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Abstract
This paper presents a new countermeasure for the protection of
automatic speaker verification systems from spoofed, converted
voice signals. The new countermeasure is based on the anal-
ysis of a sequence of acoustic feature vectors using Local Bi-
nary Patterns (LBPs). Compared to existing approaches the new
countermeasure is less reliant on prior knowledge and affords
robust protection from not only voice conversion, for which it
is optimised, but also spoofing attacks from speech synthesis
and artificial signals, all of which otherwise provoke significant
increases in false acceptance. The work highlights the difficulty
in detecting converted voice and also discusses the need for for-
mal evaluations to develop new countermeasures which are less
reliant on prior knowledge and thus more reflective of practical
use cases.
Index Terms: speaker verification, biometrics, imposture,
countermeasures, local binary patterns

1. Introduction
Text-independent, automatic speaker verification (ASV) sys-
tems are widely acknowledged to be vulnerable to spoofing.
Previous work over the last decade has considered classical at-
tacks such as impersonation [1, 2] and replay [3, 4], in addition
to more sophisticated attacks involving speech synthesis [5, 6],
voice conversion [7–10] and artificial signals [11]. All pro-
voke significant increases in the false acceptance rate of state-
of-the-art ASV systems. It is only relatively recently that the
community has investigated spoofing countermeasures, as has
been the case for other biometric modalities, e.g. face recogni-
tion [12, 13].

Characteristic to almost all previous work specific to ASV
is the assumption of prior knowledge, i.e. the nature of the at-
tack is assumed to be known. This assumption is unrealistic;
in practice the spoofing attack can never be known and then
the performance of existing countermeasures in practical sce-
narios cannot be guaranteed. As an example we consider pre-
vious work based on the use of phase [14–16] and prosodic
features [17, 18] as a means of detecting voice conversion and
speech synthesis attacks. The particular approach to voice con-
version investigated in [9] essentially modifies only the spec-
tral slope of a converted utterance while retaining the phase
and pitch of the original, genuine speech signal. As such, it
will likely overcome the countermeasures proposed in [14–18].
Spoofing thus remains very much an open problem.

†This author’s contribution to the work was made while employed
at EURECOM

This paper presents a new countermeasure which aims to
provide a more universal spoofing countermeasure which is less
dependent on prior knowledge, i.e. not specific to a given at-
tack. It is based on characteristics of a sequence of feature vec-
tors captured using Local Binary Patterns (LBP) [19], a pop-
ular approach to texture analysis in image processing and es-
pecially face recognition [20]. While the approach was opti-
mised for the detection of converted voice, it is also effective in
detecting synthesized speech and artificial signals. Compared
to a previously reported spoofing countermeasure [21] the new
LBP-based countermeasure is shown to give significantly better
performance across three different spoofing attacks and is thus
considered to be more generalised than previous solutions. It
operates on conventional acoustic features, is computationally
efficient and readily integrated into any standard ASV system.

The remainder of this paper is organized as follows. Spoof-
ing attacks and the new countermeasure are presented in Sec-
tions 2 and 3, respectively. Experimental work is described in
Section 4. Our conclusions are presented in Section 5.

2. Spoofing attacks
In this section we describe our approach to voice conversion,
speech synthesis and attacks with artificial signals.

2.1. Voice Conversion

All work involving voice conversion was performed with our
own implementation of the approach originally proposed in [9].
It was developed to test the limits of ASV when the vocal tract
information in the speech signal of a spoofer is converted to-
wards that of another, target person. At the frame level, the
speech signal of a spoofer denoted by y(t) is filtered in the spec-
tral domain as follows:

Y ′(f) =
|Hx(f)|
|Hy(f)|

Y (f) (1)

where Hx(f) and Hy(f) are the vocal tract transfer functions
of the targeted speaker and the spoofer respectively. Y (f) is the
spoofer’s speech signal whereas Y ′(f) denotes the result after
voice conversion. As such, y(t) is mapped or converted towards
the target speaker in a spectral-slope sense. As we show later,
this is sufficient to overcome most ASV systems.

