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A P2P Based Usage Control Enforcement

Scheme Resilient to Re-injection Attacks

Abstract—Existing privacy controls based on access con-
trol techniques do not prevent massive dissemination of
private data by malevolent acquaintances of social network,
unauthorized duplication of files or personal messages, or
persistence of some files in third-party operated storage
beyond their deletion by their owners. We suggest a
usage control enforcement scheme that allows users to
gain control over their data during its entire lifetime and
the way it is disseminated in outsourced distributed data
storage. The scheme is based on a peer-to-peer architecture
whereby a different set of peers is randomly selected for
data assignment. Usage control is achieved based on the
assumption that at least t out of any set of n peers will not
behave maliciously. Such a system would still suffer from
re-injection attacks whereby attackers can gain ownership
of data and the usage policy thereof by simply re-storing
data after slight modification of the content. In order
to cope with re-injection attacks the scheme relies on
a similarity detection mechanism based on special hash
functions. The robustness of the scheme has been evaluated
in an experimental setting using a variety of re-injection
attacks.

I. INTRODUCTION

With the advent of social networks and cloud com-

puting the processing and storage of private data is

more and more outsourced to services operated by third

parties. The significant capacity increase and widespread

dissemination advantages offered by these services also

come with unprecedented security and privacy concerns.

Beyond basic exposures that are partially covered by

classical security mechanisms such as data confidential-

ity, authentication, and access control new security and

privacy requirements arise due to the sheer volume of

data exchanges and the span of dissemination enabled by

these services. Existing privacy controls based on access

control techniques do not prevent massive dissemination

of private data by malevolent acquaintances of social

network, unauthorized duplication of files or personal

messages, or persistence of some files in third-party

operated storage beyond their deletion by their owners.

As a result of such exposures, users of these outsourced

services lose control over their data thereof. Bestowing

users back with the control of their data and over the way

it is disseminated within these services can unfortunately

not be achieved by means of classical access control

mechanisms.

Access control can achieve perfect control over the

identity of parties authorized to access the data and the

circumstances of the access operation pertaining to time

and content but it does not allow for any control over

the way these parties make further use of the data. Such

a comprehensive control spanning the entire lifetime of

each data segment can actually, be assured through a

security service called usage control. A contingent, high-

level use case example that entails usage control allows

a set of users to store their data segments along with

the imposed by them policy into a system, such that

the usage control policy will be enforced during the

entire lifetime of users’ data. Usage control guarantees

the policy enforcement to every copy of the data segment

and the conformation to the policy after the deletion of it

without letting unauthorized duplications in third-party

storage services.

In this paper, we suggest an original solution to tackle

a special case of the usage control problem. Even though

a generic usage control solution fitting all possible set-

tings seems infeasible, in a confined environment with

a well defined set of subjects, resources and operations,

usage control can be achieved. The impact of leaving the

system to violate some of the rules would be negligible.

The proposed solution defines a P2P system where data

management operations are performed and controlled by

a subset of peers. The enforcement is assured thanks to

the collaboration of peers and based on the assumption

that at least t out of any set of n randomly chosen

peers will not behave maliciously. In all users who have

adopted the P2P network architecture for any operation,

the usage control policy enforcement is guaranteed and

violations outside this network would not significantly

affect the system.

Furthermore, even in such a confined environment, an

adversary may try to gain control over data segments

by slightly modifying the content and re-submitting the

resulting data segments with a different policy. The

proposed enforcement mechanism allows peers to detect

similarities between any upcoming data and the existing

one, thanks to the use of special functions defined as



error tolerant hash function (ETHF).

In section 2, we define the problem of usage control

and depict the idea of our solution. Related work is

presented in section 3. In section 4, the preliminaries

of our solution are provided and in section 5 we give a

detailed description of the scheme. Before closing with

our conclusion and future work in section 8, we analyze

the security of the proposed mechanism in section 6 and

in section 7 we evaluate the correctness of the error

tolerant hash function in an experimental setup.

II. PROBLEM STATEMENT

A. Usage control

If we could try to give a definition for usage control

then this can be summarized as follows: Enforce com-

pliance with policy during the entire lifetime of each

resource. Usage control’s main difference with access

control is the notion of continuous policy validation

whereas access control is discrete in the sense that there

is no policy enforcement between various checkpoints.

In contrast, usage control enforces the policy during the

time elapsed between checkpoints.

