
Practical Size-based Scheduling for MapReduce Workloads

Mario Pastorelli
EURECOM

Campus SophiaTech, France

pastorel@eurecom.fr

Antonio Barbuzzi
EURECOM

Campus SophiaTech, France

barbuzzi@eurecom.fr
Damiano Carra

University of Verona
Italy

damiano.carra@univr.it

Matteo Dell’Amico
EURECOM

Campus SophiaTech, France

dellamic@eurecom.fr

Pietro Michiardi
EURECOM

Campus SophiaTech, France

michiard@eurecom.fr

ABSTRACT
We present the Hadoop Fair Sojourn Protocol (HFSP) sched-
uler, which implements a size-based scheduling discipline for
Hadoop. The benefits of size-based scheduling disciplines
are well recognized in a variety of contexts (computer net-
works, operating systems, etc...), yet, their practical imple-
mentation for a system such as Hadoop raises a number of
important challenges.

With HFSP, which is available as an open-source project,
we address issues related to job size estimation, resource
management and study the effects of a variety of preemp-
tion strategies. Although the architecture underlying HFSP
is suitable for any size-based scheduling discipline, in this
work we revisit and extend the Fair Sojourn Protocol, which
solves problems related to job starvation that affect FIFO,
Processor Sharing and a range of size-based disciplines.

Our experiments, in which we compare HFSP to stan-
dard Hadoop schedulers, pinpoint at a significant decrease
in average job sojourn times – a metric that accounts for
the total time a job spends in the system, including waiting
and serving times – for realistic workloads that we generate
according to production traces available in literature.

1. INTRODUCTION
The advent of large-scale data analytics, fostered by par-

allel processing frameworks such as MapReduce [17], has
created the need to organize and manage the resources of
clusters of computers that operate in a shared, multi-tenant
environment. For example, within the same company, many
users share the same cluster because this avoids redundancy
(both in physical deployments and in data storage) and may
represent enormous cost savings. Initially designed for few
and very large batch processing jobs, data-intensive scalable
computing frameworks such as MapReduce are nowadays
used by many companies for production, recurrent and even

experimental data analysis jobs. This is substantiated by
recent studies [14, 28] that analyze a variety of production-
level workloads (both in the industry and in academia): an
important characteristic that emerges from such works is
that there exists a stringent need for interactivity. The num-
ber of small jobs might be dominant in current workloads:
these are preliminary data analysis tasks involving a human
in the loop, which for example seeks at tuning algorithm pa-
rameters with a trial-and-error process, or even small jobs
that are part of orchestration frameworks whose goal is to
launch other jobs according to a workflow schedule.

In this work, we study the problem of job scheduling,
that is how to allocate the resources of a cluster to a num-
ber of concurrent jobs submitted by the users, and focus
on the open-source implementation of MapReduce, namely
Hadoop [6]. In addition to the default, first-in-first-out
(FIFO) scheduler implemented in Hadoop, recently, several
alternatives [37, 12, 20, 23, 30, 36] have been proposed to
enhance scheduling: in general, existing approaches aim at
two key objectives, namely fairness among jobs and perfor-
mance in terms of job execution time.

We propose to use job sojourn time as a performance met-
ric, which accounts for the time a job spends in the system
waiting to be served and its execution time. We thus pro-
ceed with the design and implementation of a new scheduling
protocol that caters both to a fair and efficient utilization
of cluster resources, while striving to achieve short sojourn
times. As such, our approach satisfies both the interactivity
requirements of small jobs, and the performance require-
ments of large batch jobs.

Our solution, Hadoop Fair Sojourn Protocol (HFSP), be-
longs to the category of size-based, preemptive scheduling
disciplines. In addition to addressing the problem of schedul-
ing jobs characterized by a complex structure in a multi-
processor system, we propose an efficient method to imple-
ment size-based scheduling when job size cannot be known
a priori.

