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Abstract

It is widely acknowledged that most biometric systems are
vulnerable to spoofing, also known as imposture. While vul-
nerabilities and countermeasures for other biometric modalities
have been widely studied, e.g. face verification, speaker verifi-
cation systems remain vulnerable. This paper describes some
specific vulnerabilities studied in the literature and presents a
brief survey of recent work to develop spoofing countermea-
sures. The paper concludes with a discussion on the need for
standard datasets, metrics and formal evaluations which are
needed to assess vulnerabilities to spoofing in realistic scenarios
without prior knowledge.
Index Terms: spoofing, imposture, automatic speaker verifica-
tion

1. Introduction
Over the last decade biometrics technologies have revolu-
tionised our approach to personal identification and have come
to play an essential role in safeguarding personal, national and
global security. It is widely acknowledged, however, that bio-
metric systems can be fooled or ‘spoofed’ [1].

Efforts to develop spoofing countermeasures are under way
across the various biometrics communities1. Progress in the
case of automatic speaker verification (ASV) is, however, less
advanced than for some other biometric modalities. Further-
more, since ASV is commonly used in telephony, or other
unattended, distributed scenarios without human supervision or
face-to-face contact, speech is arguably more prone to mali-
cious interference or manipulation than other biometric signals.

Previous efforts to develop countermeasures for ASV [2, 3,
4, 5] generally exploit prior knowledge of specific spoofing at-
tacks and usually focus on text-independent ASV. The use of
prior knowledge is clearly unrepresentative of the practical sce-
nario where the nature of the attack can never be known. There
is thus a need to collect public datasets of licit and spoofed
speaker verification transactions to facilitate independent efforts
in spoofing assessment and the development of countermea-
sures which are less dependent on prior knowledge. Ultimately,
this initiative will require the expertise of different speech and
language processing communities, e.g. those in voice conver-
sion and speech synthesis, in addition to ASV.

The Interspeech 2013 special session in Spoofing and
Countermeasures for Automatic Speaker Verification was or-
ganised by the authors of this paper to encourage the discussion
and collaboration needed to organise the collection of standard
datasets and the definition of metrics and evaluation protocols
for future research in spoofing and countermeasures for ASV.

1http://www.tabularasa-euproject.org/

This paper aims to provide the starting point for such an ini-
tiative. It describes a selection of vulnerabilities studied previ-
ously, presents a brief survey of recent work to develop spoof-
ing countermeasures and discusses current approaches to eval-
uation.

The remainder of this paper is organised as follows. Sec-
tion 2 describes state-of-the-art approaches to speaker verifica-
tion and accounts for their vulnerability to spoofing. Past work
to assess those vulnerabilities is presented in Section 3 with an
account of related efforts to develop suitable countermeasures.
We discuss different approaches to assessment and the need to
develop standard databases, metrics and assessment protocols
in Section 4. Conclusions are presented in Section 5.

2. Automatic speaker verification
The paper focuses on text-independent ASV. In this section we
describe state-of-the-art approaches and their vulnerability to
spoofing.

2.1. Feature extraction

Speech production is a highly non-stationary process. Since the
acoustic characteristics change continuously over time, features
are commonly extracted from short-term segments (frames) of
20 to 30 msec in duration. Typical feature extractors find a low-
dimensional parametrisation for the short-term power spectrum
of speech, e.g. mel-frequency cepstral coefficients (MFCCs),
linear predictive cepstral coefficients (LPCCs) and perceptual
linear prediction (PLP) features. These features are commonly
appended with their time derivatives (delta and double delta fea-
tures) and are generally normalized, e.g. through mean removal
or short-term Gaussianization [6]. Further details can be found
in, e.g. [7]. As discussed later, the literature shows that speech
signals with short-term instantaneous spectral representations
indicative of other speakers can be readily synthesized.

2.2. Speaker and session modelling

Approaches to text-independent ASV generally focus on mod-
elling the long-term distribution of spectral vectors, for which
Gaussian mixture models (GMMs) [8, 9] have become the de
facto standard. The speaker verification systems of the 1990s
and early 2000s used either maximum likelihood (ML) [8]
or maximum a posteriori (MAP) [9] criteria to train speaker-
dependent GMMs. In the latter case, speaker-dependent GMMs
are obtained from the adaptation of pre-trained universal back-
ground models (UBMs). Adapted GMM mean supervectors ob-
tained in this way were later successfully combined with sup-
port vector machines (SVMs) [10]. This involved the devel-
opment of trainable intersession variability compensation tech-
niques such as nuisance attribute projection (NAP) [11, 12] and
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within-class covariance normalization (WCCN) [13].
Parallel to these developments in SVM-based discrimina-

tive speaker modelling, mathematically rigorous, generative
factor analysis models were pioneered in [14, 15, 16]. The
so-called joint factor analysis (JFA) technique [14] achieved
state-of-the-art accuracy using separate mechanisms to model
speaker and session variability. This technique was further sim-
plified in the total variability model [17], commonly referred to
as the i-vector framework which, in contrast to JFA, does not
differentiate between speaker and session subspace models. i-
vectors are typically of 200 to 600 dimensions and contain both
speaker and channel variations; unwanted variability is handled
in back-end classification with, e.g. probabilistic linear discrim-
inant analysis (PLDA) [18]. Practice has also shown the benefit
of normalizing i-vectors to have unit norm (i.e. so they lie on a
hypersphere) is helpful [19].