For instance an access control system verifies that

a user has the rights required by the policy before

authorizing access to a file, but it does not monitor

the operations performed by that subject on the data

driven from the file during that access operation–whereas

a usage control policy enforcement system would also

assure that the data obtained through the access operation

is used properly, i.e. in accordance with the usage control

policy. Thus, an online social network (OSN) application

that verifies access to personal data as part of user

profile, assures access control but not usage control

because usage control violations such as duplication or

dissemination of personal data by parties authorized for

access control, such as friends, cannot be prevented even

when required by the owner.

As already introduced in the previous section, the

proposed solution is applied to a confined environment

whereby all data within the system is protected following

usage control policies defined by their respective owner.

In a scenario with such a confined environment, let S be

a system that implements usage control on a set of data

D based on the policy of data owners. Usage control in

such a scenario inherently suffers from two limitations

that would allow malicious users to evade the usage

control on data D by system S.

In the first type of attack, which we define as bypass

attacks, a legitimate user can escape from usage control

enforcement on a piece of data di by simply pulling out

di from S and using it outside S in an unauthorized way.

Even though impossible to prevent, the bypass attack

has a limited impact if S has a global coverage that

makes it inescapable for the overwhelming majority of

users. Some OSNs such as Facebook or LinkedIn are

inescapable with respect to the inter-personal commu-

nication and if these OSNs implement a usage control

system like S then the bypass attack on personal data

would only have a very limited impact. Therefore, in the

sequel of the paper, we assume that given the confined

environment bypass attacks will not have a strong impact

on the security of the system.

Even a system that would benefit from the impact

factor to prevent the bypass attacks, would still suffer

from the other inherent exposure of usage control system

that is the re-injection attack. In such an attack an

adversary extracts some data di that are governed by

a usage control policy P , imposed by its owner ui.

Afterwards the malicious user slightly alters the data

and tries to re-store data d′i but now with the same or dif-

ferent usage control policy P ′. As such she will present

herself as the new owner o′i of data d′i abusing the usage

control policy system and affecting the dissemination of

legitimate users’ data by duplicating it.

B. Idea of solution

In order to assure usage control together with pre-

venting re-injection attacks, we propose a distributed

enforcement mechanism based on a P2P system whereby

peers collaborate with each other to assure the enforce-

ment of usage control policies defined by data owners:

in the proposed solution, each data is assigned to and

managed by a predefined set of n peers whereby at least

t of them are considered as being legitimate. The new

system hence relies on a threshold solution whereby at

least t legitimate nodes collaborate and guarantee the

correct enforcement of policies defined for each piece

of data.

Yet, such a solution does not protect the system from

re-injection attacks. Since the decentralized control of

each data segment is distributed among a different subset

of nodes, any attacker may gain ownership of a data

segment by slightly altering some existing data segment

and submitting the new version of a new segment with

its own policy to the system. Such modification attempts

will go undetected because the modified data segment

will be considered as a brand new segment and thus it

will be assigned to a different set of peer nodes.

Such attacks are avoided thanks to the design of a

dedicated data assignment algorithm which detects sim-

ilarities between any new and already stored data. This

newly defined type of algorithm is a specific function

which outputs the same fingerprints for slightly modified
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files. This function is named error tolerant hash function

(ETHF) an assures that similar data are assigned to the

same set of nodes.

Furthermore, the node assignment operation of course

cannot be implemented by the user itself: hence, ran-

domly selected peers should agree on this final set of

peers assigned to the management of a specific content.

Therefore in addition to the need for similarity detection

function, the system should define a random generator to

select these random peers whose main role is to perform

the initial data assignment step. Basic cryptographic hash

functions are a good candidate for this preliminary step.

Furthermore, even before the problem of node assign-

ment, one should define the way how content is defined

in the system. Indeed, the relevant and unique content

has to be extracted from files that may be defined or

encoded in different ways. We therefore assume that each

file consists of some metadata that includes information

about the file and the content itself. This content is used

as the input to detect similarity. We assume that the

content of the files is human readable encoded text.

To summarize, the proposed usage control mechanism

that defines the P2P network as the confined environment

protects against re-injection attacks thanks to the use

of error-tolerant hash functions that are able to detect

similarities. However, the use of such functions is not

sufficient in order to fully ensure the control over data.

We next give a description of previous related work.