HFSP allocates cluster resources such that job size in-
formation is inferred while the job makes progress toward
its completion. The scheduling discipline benefits from pre-
emption to achieve short job sojourn times; however, pre-
emption is not currently implemented in Hadoop. As such,
we introduce a new set of primitives that enables HFSP to
interrupt and eventually resume running jobs, and show in
which cases this approach is superior to the widely adopted
technique of killing running tasks to make room for other

1

jobs. The contribution of our work can be summarized as
follows:

• We design and implement the system architecture of
HFSP, including a (pluggable) component to estimate
job sizes, a dynamic resource allocation mechanism
that strives at efficient cluster utilization and a new
set of low-level primitives that allows preemptive dis-
ciplines. HFSP is available as an open-source project.1

• HFSP uses a new scheduling discipline inspired by the
Fair Sojourn Protocol [19]. Job scheduling operates
in a multi-processor context and aims to minimize job
sojourn times. One of the main consequences of the
HFSP discipline is that small jobs, for which “interac-
tivity” is important, do not wait for a long time before
being awarded cluster resources. The HFSP sched-
uler is also beneficial to medium-large jobs which are
granted a large fraction of cluster resources.

• We perform an extensive experiment campaign, where
we compare the HFSP scheduler to the two main sched-
ulers used in production-level Hadoop deployments,
namely the FIFO and the FAIR schedulers. For the ex-
periments, we use state-of-the-art workload suite gen-
erators that take as input realistic workload traces.
Our results – that we obtain on a large cluster deployed
in Amazon EC2 – show that the average job sojourn
time achieved with HFSP is drastically reduced with
respect to the other scheduler we examined. In addi-
tion, we show results that substantiate the claim of an
efficient cluster resource utilization under heavy loads.

The remainder of the paper is organized as follows: in
Section 2 we provide background information on a set of
scheduling disciplines and on some details of Hadoop MapRe-
duce. In Section 3 we describe in details the HFSP sched-
ulers and its inner components. We evaluate the perfor-
mance of our job scheduler in Section 4 and provide in Sec-
tion 5 additional considerations. In Section 6 we discuss the
related work, and we conclude in Section 7.

2. BACKGROUND
When comparing different scheduling disciplines, there are

different performance metrics one can consider. In this work
we focus on the mean response time – i.e. the total time
spent in the system, given by the waiting and service time,
called also sojourn time – for each job, and fairness. Next,
we consider two disciplines that are relevant in our context:
one that minimizes the mean response time and one that
provides perfect fairness.

The optimal preemptive scheduling policy that minimizes
the mean response time is the Shortest Remaining Process-
ing Time (SRPT), where the job in service is the one with
the smallest remaining processing time – this policy requires
the job size to be known a priori. SRPT provides no guar-
antees on system fairness: as such, long jobs may starve.
As opposed to minimizing the mean response time, the Pro-
cessor Sharing2 (PS) discipline is conceived to guarantee a
fair share of system resources to be dedicated to each job:

1https://bitbucket.org/bigfootproject/hfsp-project
2In this work, we compare our proposal to the FAIR sched-
uler, which implements the concept of PS, albeit with addi-
tional features to cope with a multi-processor system.

if N jobs need to be served, with PS each receives a 1/Nth
fraction of the system resources. However, the mean re-
sponse time achieved by PS is higher than that obtained
with SRPT.

Friedman and Henderson [19] study a scheduling policy
for a single-server queue model that strives to obtain both
(near) optimal mean response times and fairness, called Fair
Sojourn Protocol (FSP). Since our work is inspired by FSP,
in the following we provide sufficient background to under-
stand its properties.

2.1 How FSP Works
The main idea of FSP is to run jobs in series rather than

concurrently. FSP computes the completion time for each
job under a virtual PS discipline. The order at which jobs
complete in PS is used as a reference to schedule jobs in
series. In the basic single server-queue model, this means
that at most one job is served at a time, and that such job
may be preempted by a newly arrived job. An example is
the best way to illustrate how FSP works.

Assume that there are three jobs, j1, j2 and j3, each re-
quiring all the resources available in the system. Such jobs
arrive at time t1 = 0s, t2 = 10s and t3 = 15s respectively; it
takes 30 seconds to process job j1, 10 seconds to process job
j2 and 10 seconds to process job j3 (if all the resources are
used, otherwise the time increases inversely proportionally
to the available resources).

