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Abstract—This paper presents OpenAirITS, an open-source
Software-Defined Radio platform for DSRC (802.11p) technology.
We extended the Linux 802.11 subsystem, developed a soft-
modem and a dedicated driver for the OpenAirInterface Express-
MIMO FPGA board. The low-layer PHY functions of DSRC
have not been coded on the chipset, but instead as a soft-modem,
which allows the SDR platform to be easily modified according
to particular experimental objectives. The RF front-end and
Express-MIMO board are reconfigurable to allow a wide range
of options. In this paper, we configure the prototype for a 5Mhz
channel bandwidth at at 800MHz, and provide key performance
metrics of the soft-modem, as well as the DSRC protocol stack.

Index Terms—IEEE 802.11p, DSRC, prototype, Linux 802.11
subsystem, software defined radio, OpenAirInterface, vehicular
communications, ITS.

I. I NTRODUCTION

The perspective of innovative safety and non-safety Intelli-
gent Transportation Systems (ITS) applications motivatedthe
increasing R&D efforts over the past few years to provide
an efficient and reliable dedicated communication system for
vehicular environments based on DSRC/IEEE 802.11 [1].
In the development path, after design and simulation-based
evaluations, prototyping and field operational tests are the
last step before market introduction. It is also the most
challenging and crucial phase, as the developed solutions
face real constraints and challenging vehicular environments,
that simulations cannot reproduce. Several platforms (NEC
LinkBird-MX [2], Denso WSU [3], Cohda MK2 [4],..) are
available, which are also currently under test within largeFOT
projects like Drive C2X [5].

One limitation from the few available platforms is that they
are developed for a particular configuration and bound to
hardware/chipset constraints. This reduces their abilityto keep
up with the dynamic standardization process currently being
conducted. Also, it has also been observed that major improve-
ments could be provided to vehicular communications by ad-
justing or modifying the DSRC lower layers functionalitiesor
parameters. Unfortunately, most of the available experimental
platforms either do not release the source code, or have lower
layer functions directly coded on the chipset. These aspects
either limit or even block the rapid development and test of
innovative techniques to improve vehicular communications.
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by the FP7 NoE Newcom#. EURECOM acknowledges the support of its
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In this paper, we present the implementation and test of
OpenAirITS1, an open-source hardware/SDR DSRC prototype
on the OpenAirInterface platform. The OpenAirInterface flexi-
bleLime RFfront-end andExpressMIMOFPGA board support
static and dynamic frequency changes between 400Mhz and
6GHz, the lower IEEE 802.11 PHY functionalities have been
implemented as a soft-modem, the Linux 802.11 subsystem
has been modified to support the OCB function2, and the pro-
totype is made available to the Linux IP subsystem as a virtual
interface. This paper describes the design methodologies and
the test procedures to evaluate the prototype’s key performance
metrics. We illustrate the experimental capabilities of the
DSRC prototype by selecting an experimental 5MHz band
at 800MHz3, but the platform is fully capable of supporting
10MHz or 20MHz band at 5.9GHz. The platform being open-
source, we provide a tool to the vehicular communication and
flexible radio community for fast prototyping and experimental
validations of DSRC components, connectivity, as well as ITS
applications. Also, benefiting from the flexibleLime RFfront-
end, the prototype may be adapted to the different worldwide
standards (US, EU, Japan), as well as experimental frequencies
or cognitive approaches.

The rest of the paper is organized as follows. Section II
positions this work within related work in DSRC prototyp-
ing, while Section III depicts the general architecture of
the OpenAirITS prototype. In Section IV, we describe the
various developed software components, whereas in SectionV
and Section VI, we present experimental tests respectively
on a single device or by connecting two devices with a
coaxial cable. Finally, Section VII discusses current and future
developments of the prototype.

