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ABSTRACT

This paper focuses on the initial slot timing acquisition in DS-CDMA with bursty pilot

signals, when the propagation channel is a�ected by multipath and by fading. Subject to

certain simplifying working assumptions, we obtain a nice form for the likelihood function

and we derive the maximum likelihood estimator by solving a constrained maximization

problem via the Lagrange-Kuhn-Tucker method. Our maximum likelihood slot timing

estimator has linear complexity in the observation window length (i.e., constant complex-

ity per observation sample). The relation to other estimation methods is addressed, and

performance comparisons are provided by simulation. When our assumptions are not

satis�ed, the performance of the proposed estimator may deteriorate. Then, we provide

an extremely simple method to cope with the model mismatch. The resulting estimator

o�ers good results over all fading channels with delay spread not larger than a given

maximum spread. Finally, the computation of the Cramer-Rao bound for slot timing

estimation based on bursty pilot signals is addressed.
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Abstract

This paper focuses on the initial slot timing acquisition in DS-CDMA with bursty

pilot signals, when the propagation channel is a�ected by multipath and by fading.

Subject to certain simplifying working assumptions, we obtain a nice form for the

likelihood function and we derive the maximum likelihood estimator by solving a

constrained maximization problem via the Lagrange-Kuhn-Tucker method. Our

maximum likelihood slot timing estimator has linear complexity in the observation

window length (i.e., constant complexity per observation sample). The relation to

other estimation methods is addressed, and performance comparisons are provided

by simulation. When our assumptions are not satis�ed, the performance of the

proposed estimator may deteriorate. Then, we provide an extremely simple method

to cope with the model mismatch. The resulting estimator o�ers good results over

all fading channels with delay spread not larger than a given maximum spread.

Finally, the computation of the Cramer-Rao bound for slot timing estimation based

on bursty pilot signals is addressed.

Keywords: Synchronization, CDMA systems, Fading channels.

1 Introduction and Motivation

In wireless mobile communication systems a mobile terminal (MT) must acquire the time

reference of the base station (BS) before starting communication. When data transmission

occurs with a slot structure the basic time reference is slot timing. In third generation

wireless communication systems initial synchronization is facilitated by a pilot signal

transmitted by the BS. In particular, all BSs transmit a common synchronization signal

(with di�erent time o�sets). When the MT is switched on, it detects the presence and

the timing of this signal. If the slot time reference of at least one BS is successfully

acquired, the MT searches for some secondary synchronization signals carrying additional

information (frame synchronization, BS identi�cation, etc ...). Once the BS is identi�ed,

the MT can send a call request on the BS random access channel.

In both frequency-division duplex and time-division duplex modes of UMTS [1, 2],

the synchronization signal is bursty, i.e., it is non-zero only for a small fraction of time.

In particular, the primary synchronization signal consists of the same bursty pilot signal

repeated inde�nitely.

Motivated by this scheme, we consider the general problem of initial slot timing acqui-

sition in a DS-CDMA system with a bursty pilot signal. We restrict our treatment to the

case where there is exactly one transmitting BS. 1 Many algorithms for timing estimation

have been derived in case of at fading channels (e.g., see [3, 4, 5] and references therein).

A simple approach to the case of multipath channels is to apply the same algorithms de-

veloped for at fading, hoping that the estimator will lock to the timing of at least one of

1The more general problem where the number of transmitting BSs can be zero or larger than one will

be addressed in [17].
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the propagation paths. Other works derive timing estimators in the presence of multipath

fading by making quite restrictive assumptions on the a priori knowledge of the channel

statistics. For example, in [6] an ML timing estimator is derived by assuming that the

channel multipath intensity pro�le (MIP) is known at the receiver, and in [7, 8, 5] the

ML criterion is applied by modeling the channel as unknown but constant. We observe

that in practice the multipath intensity pro�le is not known before initial acquisition, and

that, since the initial synchronization phase may last several slots, the algorithms based

on the constant channel assumption might perform poorly in the presence of time-varying

fading.

