

Energy Efficiency and Cloud Radio Network

Navid Nikaein, Christian Bonnet, Raymond Knopp, and Florian Kaltenberger EURECOM, Mobile Communication Department

Email: firstname.name@eurecom.fr

Context and Motivations

Exponential growth of mobile Internet traffic volume

Emergence of 4G/5G coupled with Internet-capable mobile devices *New applications and services : M2M, online gaming, interactive mobile video and mobile TV, context-aware and 3D applications

- > But, the revenues are not increasing with the traffic volume
 - > Per-bit energy consumption cannot follow traffic growth > Overall operating BS cell power cannot follow BS growth

Cloudification of Radio Network

> Operators are seeking more cost-effective solutions to

- Introduce new applications and services, and enhance user QoE
- Increase system capacity, 1000 times of today's throughput
- Cope with the network traffic workload load demand and supply due to sptio-temporal traffic fluctuations
- Reduce the total energy budget, and EMF emission

Green radio key enablers

Small cell, HetNet, Relaying, Massive MIMO, and Cloud –RAN Traffic management, offloading, content-optimized network Virtualization, cloud computing, Software-defined network (SDN) Network-wide coordination and orchestration

I. Fundamental Trade-offs on Green Radio

- Centralized/virtualized base station pool
 - \diamond Migration from expensive specific hardware to GP platforms \rightarrow lower the cost of equipment
 - \diamond Load balancing and traffic offloading to meet traffic fluctuation \rightarrow energy saving by dynamically turning on and off the RAN
 - Rapid provisioning and new service adoption \rightarrow meet new traffic demands
 - \diamond Efficient coordination and interference management across cells \rightarrow increase the overall system capacity and radio collaboration
- **Scenarios**
 - **MVNOaaS:** value-added content and service bundle
 - **PMRaaS:** dedicated and reliable content and service bundle

Source: Fundamental Trade-offs on Green Wireless Networks, IEEE Communication Magazine

Interplay between cost, latency, bandwidth, rate, and energy

Trading for power

- Expanding the **bandwidth** for a given rate requirement ?
- Reducing the transmission rate for a given bandwidth ?
- Delaying the service time without deviating a given QoS ?

BS cell size and energy efficiency

Reducing the cell size shorten distances between network and terminals \rightarrow Lower the TX power up to 10dB and same SINR

Latency and energy efficiency

Minimizing protocol latency minimizes energy consumption in DSP, embedded system, and processor on both network and terminal

BS availability and energy efficiency

IV. Cloud-RAN Reduces 68% Power Consumption*

> Majority of power consumption is from BS

- * 50% by RAN
- 50% by Air conditioning and other facility equipment

Scenario : China Mobile typical site model, total power consumption of traditional macro BS is 100%

- - Only 20% of BS sites carry 80% of traffic
 - Turn BS on and off for dynamic load balancing and traffic flow offloading \rightarrow adjust the network workload demand and supply
- Content availability and energy efficiency

- The majority of mobile data is content-based services (video, web) Place and store popular content at the network edge $(prefetching/caching) \rightarrow reduce the E2E latency/energy$
- Novel Radio transmission technologies and architectures Radio network cloudification and delivery as a service

RAN Energy Budget	Base Station	Air Conditioning	Other Major equipment	Total	Energy saving (%)
Traditional Macro Base Station	48%	46%	6%	100%	NA
Distributed Base Station	24%	32%	5%	61%	39%
C-RAN Architecture	20.4%	9.6%	2%	32%	68%

*Source: China Mobile and ZTE

EURECOM – CAMPUS SOPHIATECH 450 route des Chappes F-06410 BIOT Sophia Antipolis www.eurecom.fr

www.eurecom.fr/cm