Even if there is evidence that the more sophisticated ap-
proaches to ASV are more resilient to spoofing, all have their
roots in the standard GMM. Assuming independent observa-
tions, none utilises time sequence information, a key charac-
teristic of speech which might otherwise protect systems from
spoofing.

3. Spoofing and countermeasures
Spoofing attacks are performed on a biometric system at the
sensor or acquisition level to bias score distributions toward
those of genuine clients, thus provoking increases in the false
acceptance rate (FAR). This section reviews past work to eval-
uate vulnerabilities and to develop spoofing countermeasures.
We consider impersonation, replay, speech synthesis and voice
conversion. We stress that in all cases we retain the emphasis on
text-independent ASV, i.e. we do not consider text-dependent
nor challenge-response countermeasures.

3.1. Impersonation

Impersonation refers to spoofing attacks with human-altered
voices and is one of the most obvious forms of spoofing and
earliest studied.

3.1.1. Spoofing

The work in [2] showed that non-professional impersonators
can readily adapt their voice to overcome ASV, but only when
their natural voice is already similar to that of the target. Further
work in [20] showed that impersonation increased FAR rates
from close to 0% to between 10% and 60%, but no significant
difference in vulnerability to non-professional or professional
impersonators. Characteristic to these studies is the use of rela-
tively few speakers.

3.1.2. Countermeasures

None of the above studies investigated countermeasures against
impersonation. Impersonation involves mostly the mimicking
of prosodic or stylistic cues rather than those aspects more re-
lated to the vocal tract. Impersonation is therefore considered
more effective in fooling human listeners than a genuine threat
to today’s state-of-the-art ASV systems [4].

3.2. Replay

Replay attacks [21] involve the presentation of speech sam-
ples captured from a genuine client in the form of continuous

speech recordings, or samples resulting from the concatenation
of shorter segments [21].

3.2.1. Spoofing

While some form of text-dependent or challenge-response
countermeasure is usually used to prevent replay-attacks, text-
independent solution have also been investigated. Work in [22]
investigated vulnerabilities to the replaying of far-field recorded
speech. Using a baseline ASV system based on JFA, their work
showed an increase in the equal error rate (EER) of 1% to al-
most 70% when imposter accesses were replaced by replayed
spoof attacks.

3.2.2. Countermeasures

The same authors showed that it is possible to detect such spoof-
ing attacks by measuring the channel differences caused by
far-field recording [3]. While they show spoof detection error
rates of less than 10% it is feasible that today’s state-of-the-art
approaches to channel compensation will leave some systems
more vulnerable to replay attacks.

3.3. Speech synthesis

There are two major approaches to speech synthesis: unit se-
lection and statistical parametric approaches. The unit se-
lection approach generally requires large amounts of speaker-
specific data with carefully prepared transcripts in order to
construct speech models. In contrast, state-of-the-art hidden
Markov model (HMM)-based speech synthesizers [23] can
learn speech models from relatively little speaker-specific data
and the adaptation of background models derived from other
speakers. There is a considerable volume of research in the
literature which has demonstrated the vulnerability of ASV to
synthetic voices.

3.3.1. Spoofing

ASV vulnerabilities to synthetic speech were first demonstrated
over a decade ago [24] using an HMM-based, text-prompted
ASV system [25] and an HMM-based synthesizer where acous-
tic models were adapted to specific human speakers [26, 27].
The ASV system scored feature vectors against speaker and
background models composed of concatenated phoneme mod-
els. When tested with human speech the ASV system achieved
an FAR of 0% and a false rejection rate (FRR) of 7%. When
subjected to spoofing attacks with synthetic speech, the FAR in-
creased to over 70%, however this work involved only 20 speak-
ers.

Larger scale experiments using the Wall Street Journal cor-
pus containing in the order of 300 speakers and two different
ASV systems (GMM-UBM and SVM using Gaussian supervec-
tors) was reported in [28]. Using a state-of-the-art HMM-based
speech synthesiser, the FAR was shown to rise to 91%. Spoof-
ing experiments using HMM-based synthetic speech against a
forensics speaker verification tool BATVOX was reported in [29]
with similar findings. Today’s state-of-the-art speech synthesiz-
ers thus present a genuine threat to ASV.