In this paper, we obtain a low-complexity slot timing estimator requiring a minimum

amount of prior knowledge and yielding good performances. The channel is modeled

as a set of random Rayleigh fading discrete multipath components and the noise plus

interference is modeled as a zero-mean white Gaussian process. Since both the channel

multipath intensity pro�le and the noise plus interference power spectral density are not

known at the receiver, we formulate a joint ML problem where all these parameters are

estimated. Then, we derive the maximum likelihood estimator by solving a constrained

maximization problem via Lagrange-Kuhn-Tucker (LKT) conditions. In order to obtain a

tractable solution we make several simplifying working assumptions. When these are not

satis�ed, our estimator is not exactly ML and may su�er from mismatch. We address this

problem and provide a heuristic modi�ed estimator that copes with the model mismatch,

and provides good results over all fading channels with delay spread not larger than a given

maximum spread. The proposed estimator is compared to the overly optimistic algorithm

of [6] and to the simple algorithm that selects the maximum of the squared magnitude of

the matched �lter output. The calculation of the Cramer-Rao bound (CRB) for the case

of a bursty pilot signal is also addressed in detail.

2 Signal Model

The continuous-time baseband received signal in given by

y(t) = x(t; �) + v(t) (1)

where v(t) represents noise plus interference, modeled as a zero-mean complex circularly-

symmetric Gaussian process with power spectral density I0, and x(t; �) is the received

synchronization signal component, given by

x(t; �) =

M�1X
m=0

Z
h(t; t� �)s(� � � �mT )d� (2)

where � is the slot timing to be estimated, s(t) is the bursty pilot waveform of duration Ts,

T � Ts is the period of repetition of s(t), h(t; �) is the time-varying multipath channel

impulse response and M is the number of transmitted pilot bursts.
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The channel is wide-sense stationary uncorrelated scattering (WSS-US [9]) Rayleigh

fading with discrete multipath impulse response

h(t; �) =

P�1X
p=0

cp(t)�(� � �p) (3)

Since Ts is much shorter than T , we assume that the channel coherence time [9] satis�es

Ts < Tcoh � T . This implies that the channel is almost constant during each m-th

burst, but changes independently from burst to burst. 2 Therefore, x(t; �) in (2) can be

conveniently rewritten as

x(t; �) =

M�1X
m=0

P�1X
p=0

cmps(t� � � �p �mT ) (4)

where cmp are complex zero-mean circularly-symmetric Gaussian mutually uncorrelated

random variables such that Efcmpc�nqg = �
2
p�m;n�p;q. The channel MIP is de�ned by the

delays � = (�0; : : : ; �P�1) and by the variances � = (�2
0; : : : ; �

2
P�1). Notice that � must

be estimated modulo T , and that without loss of generality we can consider �0 = 0.

The pilot waveform is given by

s(t) =

N�1X
n=0

sn (t� nTc) (5)

where Tc is the chip period, sn is a sequence of N chips known at the receiver and  (t)

is a root-raised-cosine [9] chip-shaping pulse with roll-o� � 2 [0; 1] (e.g., � = 0:22 in

UMTS). In a digital receiver implementation the signal is low-pass �ltered and sampled

at a convenient rate W > (1 + �)=(2Tc). Hence, baseband processing is performed in

discrete time. We assume W = nc=Tc, where nc > 1 is the number of samples per chip.

Let Q = WT denote the number of samples per pilot repetition period, and de�ne the

discrete-time observed signal

y = (y[0]; : : : ; y[MQ� 1])T

After a straightforward but tedious derivation, it is possible to write y in the compact

form

y = S(�; � )c + v (6)

where

1. v = (v[0] : : : v[MQ� 1])T is the interference plus noise sampled vector.

2We assume that the delays �p are constant over the whole observation window of durationMT . This

is satis�ed in practice since the multipath delays vary at a rate much slower than the slot rate.
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2. c = (c00; : : : ; c0(P�1); c10; : : : ; c1(P�1); : : : ; c(M�1)0; : : : ; c(M�1)(P�1))
T is the vector

containing all MP channel path coe�cients over the M periods.