Hx(f) is determined from a set of two Gaussian mixture
models (GMMs). The first, denoted as the automatic speaker
recognition (asr) model in the original work, is related to ASV
feature space and utilized for the calculation of a posteriori
probabilities whereas the second, denoted as the filtering (fil)
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Figure 1: Application of uniform LBP analysis to obtain a textrogram from a matrix formed from the concatenation of conventional
feature vectors. Non-uniform patterns (blank cells in textrogram) are discarded and the resulting feature used for spoofing detection is
formed from the concatenation of normalised histograms of the remaining uniform codes in each row.

model, is a tied model of linear predictive cepstral coding
(LPCC) coefficients from which Hx(f) is derived. LPCC fil-
ter parameters are obtained according to:

xfil =

M∑
i=1

p(giasr|yasr)µi
fil (2)

where p(giasr|yasr) is the a posteriori probability of Gaussian
component giasr given the frame yasr and µi

fil is the mean of
component gifil which is tied to giasr . Hx(f) is estimated from
xfil using an LPCC-to-LPC transformation and a time-domain
signal is synthesized from converted frames with a standard
overlap-add technique. Full details can be found in [9, 22, 23].

2.2. Speech synthesis

One of the main advantages of statistical parametric speech syn-
thesis using hidden Markov models (HMMs) is its ability to
adapt to a target voice with little adaptation data. This hence
becomes a powerful tool for generating spoofing attacks. In
this paper, we use a parametric speech synthesis system as de-
scribed in [24] where the spectral and excitation parameters of
speech are simultaneously modeled along with explicit mod-
eling of duration probabilities using multi-space distribution
hidden semi Markov models (MSD-HSMM). The speaker in-
dependent model parameters and excitation are adapted to the
target speaker via the constrained structural maximum a poste-
riori linear regression (CSMAPLR) [25] method. The spoof-
ing speech signals are synthesized using a vocoder based on
the STRAIGHT method [26] using the target speaker adapted
MSD-HSMMs and multiband excitation.

2.3. Artificial signals

Artificial signal attacks are based on the algorithm reported
in [11]. It is based on a modification of the voice conversion
algorithm presented in Section 2.1.

Let S = {c1, ..., cn} be a short sequence of consecu-
tive speech frames selected from an utterance of the targeted
speaker. The algorithm seeks a new sequence of speech frames
S∗ which maximises the score of a given ASV system and thus
the potential for spoofing. Here and below the ‘*’ symbol indi-
cates an optimised quantity.

Each frame c(t) belonging to S is initially transformed in
the frequency domain with voice conversion where we now
have:

C′(f) =
|H∗c (f)|
|Hc(f)|

C(f) (3)

Optimisation is then applied to identify a set of filters
H∗S = {H∗c1(f), H

∗
c2(f), ..., H

∗
cn(f)}. Instead of estimating

each filter independently using Equation 2, however, the set of
filters is jointly optimized using a genetic algorithm. Full details
are presented in [11].

3. Spoofing countermeasure
The new countermeasure proposed in this paper was designed
with prior knowledge of a specific spoofing attack, in this case,
voice conversion. We acknowledge that such a setup is not rep-
resentative of the practical use case (where the exact nature of
the spoofing attack can never be known) but note this to be the
case with all previous work; there are currently no standard
datasets for spoofing and countermeasure assessment. Also
new to this paper is a further analysis of countermeasure per-
formance on alternative, ‘unseen’ spoofing attacks, for which
the countermeasure was not optimised. While we have worked
with such signals previously, and in this sense they are not truly
‘unseen,’ the experiments with speech synthesis and artificial
signal attacks give some insight into the potential of more gen-
eralised countermeasure solutions.

The new countermeasure is based on the hypothesis that
modifications made through spoofing disturb the natural, dy-
namic spectro-temporal ‘texture’ of genuine speech. Motivated
by the fact that computer vision techniques were already suc-
cessfully applied in the speech field [27], we have investigated
the application of a standard texture analysis approach, known
as Local Binary Patterns [19], to a 2-dimensional ‘image’ of a
speech utterance, where here the image is a linear-scaled cep-
strogram appended with dynamic features.

The standard Local Binary Pattern (LBP) operator [19] is a
non-parametric, 3x3 kernel which assigns a binary code to each
pixel in an image according to the comparison of its intensity
value to that of its eight surrounding pixels. The procedure is
illustrated in Figure 1. A binary value of ‘1’ is assigned when
the intensity of neighbouring pixels (here feature components)
is higher, whereas a value of ‘0’ is assigned when neighbouring
pixels are of lower or equal intensity. Each pixel is thus assigned
one of 28 = 256 binary patterns.

In this work we reduce the number of possible patterns



according to the standard Uniform LBP approach described
in [19]. Uniform LBPs are the subset of 58 patterns which con-
tain at most two bitwise transitions from 0 to 1 or 1 to 0 when
the bit pattern is traversed in circular fashion. As an example,
the subset includes patterns 00000001 and 00111100 but not
00110001. As reported by [19], most patterns are naturally uni-
form and empirical evidence suggests that their use in many
image recognition applications leads to better performance than
the full set of uniform and non-uniform patterns. We observed
similar findings in our work and thus pixels corresponding to
any of the 198 non-uniform patterns are simply ignored.