II. RELATED WORK

Prototyping communication systems for ITS applications is
mostly based on software development kits (e.g. [2], [6]–[8])
modeling the upper-layer functions built on top of communi-
cation platforms (e.g. [2]–[4]). This approach is also followed
by major FOT projects such as Drive C2X [5]. But when the
lower layers also need to be experimentally enhanced, the

1The platform code is available at http://www.openairinterface.org/
2The OCB function in IEEE 802.11-2012 [1] represents the MAC func-

tionalities previously available in the IEEE 802.11p amendment.
3Within the PLATA project, a 5Mhz frequency band at 800MHz hasbeen

selected first to use the same transmit antenna and same configuration for the
RF front-end as the OpenAirInterface LTE transceiver collocated on the same
chipset, but also for its resilience to fading for safety-related communication.



few available open-source platforms usually provide limited
802.11p OFDM functions [9].The prototype described in this
paper is based on an open-source software/hardware platform
OpenAirInterface, and does not only provide a fully functional
OFDM 802.11p but also a modified 802.11p MAC stack.
The choice of OpenAirInterface to implement a DSRC hard-
ware/software prototype is also justified by the compatibility
with the OpenAirInterface’s LTE-A protocol stack.

III. SOFTWARE ARCHITECTURE

Figure 1 illustrates the open-source SDR architecture of our
IEEE 802.11p protocol stack. It is composed of three blocks.
The upper block contains an extension for IEEE 802.11p
of the Linux kernel 802.11 subsystem. This subsystem is
composed ofnl80211, a netlink configuration interface for
user-space applications,cfg80211which is the Linux wireless
configuration interface bridging user-space and drivers and
mac80211which offers a framework for driver developers
writing soft-MAC wireless devices. Themac80211subsystem
is the Linux stack for IEEE 802.11. Due to tight real time
constraints, the 802.11 subsystem only implements basic parts
of the IEEE 802.11 standard, the other parts being usually the
responsibility of manufacturer chipsets.

Fig. 1. IEEE 802.11p protocol stack

The second block is theIEEE 802.11p driver, which bridges
the Linux 802.11 subsystem and the hardware. One major
difference with standard architecture for 802.11 systems,is
that the IEEE 802.11p driver does not link to the chipset
directly, but rather to asoft-modemvia netlink sockets. We
chose this architecture for flexibility in the development and
configuration of the low layer functionalities of the IEEE
802.11p stack and to ease the reconfigurability of our radio.
The soft-modemis the placeholder of all the functionalities of
IEEE 802.11p physical layer. Being located out of the chipset,
it is totally accessible and reconfigurable. The soft-modemis
finally connected to the hardware via an IOCTL link and a
dedicated OpenAirInterface driver, which composes the last
block.

Figure 2 and Figure 3 illustrate the software architecture
for the TX and RX paths, and depict the various functions
and data structures employed by the IEEE 802.11p protocol

stack in kernel space. We will cover them with more details
in the next section.

Kernel hands the packet 
to the virtual interface

ieee80211_subif_start_xmit()
- Adds the 802.11 header

ieee80211_xmit() ieee80211_tx()

ieee80211p_tx(struc ieee80211_hw *hw, struct sk_buff *skb)

PHY-TXSTART.request(TXVECTOR)
TXVECTOR

LENGTH (12 bits)
DATA RATE (3 bits)
SERVICE (16 bits)
TXPWR_LEVEL (3 bits)

PHY-DATA.request(DATA)

mac80211 subsystem

ieee80211p driver

ieee80211p soft modem
Netlink socket handler

Fig. 2. IEEE 802.11p TX Path

netif_receive_skb()
Delivers skb to the 
local stack

ieee80211_deliver_skb()
ieee80211_prepare_
and_rx_handle()

ieee80211_rx()

ieee80211p_tasklet_rx(struc ieee8021p_device_priv *priv)

PHY-RXSTART.indication(RXVECTOR)

RXVECTOR
LENGTH (12 bits)
DATA RATE (3 bits)
SERVICE (null)
RX_RSSI (8 bits)

mac80211 subsystem

ieee80211p driver

ieee 802.11p soft modem PHY-RXEND.indication(DATA,RXERROR)

RXERROR
NoError
FormatViolation
CarrierLost
UnsupportedRate

Netlink socket handler

Fig. 3. IEEE 802.11p RX Path

IV. SOFTWARE COMPONENTS

We describe in this section some details of the software
components in each block.

A. Linux 802.11 subsystem

According to the IEEE 802.11-2012 standard [1], when the
flag dot11OCBActivatedis set totrue, the Linux 802.11 sub-
system may accept communications conducted outside of the
context of a basic service set (OCB mode), and as such, may
bypass the scanning, authentication and association stepsof the
IEEE 802.11 state machine. As this mode is strongly related
to the capability of the IEEE 802.11 chipset (frequency, half-
rate etc..), the driver should also indicate it to the subsystem
with a flag IEEE80211HW DOT11OCBSUPPORTEDto 1.