3. S(�; � ) is the MQ �MP matrix whose mp-th column, for m = 0; : : : ;M � 1 and

p = 0; : : : ; P � 1, is given by

smp(�) = (0; : : : ; 0| {z }
mQ

; sp[0]; : : : ; sp[Q� 1]; 0; : : : ; 0| {z }
(M�m�1)Q

)T (7)

where

sp[i] =
1

p
W

N�1X
n=0

sn (i=W � � � �p � nTc)

Since the columns of S(�; � ) are obtained by translating the same waveform, they have

all the same square magnitude, equal to the energy Es of the pilot waveform. Then,

without loss of generality we can include the term Es into the channel path variances �2
p,

and consider jsmp(�)j2 = 1 for all m; p and �. Under our assumptions, y is a zero-mean

complex circularly-symmetric Gaussian random vector with covariance matrix

Ryy = S(�; � )�ccS
H(�; � ) + I0I (8)

where �cc is the diagonal matrix

�cc = IM 
��2

with ��2 = diag(�2
0; : : : ; �

2
P�1) (
 denotes Kronecker product and IM denotes theM�M

identity matrix).

3 Maximum Likelihood Problem Formulation

The log-likelihood function for the parameters (�; � ; �; I0) is immediately obtained as

L(yj�; � ; �; I0) = � log det(Ryy)� y
H
R

�1
yy
y (9)

In order to proceed further in the derivation we need to �nd an analytical expression for

both the determinant and the inverse covariance matrix in (9). By applying the matrix

inversion lemma [10] to (8) we get

R
�1
yy

=
1

I0

"
I�

1

I0
S�1=2

cc

�
I+

1

I0
�1=2
cc
S
H
S�1=2

cc

�
�1

�1=2
cc
S
H

#
(10)

where we write S instead of S(�; � ) for the sake of notation simplicity. Now, we make

the key working assumption that the delays �p are su�ciently far apart (say, more than
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Tc) and that the chip sequence sn has good acyclic autocorrelation properties so that the

columns of S can be considered mutually orthogonal. This assumption is motivated by

the fact that in practice the chip sequence sn is quite long (N = 256 in UMTS) and that

paths spaced by less than one chip interval are substantially treated as a single path (they

are not resolvable [9]). Thus, (10) reduces to

R
�1
yy

=
1

I0

�
I� S��1

S
H
�

(11)

where

��1 = IM 
 diag

�
�
2
0

�2
0 + I0

; : : : ;
�
2
P�1

�2
P�1 + I0

�
Subject to the assumption of orthonormal columns of S the determinant of Ryy is readily

obtained as

det(Ryy) =

"
P�1Y
p=0

(�2
p + I0)

#M
I
M(Q�P )
0 (12)

By substituting (10) and (12) into (9) and by de�ning the average signal-to-interference

plus noise ratio per path �p = �
2
p=I0 and the total received energy Ey = jyj2, we obtain

the log-likelihood function in the form

L(yj�; � ; �; I0) =
1

I0

"
P�1X
p=0

�p

�p + 1

M�1X
m=0

jsHmp(�)yj
2 � Ey

#
�MQ log I0 �M

P�1X
p=0

log(�p + 1)

(13)

where � = (�0; : : : ; �P�1).

In order to �nd the ML estimate of the slot timing �, we should jointly estimate also

the other unknown parameters � ; � and I0. The lack of knowledge of the delays �p's

represents the major hurdle in the evaluation of the expression (13). In order to obtain

a low-complexity solution, we make the working assumption that the delays are equally

spaced by the chip interval Tc, i.e., that �p = pTc for p = 0; : : : ; dTd=Tce � 1, where Td is

the channel delay spread.

Remark 1. Regarding this assumption, some comments are in order. First, we notice

that modeling multipath fading channels as chip-spaced FIR �lters with uncorrelated taps

is fundamentally wrong, since chip-spacing and uncorrelated taps are contrasting issues.

In fact, by low-pass �ltering, sampling and truncating a WSS-US channel with arbitrary

delays �p we obtain a FIR random �lter with correlated taps. We hasten to say that ours

is just a working assumption, in order to simplify the likelihood function. In general, the

channel does not satisfy this condition and our estimator is mismatched (this point is
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discussed further in the following). Second, we observe that, implicitly, the number of

paths is considered as known and equal to dTd=Tce. The maximum channel delay spread

Td is an a priori known parameter, since the system is designed to work up to this delay

spread. However, depending on the propagation environment, the actual delay spread

might be considerably less than Td. In order to stress the fact that dTd=Tce is not the true
number of channel paths, but just the maximum number of resolvable paths, we denote

this by L instead of P . This is a second source of mismatch for the resulting timing

estimator. A robust estimator should provide good performances over all channels with

delay spread not larger than Td. �

In light of the above assumption, the likelihood function (13) takes the form

L(yj�; �; I0) =
1

I0

"
L�1X
l=0

�l

�l + 1
Xl(�)� Ey

#
�MQ log I0 �M

L�1X
l=0

log(�l + 1) (14)

where we let

Xl(�) =

M�1X
m=0

jsHml(�)yj
2 (15)

and where sml(�) is de�ned as smp(�) in (7) with �p = lTc.

