt)

− 2h(y
(2)
t |U, St = St, Ŝt = Ŝt)

]
= EŜt max

PXt

E[tr(XtXH
t )]≤P

ES̃t
[
h(Stxt + zt|U)− 2h(gT

txt + z
(2)
t |U)

]
=EŜt max

ΨΨΨ�0:tr(ΨΨΨ)≤P
ES̃t
[
log det(I+StΨΨΨSH

t )−2 log (1+gH

tΨΨΨgt)
]

(98)

≤ EŜt max
ΨΨΨ�0:tr(ΨΨΨ)≤P

ES̃t
[
log (1 + hH

tΨΨΨht)− log (1 + gH

tΨΨΨgt)
]
.

(99)

In the above, (98) uses the results in [33, Corollary 4] that tell
us that Gaussian input maximizes the weighted difference of
two differential entropies10, as long as: 1) y(2)

t is a degraded

10We note that the results in [33, Corollary 4] are described for the
non-fading channel model, however, as argued in the same work in [33,
Section V], the results can be readily extended to the fading channel model
by linearly transforming the fading channel into an equivalent non-fading
channel, with the new channel actually maintaining the same capacity and
the same degradedness order.



version of {y(1)
t , y

(2)
t }; 2) U is independent of z(1)

t , z
(2)
t ; 3)

the input maximization is done given a fixed fading realization
Ŝt, and is independent of S̃t

11. Furthermore, in the above,
(99) comes from Fischer’s inequality which gives that det(I+
StΨΨΨSH

t ) ≤ (1 + hH

tΨΨΨht)(1 + gH
tΨΨΨgt).

At this point we follow the steps involving equation (25) in
[4], to upper bound the right hand side of (99) as

EŜt max
ΨΨΨ�0:tr(ΨΨΨ)≤P

ES̃t
[
log (1 + hH

tΨΨΨht)− log (1 + gH

tΨΨΨgt)
]

≤ α(2)
t logP + o(logP ). (100)

Combining (97) and (99), gives that

n(R1 + 2R2) ≤
n∑
t=1

(
(2 + α

(2)
t ) logP + o(logP ) + 3εn

)
and consequently that

d1 + 2d2 ≤ 2 + ᾱ(2).

Similarly, interchanging the roles of the two users, allows for

d2 + 2d1 ≤ 2 + ᾱ(1).

Finally the fact that each user has a single receive antenna,
gives that d1 ≤ 1, d2 ≤ 1.

VI. CONCLUSIONS

The work made progress toward establishing and meeting
the limits of using imperfect and delayed feedback. Consid-
ering a general CSIT process and a primitive measure of
feedback quality, the work provided DoF expressions that are
simple and insightful functions of easy to calculate parameters
which concisely capture the problem complexity. The derived
insight addresses practical questions on topics relating to
the usefulness of predicted, current and delayed CSIT, the
impact of estimate precision, the effect of feedback delays,
and the benefit of having feedback symmetry by employing
comparable feedback links across users. Further insight was
derived from the introduced periodically evolving feedback
setting, which captures many of the engineering options re-
lating to feedback, as well as incorporates and generalizes
many previously considered settings of interest. For our chosen
setting of a small number of users (two in this case), we
expect these high-SNR insights to hold for SNR values of
operational interest. The nature of the improved bounds and
novel constructions, allows for this same insight to hold for
a broad family of block fading and non-block fading channel
models.