We modified the Linux 802.11 subsystem accordingly, and
also added missing ITS frequency bands 5GHz and 800MHz to
the data structuresnl80211 bandand ieee80211band. When
both dot11OCBActivatedand IEEE80211HW DOT11OCB-
SUPPORTEDare set, theBSSID in the MAC header is
replaced by thewildcard BSSID=0xFFFF and delivered
to the soft-modem on the TX path, and a packet containing
a wildcard BSSIDwill be accepted without authentication or
association and delivered on the RX path.

Broadcast, multicast and unicast may be used, but since
safety-related low latency data exchanges are targeted, request
to send (RTS), clear to send (CTS) as well as acknowledg-
ments (ACK), fragmentation and QoS are not yet supported.



Parameter Value Linux 802.11

NL80211 IFTYPE AD HOC wiphy →if modes

IEEE80211BAND 800 MHz wiphy →bands

dot11OCBActivated true wiphy

DOT11OCB SUPPORTED true hw →flags

TABLE I
IEEE 802.11P DRIVER INIT CONFIGURATION OF THE802.11SUBSYSTEM

B. IEEE 802.11p driver

The IEEE 802.11p drivercontains three basic routines:
INIT, TX and EXIT. The INIT phase initializes the 802.11
subsystem and initiates a netlink socket calling a RX handler
waiting for data from the soft-modem to transfer it to the
802.11 subsystem. Upon reception of data, the RX handler
schedules a tasklet to handle the received frame and passes it
to the Linux 802.11 subsystem. In theTX routine, the driver
transfers data received from the 802.11 subsystem to the soft-
modem via a netlink socket. TheEXIT routines releases the
RX handler, the tasklet and the netlink socket. Fig. 4 illustrates
the basic functionalities and behavior of the IEEE 802.11p
driver. It builds a bridge between the soft-modem and the
Linux 802.11 subsystem, notably regarding statistics, andis
also responsible for setting the interface type, the frequency
band and the OCB mode as illustrated in Table I.
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Fig. 4. IEEE 802.11p driver flow chart

C. IEEE 802.11p Soft-modem

The key innovation of the soft-modem is to provide software
defined instead of hardware-defined low-layer operations that
are traditionally on a chipset. Having it software-defined and
open-source makes it extensible and easily accessible for
experimental design. The architecture of the soft-modem is
depicted in Fig. 5, and contains channel monitoring as well as
the block operation of an OFDM TX/RX.

The current version of the soft-modem has the full func-
tionalities of the OFDM PHY layer, notably the mandatory
and five other optional coding rates (BPSK 1/2, BPSK 3/4,
QPSK 1/2, QPSK 3/4, 16QAM 1/2, and 16QAM 2/3) at the
TX side, as well as energy detection and FCS check at the RX
side. The MAC layer functionalities are limited, as contention-
based access is not implemented yet.

From an interface perspective, the soft-modem provides
the following open SAP:PHY TXSTARTrequest(TXVEC-
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Fig. 5. Simplified schema of the design architecture of the soft-modem, and
the interaction with the Express MIMO board and RF front-end.

TOR) and PHY DATA request(DATA)on the TX side, as
well as PHY RXSTARTindicate(RXVECTOR) and PHY -
RXSTARTindicate(DATA, RXERROR), where SAP param-
eters are indicated on Table II. As indicated, service quality
(Traffic Class), transmit power and data rate may be specified,
and represent the triplet for controlling congestion and QoS
for IEEE 802.11p. On the RX side, statistics such as RSSI, as
well as the usedTraffic Class, transmit power and data rate
may be forwarded to the 802.11 subsystem. In case of RX
errors, the cause is indicated, such as invalid FCS.

TX VECTOR

LENGTH 12 bits
DATA RATE 3 bits
SERVICE 16 bits
TXPWR LEVEL 3 bits

RX VECTOR

LENGTH 12 bits
DATA RATE 3 bits
SERVICE null
RX RSSI 3 bits

RX ERROR

NoError
FormatViolation
CarrierLost
UnsupportedRate

TABLE II
SOFT-MODEM SAP PARAMETERS

V. VALIDATION

Before testing the prototype, we need to evaluate its confor-
mity. To this objective, we first tested the soft-modem using
an oscillator as a perfect OFDM traffic source, and tested the
performance of the soft-modem in RX mode, while varying
the SNR. We then mounted the 802.11p OCB interface, sent
traffic from the soft-modem and intercepted replies to compute
performance statistics.