Remark 2. The term Xl(�) is obtained by summing for m = 0; : : : ;M � 1 the squared

magnitude of the output of a discrete time �lter with impulse response matched to the

delayed pilot waveform s(t� ��mT � lTc). Then, Xl(�) is the output of a sort of square-

law diversity combiner [9] collecting the signal energy over the M pilot repetition periods,

for a given guess of the timing � and multipath component with delay lTc. �

4 Maximum Likelihood Estimator

In order to maximize the likelihood function (14) we �nd the maximum with respect to

� and I0 for all possible �, and then we select the overall maximum with respect to �.

For �xed �, the constrained maximization problem�
maximize L(yj�; �; I0)
subject to � � 0; I0 � 0

(16)

can be solved by using the LKT conditions [11]. Necessary condition for (�; I0) be a

(local) constrained maximum point of L(yj�; �; I0) is that

@

@�i
L(yj�; �; I0) � 0 i = 0; : : : ; L� 1

@

@I0
L(yj�; �; I0) � 0 (17)
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where the inequality for �i (resp. for I0) holds with equality if �i > 0 (resp. if I0 > 0).

The solution of the system of equations (17) yields

�l =

�
1

�
Xl � 1

�
+

; I0 = �=M (18)

where � is de�ned by

� =
Ey �

P
l2DXl

Q� jDj
(19)

and where we de�ne the set of indexes D = fl 2 [0; L � 1] : Xl > �g. In the above

equations, [�]+ denotes positive part, jDj denotes the cardinality of the set D and we used

Xl instead of Xl(�) for the sake of notation simplicity.

Remark 3. The solution given by (18) and (19) has the following nice interpretation: �

acts as an adaptive threshold level. As explained before, Xl represents the signal energy

corresponding to the l-th delay, for a given tentative timing �. If Xl > � then the l-th

delay is a good candidate for being a true channel path. �

Next, we have to prove that (18) is actually the global maximizer of L(yj�; �; I0). We

proceed by �rst showing that (18) exists and its is the unique solution of (17). Then, by

inspection of the likelihood function, we prove that it must be the unique (and therefore

global) maximizer. Interestingly, the proof of existence provides also an e�cient method

for the maximum computation.

Proposition 1. The solution given by (18) and (19) to the system of inequalities (17)

exists and is unique. �

Proof: existence. Consider the permutation � of the integers f0; : : : ; L� 1g sorting
the Xl's in non-increasing order, so that

X�(0) � X�(1) � � � � � X�(L�1)

and de�ne the sets

Dd =
�
i 2 [0; L� 1] : X�(i) > �d

	
where

�d =
Ey �

Pd�1

i=0 X�(i)

Q� d
(20)

The solution (18) exists if the equation jDdj = d holds for some d 2 [0; L].

If X�(0) � �0 then jD0j = 0 and the solution exists. Now, suppose that X�(0) > �0 and

that there exists 1 � d � L� 1 such that X�(d�1) > �d�1 and X�(d) � �d. Then, we have

�d � X�(d) � X�(d+1) � � � � � X�(L�1)
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which yields jDdj � d. In order to establish equality, we need to show that X�(i) > �d for

all for all 0 � i � d� 1. This holds if X�(d�1) > �d. Hence, d is a solution if we can prove

the implication

X�(d�1) > �d�1 ) X�(d�1) > �d (21)

By using the de�nition (20) we can write

X�(d�1) > �d�1

=
Ey �

Pd�2

i=0 X�(i)

Q� d+ 1

=
Q� d

Q� d

 
Ey �

Pd�2

i=0 X�(i)

Q� d+ 1
+

X�(d�1)

Q� d+ 1
�

X�(d�1)

Q� d+ 1

!