We believe that the adopted approach is fundamental, in
the sense that it considers a general fading process, a general
CSIT process, and a primitive measure of feedback quality in
the form of the precision of estimates at any time about any
channel, i.e., in the form of the entire set of estimation errors
{(ht − ĥt,t′), (gt − ĝt,t′)}nt,t′=1 at any time about any chan-
nel. This set of errors naturally fluctuates depending on the
instance of the problem, and as expected, the overall optimal

11We recall that xt is only a function of the messages and of the CSIT
(current and delayed) estimates up to time t, and that these CSIT estimates
are assumed to be independent of the current estimate errors at time t.

performance is defined by the statistics of this error set. These
statistics are mildly constrained to the case of having Gaussian
estimation errors which are independent of the prior and
current channel estimates. Under these assumptions, the results
capture the performance effect of the statistics of feedback.
Interestingly this effect - at least for sufficiently good delayed
CSIT, and for high SNR - is captured by the averages of the
quality exponents. This can be traced back to the assumption
that the estimation errors are Gaussian, which means that
the statistics of {(ht − ĥt,t′), (gt − ĝt,t′)}nt,t′=1 are captured
by a covariance matrix that has diagonal (block) entries of
the form { 1

ME[||ht− ĥt,t′ ||2F ], 1
ME[||gt− ĝt,t′ ||2F ]}nt,t′=1, and

whose off-diagonal entries are not used by the scheme, which
though meets an outer bound that has kept open the possibility
of any off-diagonal elements. Hence under our assumptions,
the essence of the CSIT error statistics is captured by the
diagonal block elements (of the aforementioned covariance
matrix) whose effects are in turn captured - in the high-SNR
regime - by the quality exponents.

This general approach allows for consideration of many
facets of the performance-vs-feedback question in the two-
user MISO BC setting, accentuating the important facets while
revealing the reduced role of other facets. For example, while
the approach allows for consideration of predicted CSIT - i.e.,
of estimates for future channels - the result at the end reveals
that such estimates do not provide DoF gains, again under
our assumptions. In a similar manner, the result leaves open
the possibility of a role in the off-diagonal elements of the
aforementioned covariance matrix of estimation errors, but in
the end again reveals that these can be neglected without a
DoF effect. Similarly, the approach allows for any ‘typical’
sequence of quality exponents - thus avoiding the need to
assume periodic or static feedback processes or a block-
fading structure - but despite this generality in the range of
the considered exponents, in the end the result reveals that
what really matters is the long-term average of each of these
sequences of current and delayed CSIT exponents.

Finally we believe the main assumptions here to be mild.
Regarding the high SNR assumption, there is substantial
evidence that for primitive networks (such as the BC and the
IC) with a reasonably small number of users, DoF analysis
offers good insight on the performance at moderate SNR.
Any possible extensions though to the setting of larger cellular
networks, may need to consider saturation effects on the high-
SNR spectral efficiency, as these were recently revealed in [28]
to hold for settings where communication involves clusters
of large size. Furthermore the assumption of having global
CSIR, allowed us to focus on the question of feedback to
the transmitters, which is a fundamental question on its own.
While the overhead of gathering global CSIR must not be
neglected, it has been repeatedly shown (cf. [34], [35]) that this
overhead is manageable in the presence of a reduced number
of users. When considering extensions to other multiuser
networks with potentially more users, such analysis may have
to be combined with finding ways to disseminate imperfect
global CSIR (cf. [27], [34], [35], see also [29], [36]) whose
effect increases as the number of users increases. Additionally
asking that current estimation errors are independent of current



estimates, is a widely accepted assumption. Similarly accepted
is the assumption that the estimation error is independent of
the past estimates, as this assumption suggests good feedback
processes that utilize possible correlations to improve current
channel estimates. Finally the requirement that the running
average of the quality exponents of a single user, converges
to a fixed value after a sufficiently long time, is also believed
to be reasonable, as it would hold even if these exponents
were themselves treated as random variables from an ergodic
process.