III. RELATED WORK

In [12] authors provide the first definition of usage

control policy in the sense of ongoing policy enforce-

ment after data release. A set of authorizations, obli-

gations and conditions should be smoothly orchestrated

for a usage control policy scheme. Conditions should

be validated in accordance with obligations in order to

allow authorizations on objects. Zhang et al [9] provide

a different formalization of usage control using Petri

nets. In [17],[6] authors propose a policy based usage

control language for usage control enforcement. Zhao

et al [17] in their analysis proposed the notion of

timing constraints which advocates an ongoing usage

control policy. Both papers lack the definition of a

mechanism whereby the enforcement of a usage control

policy can be applied in an architecture with malicious

users. Janicke et al [8] proposed an enforcement scheme

which can be considered as being the closest one to

the proposed solution in the sense that enforcement is

achieved in a distributed environment. Unfortunately, as

opposed to our solution the correctness and security of

such mechanisms are not evaluated though out a real life

data management scenario.

In [13] authors propose usage control enforcement

targeted for the X11 graphical user interface manage-

ment daemon in Linux, Unix and Mac operating systems.

Their solution is based on data flow tracking in between

different resources. In [10], Kumari et. al. enforce usage

control policies in the application level of a web browser

by evaluating it in a web based online social network

plugin. Harvan et al [4] implement a data flow control

mechanism with system calls interposition by control-

ling them with a monitoring mechanism. Even though

the aforementioned practical usage control enforcement

mechanisms are implemented in different levels of a

system our solution identifies and copes with specific

attacks which have a serious impact on the security of

the usage control mechanism such as re-injection and

bypass attacks.

Some other works such as in [2] propose the use

of similarity detection algorithms for an optimized data

storage and lookup operation in P2P systems. Our work

significantly differs from [2] since EHF are used for

usage control and proved to be secure against re-injection

attacks.

IV. PRELIMINARIES

In order to introduce the proposed scheme, we first

describe the tools which will further be used as the

main building blocks of the proposed usage control

mechanism.

We consider the scenario whereby a user Ui wishes to

store a file Fi to further share it with some other users.

In order to enforce the control over the file Fi, the owner

Ui defines a set of policy rules Pi.

A. Peer to peer network.

As previously mentioned, the proposed solution im-

plements usage control within a P2P network which

is considered as a confined environment with a global

coverage: we assume that the impact of bypass attacks

hence is limited.

In this P2P system, data lookup, data retrieval and all

other operations related to data management follow a

protocol based on Distributed Hash Tables (DHT) [16].

A DHT associates the stored data with a key. Each key

is assigned to a subset of nodes who corresponds to the

peers that are responsible of storing the corresponding

data and enforcing the correct usage of it. The mapping

between the key and the subset of nodes in a specific

protocol is based on the use of a specific hash function

which is described in the next section.

The correctness and security of the proposed usage

control scheme relies on the legitimate behavior of

a corresponding peers responsible of controlling data.
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Lookup and retrieval operations for a certain data

object are distributed among n peers whereby at least

t of them do not behave maliciously.

B. Error tolerant hash function.

In the proposed solution, the hash functions that define

the mapping between certain data and the subset of nodes

which will store it is an error tolerant hash function

which will allow peers to detect similarities between data

pieces.

As opposed to cryptographic hash functions which

given a slightly modified input return a totally different

digest than the original one, an error tolerant hash

function (ETHF ) is resilient to some changes on the

input and is defined as follows:

Definition 1: Hs is an ETHF if and only if satisfies

the following properties:

1) resiliency to changes: given two files x1, x2

that are similar, that is, only a small percentage

δ of their content is different, it exists σ, such

that the hamming distance is less than σ, i.e:

HD(Hs(x1),Hs(x2)) ≤ σ, where HD corre-

sponds to the hamming distance.

2) first pre-image resistance: given the result of

Hs(x) it is hard for an adversary to reconstruct

x.

3) collision resistance: it is hard for an attacker

two find two different files x1, x2 such that

Hs(x1)=Hs(x2)

Thanks to the aforementioned properties an ETHF
assures the correctness and security of the usage control

policy enforcement scheme. By assuring that a file and a

slightly modified version thereof will be assigned to the

same set of peer nodes, resiliency to changes helps detect

re-injection attacks. First pre-image resistance prevents

an attacker from determining data files that would be

assigned to colluding peers. Collision resistance on the

other hand prevents false alarms while detecting re-

injection attacks.