=
Q� d

Q� d+ 1
�d +

X�(d�1)

Q� d+ 1
(22)

so that

X�(d�1)

�
1�

1

Q� d+ 1

�
>

Q� d

Q� d+ 1
�d (23)

which proves (21). We conclude that for any 1 � d � L � 1 such that X�(d�1) > �d�1

and X�(d) � �d, the equation jDdj = d is veri�ed. The last case to examine is when

X�(d) > �d for all 0 � d � L � 1. Then, by using again the implication (21), we have

that X�(L�1) > �L so that jDLj = L. Thus, we have shown the existence of a solution

jDdj = d for some 0 � d � L. The corresponding solution (18) of (17) obviously exists

and is obtained by letting D = f�(i) : i = 0; : : : ; d� 1g and � = �d.

Uniqueness. Suppose that there exist d and d0, with d0 > d, such that jDdj = d and

jDd0 j = d
0, i.e., �

X�(i) > �d for 0 � i � d� 1

X�(i) � �d for d � i � L� 1
(24)

and �
X�(i) > �d0 for 0 � i � d

0 � 1

X�(i) � �d0 for d
0 � i � L� 1

(25)

By following the same steps of (22-23) we can show the converse implication of (21),

namely

�d > X�(d) ) �d+1 > X�(d) (26)

Then, starting from (24) we can write the chain of inequalities �d � X�(d) ) �d+1 �
X�(d) � X�(d+1) ) �d+2 � X�(d+1) � X�(d+2) ) � � � ) �d0 � X�(d0

�1), which contradicts

(25). We conclude that the solution must be unique. �
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Proposition 2. The solution given by (18) and (19) to the system of inequalities (17)

is the global maximizer of L(yj�; �; I0) with respect to � and I0 for � given. �

Proof. Let z = (�; I0) and de�ne the function f(z) = L(yj�; �; I0) (seen as a function
of � and I0 only). The function f(z) is not concave. However, it is continuous in the

constrain set z � 0 and f(z) ! �1 if any of its variables grows without bound. By

continuity, the global maximum of f(z) is �nite and the maximizer of f(z) must have all

�nite components, therefore it must satisfy the necessary LKT conditions. Finally, the

existence and uniqueness of a solution for the LKT conditions (17) proved in Proposition

1 implies that this is the global maximizer. �

4.1 ML timing estimator implementation

The proof of Proposition 1 provides also a method to compute

�L(yj�) = max
�;I0

L(yj�; �; I0) (27)

for any given �. Namely, this is given by the following algorithm:

1. Sort X1; : : : ; XL�1 in non-increasing order (let � denote the sorting permutation).

2. If �L < X�(L) then let d = L, otherwise let d = minf0 � i � L� 1 : �i � X�(i)g.

3. Let I0 = �d=M , and ��(i) = X�(i)=�d � 1, for i = 0; : : : ; d � 1 and ��(i) = 0 for

i = d; : : : ; L� 1.

4. Substitute � and I0 found in L(yj�; �; I0) given in (14).

If only the slot timing estimate is needed, explicit computation of the ML estimates of �

and I0 can be avoided. By substituting directly the solution for � and I0 into (14) and

by dropping the terms which do not depend on �, the ML estimate of � is obtained by

b� = arg max
�2[0;T ]

eL(yj�) (28)

where

eL(yj�) = �(Q� d) log�d �
d�1X
i=0

logX�(i) (29)

(the dependence of the RHS of (29) on � is contained in the permutation � and in d; �d
and X�(i)).

As far as implementation is concerned, some consideration are in order.
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� Up to now, we have considered the parameter � as continuous. However, in a

low-complexity digital implementation, the search for the maximum of eL(yj�) is
done on a discrete set of values. The most computationally demanding operation

is the computation of the matched �lter output zml(�) = s
H
ml(�)y involved in the

calculation of Xl (see (15)). Ideally, the estimator must be equipped with a bank

of matched �lters, one for each value of �, whose outputs are sampled with delay

mT + lTc, for m = 0; : : : ;M � 1 and l = 0; : : : ; L� 1. Since the signal is sampled

at rate W = nc=Tc, by discretizing � with step � = 1=(nsW ) we can implement

e�ciently the bank of matched �lters as a polyphase �lter with ns phases. However,

in most practical applications it is su�cient to acquire the slot timing with an error

of less than one chip. Therefore, a very �ne discretization of � is not needed. In our

numerical examples, we discretize � with step 1=W , so that we need just a single

matched �lter operating at the signal sampling rate W , whose output is given by

z[i] =
X
j

y[j]s((j � i)=W )�

By de�nition, we have zml(k=W ) = z[mQ + lnc + k]. The receiver accumulates the

squared matched �lter outputs in a vector bu�er b = (b0; : : : ; bQ�1) such that

bi =

M�1X
m=0

jz[mQ + i]j2

Finally, the search for the maximum in (28) is performed over the discrete values

�k = k=W , for k = 0; : : : ; Q � 1 by processing the data bu�er b (notice that, by

de�nition, Xl(�k) = blnc+k).