VII. APPENDIX - FURTHER DETAILS ON THE SCHEME

A. Explicit power allocation solutions under constraints in
equations (47),(48),(49)

We remind the reader that, in designing the power allocation
policy of the scheme, we must design the power parameters
{δ(1)
t , δ

(2)
t }t∈Bs to satisfy equations (47),(48),(49) which asked

that

β
(i)
t ≥ δ

(i)
t i = 1, 2, t ∈ Bs

1

T

∑
t∈Bs

δ
(1)
t =

1

T

∑
t∈Bs

δ
(2)
t = δ̄

1

T

∑
t∈Bs

(δ
(i)
t − α

(i)
t )+ = (δ̄ − ᾱ(i))+ i = 1, 2

for a given δ̄ ∈ [0, 1]. For each phase s, we here explicitly
describe such sequence {δ(1)

t , δ
(2)
t }t∈Bs , which is constructed

using a waterfilling-like approach.
We first consider the case where δ̄ ≥ ᾱ(i). At any given

time t = Bs,1,Bs,2, · · · ,Bs,T , we set

δ
(i)
t =

{
T (δ̄−ᾱ(i))−∆δ,t+α

(i)
t if β(i)

t ≥T (δ̄−ᾱ(i))−∆δ,t+α
(i)
t

β
(i)
t if β(i)

t <T (δ̄−ᾱ(i))−∆δ,t+α
(i)
t

where ∆δ,t is initialized to zero (∆δ,Bs,1 = 0), and is updated
each time, so that the calculation of δ(i)

t+1, uses

∆δ,t+1 = ∆δ,t + δ
(i)
t − α

(i)
t .

In the end, the solution takes the form

δ
(i)
t =


β

(i)
t , t = Bs,1, · · · ,Bs,τ ′−1

T (δ̄−ᾱ(i))+α
(i)
t −

∑τ ′−1
`=1 (β

(i)
Bs,`−α

(i)
Bs,`), t = Bs,τ ′

α
(i)
t , t = Bs,τ ′+1, · · · ,Bs,T

where τ ′ is a function12 of the quality exponents during phase
s. This design of {δ(i)

t }t∈Bs satisfies (47),(48), as well as (49),
since, for the case where δ̄ − ᾱ(i) ≥ 0, we deliberate forced
δ

(i)
t − α

(i)
t ≥ 0, t ∈ Bs.

Similarly for δ̄ ≤ ᾱ(i), we set

δ
(i)
t =

{
α

(i)
t if α

(i)
t ≤ T δ̄ −∆δ,t

T δ̄ −∆δ,t if α
(i)
t > T δ̄ −∆δ,t

where ∆δ,t is initialized to zero, and is updated as

∆δ,t+1 = ∆δ,t + δ
(i)
t .

12Note that there is no need to explicitly describe τ ′, because the schemes
are explicitly described as a function of the above δ

(i)
t , which - after

calculation - also reveal τ ′ which - by design - falls within the proper range.

In the end, in this case, the solution takes the form

δ
(i)
t =


α

(i)
t , t = Bs,1, · · · ,Bs,τ ′−1

T δ̄ −
∑τ ′−1
`=1 α

(i)
Bs,` , t = Bs,τ ′

0, t = Bs,τ ′+1, · · · ,Bs,T

where again τ ′ is a function of the quality exponents during
phase s. This satisfies (47),(48), as well as (49) since, for the
case where δ̄−ᾱ(i) ≤ 0, we again have δ(i)

t −α
(i)
t ≤ 0, t ∈ Bs.

B. Encoding and decoding details for steps in equa-
tions (66) , (68)

We here elaborate on how the users will be able to decode
the amount of feedback bits described in equations (66) and
(68). We first provide the following lemma, which holds for
any T .

Lemma 2: Let

ȳ
(1)
t = ct + P

δ
(2)
t
2 z̄

(1)
t , (101)

ȳ
(2)
t = ct + P

δ
(1)
t
2 z̄

(2)
t , t = 1, 2, · · · ,T (102)

where E[|ct|2] ≤ P , Pr(|z̄(i)
t |2 > P ε)

.
= 0, and

1
T

∑T
t=1 δ

(i)
t ≤ δ̄∗ for a given δ̄∗ ∈ [0, 1], i = 1, 2. Also

let r, 1 − δ̄∗ − ε for a vanishingly small but positive ε > 0,
and consider communication over T channel uses. Then for
any rate up to R = r logP − o(logP ) (bits/channel use), the
probability of error can be made to vanish with asymptotically
increasing SNR.