Similarity detection was the focus of several research

activities [14], [11]. One of the most performant solu-

tion [5] which nowadays is widely used is Charikar’s

Simhash algorithm [1]. This algorithm is used to check

similarities between web documents. The approach con-

sists of creating a sequence of tokens in such a way

that each web page is treated as an m-dimensional

vector by extracting a set of features from the input.

Authors apply random projections of the vector to a

single vector using randomizations. The similarity of two

documents depends on the similarity of the positions at

the projection vector.

The Simhash algorithm can be divided into the fol-

lowing four sequential phases. Figure 1 illustrates an

example of the way Simhash operates.

Feature extraction During this first phase, a set of k
features is extracted from the input file. For example

given the following text input “Our university is a grad-

uate school” when the features are sequential words of

the text grouped in sets of 3 words the output becomes:

{“Our”, ”uni”, ‘ver ”,”sit”, “y i ”,”is ”, “a g”, “rad”,

“uat”, “e s”, “coo”, ”l ”}
Hashing: Each feature is then hashed with a crypto-

graphic hash function and represented as a l-bit array

digest.

Accumulation: The set of all digests is accumulated in

the following way: Given the set of the binary digests

from the previous step an l×k matrix is constructed. An

addition operation is performed at the elements of each

column by treating each “0” as −1 and each “1” as 1.

Reduction: Depending on the sign of the numerical

value of each element in the array that was constructed

from the previous step, the final fingerprint is calculated

using the sign of each value in the table. For each

negative value or zero a 0 is assigned, and 1 otherwise.

+

1 1 0 00 1
0 1 1 1 0 0

1 1 0 00 1
0 1 1 1 0 0

0 1 1 1 0 0
1 1 0 00 1

0 1 1 1 0 0
0 1 1 1 0 0

-8 -2

0 1 1 1 0 0

(2) Hashing 

 "Our university is a graduate school"

(1) Features Extraction 

{"Our","uni","ver","sit","y_i",
"s_a","_gr","adu","ate","_sc",
"hoo","l__"} 

(3) Accumulation

(4) Reduction

-2 8 2 2 -2

0

Fig. 1: Simhash’s phases. In phase 1 the features extrac-

tion functionality extracts the features from the file given

as input. Next the hashing procedure occurs whereby all

the features are encrypted using cryptographic hash func-

tions. Afterward in phase 3 the accumulation operation

takes places and in the end from the reduction phase

the final Simhash digest is computed based on the sign

of each number element from the previous phase

C. Error correcting code.

Since the proposed solution consists of a complete

data management scheme that assures usage control,

this management scheme should of course ensure data

reliability additionally. Therefore, a redundancy mech-

anism becomes a basic building block of the sys-

tem. Our solution implements an error correcting code

(ECC) [15] which encodes a k symbol message into

n symbols such that given any k symbols the original

message can be reconstructed using the corresponding

decoding function. We denote the encoding function as
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Enc : {0, 1}k → {0, 1}n and the decoding function as

Dec : {0, 1}k → {0, 1}k.

D. Content Extractor.

Even though two files may look different following

a similarity checking mechanism, their actual content

still can be the same. This occurs due to the different

representation of a file. Configuration data and layout

parameters may result on different representations of

the file but the content still can remain the same. The

extractor Ext separates the Data D from the metadata

M of a file F . We refer to this operation as content

extraction implemented by a function Ext. Furthermore

when the P2P network is asked to retrieve content the

InvExt() function reconstructs the file from both its

content and its metadata.

V. THE PROPOSED MECHANISM

A. Overview

As mentioned in the previous section, the proposed

solution relies on the existence of a peer to peer (P2P)

network. Therefore, the main data management opera-

tions are executed through this P2P network following

the steps defined in the newly proposed protocol. In this

particular P2P network, nodes can have four roles:

• Producers UP basically are nodes that wish to

share some data in the network. The producer

generates content and becomes the owner of this

specific content. It also specifies the usage control

policy rules for the retrieval and the usage of this

specific content.

• Consumers UC ”consume” content. These are

nodes that wish to retrieve some data. Consumers

receives the required content only if they fulfill the

requirements defined by the policy rules sticked

with the relevant content.

• Caretakers CT are responsible of both storing con-

tent and verifying whether a consumer is authorized

for the specific usage of the data based on the

respective policy defined by the producer.

• Initiators I define the set of caretakers that are

responsible of a specific content upon reception of

storage request. They also separate the content data

D and metadata MD from the file F .

The proposed mechanism is mainly defined by two

operations, namely the storage and the retrieval. As-

suming that not all nodes are legitimate, the operations

defined at both phases are distributed among a set of

n caretaker nodes and such operations are successful

only if a threshold number of caretakers collaborate.