3.3.2. Countermeasures

Only a small number of attempts to discriminate synthetic
speech from natural speech have been investigated and there is
currently no general solution which is independent from spe-
cific speech synthesis methods. Previous work has demon-



strated the successful detection of synthetic speech based on
prior knowledge of the acoustic differences of specific speech
synthesizers, such as the dynamic ranges of spectral parameters
at the utterance level [5] and variance of higher order parts of
mel-cepstral coefficients [30].

There are some attempts which focus on acoustic differ-
ences between vocoders and natural speech. Since the hu-
man auditory system is known to be relatively insensitive to
phase [31], vocoders are typically based on a minimum-phase
vocal tract model. This simplification leads to differences in the
phase spectra between human and synthetic speech, differences
which can be utilised for discrimination [28, 32].

Other approaches to synthetic speech detection use F0
statistics [33, 34], based on the difficulty in reliable prosody
modelling in both unit selection and statistical parametric
speech synthesis. F0 patterns generated for the statistical para-
metric speech synthesis approach tend to be over-smoothed and
the unit selection approach frequently exhibits ‘F0 jumps’ at
concatenation points of speech units.

3.4. Voice conversion

Voice conversion is a sub-domain of voice transformation [35]
which aims to convert one speaker’s voice towards that of an-
other [35]. The field has attracted increasing interest in the con-
text of ASV vulnerabilities for over a decade [36].

3.4.1. Spoofing

When applied to spoofing, the aim with voice conversion is to
synthesize a new speech signal such that extracted ASV fea-
tures are close in some sense to the target speaker. Some of the
first work relevant to text-independent ASV spoofing includes
that in [4, 37]. The work in [4] showed that a baseline EER in-
creased from 16% to 26% as a result of voice conversion which
also converted prosodic aspects not modelled in typical ASV
systems. The work in [37] investigated the probabilistic map-
ping of a speaker’s vocal tract information towards that of an-
other, target speaker using a pair of tied speaker models, one of
ASV features and another of filtering coefficients. This work
targeted the conversion of spectral-slope parameters. The work
showed that a baseline EER of 10% increased to over 60% when
all impostor test samples were replaced with converted voice. In
addition, signals subjected to voice conversion did not exhibit
any perceivable artefacts indicative of manipulation.

The work in [38] investigated ASV vulnerabilities using
a popular approach to voice conversion [39] based on joint-
density GMMs, which requires a parallel training corpus for
both source and target speakers. Even if converted speech is
usually detected by human listeners, experiments involving five
different ASV systems showed universal susceptibility to spoof-
ing. The FAR of the most robust, JFA system increased from
3% to over 17%.

Other work relevant to voice conversion includes attacks
referred to as artificial signals. It was noted in [40] that certain
short intervals of converted speech yield extremely high scores
or likelihoods. Such intervals are not representative of intelli-
gible speech but they are nonetheless effective in overcoming
typical ASV systems which lack any form of speech quality
assessment. The work in [40] showed that artificial signals op-
timised with a genetic algorithm provoke increases in the EER
from 10% to almost 80% for a GMM-UBM system and from
5% to almost 65% for a factor analysis (FA) system.

3.4.2. Countermeasures

Some of the first work to detect converted voice draws on re-
lated work in synthetic speech detection [41]. While the pro-
posed cos-phase and modied group delay function (MGDF)
phase countermeasures proposed in [32] are effective in detect-
ing synthetic speech, they are unlikely to detect converted voice
with real-speech phase [37].

Two approaches to artificial signal detection are reported
in [42]. Experimental work shows that supervector-based SVM
classifiers are naturally robust to such attacks whereas all spoof-
ing attacks can be detected using an utterance-level variability
feature which detects the absence of natural, dynamic variabil-
ity characteristic of genuine speech. An alternative approach
based on voice quality analysis is less dependent on explicit
knowledge of the attack but less effective in detecting attacks.

A related approach to detect converted voice is proposed
in [43]. Probabilistic mappings between source and target
speaker models are shown to yield converted speech with less
short-term variability than genuine speech. The thresholded,
average pair-wise distance between consecutive feature vectors
is used to detect converted voice with an EER of under 3%.

4. Discussion
In the following we discuss current approaches to evaluation
and some weaknesses in research and evaluation methodology.

4.1. Protocols and metrics

While countermeasures can be integrated into existing ASV
systems, they are most often implemented as independent mod-
ules which allow for the explicit detection of spoofing attacks.
The most common approach in this case is to concatenate the
two classifiers in series.