Proof: We will draw each T -length codevector

c,[c1, · · · , cT ]T

from a lattice code of the form

{θMq | q ∈ ℵ} (103)

where ℵ ⊂ CT is the T -dimensional 2R-QAM constellation,
where M ∈ CT×T is a specifically constructed unitary matrix
of algebraic conjugates that allows for the non vanishing
product distance property (to be described later on - see for
example [37]), and where

θ = P
1−r
2 = P (δ̄∗+ε)/2 (104)

is designed to guarantee that E||c||2 .
= P (to derive this value

of θ, just recall the QAM property that E||q||2 .
= 2R

.
= P r).

Specifically for any two codevectors c = [c1, · · · , cT ]T, c? =
[c?1, · · · , c?T ]T, M is designed to guarantee that

T∏
t=1

|(ct − c?t )|2 ≥̇ θ2T . (105)

This can be readily done for all dimensions T by, for example,
using the proper roots of unity as entries of a circulant M
(cf. [37]), which in turn allows for the above product - before
normalization with θ - to take non-zero integer values.



In the post-whitened channel model at user i = 1, 2, we
have

¯̄y(1) ,diag(P−δ
(2)
1 /2, · · · , P−δ

(2)
T /2)ȳ(1)

= diag(P−δ
(2)
1 /2, · · · , P−δ

(2)
T /2)c + z̄(1)

¯̄y(2) ,diag(P−δ
(1)
1 /2, · · · , P−δ

(1)
T /2)c + z̄(2)

where, as we have stated, the noise z̄(i) has finite power in
the sense that

Pr(||z̄(i)||2 > P ε)→ 0. (106)

At the same time, after whitening at each user, the codeword
distance for any two codewords c, c?, is lower bounded as

||diag(P−δ
(i)
1 /2, · · · , P−δ

(i)
T /2)(c− c?)||2

=

T∑
t=1

|P−δ
(i)
t /2(ct − c?t )|2

.
≥

T∏
t=1

|P−δ
(i)
t /2(ct − c?t )|2/T (107)

= P−
1
T

∑T
t=1 δ

(i)
t

T∏
t=1

|(ct − c?t )|2/T

.
≥P− 1

T

∑T
t=1 δ

(i)
t θ2 (108)

≥ P−δ̄
∗
P δ̄
∗+ε = P ε (109)

for i = 1, 2, where (107) results from the arithmetic-mean
geometric-mean inequality, (108) is due to (105), and where
(109) uses the assumption that 1

T

∑T
t=1 δ

(i)
t ≤ δ̄∗. Setting ε

positive but vanishingly small, combined with (106), proves
the result.

At this point, we use the lattice code of the above lemma, to
design the T -length vector c transmitted during phase s. This
encoding guarantees successful decoding of this vector, at both
users, at a rate R = r logP − o(logP ), where r = 1 − ᾱ(2)

for phase S, else r = 1− δ̄ (ε is set positive but vanishingly
small, recall (66), (68)). We note that for phase S, user i = 1, 2

can linearly transform their signal observations {y(i)
t }t∈BS

(cf. (63),(64)) to take the form in (101),(102), while for
phase s = 1, 2, · · · , S−1, user i = 1, 2 can linearly transform
their signal observations {y(i)

t − ¯̌ι
(i)
t }t∈Bs (after removing the

interference ¯̌ι
(i)
t , cf. (67),(51),(52)), again to take the form

in (101) , (102).
Finally we note that the achievable rate is determined by the

exponent average 1
T

∑T
t=1 δ

(i)
t and not by the instantaneous

exponents δ(i)
t .

