
Scalability demonstration of a Large Scale GPU-based
Network simulator

Ben Romdhanne Bilel; Mohamed Said Mosli Bouksiaa; Nikaein Navid; Bonnet
Christian

Mobile Communication Department, Eurecom
{benromdh,mosli,nikaeinn,bonnet}@eurecom.fr

ABSTRACT
Large scale simulation is a challenging issue of the network
research area. In particular, simulating one large space
where a big number of nodes are in continuous interaction
remains complex even if we consider distributed and parallel
solutions. In this perspective; GPU appears as a promising
hardware providing an important number of independent
computing resources. Nevertheless its usage requires a new
software design. In that context, Cunetsim is a distributed
GPU-based framework which aims to combine the power of
GPUs with the flexibility of distributed solution in order to
increase the scalability while reducing the complexity. In
this work we aim to demonstrate the efficiency and the scal-
ability of that framework on one hand and its robustness in
term of event handling on the other hand; therefore we pro-
pose a validation scenario including 1.5 millions nodes where
we generate up to 10 billions events; we conduct the simu-
lation using one workstation which includes three GPUs.

Categories and Subject Descriptors
I.6.0 [Computing Methodologies]: SIMULATION AND
MODELING—General ; C.4 [Computer Systems Orga-

nization]: PERFORMANCE OF SYSTEMS

Keywords
PADS, PDES, Large scale simulation, System architecture,
GPGPU, Heterogeneous computing

1. INTRODUCTION
While large-scale simulations are required to study and val-
idate the behavior of new network technologies and proto-
cols, their establishment is complex and expensive. More-
over, network simulation imposes the modeling of expen-
sive operations such as the mobility, the channel estimation
and packets exchange. Thus, increasing the number of node
rapidly increases the complexity of those operations which
in turn reduces significantly the simulation efficiency . The
dominant approach to speedup a large scale simulation is to

distribute it over several logical processes (LP) each of which
simulates a partition of the main simulated space. Even if
such solutions are widely deployed and used in research, the
size of each partition was usually limited in term of nodes
number and did not exceed thousands of nodes. The major
limit remains the computing power required by each LP to
handle an important number of nodes. Hence GPU appears
as a promising hardware which provides a significant amount
of commuting power. In that context, Cunetsim presents a
proof of concept that confirms the possibility of running the
totality of a network simulation on the GPU.

In this work we aim to focus on the performance of cunet-
sim as a distributed GPU-based large scale network simula-
tor. The framework design is based on an extended master-
worker model that introduces a top level process called coor-
dinator. The model is denoted as coordinator-master-worker
(CMW). Features and architecture of that framework was
discussed in [3]. In particular, we try to highlight the pos-
sibility to achieve a large scale distributed simulation based
on a network of large networks. Therefore we propose an
experimental benchmark which includes 1.5M of nodes dis-
tributed over only three active areas (AA). Thus, each AA
includes 500K nodes; at the best of our knowledge, this
presents the largest contiguous area in term of number of
nodes which was simulated on one hardware context (CPU
or GPU) .The total number of generated events vary be-
tween 4.5 and 10.5 billion; and the event rate spike was
about 800 millions events/s. The worst case simulation is
done using one workstation which includes 3 GPUs each of
which includes 1536 cores. The total runtime for that case
was about 410 s which is 13 times faster than the realtime
execution.

The remainder of this work is organized as follows. Sec-
tion 2 presents the GPU background. Section 3 provides an
overview of cunestim architecture and features. Section 4
describes the demonstration scenario and setup while eval-
uation results are in section 5. Finally, section 6 concludes
this paper.

2. GPU & GPGPU
Initially dedicated to graphical rendering, Graphics Process-
ing Units (GPUs) are becoming increasingly programmable,
flexible and computationally powerful. Modern GPUs are
characterized by a high throughput using multi-threading
over hundreds of processing cores. GPUs contain indepen-
dent RAM accessible to all their processing cores which are



grouped into several streaming multiprocessors (SMs) each
of which possessing its specific shared memory. With the
venue of General-purpose computing on graphics processing
units (GPGPU), we dispose of a user-friendly APIs such
as CUDA characterized by a developed ecosystem and a
wide range of compliant libraries. For this reason, we choose
CUDA as a technological support.