Due to its reconfigurability, the SDR DSRC prototype may
be tuned to various frequency bands or channel bandwidth.
For these tests, and following the FOT specifications for the
PROTON/PLATA project [10], we tuned it to the 800MHz
frequency band at 5MHz channel bandwidth. We configured
the soft-modem parameters accordingly (see Table III, and
Table IV for the RF front-end capabilities).

A. IEEE 802.11p Soft-modem

We conducted three tests to evaluate the performance of the
soft-modem and the OpenAirInterface FPGA board:

Parameters 5MHz 10 MHz 20 MHz

Symbol Duration 16 µs 8 µs 4 µs

Preamble Duration 64 µs 32 µs 16 µs

Slot time 21 µs 13 µs 9 µs

SIFS 64 µs 32 µs 16 µs

TABLE III
IEEE 802.11P CHARACTERISTICS FOR DIFFERENT BANDWIDTHS



Parameters Values

Frequency Range 400Mhz - 6GHz

Channel Bandwidth 5Mhz, 10Mhz, 20MHz

PA granularity 12 steps

IEEE 802.11 PHY OFDM

Modulation BPSK, QPSK, 16QAM

IEEE 802.11 MAC IBSS OCB

Traffic Broadcast, Unack Unicast

Packet Size 1024 bytes max

TABLE IV
SDR DSRCSPECIFICATIONS

Parameters Values

Noise Floor -105 dBm

Noise Figure 11 dB

EDth -91 dBM

TABLE V
SOFT-MODEL PHY PARAMETERS

1) Noise Figure- Without any input from the oscillator, we
measured the energy at the receiving end.

2) Energy Detection Threshold (EDth) - The performance
of an IEEE 802.11p chipset depends on the lowest
energy to successfully detect and decode successfully
an OFDM preamble.

3) PER vs. SNR- We computed the packet error rate (PER)
curves of the soft-modem for six coding rates (up to
16QAM 2/3).

Results are illustrated in Table V and Fig. 8, and we describe
the test procedures below.

1) Noise Figure: The Noise in SNR values is composed
on channel noise (which we assume here asAdditive White
Gaussian - AWGN) and theNoise Figureof the chipset. The
latter represents additive noise generated by the electrical
components of the chipset and increases the noise level of
the RX. The noise figure is measured by subtracting the noise
floor (here assumed to be−105dBm) to the energy detected
at the RX, when no energy is transmitted on the coaxial
cable. The value of the noise figure of the Express-MIMO
OpenAirInterface chipset has been measured to be11dB.

2) Energy Detection Threshold:The Energy Detection
threshold (EDth) is a major performance indicator of a soft-
or hard-modem, as it indicates the minimum energy at which
it can distinguish between noise and signal, and successfully
detect a packet at the lowest modulation. The lower it is, the
lower can be the RX signal of a packet.EDth also impacts
the TX, as the Carrier Sensing threshold (CSth) is usually set
to theEDth of the RX. The lower theEDth, the lower the
CSth and as such, the TX leaves the RX decode more packets
that would otherwise been assumed to be interference.

TheEDth measurement is conducted following the process
depicted in Fig. 6. Two metrics are measured, which charac-
terize the appropriate value of theEDth:
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Fig. 6. Energy detection process, giving#FalsePositive and
#FalseNegative as output.

1) False Negative- The RX does not detect any energy
on the channel, but a packet was there. This means the
EDth is too high and we miss packets.

2) False Positive- The RX detects energy on the channel,
but it is purely noise or the SNR is too small. This means
the EDth is too close to the cumulatedNoisefloor +
Noisefigure and is too low to detect any packet.
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Fig. 7. Energy Detection threshold loop, called the processdescribed in
Fig. 6.

To obtain the EDth of the receiver (soft-modem and
RF front-end), we ran the algorithm illustrated in Fig. 7.
The oscilloscope generates OFDM signals on the channel
of various energy levels. The RX periodically (at a rate of
Slottime = 21µs) probes the channel to detect energy above
noise. At each iteration, the sum of all false positives and
false negatives are measured for the whole training sequence,
and as long as the tolerated thresholds are not reached, we
reduce the ED value. Upon completion of this test, we obtained
a minimumEDth = −91dBm. This value is a bit higher
than modern DSRC chipsets, but remains below the minimum
requirements indicated by [1].