VIII. APPENDIX - DISCUSSION ON INDEPENDENCE OF
ESTIMATION ERROR AND PAST ESTIMATES

The assumption is consistent with a large family of channel
models ranging from the fast fading channel (i.i.d in time),
to the correlated channel as this was presented in [4]13, and

13Note that our assumption is softer than the assumption in [4] where
{{ĥt,t′ , ĝt,t′}tt′=1

,ht, gt}
t∗−1
t=1 ↔ {ĥt∗,t∗ , ĝt∗,t∗} ↔ {ht∗ , gt∗} was

assumed to be a Markov chain; an assumption which may not directly hold
in block fading settings where for example, having ht∗−1 = ht∗ (resp.
gt∗−1 = gt∗ ), breaks the chain {ht∗−1, gt∗−1} ↔ {ĥt∗,t∗ , ĝt∗,t∗} ↔
{ht∗ , gt∗}.

even the quasi-static slow fading model where the CSIT
estimates are successively refined over time. Successive CSIT
refinement - as this is treated in [1] - considers an incremental
amount of quantization bits that progressively improve the
CSIT estimates. For example, focusing on the estimates of
channel h1, the quality of this estimate would improve in time,
with a successive refinement that would entail

h1 = ĥ1,1 + h̃1,1

= ĥ1,1 +
ˆ̃
h1,1,2︸ ︷︷ ︸

ĥ1,2

+h̃1,2

= ĥ1,1 +
ˆ̃
h1,1,2 +

ˆ̃
h1,2,3︸ ︷︷ ︸

ĥ1,3

+h̃1,3

...

where

h̃1,t′ ,
ˆ̃
h1,t′,t′′ + h̃1,t′′

and where ˆ̃
h1,t′,t′′ denotes the estimate correction that happens

between time t′ and t′′.
Generalizing this to the estimate of any channel ht, and

accepting that the estimate correction ˆ̃
ht,t′,t′′ and estimate

error h̃t,t′′ are statistically independent, allows that the es-
timation error h̃t,t′′ of ht is independent of the previous and
current estimates {ĥt,τ}τ≤t′′ , which in turn allows for the
aforementioned assumption to hold even for the block fading
channel model.

As a side note, even though we consider the quantification of
CSIT quality as in (39), we note that our results can be readily
extended to the case where we estimate channel directions
(phases), in which case we would simply consider 1

||ht||ht =

ĥt + h̃t,
1
||gt||

gt = ĝt + g̃t (cf. [19]).

IX. APPENDIX - PROOF OF COROLLARY 1G

In the presence of a constraint on αTc but not on β, we
can raise β such that β ≥ 1+2ᾱ

3 , in which case we have that
ᾱ = 3d − 2 (cf. Corollary 1a), and 1+2ᾱ

3 = 2d − 1, which
allows us to reach

α1 = · · · = αγTc = 0, αγTc+1 = · · · = αTc = 2d− 1 = β

after setting (1− γ)αTc = ᾱ = 3d− 2.
In the presence of a constraint on β but not on αTc , when

β < 1+2ᾱ
3 , then Corollary 1a gives that β = 2d − 1, which

means that ᾱ ≥ 3β−1
2 = 3d − 2, which in turn allows us to

set αTc = β = 2d− 1 and get

α1 = · · · = αγTc = 0, αγTc+1 = · · · = αTc = β = 2d− 1.

Finally in the absence of any constraint on αTc and β, we
can set αγTc+1 = · · ·αγTc = 1 = β for the maximum γ that
allows for the desired average to hold.



REFERENCES

[1] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE
Trans. Inf. Theory, vol. 52, no. 11, pp. 5045 – 5060, Nov. 2006.

[2] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO
achievable rates with downlink training and channel state feedback,”
IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2845 – 2866, Jun. 2010.

[3] M. A. Maddah-Ali and D. N. C. Tse, “Completely stale transmitter
channel state information is still very useful,” IEEE Trans. Inf. Theory,
vol. 58, no. 7, pp. 4418 – 4431, Jul. 2012.

[4] S. Yang, M. Kobayashi, D. Gesbert, and X. Yi, “Degrees of freedom
of time correlated MISO broadcast channel with delayed CSIT,” IEEE
Trans. Inf. Theory, vol. 59, no. 1, pp. 315–328, Jan. 2013.