LBPs are determined for each pixel in the linear-scaled cep-
strogram thus resulting in a new matrix of reduced dynamic
range, here referred to as a ‘textrogram’. The textrogram cap-
tures short-time feature motion beyond that in conventional
dynamic parametrizations. The LBP-based countermeasure is
based on concatenated histograms formed from the pixel values
across each row in the textrogram. The histograms are indi-
vidually normalised and their resulting bin values are stacked
vertically to obtain a new vector in the same manner as GMM
mean-vectors are stacked to form supervectors. The division of
the textrogram (or equivalent in image recognition problems) is
also standard practice [20] and serves to provide a greater level
of granularity than would be provided with only a single his-
togram corresponding to the full textrogram.

The countermeasure is integrated into a full ASV system
as an independent classifier in equivalent fashion to the work
in [6, 15, 21]. LBP-based features are calculated for the test
data and that used for training client models. The two resulting
feature vectors are compared using histogram intersection and
the resulting score is thresholded to classify the test signal as
genuine speech or a spoofing attack.

4. Experimental work
Here we report experimental work which assesses the perfor-
mance of the new LBP-based countermeasure. Results are com-
pared with those similarly obtained using a pair-wise distance
(PWD) countermeasure proposed in our previous work [21].

4.1. ASV systems and protocols

The ASV baseline systems used in this work, as well as the
protocols and metrics, are identical to the ones defined in [21].
Accordingly we provide only a brief summary here.

Experiments were conducted with five different ASV sys-
tems: a standard GMM-UBM system with 1024 Gaussian com-
ponents, a GMM-UBM system with factor analysis (FA) chan-
nel compensation according to [28] and three GMM supervector
linear kernel (GSL) systems. They include a standard GSL sys-
tem which applies a support vector machine classifier to GMM
supervectors, a GSL system enhanced with channel compen-
sation through nuisance attribute projection (GSL-NAP) [29]
and a GSL system with FA supervectors (GSL-FA) [30]. They
are all based on the LIA-SpkDet toolkit [31] and the ALIZE
library [32] and are directly derived from the work in [30].
All systems use a common linear frequency cepstral coefficient
(LFCC) parametrization extracted using SPro [33] with frames
of 20ms duration and 10ms overlap.

All development was performed using the male subset
of the 2005 NIST Speaker Recognition Evaluation dataset
(NIST‘05) whereas the male subset of the NIST‘06 dataset is
used for evaluation. The NIST‘04 or NIST‘08 datasets are used

as background data, depending on whether the data is used for
ASV or for spoofing purposes respectively. In all spoofing and
countermeasure experiments, all impostor accesses are replaced
with spoofed versions according to the algorithms described in
Section 2.

4.2. Spoofing attacks and countermeasure setup

The setup for the voice conversion system is identical to [21],
while for artificial signal generation we adopted the setup re-
ported in [34]. Speech synthesis attacks were implemented us-
ing the voice cloning toolkit1 with a default configuration. We
used standard speaker-independent models provided with the
toolkit which were trained on the EMIME corpus [35]. Syn-
thesized speech is generated using the transcripts of the original
impostor utterances.

While it is admittedly not representative of real scenarios,
we assess countermeasure performance in a worst case scenario,
where the attacker/spoofer has full prior knowledge of the ASV
system. Voice conversion and artificial signal attacks thus use
the same features used for ASV. We note that other work has
observed only minor differences in vulnerability when the ASV
systems used to effect spoofing are different [23]. Normalized
features used in the LBP countermeasure are composed of 51
coefficients: 16 LFCCs and energy plus their corresponding
delta and delta-delta coefficients.

The LBP countermeasure was implemented using the
toolkit made publicly available by The University of Oulu2.
Histograms of LBPs are created for all but the first and last rows
of the textrogram, thereby obtaining a 58 × (51 − 2) = 2842
length feature vector.

4.3. Results

Results are illustrated in Table 2 for (a) voice conversion, (b)
speech synthesis and (c) artificial signals. All values in Table 2
relate to the false acceptance rate (FAR) for a fixed false rejec-
tion rate of 10%. The baseline performance of the five ASV
systems is illustrated in the second column of each table. The
FA system gives the best performance with an FAR of 1%.