3) PER Curves:Packet Error Rate (PER) curves represent
the resilience of the soft- or hard-modem toward noise and
interference. The lower the PER, the lower is the required
signal to identify symbol in OFDM constellations and decode
a packet with high probability. We computed the PER curves
of the DSRC soft-modem following the procedure described
hereafter. A generated broadcast signal for each modulation
schema is iteratively subject to an increasing noise and we
measure the ratio of 32-bit CRC mismatch. We evaluated the
PER curves for 6 different modulations. Considering the 5Mhz
channel bandwidth, the 16QAM 1/2 corresponds to 6Mbps,
which is the recommended throughput on the CCH at 5.9GHz.
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Fig. 8. PER vs. SNR curve of the soft-modem for two packet size.

B. IEEE 802.11p MAC

Before testing the full prototype, we need to test the ex-
tended OCB functionalities of the soft-mac in the linux 802.11
subsystem. The test is to send a ’fake’ ping broadcast from the
soft-modem up the RX stack, when the driver configured the
linux 802.11 subsystem to work in OCB mode. We evaluate
first the support of the OCB mode (accepting receptions and
transmissions without authentication and associations),and
second the transmission delay on the RX stack. The latter
is particularly important, considering that the soft-modem
communicate over a netlink socket, and as such delay could
occur which could become a bottleneck for the crucial end-
2-end delay for safety-related transmissions. The soft-modem,
driver and 802.11 subsystem modules have been installed in
the kernel and the linuxiw tool has been used to mount a
virtual interface accessible from the Linux IP subsystem.

Setting the driver parametersdot11OCBActivated=trueon
the wiphy structure and setting the flagDOT11OCBSUP-
PORTEDon thehw structure (chipset capabilities), we ob-
served that all Broadcast echo-requests would be deliveredto
the Linux IP subsystem, and the returned unicast echo-replies
would be successfully delivered to the soft-modem. As for the
delay, we increased the transmission rate of the ’fake’ ping
packet and measured the stack delay on the up- and down-
stream stack path. Results are depicted in Table VI. We can
see that delay remains reasonable considering the soft-modem
and driver architecture of the prototype.

VI. PROTOTYPING

In this section, we connected two computers equipped with
the SDR IEEE 802.11p prototype. We connected them over

Rate Throughput Delay mean IQR 95% perc. max

10Hz 0.013 Mbps 69.1019 [µs] 1.5 [µs] 65.5 [µs] 77 [ms]

100Hz 0.13 Mbps 75.3171 [µs] 2 [µs] 70 [µs] 89 [ms]

1000Hz 1.3 Mbps 145.6126 [µs] 2 [µs] 75 [µs] 89 [ms]

TABLE VI
SOFT-MAC STACK DELAY, WHERErate REPRESENTS THE NUMBER OF

PACKETS OFFERED TO THE STACK.

a coaxial cable4. Our objective is to test the end-to-end
connectivity between the Linux 802.11 subsystem over our
SDR DSRC prototype. We emulated ITS broadcast and unicast
traffic on 802.11 OCB using a Broadcast Ping (echo request
in broadcast and echo reply in unicast). On both stations, we
mounted the IEEE 802.11p interface as an IBSS interface,
configured static IPv4 addresses and disabled ARP5, and then
let STA1 send PING broadcast traffic to STA2 over our IEEE
802.11p prototype. We measured the ping Round Trip time
to be stable around50[ms], a value that fits to the relay
requirements for safety-related transmissions.

VII. D ISCUSSION ANDFUTURE WORK

We presented in this paper OpenAirITS, an open-source
software-defined radio DSRC prototype for experimental eval-
uations of vehicular communication solutions and ITS applica-
tions. We described the architecture at different protocollevels
and evaluated it in different tests. Notably, we measured key
PHY metrics, such as the noise figure, the energy detection
threshold, packet error rates and stack delays.

This prototype is built on the OpenAirInterface platform
and offers a total access to all IEEE 802.11 MAC and PHY
parameters and is also capable of being adapted to different
frequency ranges (400Mhz - 6GHz) or channel bandwidth
(5MHz - 20 MHz). The DSRC prototype therefore provides a
large flexibility for the design and experimental evaluation of
the next generation of vehicular communication solutions.
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