� Up to now, we have implicitly assumed that the pilot bursts fall approximately in

the middle of the observation intervals [mT; (m+ 1)T ]. However, the initial timing

reference of the MT is arbitrary, and it may happen that the pilot bursts fall across

the boundaries of the observation intervals. Since the slot timing is de�ned modulo

T , in order to solve this problem it is su�cient to apply the ML algorithm (28) by

treating b as a circular bu�er.

� The complexity of the proposed algorithm is linear in the observation size QM , as

opposed to other timing algorithms based on least-squares or subspace decomposi-

tion, which require matrix-vector multiplication or matrix eigen-analysis.

5 MSE estimator properties

The CRB is a lower bound to the variance of any unbiased estimator [12, 13]. Since we have

no guarantee that our estimator is unbiased (certainly it is not in its quantized version),

comparing the mean-square error (MSE) �2 = E[jb�� �j2] with the CRB for � is question-

able. However, since the estimator works on a sequence of i.i.d. observations (namely,
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the subvectors of y received during the interval [mT; (m + 1)T ], for m = 0; : : : ;M � 1),

from the general properties of ML estimation we have that the unquantized version of b� is
asymptotically unbiased and approaches the CRB as M !1. The variance of the quan-

tized estimator is lower bounded by the quantization error variance, given by �2q =
1
12
W

�2,

where we assume a uniform distribution for � over [�1=(2W ); 1=(2W )].

We model the e�ect of quantization as an independent additive error, uniformly dis-

tributed over [�1=(2W ); 1=(2W )], added to the unquantized ML estimator. Subject to

this assumption, we can lower bound the quantized estimator MSE for large M by

�
2 � CRB + �

2
q (30)

where CRB denotes the Cramer-Rao bound calculated for � = �k (for an arbitrary k 2
[0; Q�1]). In Appendix A, we give the details of the computation of the CRB in the case

of bursty pilot. Obviously, the CRB decreases as the inverse of M (this is also implied by

the fact of having M i.i.d. observations). Therefore, we expect that the performance of

our estimator for su�ciently largeM is dominated by the quantization error. As we shall

show in our simulation, this is not the case for other slot synchronizers. For example, a

slot synchronizer that selects the maximum of the accumulated data bu�er b incurs in

very large synchronization errors for channels with some strong and well separated paths.

6 Results

In our examples, the pilot sequence has length N = 256 and is de�ned by the UMTS

norm [14], and the chip-shaping pulse is root-raised cosine with roll-o� � = 0:22. The

receiver sampling rate is W = 4=Tc and the pilot repetition interval has length Q � 2500

samples (in reality Q may be much larger but we were limited by the simulation time).

As performance measure of timing estimators we use the root-MSE (RMSE). This is

normalized with respect to the chip interval (i.e., it is expressed in fraction of Tc).

We considered the three channels CH1 with MIP given by � 1 = (0; 0:96; 1:92; 2:88),

�1 = (0;�2:3;�6:5;�9:6), CH2 with MIP given by � 2 = (0; 0:9; 2:8; 4:7), �2 = (0;�2;�7;�8:5)
and CH3 with MIP given by � 3 = (0; 4; 20), �3 = (0; 0; 0). The channels CH1 and CH2

are given in [15] while CH3 is given in [16], the delays are normalized with respect to Tc
and variances are expressed in dB.