The effect of spoofing is assessed by replacing all impos-
tor transactions with spoofing attacks. Results are illustrated
in the third column of Table 2 (a)-(c). Significant degradations
are observed in all cases, except for the artificial signal attacks
and the three GSL-based systems. This is not a surprise since
the GSL supervectors model speech at the GMM component
level, whereas speech synthesis and artificial signal attacks tar-
get ASV systems at the feature level. The FAR for GMM-UBM
and FA systems degrades significantly for all three attacks and
voice conversion provokes consistent degradations in FAR for
all five systems.

We now turn to countermeasure assessment which is re-
ported first, independently and second, when combined with
ASV. Figure 2 illustrates a detection error trade-off (DET) plot3

for the LBP countermeasure and all three spoofing attacks. The
equal error rate (EER) is 0% for artificial signal attacks, 0.5%
for speech synthesis attacks and 8% for voice conversion at-

1http://homepages.inf.ed.ac.uk/jyamagis/
software/page37/page37.html

2http://www.cse.oulu.fi/CMV/Downloads/
LBPMatlab

3TABULA RASA scoretoolkit: http://publications.
idiap.ch/downloads/reports/2012/Anjos_
Idiap-Com-02-2012.pdf



Figure 2: DET profiles illustrating LBP-countermeasure perfor-
mance. The profile for artificial signals is not visible since the
EER is 0%.

System PWD LBP
Voice Conversion 2.7 8
Speech Synthesis 10 0.5
Artificial Signals 35 0

Table 1: Comparison of performance in terms of EER (%) for
the pair-wise distance (PWD) and new LBP-based countermea-
sures and the three different spoofing attacks.

tacks. A comparison to performance obtained with the PWD
countermeasure reported in our previous work [21] is illustrated
in Table 1 in terms of EER. While voice conversion still presents
difficulties, the new countermeasure gives considerably better
performance for both speech synthesis and artificial signals.

We now assess the impact of countermeasures on ASV per-
formance. This requires the fixing of a countermeasure oper-
ating point. Here the threshold is once again fixed to a value
which attains an FRR of 10%. The resulting FAR for all five
ASV systems is illustrated in the fourth and fifth columns of
Table 2 (a)-(c) for the PWD and LBP countermeasure respec-
tively. Once again the threshold is set to give a fixed FRR of
10%. While the FAR for speech synthesis and artificial signal
attacks is universally low, results confirm remaining vulnerabil-
ities to voice conversion. This trend lies in contrast to results
obtained for the PWD countermeasure (where performance is
best for voice conversion) and thus fused countermeasure sys-
tems should be considered in future.

5. Conclusions and future work
This paper reports a new countermeasure for the protection of
automatic speaker verification (ASV) systems from spoofing.
The new countermeasure is based on the local binary pattern
(LBP) analysis of sequences of acoustic vectors. Results show
that the LBP countermeasure is less effective than previously
reported solutions for voice conversion based spoofing attacks

Spoof: ASV +
System Baseline — PWD LBP
GMM-UBM 6 77 2.3 6.2
GSL 6 88 2.6 7
GSL-NAP 3 84 2.5 6.7
FA 1 54 1.6 4.3
GSL-FA 2 82 2.5 6.6

(a) Voice Conversion.

Spoof: ASV +
System Baseline — PWD LBP
GMM-UBM 6 82 8.2 0.8
GSL 6 35 3.5 0.3
GSL-NAP 3 27 2.7 0.3
FA 1 62 6.2 0.6
GSL-FA 2 20 2 0.2

(b) Speech Synthesis.

Spoof: ASV +
System Baseline — PWD LBP
GMM-UBM 6 91 89 0
GSL 6 2 1.7 0
GSL-NAP 3 3 2.5 0
FA 1 75 72 0
GSL-FA 2 1 0.8 0

(c) Artificial Signals.

Table 2: ASV performance in terms of FAR (%) for the baseline
(2nd column) and under spoofing attacks without countermea-
sure (3rd column) and with PWD and LBP countermeasures
(4th and 5th columns respectively). All results relate to variable
countermeasure thresholds which attain fixed FRRs of 10%.

but that better performance is achieved for previously unseen
spoofing attacks which otherwise provoke significant increases
in false acceptance. Being less reliant on prior knowledge, the
work points to the potential for generalised countermeasures
with greater practical value. Results also suggest that future
work should consider fused approaches to countermeasure sys-
tems.

Even if generalised countermeasures have some potential,
there is a clear need for formal spoofing and countermeasure
evaluations. They should clearly differentiate the work of pene-
tration testing / spoofing development from the far more impor-
tant problem of countermeasure development. The latter should
be conducted independently in a setting where the nature of
spoofing attacks is unknown and varied. The development of
effective countermeasures will then be extremely challenging.
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