[5] T. Gou and S. Jafar, “Optimal use of current and outdated channel state
information: Degrees of freedom of the MISO BC with mixed CSIT,”
IEEE Communications Letters, vol. 16, no. 7, pp. 1084 – 1087, Jul.
2012.

[6] H. Maleki, S. Jafar, and S. Shamai, “Retrospective interference align-
ment over interference networks,” IEEE Journal of Selected Topics in
Signal Processing, vol. 6, no. 3, pp. 228 – 240, Mar. 2012.

[7] A. Lapidoth, S. Shamai, and M. A. Wigger, “On the capacity of fading
MIMO broadcast channels with imperfect transmitter side-information,”
in Proc. Allerton Conf. Communication, Control and Computing, Sep.
2005.

[8] M. Kobayashi, S. Yang, D. Gesbert, and X. Yi, “On the degrees of
freedom of time correlated MISO broadcast channel with delayed CSIT,”
in Proc. IEEE Int. Symp. Information Theory (ISIT), Jul. 2012.

[9] G. Caire and S. Shamai, “On the achievable throughput of a multiantenna
Gaussian broadcast channel,” IEEE Trans. Inf. Theory, vol. 49, no. 7,
pp. 1691 – 1706, Jul. 2003.

[10] S. Jafar and A. Goldsmith, “Isotropic fading vector broadcast channels:
The scalar upper bound and loss in degrees of freedom,” IEEE Trans.
Inf. Theory, vol. 51, no. 3, pp. 848 – 857, Mar. 2005.

[11] C. Huang, S. A. Jafar, S. Shamai, and S. Vishwanath, “On degrees of
freedom region of MIMO networks without channel state information
at transmitters,” IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 849 – 857,
Feb. 2012.

[12] A. Lapidoth and S. Shamai, “Fading channels: how perfect need “perfect
side information” be?” IEEE Trans. Inf. Theory, vol. 48, no. 5, pp. 1118
– 1134, May 2002.

[13] R. Tandon, S. A. Jafar, S. Shamai, and H. V. Poor, “On the synergistic
benefits of alternating CSIT for the MISO BC,” Aug. 2012, to appear
in IEEE Trans. Inform. Theory, available on arXiv:1208.5071.

[14] N. Lee and R. W. Heath Jr., “Not too delayed CSIT achieves the optimal
degrees of freedom,” in Proc. Allerton Conf. Communication, Control
and Computing, Oct. 2012.

[15] C. S. Vaze and M. K. Varanasi, “The degrees of freedom region of
two-user and certain three-user MIMO broadcast channel with delayed
CSI,” Dec. 2011, submitted to IEEE Trans. Inf. Theory, available on
arXiv:1101.0306.

[16] A. Ghasemi, A. S. Motahari, and A. K. Khandani, “On the degrees of
freedom of X channel with delayed CSIT,” in Proc. IEEE Int. Symp.
Information Theory (ISIT), Jul. 2011.

[17] M. J. Abdoli, A. Ghasemi, and A. K. Khandani, “On the degrees of
freedom of three-user MIMO broadcast channel with delayed CSIT,” in
Proc. IEEE Int. Symp. Information Theory (ISIT), Jul. 2011.

[18] A. Ghasemi, A. S. Motahari, and A. K. Khandani, “Interference align-
ment for the MIMO interference channel with delayed local CSIT,” Feb.
2011, available on arXiv:1102.5673v1.

[19] J. Xu, J. G. Andrews, and S. A. Jafar, “Broadcast channels with
delayed finite-rate feedback: Predict or observe?” IEEE Trans. Wireless
Commun., vol. 11, no. 4, pp. 1456 – 1467, Apr. 2012.

[20] Y. Lejosne, D. Slock, and Y. Yuan-Wu, “Degrees of freedom in the
MISO BC with delayed-CSIT and finite coherence time: A simple
optimal scheme,” in Proc. IEEE Int. Conf. on Signal Processing,
Communications and Control (ICSPCC), Aug. 2012.