This threshold number is set regarding the trust degree

on the network. During the storage phase, the newly

proposed protection mechanism assures that similar data

are stored and managed by the same set of caretakers.

The similarity verification is performed using the error

tolerant hash function that was defined in section IV-B .

During the retrieval phase, the consumer contacts each

relevant caretaker which in turn verifies whether the

consumer fulfills the requirements originating from the

policy rules of the targeted content. In the following

section, we describe each operation in details.

Throughout the paper we are using the following

notations: F , D, MD and P respectively denote the file

that is to be stored in the system, the content of the file,

the metadata that includes information needed for the

reconstruction of the file and the policy corresponding

to the usage of the file. that of the file. Hs denotes the

Error tolerant hash function which is the main building

block of the protocol and H denote a cryptographic hash

function. Gen indicates the Content Extractor which

separates the data D from the metadata MD of a file

F and InvG() is the Inverse Content Extractor that

reconstructs the file. Finally Enc and Dec denote the

encoding and decoding functions of the error correcting

code respectively.

B. Storage

We assume the scenario where a producer UPi wishes

to store a file Fi with its predefined policy Pi. The

storage protocol is subdivided into the following three

main phases:

• Initialization: At this first phase, the producer UPi

sends the file Fi together with its policy Pi to a set

of l initiators Ii. These l initiators are randomly

selected thanks to the use of a regular cryptographic

hash function H . UPi computes H(F ) and the

output defines Ii. The selection of l initiators is

random because all nodes are not assumed to be

legitimate however the collaboration of at least l
nodes is assumed to produce a correct output. The

parameter l is predefined and depends on the trust

degree of the P2P level. In addition to defining the

set of caretakers for a particular content, the first

role of initiators is to extract the content from the

file itself. Indeed, initiators first extract content Di

and construct its respective metadata MDi from

file Fi using the Extractor Ext described in IV-D.

All further operations will be performed over the

content Di.

• Node assignment: The main role of initiators is

to define the set of caretakers that will store the

relevant content. Of course, before allowing the

storage of the data and in order to protect the
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network from re-injection attacks, each initiator

checks the similarity between files that are already

inserted in the system and the candidate content.

Therefore, initiators apply an error tolerant hash

function Hs as it is defined in IV-B.

Assume Hs(Dj) = hs′i. Each initiator then com-

putes the hamming distance between the candidate

output hs′i and the digests of all existing files which

are stored in an index. If there exists hsj in the

index such as HD(hs′i, hsj) ≤ σ then initiators

identify a re-injection attack and reject the storage

request. On the other hand, if initiators agree on

the novelty of the candidate content, then the output

hsi defines the unique set of caretaker nodes that

are in charge of storing the data together with

its policy. In order to assure the integrity of this

result, a group signature is generated over the tuple

(filenamei||UPi, {CTi,j}). This tuple is further

added to the newly updated P2P filesystem index.

• Content and policy storage: Once the non-

similarity verification is successful and the new file

references are added in the P2P filesystem index,

the data is prepared to be sent to the corresponding

caretakers. In order to first ensure data reliability,

the error correction code described in section IV-C

is applied over the data and the metadata separately.

Therefore initiators generate the newly encoded

data blocks {ei,1, .., ei,n} and the encoded meta-

data blocks {e′i,1, e
′

i,n}. Initiators further sign each

couple (ei,j , e
′

i,j) using a group signature again and

send it to the corresponding caretaker node CTi,j .

Once these encoded blocks received, the caretaker

CTi,j first verifies initiators’ signature and further

stores this couple together with its policy.

C. Retrieval

We assume consumer UCv would like to retrieve a

file Fi. As opposed to the storage protocol, the retrieval

protocol does not use any error tolerant hash function

and does not involve initiators. Only caretakers and

consumers play a role in this protocol which is divided

into the three following phases as in the case of the

storage protocol:

• data lookup: Consumer UCv sends a regular P2P

lookup request for the file Fi using the filename of

Fi. Following the index, UCv receives the set of

caretakers that store the data corresponding to Fi.

• verification: UCv sends a retrieval request to at

least k caretaker nodes together with its credentials.

Each caretaker CTi,j verifies whether consumer

UCv’s credentials are compliant with the policy Pi.

If this verification is successful UCv receives the

corresponding couple (ei,j , e
′

i,j) from each CTi,j .