3. CUNETSIM FRAMEWORK
Cunetsim is a distributed GPU-based framework designed
for wireless mobile network simulation. It aims to achieve
two main goals: enabling extra large-scale network simula-
tion and providing a significant speedup compared to tra-
ditional CPU-based frameworks. Therefore, Cunetsim is
based on an innovative methodology on the network sim-
ulation area[1]. This approach considers that GPUs archi-
tecture is adequate to hold the totality of a network simu-
lation based on a CPU-GPU co-simulation where the GPU
is the main simulation environment and the CPU is a con-
troller. The scalability in Cunetsim is considered natively
since it dedicates an independent execution environment for
each node in addition to an efficient communication process
based on message passing through buffer exchange, there-
fore minimizing interaction among nodes. The distributed
architecture of Cunetsim is a fundamental cornerstone in the
support of heterogeneous computing architecture. That is
why the master-worker model is extended to the three-level
coordinator-master-worker (CMW) model where, at the top
level, the coordinator ensures the time synchronization and
the load balancing among the masters (second level), each of
which locally manages the time synchronization and event
scheduling among the workers. At the third level, the work-
ers execute threads performing tasks. From the coordina-
tor point of view, the master manages multiple simulation
instances, which is why the master-worker subsystem is re-
ferred to as extended logical process (ELP). Since Cunetsim
aims to maximize the simulation parallelism at the event
level, it introduces the notion of worker set (WS) which re-
groups workers that perform the same process in the same
context. Based on the passive parallelism concept, events
are generated simultaneously for each WS and can be pro-
cessed in parallel. In the same spirit, the event scheduling
policy handles two type of parallel events: (i) cloned inde-
pendent events(CIE), where events differ only in data, and
(ii) independent foreign events (IFE), where events differ in
both algorithm and data. From a scheduling standpoint,
each CIE clone is considered as a unique event to which
we attach parallelization parameters that are later inter-
preted by the API in order to distribute those events among
workers. Finally synchronization and communication pro-
cesses handle domain-specific operation between CM and
MW. Therefore, each master synchronizes its relative work-
ers on one side and synchronizes its own clock with the co-
ordinator’s one on the other side. The communication be-
tween workers of the same ELP is done by a direct message
exchange while workers form different ELPs need the con-
tribution of masters of each side.

4. SCENARIO AND SETUP
In this work we propose an experimentation scenario which
aims to prove the efficiency and the scalability of the cunet-
sim concept in terms of traffic management across the net-
work; Moreover, we try to highlight the efficiency of the

event scheduling approach and its ability to handle an un-
interrupted event flow of a Ge/s event rate. For this reason,
we customize the benchmark methodology proposed on [2]
by defining a static network topology composed of three in-
dependent activity areas (AA) each of which follows the grid
configuration where the edge of an AA contains 750 nodes
as illustrated in Figure 1; thus each AA includes 562.5K
nodes.1. The scenario includes one traffic source which gen-
erates 600 uniform 128-byte packets with 1 second of inter-
departure time. All nodes forward unseen packets after a
one-second delay to model the network latency whilst medi-
ums reliability is reflected using dropping probability. De-
pending on the latter, each node decides whether or not to
relay a received packet. The drop probability is the parame-
ter which allows us to tune the traffic load while the density
of process events remains stable. Therefore, all the exper-
iments have been conducted while varying this probability
from 0 (no rejected packets) to 1 (all packets rejected) with
a 0.1 step. The used frameworks are CUDA 5.0 and Open-
MPI 1.4.1. The hardware platform is constituted by one PC
which includes an INTEL i7 3930k CPU (6 cores with hy-
per threading), 32 GB of DDR3 and three GeForce GTX860
2GB (1536 cores for GPGPU computing. The OS is Ubuntu
Linux 11.10, the PGI compiler version is the 12.9 and the
Nvidia driver version is 295.41.