[21] X. Yi, S. Yang, D. Gesbert, and M. Kobayashi, “The degrees of freedom
region of temporally-correlated MIMO networks with delayed CSIT,”
Nov. 2012, submitted to IEEE Trans. Inform. Theory, available on
arXiv:1211.3322.

[22] J. Chen and P. Elia, “MISO broadcast channel with delayed and evolving
CSIT,” Nov. 2012, to appear in ISIT13, available on arXiv:1211.1622.

[23] J. Chen, S. Yang, and P. Elia, “On the fundamental feedback-vs-
performance tradeoff over the MISO-BC with imperfect and delayed
CSIT,” 2013, to appear in ISIT13, available on arXiv:1302.0806.

[24] P. de Kerret, X. Yi, and D. Gesbert, “On the degrees of freedom of the
K-user time correlated broadcast channel with delayed CSIT,” 2013, to
appear in ISIT13, available on arXiv:1301.2138.

[25] C. Hao and B. Clerckx, “Imperfect and unmatched CSIT is still useful
for the frequency correlated MISO broadcast channel,” Feb. 2013, to
appear in ICC13, available on arXiv:1302.6521.

[26] A. Vahid, M. A. Maddah-Ali, and A. S. Avestimehr, “Capacity results
for binary fading interference channels with delayed CSIT,” Jan. 2013,
submitted to IEEE Trans. Inform. Theory, available on arXiv:1301.5309.

[27] J. Chen and P. Elia, “MIMO BC with imperfect and delayed channel
state information at the transmitter and receivers,” Jun. 2013, to appear
in Proc. IEEE 14th Workshop on Signal Processing Advances in Wireless
Communications (SPAWC13).

[28] A. Lozano, R. W. Heath Jr., and J. G. Andrews, “Fundamental limits of
cooperation,” 2013, to appear in IEEE Trans. Inf. Theory, available on
arXiv:1204.0011.

[29] Y. Lejosne, D. Slock, and Y. Yuan-Wu, “NetDoFs of the MISO broadcast
channel with delayed CSIT feedback for finite rate of innovation channel
models,” 2013, to appear in ISIT13.

[30] J. Chen and P. Elia, “Degrees-of-freedom region of the MISO broadcast
channel with general mixed-CSIT,” in Proc. Information Theory and
Applications Workshop (ITA), Feb. 2013.

[31] ——, “Can imperfect delayed CSIT be as useful as perfect delayed
CSIT? DoF analysis and constructions for the BC,” in Proc. Allerton
Conf. Communication, Control and Computing, Oct. 2012.

[32] T. Cover and J. Thomas, Elements of Information Theory, 2nd ed. New
York: Wiley-Interscience, 2006.

[33] H. Weingarten, T. Liu, S. Shamai, Y. Steinberg, and P. Viswanath,
“The capacity region of the degraded multiple-input multiple-output
compound broadcast channel,” IEEE Trans. Inf. Theory, vol. 55, no. 11,
pp. 5011 – 5023, Nov. 2009.

[34] A. Adhikary, H. C. Papadopoulos, S. A. Ramprashad, and G. Caire,
“Multi-user MIMO with outdated CSI: Training, feedback and schedul-
ing,” in Proc. Allerton Conf. Communication, Control and Computing,
Sep. 2011.

[35] M. Kobayashi and G. Caire, “On the net DoF comparison between ZF
and MAT over time-varying MISO broadcast channels,” in Proc. IEEE
Int. Symp. Information Theory (ISIT), Jul. 2012.

[36] O. El Ayach, A. Lozano, and R. W. Heath Jr., “On the overhead
of interference alignment: Training, feedback, and cooperation,” IEEE
Trans. Wireless Commun., vol. 58, no. 11, pp. 4192 – 4203, Nov. 2012.

[37] J. Boutros, E. Viterbo, C. Rastello, and J. C. Belfiore, “Good lattice
constellations for both Rayleigh fading and Gaussian channels,” IEEE
Trans. Inf. Theory, vol. 42, no. 2, pp. 501 – 518, Mar. 1996.