The assessment of countermeasure performance on its own
is relatively straightforward; results are readily analysed with
standard detection error trade-off (DET) profiles and related
metrics. It is often of interest, however, that the assessment
reflects their impact on ASV performance. Assessment is then
non-trivial and calls for the joint optimisation of combined clas-
sifiers. Results furthermore reflect the performance of non-
standard ASV systems. As reflected in Section 3, there are
currently no standard protocols, metrics or ASV systems which
might otherwise be used to conduct fair evaluations with com-
parable results. There is a thus a need to define such standards
in the future.

Candidate standards are being drafted within the scope of
the EU FP7 TABULA RASA project. Here, independent coun-
termeasures preceding biometric verification are optimised at
three different operating points where thresholds are set to ob-
tain FARs (the probability of labelling a genuine access as a
spoofing attack) of either 1, 5 or 10%. Samples labelled as gen-
uine accesses are then passed to the verification system2. Per-
formance is assessed using four different DET profiles3, exam-
ples of which are illustrated in Figure 1. The four profiles illus-
trate performance of the baseline system with naı̈ve impostors,
the baseline system with active countermeasures, the baseline
system where all impostor accesses are replaced with spoofing

2In practice samples labelled as spoofing attacks cannot be fully dis-
carded since so doing would unduly influence false reject and false ac-
ceptance rates calculated as a percentage of all accesses.

3Produced with the TABULA RASA Scoretoolkit: http:
//publications.idiap.ch/downloads/reports/2012/
Anjos Idiap-Com-02-2012.pdf

http://publications.idiap.ch/downloads/reports/2012/Anjos_Idiap-Com-02-2012.pdf
http://publications.idiap.ch/downloads/reports/2012/Anjos_Idiap-Com-02-2012.pdf
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Figure 1: An example of four DET profiles which can be used to
analyse vulnerabilities to spoofing and countermeasure perfor-
mance. Results correspond to spoofing attacks using synthetic
speech and a standard GMM-UBM classifier assessed on the
male subset of the NIST’06 SRE dataset.

attacks and, finally, the baseline system with spoofing attacks
and active countermeasures.

Consideration of all four profiles is needed to gauge the im-
pact of countermeasure performance on licit transactions (any
deterioration in false rejection – difference between 1st and 2nd

profiles) and improved robustness to spoofing (improvements
in false acceptance – difference between 3rd and 4th profiles).
While the interpretation of such profiles is trivial, different plots
are obtained for each countermeasure operating point. Further
work is required to design intuitive, universal metrics which
represent the performance of spoofing countermeasures when
combined with ASV.

4.2. Datasets

While some work has shown the potential for detecting spoofing
without prior knowledge or training data indicative of a specific
attack [32], all previous work is based on some implicit prior
knowledge, i.e. the nature of the spoofing attack and/or the tar-
geted ASV system is known. While training and evaluation data
with known spoofing attacks might be useful to develop and op-
timise appropriate countermeasures, the precise nature of spoof-
ing attacks can never be known in practice. Estimates of coun-
termeasure performance so obtained should thus be considered
at best optimistic. Furthermore, some of the past work was also
conducted under matched conditions, i.e. data used to learn tar-
get models and that used to effect spoofing were collected in
the same or similar acoustic environment and over the same or
similar channel. The performance of spoofing countermeasures
when subjected to realistic session variability is then unknown.

While much of the past work already uses standard datasets,
e.g. NIST SRE data, spoofed samples are obtained by treat-
ing them with non-standard algorithms. Standard datasets con-
taining both licit transactions and spoofed speech from a mul-
titude of different spoofing algorithms and with realistic ses-
sion variability are therefore needed to reduce the use of prior

knowledge, to improve the comparability of different counter-
measures and their performance against varied spoofing attacks.
Collaboration with colleagues in other speech and language
processing communities, e.g. voice conversion and speech syn-
thesis, will help to assess vulnerabilities to state-of-the art
spoofing attacks and also to assess countermeasures when de-
tails of the spoofing attacks are unknown. The detection of
spoofing will then be considerably more challenging but more
reflective of practical use cases.

5. Conclusions
This paper gives an overview of recent research in spoofing and
countermeasures for ASV. While it is clear that ASV systems
can be vulnerable to spoofing, most vulnerabilities discussed in
this paper involve relatively high-cost, high-technology attacks.
Furthermore, countermeasures, some of them relatively trivial,
have the potential to detect spoofing attacks with manageable
impacts on system usability. Further work should analyse the
potential for spoofing through risk assessment and address some
weaknesses in the current research methodology.

The Interspeech 2013 Special Session on Spoofing and
Countermeasures was organised by the authors of this paper to
promote the consideration of spoofing, to encourage the devel-
opment of countermeasures and to form a new community of re-
searchers to organise the next steps towards formal evaluations.
Closer collaboration is needed to collect standard datasets con-
taining both genuine and spoofed speech and thus to facilitate
the development of universal, robust countermeasures capable
of detecting unforeseen spoofing attacks.
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