• content retrieval and file reconstruction: Once

consumer UCi receives at least k pairs of encoded

blocks (ei,j , e
′

i,j), it applies the decoding function

D over these encoded blocks in order to compute

the original blocks and hence retrieve both data

Di and MDi. Following the information in MDi,

UCi reconstructs Fi using the inverse extractor

InvExt().

VI. SECURITY ANALYSIS

In this section we prove the first pre-image resistance

property of the Simhash algorithm that is required to

prevent re-engineering attacks through which an adver-

sary can derive from a collection of colluding nodes data

segments that would be managed by those nodes.

Thanks to the existence of collision resistance crypto-

graphic hash functions [3], the set of nodes that selects

the initiators, which in turn define the caretakers for

a specific file, through the execution of the Simhash

algorithm, are defined in a random manner. Resiliency

to changes and collision resistance that are required for

the security and the correctness of the usage control

policy enforcement scheme are demonstrated through

experimental evaluation in section VII.

Theorem 1: Hs is first pre-image resistant, ie. there

is no polynomial adversary A that can reconstruct the

content of a file F given the output of the Simhash with

probability no better than negligible.

Proof: In order to show that Hs is first pre-image

resistant, we first model the algorithm as a set of three

transitions corresponding to the last three phases of

the Simhash algorithm, namely, hashing, accumulation,

reduction and a set of four states s1, s2, s3 and s4 where

s2, s3 and s4 respectively represent the outputs of each

phase and s1 denotes the input of the Simhash algorithm.

The model can be summarized by the following states:

• s1 : The file is a set of plaintext features.

• s2 : Fingerprints are hashed.

• s3 : Each feature is represented as a k long vector

after the accumulation phase.

• s4 : In the end a final fingerprint is available for

similarity checking.

Therefore, the proof of Theorem 1 consists of proving

that it is hard to find s1 given s4. We now sequentially

analyze the probability of finding the state before a

transition given the state after its execution. We therefore

start to evaluate the probability of finding s3 given s4.

Each number in s3 is mapped to a bit (0,1) based on its

sign. Since the accumulation phase consists of a simple
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Input: A producer UPi wants to store file Fi under policy Pi

• UPi: Compute H(Fi). derive the list of initiators{I1,I2,. . ., Il}, send Fi and filenamei to each Ii
• Initiator Ii: Extract {Di,Mi} from F , Compute and−→ {CTi,1, CTi,2, . . . ,CTi,n},

if ∀j HD(hsj , hs
′

i) > σ then:

1) Store (filename|UPi, {CTi,1, CTi,2, . . . , CTi,3}) as index.

2) Group sign ({CTi,1, CTi,2, . . . , CTi,n})
3) Encode data:Enc(Di) −→ {di,ri} = ei,j , Enc(Mi) −→ {m

′

i, r
′′

i } = e′i,j
4) Send (ei,j , e

′

i,j) to the CTi,j signed with a group signature scheme.

• Caretaker CTi,j : if Verify(ei,j , e
′

i,j) := success

1) Store {(ei,j , e
′

i,j , Pi)}

Fig. 2: Storage

Input: A consumer UCv seeks to obtain file F under policy P with credentials C

1) UCv asks for filename|Uid gets the list of nodes {n1,n2,n3, . . ., nl}
2) UCv is asking for Di from every participant of the {n1,n2,n3, . . ., nl} list.

3) Each CTi,j evaluates credentials Ci for data Di that she owns

4) if Evaluate(UCv, Ci, Di, Pi) = Success :

a) Each CTi,j sends {(ei,j , e
′

i,j)} to UCv .

b) UCv decodes: Dec(ei,j) −→ {Di, Pi} , Dec(e′i,j) −→ {Mi}. and reconstructs the file:

InvExt(Di,Mi) −→ F

Fig. 3: Retrieval

addition operation of l numbers which are set to either

−1 or 1, the resulting sum for each element of the array

is an integer between [-l, l]. Hence the probability of

finding one element of s3 is 1/(2l+1). Since s4 is k-bit

large, the probability to find s3 given s4 is:

Pr[s3 ← s4] = (
1

2l + 1
)k

We further analyze the hardness of finding s2 based

on s3. The state s3 consists of an array T of size k,

where each element is a number of size in the range

[−l, l] and is the result of the accumulation phase of

Simhash algorithm as described in IV-B. We compute

the probability of an adversary to successfully guess the

set of all k numbers such that when summing them

accordingly with the description of the accumulation

phase of Simhash algorithm she can reconstruct the state

s3. Such a probability basically depends on the size l and

differs if l is even or odd. We now analyze the probability

Pr of finding l numbers whose sum is equal to Ti with

respect to the nature of l.