Figs. 1 and 2 show the timing RMSE vs. the pilot energy to interference plus noise

ratio Es=I0, for M = 5 and M = 20 observation intervals. The CRB plus quantization

limit given in (30) is shown for reference. The proposed estimator is denoted by \JML"

(joint-ML). For the sake of comparison, we considered also the estimator of [6] which

assumes perfect knowledge of the channel MIP (denoted by \ML with known MIP") and

the simple peak detector (denoted by \Max"), consisting of selecting the maximum of the

accumulated data bu�er b, i.e.,

b� = 1

W
arg max

0�i�Q�1
bi
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Interestingly, the unquantized version of this estimator is the ML estimator in the case of

at Rayleigh fading independent from burst to burst. Fig. 3 shows the RMSE vs. M for

Es=I0 = 12 dB, for CH1.

Figs. 4, 5 and 6 show analogous results for CH2, and Fig. 7 shows the RMSE vs. M

for Es=I0 = 12 dB, for CH3.

CH3 is a fairly long channel with equally strong paths. In this case, the Max detector

performs poorly since it selects any path with nearly uniform probability. CH1 and CH2

have delays non-integer multiples of Tc. Then, the JML estimator is mismatched. In this

case, the Max estimator may outperform the JML estimator (as shown by the results for

CH2).

In order to cope with mismatch, we propose a simple modi�cation of our estimator

as follows. Let a be the vector of Q values of the likelihood function eL(yj�) de�ned in

(29), evaluated for � = �k = k=W , for k = 0; : : : ; Q� 1. Then, we can combine the Max

estimator and the JML by forming a linear combination of the vectors a and b as

c = �1a + �2b

where �1 = 1=(maxa �mina) and �2 = 1=(maxb � minb). Finally, the estimated slot

timing is given by

b� = 1

W
arg max

0�i�Q�1
ci

The rationale behind this choice is provided by Fig. 8, where snapshots of a, b and c are

shown (on a normalized scale) for the case of a channel with two separated paths with

equal average strenght with delay spread less than the maximum Td (used by the JML

algorithm). The upper �gure shows a vs. the number of samples. A delay spread shorter

than Td causes the likelihood function to have a at top, whose width is approximately

given by the di�erence between Td and the actual channel delay spread. Because of the

noise, the maximum of a can be located anywhere on the at top, with roughly uniform

probability. This is essentially why the mismatch deteriorates the performance of JML.

The middle �gure shows b vs. the number of samples. Here, as explained before, the two

large peaks are selected by the Max estimator with roughly uniform probability, yielding

a large timing RMSE. The bottom �gure shows c vs. the number of samples. We notice

that the e�ect of the linear combination of a and b is to create a large peak on the at

top of a, and at the same time introduce more margin between the two peaks. In this

way, the estimator based on the maximization of c provides good results for all channels

with delay spread up to Td, and it is robust with respect to the model mismatch.

In Figures from 1 to 6, the RMSE achieved by the modi�ed estimator are denoted by

\JML+Max". We observe that this estimator performs well in all cases, and it is often

close to the ML with known MIP.
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7 Conclusions

Motivated by the initial BS acquisition procedure of UMTS, we considered the problem

of slot timing estimation based on bursty pilot signals. Subject to some simplifying work-

ing assumptions, we derived a low-complexity algorithm based on joint ML estimation

of the slot timing, of the multipath intensity pro�le and of the interference plus noise

power spectral density and we solved the likelihood function maximization by using the

Lagrange-Kuhn-Tucker conditions. We derived also the CRB for the problem at hand,

and we solved some problems related to its numerical computation with very large data

size (typical of wideband CDMA, with high sampling rate and long observation intervals).

Fortunately, the pilot signal burstyness provides the solution. We tested the proposed al-

gorithm in a UMTS environment, by using propagation channels and the synchronization

chip sequence de�ned in the UMTS norm. Comparison with other algorithms such as

the simple peak detection and an ideal algorithm that exploits perfect knowledge of the

channel multipath intersity pro�le are provided. The assumptions of perfect knowledge of

the channel delay spread and of equally chip-spaced multipath components, that are es-

sential in the derivation of our estimator, are not in general satis�ed in reality. Then, the

proposed estimator su�ers from mismatch, which can degrades its performance. For this

reason, we proposed a simple low-complexity heuristic modi�cation that actually makes

the estimator robust to the model mismatch. In conclusions, the proposed modi�ed es-

timator is an attractive solution for the initial synchronization of UMTS-like system,

because of its low complexity, no need for a priori information, and robustness.