Figure 1: Topology of the benchmarking scenario

5. EVALUATION RESULTS
we propose to consider the runtime as global efficiency met-
ric (Figure 2(a)) and the events behavior as a scalability
descriptor. Thus we first study the event density defined as
the average number of generated events per simulated sec-
ond(Figure 2(b)); secondly we analyze the event rate defined
as the average number of events processed per second (Fig-
ure 2(c)) and third we highlight the difference between the
processing cost of a message and a state(Figure 2(d)). Con-
ceptually, for a DP of 1 the simulation represents a vacuum
network since there is no exchanged message which reflects
the minimal simulation load where all generated events are
a state’s processing. The total number of events is about
4.5 billions. On the other hand, a DP of 0 means that
we simulate a fully loaded network where all links are re-
liable. Therefore the total number of generated events is
close to 10.3 billion. We observe that when the DP value
is between 1 and 0.4 the number of messages remains small
and the runtime did not exceed 31 seconds with a spec-
tacular event rate of 800 million/s. However when the DP
increases further the network becomes progressively loaded

1That value represents the hardware limitation of the used
GPU in term of memory space since each node needs 3.8 Ko



(a) The average runtime increases linearly function of the
number of processed packets

(b) The event density increases when we decreases the DP

(c) Processing uniquely states allows high events rate (d) A message cost 10x more than a state in average

Figure 2: Hardware usage rate of both CPU and GPU function of the network size

and the number of message increases rapidly. Thus the sim-
ulation runtime rises significantly. We observe however, that
the events rate falls to 100 million/s which means that the
framework is more sensitive to message events rather than
state events. Hence, Figure 2(d) illustrates the evolution of
the average time needed to process both events and we no-
tice that a message costs 10x more; that fact is due to three
reasons: first a message requests the collaboration of two
workers: the sender and the receiver, secondly it required
at least two memory operations one read and one write and
finally it uses atomic operation to write on the destination
buffer which produces a stunts expectation when all nodes
are active. This is one of the reasons why the message cost
increases when the number of messages increases.

To conclude, we can assert that Cunetsim framework pro-
vides significant results in term of runtime and ensure major
scalability gain on the size of each simulated partition when
considering distributed simulation.

6. CONCLUSION
In network research area, simulating large scale networks is
always challenging since emerging technologies such as LTE
and WiMAX allow higher and higher communication ca-
pabilities. While distributed and parallel frameworks were
generally used to cope with such simulations, they did not
support heterogeneous computing hardware and are mainly
CPU-oriented. However, the simulation over GPU has been
recently studied as an efficient solution to realize large scale
experimentation. In particular, Cunetsim is a distributed
GPU-based framework which targets wireless mobile net-
works and uses both the CUDA API for GPU integration
and MPI API for the distribution over several machines

and/or GPUs.

In this work we show the results of an extra-large bench-
marking scenario which involves 1.5 millions nodes exchang-
ing about 4 billions messages during 5602 simulated seconds.
The simulation is done using one workstation which includes
3 GPUs each of which includes 1536 cores. The total run-
time for the worst case was about 410 s which is 13x faster
than the realtime execution. We note however that the size
of the available memory on the GPU was the main limitation
that hinder our scalability.

7. REFERENCES
[1] B. Bilel and N. Navid. Cunetsim: A gpu based

simulation testbed for large scale mobile networks. In
Communications and Information Technology (ICCIT),
2012 International Conference on, pages 374–378.
IEEE, 2012.

[2] M. S. M. B. Bilel Ben Romdhanne, Navid Nikaein.
Hybrid cpu-gpu distributed framework for large scale
mobile networks simulation. In 16th IEEE/ACM
DS-RT :The International Symposium on Distributed
Simulation and Real Time Applications. Ieee/ACM,
2012.

[3] K. Renard, C. Peri, and J. Clarke. A performance and
scalability evaluation of the ns-3 distributed scheduler.
In Proceedings of the 5th International ICST
Conference on Simulation Tools and Techniques, pages
378–382. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering), 2012.