Even: If l is even then l = 2 · k and there are l + 1
possibilities for the sum. These are:

−l,−l + 2,−l + 4, . . . , 0, 2, 4, . . . , l

When Ti = −l all the numbers should be equal to 0 as

0 indicates a transformation into −1, hence Pr[Ti] = 1.

For each subsequent case where Ti = −l + 2j with

j = 1, .., l/2, j numbers among l should be equal to

”1” and this probability is 1

(lj)
. Therefore, the probability

of guessing the l arrays of size k which defines the

probability of guessing s2 given s3 is:

Pr[s2 ← s3] = (
1

1 + l
·

l
∑

i=0

1
(

l

i

) )k

Odd: Similarly when l is odd, there are only l possible

values for Ti; hence, the probability of finding the l
values whose is Ti for all k bits is:

Pr[s2 ← s3] = (
1

l
·

l
∑

i=0

1
(

l

i

) )k

We analyze the hardness of finding s1 given s2. This

step corresponds to the hashing phase that implements

cryptographic hash functions which by their very defini-

tion are first pre-image resistant. Finding s1 from s2 is as

hard as breaking the first pre-image resistance property

of a cryptographic hash function.

To conclude, given s4, we proved that the probability

of a polynomial time adversary that can reconstruct s1
depends on the security of the underlying cryptographic

hash function, hence Hs is first pre-image resistant.
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VII. EXPERIMENTAL EVALUATION

In this section we evaluate the correctness of the

resiliency to changes property that is required in our

ETHF . This property is of significant importance in

our scheme as it allows similar data to be mapped to

the same set of peers and as such it renders re-injection

attacks impossible to occur. The second property that

is demonstrated through the evaluation procedure is

the collision resistance for two non-similar files given

as input an ETHF . Indeed an attacker who manages

to compute an identical Simhash digest for two non-

similar files is be able to produce abnormal behavior,

as the usage control policy enforcement scheme will

raise an alert in two similar files that are different; thus

introducing a false positive into the scheme. These two

properties are demonstrated through an intensive exper-

imental evaluation whereby different similarity degrees

are assigned to different sets of files. It is very difficult to

theoretically prove these two properties since there is no

formal definition for similarity given the huge diversity

among the representations of content.

A. Experimental Setup

In order to evaluate the accuracy of the underlying

Simhash algorithm with respect to different modifica-

tion operations (either minor or major), we analyze its

performance over a large set of files. First, 180 files have

been generated using the sci-gen random scientific paper

generator 1. Each file contains 700 words on average.

Since the performance may vary with respect to the

size of the files, another set of 180 small files has

been created by simply extracting 20 consecutive words

from each file of the previous set. The original files

are further modified following six different scenarios.

The modification operations consist in either adding or

removing words to/from the original file at either the

beginning, the end or from a random position in the file.

The significance or impact of the modification depends

on the number of words used in each scenario: in the case

with small files, this number varies from 3 to 10 whereas

for large files either 20 or 60 words are added/removed

to/from files.

The Simhash algorithm is implemented using Python

2.7 on a commodity machine with 3.30 GHz Intel Core

i5 2500, 8GB memory, 6MB cache which runs Fedora

OS. The accuracy of this algorithm is evaluated by

applying it over a pair of files and further computing

the ratio of the cardinality of the same bits set to the

total number of bits of the resulting Simhash digest.

1http://pdos.csail.mit.edu/scigen/

We evaluate the resiliency to changes property by

running the Simhash algorithm on every file and its

altered version. The similarity degree of two files is

computed as the ratio of the cardinality of the same bits

set to the total number of bits of the Simhash digest in

a percentage form. The result is a collection of 5040

Simhash digests. The sensitivity of the algorithm on

different number of words is analyzed as well by running

Simhash several times on a file while gradually increas-

ing the number of words that alter the file according to

the aforementioned scenarios. The sensitivity shows how

unexpectedly Simhash behaves at each scenario. Next

we compute the Simhash digests for each possible pair

of files from each category (small and large files) and

evaluate the collision resistant property for different files.

B. Resiliency to changes

As already mentioned, for each scenario presented

in the previous section, we apply two different modi-

fications for each original file: in the case with small

files, either 3 or 10 words are added/removed/replaced.