APPENDIX

A On the computation of the Cramer-Rao Bound

In this appendix we derive the CRB for the joint ML estimation of the parameters � =

(�;�; � ; I0) de�ning the signal model (6).

We shall limit the evaluation of the CRB to the case of M = 1. Since the subvectors

of y received during the interval [mT; (m+1)T ], for m = 0; : : : ;M�1, are i.i.d., the CRB

for larger M is just 1=M times the CRB computed for M = 1. From the Gaussianity of

the observation, the (i; j) elements of the Fisher information matrix (FIM) J are given

by [13]

[J]i;j = tr

�
R

�1
yy

�
@Ryy

@�i

�
R

�1
yy

�
@Ryy

@�j

��
(31)

where �i denotes the ith element of the parameter vector �. For the case of M = 1 we

de�ne sp(�) = s0p(�) and we get

Ryy =

P�1X
p=0

�
2
psp(�)s

H
p (�) + I0I
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The derivatives of Ryy can be expressed as follows

@Ryy

@�
=

P�1X
p=0

�
2
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= I (32)

In order to compute s0p(�) =
@sp(�)

@�
we write

@s(i=W � � � �p)

@�
= �

N�1X
n=0

sn 
0(i=W � � � �p)

where  0(t) = d (t)

dt
. The partial derivatives

@sp(�)

@�p
are also given by the above expression.

The CRB for � and arbitrary M is obtained as

CRB� =
1

M

�
J�1
�
1;1

(33)

If some elements of � are known, the CRB is computed from the inverse of the reduced

FIM obtained by removing the rows and the columns of J corresponding to the known

parameters. For example, the CRB frothe setting of [6], which assumes �; � and I0

known, is obtained simply by the inverse of the (1; 1)-th element of J.

A.1 Numerical evaluation

In order to compute the elements of the FIM according to (31) the inverse of Ryy is

required. Unfortunately, even by limiting the observation to a single pilot repetition

interval, the Ryy is Q � Q with Q very large. In practical UMTS (see e.g. [14]) Q is

of the order of 2560nc. With nc = 4 samples per chip, this yields Q = 10240. The

computational complexity of calculating R�1
yy can easily become overwhelming and the

result might be numerically ill-conditioned.

We can overcome the above problem by exploiting the special structure of Ryy due to

the fact that the pilot is bursty. In the following, we derive closed form expressions for

the elements of the FIM, which are much less computationally intensive and much better

numerically conditioned.

The covariance matrix of y has the block diagonal structure Ryy = diag(�1;R;�2),

where �1 = I0IL1 with L1 = b�=W c, R is a full matrix with dimensions LR � LR
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and �2 = I0IL1 with L2 = Q � L1 � LR. The size of the middle block R is given

by the length (in samples) of the convolution of the pilot waveform with the multipath

channel, and since the pilot duration is much shorter than T , it satis�es LR � Q. Since

R�1
yy = diag(��1

1 ;R�1
;��1

2 ), only the inverse of the smaller matrix R is needed.

Next, by using the trace relation tr(AB) = tr(BA), with A and B of proper dimen-

sions, and the derivative expressions (32) we obtain explicit expressions for the elements

of the FIM. De�ne ~sp and ~s0p as the non-identically zero subvectors of length LR of sp(�)

and of
@sp(�)

@�
. Then the elements of the FIM are given by
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Despite of the apparent complications, the expressions above allow the computation of

the FIM by mean of a few inner products and the inversion of a LR�LR matrix. Finally,

note that the computational complexity does not increase with the slot length Q.
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Figure 1: Normalized RMSE vs. Es=I0 for CH1, with M = 5 observation intervals.
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Figure 2: Normalized RMSE vs. Es=I0 for CH1, with M = 20 observation intervals.
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Figure 3: Normalized RMSE vs. number of observation intervals M for CH1, with Es=I0
= 12 dB
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Figure 4: Normalized RMSE vs. Es=I0 for CH2, with M = 5 observation intervals.
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Figure 5: Normalized RMSE vs. Es=I0 for CH2, with M = 20 observation intervals.
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Figure 6: Normalized RMSE vs. number of observation intervals M for CH2, with Es=I0
= 12 dB
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Figure 7: Normalized RMSE vs. number of observation intervals M for CH3, with Es=I0
= 12 dB
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Figure 8: Data bu�er, likelihood function and their weighted sum.