Figures 4 and 5 show the similarity degree between

an original file and an altered one computed for each

of the seven modification scenarios and Table I depicts

their mean values. The most visual result is that in all

scenarios, the average similarity degree is approximately

80%. In the case with small files, there is a significant

difference between the two modification operations since

the modification which uses only 3 words results in an

average similarity degree of 85% whereas the one with

10 words ends up with a degree of 76%. The main

reason of this strong difference is the fact that 10 words

correspond to the 50% of the size of the content. Hence,

this can be considered as a significant modification.

Additionally, in order to evaluate the sensitivity of the

underlying Simhash algorithm, we also computed the

similarity degree with respect to the number of words

varying from 1 to 20 for small files. From Figure 6a, we

observe that Simhash reacts as expected to the gradual

increase of the modification parameter. The analysis with

large files (figure 5) basically shows the same behavior as

small files with respect to the decrease of the similarity

degree with the increase of the modification parameter.

Furthermore, we also notice a very large similarity

degree for the first two scenarios where words are added

(either in the beginning or at the end). To conclude,

the proposed error-tolerant hash function outputs a large

similarity degree ranging from 72.36% to 97.38% and

therefore can be considered as being resilient to minor

modifications.
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TABLE I: Average similarity degree

Scenarios
Small files Large Files

3 words 10 words 20 words 60 words

Prepend 83.34 76.66 97.38 96.17

Append 87.11 80.61 97.16 96.23

Randomly Append 81.26 77.20 80.38 74.88

Pre-Delete 86.21 78.06 87.11 80.61

Delete 82.77 72.36 83.34 76.66

Randomly delete 80.35 74.84 86.21 78.06
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Fig. 4: Small files

C. Collision resistance

Albeit an error-tolerant hash function should provide

the same output given two similar files, it should also

follow the collision resistance property of a conventional

cryptographic hash function in the case where files are

significantly different. Therefore, we also compute the

similarity degree between all possible two files from the

same category. Figure 6b depicts the results originating

from the 180 files for each category: the average sim-

ilarity degree is approximately 50% for small files and

60% for large files from a corpus of
(

180

2

)

= 16000
comparisons. The maximum detected similarity degree

for large files is 78.39 and for small files 71.48. Even

the largest similarity degree is much lower than the min-
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(b) Delete

Fig. 5: Large files

imum similarity degree computed based on similar files.

Therefore, we realize that Simhash can be considered as

being collision resistant.

D. Summary

Via evaluating our scheme with respect to the ETHF
we conclude that:

• Similar files end up with a similarity degree that can

be accurately defined by a threshold, as the plots in

figures 4 and 5 show that the results of Simhash

have a low “spread” around the mean value.

• Different files end up with a similarity degree that

is lower than the degree defined for similar files

according to our test scenarios.
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The previously analyzed properties, namely, resiliency

to changes and collision resistance imply a random

selection of peers to assign caretakers for data man-

agement in such a way that similar content is assigned

to the same set of peers. It is therefore impossible

for potential intruders to apply a re-injection attack by

slightly altering the content of the file and gaining the

ownership of it. Moreover it is guaranteed that different

content will be assigned to a different set of peers.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented a solution for the usage

control policy enforcement problem. Namely, usage con-

trol defines a continuous validation of the policy imposed

by the user during the entire lifetime of its data. The

proposed solution assumes the legitimate behavior of t
out of n peer nodes in a P2P network. Thanks to the

employment of Simhash algorithm which is an ETHF ,

similar data segments are assigned to the same set of

peers, therefore rendering potential re-injection attacks

impossible to occur. Bypass attacks are not of significant

impact in the scheme, since we assume that a copy of a

file from a confined environment S and its usage outside

this environment with the policy defined by the user

doesn’t have an intense impact because S has a global

coverage.

The security and the correctness of Simhash are

demonstrated through an analytical and experimen-

tal evaluation respectively. The experimental evaluation

shows that Simhash is resilient to changes, thus Simhash

contributes to the mitigation of re-injection attacks

through various scenarios of possible file manipulations.

Furthermore, Simhash is collision resistant: thus it acts as

a barrier in the abnormal behavior of our scheme without

allowing different content to be assigned to the same set

of caretakers. As part of future work we are planning to

deploy the proposed solution in a P2P system in order

to further evaluate it in terms of communication and

computational overhead.
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