100
usage (%)

cluster

50

10 15 37.5 42.5 50

time
(s)

100
usage (%)

cluster

10 5020 30

50

time
(s)

job 1

job 2

job 3

job 1 job 3job 2 job 1

Figure 1: Comparison between PS (top) and FSP
(bottom).

Figure 1 (top) represents the system utilization over time
under the PS discipline: when job j2 arrives, the server is
shared between j1 and j2, and, when job j3 arrives, the
server is shared among the three jobs. The job completion
order is j2, j3 and j1. The bottom part of the figure shows
how the workload described above is scheduled under the
FSP discipline. When job j2 arrives, since it would finish
before job j1 in case of PS, it preempts job j1. When job
j3 arrives, it does not preempt job j2, since it would finish
after it in case of PS; when job j2 finishes, job j3 is scheduled
since it would finish before job j1 in case of PS. The FSP
discipline ensures each job receives a fair amount of system
resources, as when PS scheduling is used. At the same time,
under FSP, the mean job completion time is considerably
smaller than under PS. Next, using a simple example, we
anticipate a more elaborate setup that underlies our work,
whereas in Section 3.1 we detail all the hidden intricacies of
a multi-processor version of FSP.

2

Assume that jobs j1, j2 and j3 require 100%, 55% and
35% of the system resources respectively. The arrival times
are t1 = 0s, t2 = 10s and t3 = 13s and the processing time
(if the required share of system resources is given to each
job) is 30 seconds for job j1, 10 seconds for job j2 and 10
seconds for job j3.

10 13 3923.5

usage (%)
cluster

100

50

24.5

time
(s)

10 13 20 23 39

100

50

usage (%)
cluster

time
(s)

job 1

job 2

job 3

job 1

job 2

job 3

Figure 2: Comparison between PS (top) and an ideal
multi-processor FSP (bottom), with jobs that do not
require the full cluster.

Figure 2 compares PS (top) to an ideal, multi-processor
version of FSP (bottom). With ideal FSP, job j2 would
preempt job j1; since j2 requires only 55% of the system, the
remaining 45% can still be used by j1. When job j3 arrives,
it would preempt job j1 (but not job j2), but it is sufficient
to allocate 35% of the system to serve it, leaving 10% of
the server to job j1. As shown in the Figure, the mean job
completion time under multi-processor FSP is smaller than
that achieved by PS, and system resources are allocated such
that no job is “mistreated.”

2.2 Hadoop MapReduce
MapReduce, popularized by Google with their work in [17]

and by Hadoop [6], is both a programming model and an ex-
ecution framework. In MapReduce, a job consists of three
phases and accepts as input a dataset, appropriately parti-
tioned and stored in a distributed file system. In the first
phase, called Map, a user-defined function is applied in par-
allel to input partitions to produce intermediate data stored
on the local file system of each machine of the cluster; inter-
mediate data is sorted and partitioned when written to disk.
Afterwards, a Reduce phase is scheduled. It comprises a
Shuffle sub-phase, where intermediate data is “routed” to
the reducers. Subsequently, intermediate data from multiple
mappers is sorted and aggregated to produce output data
which is written back on the distributed file system.

Hadoop Scheduling. In Hadoop, the JobTracker takes
care of coordinating TaskTracker nodes, which can be
thought of as worker machines. The scheduler, which is
the subject of this work, resides in the JobTracker. The
role of the scheduler in MapReduce is to allocate Task-
Tracker resources to running tasks: Map and Reduce
tasks are granted independent slots on each machine. The
number of Map and Reduce slots on each TaskTracker
is a configurable parameter, which depends on the cluster in
which Hadoop is deployed, and on the characteristics (e.g.,
the number of CPU cores) of each server in the cluster.

When a single job is submitted to the cluster, the sched-
uler simply assigns as many Map tasks as the number of
available slots in the cluster. Note that the total number
of Map tasks is equal to the number of partitions of the
input data. The scheduler tries to assign Map tasks to slots
available on machines in which the underlying storage layer
holds the input intended to be processed, a concept called
data locality. Also, the scheduler may need to wait for a
portion of Map tasks to finish before scheduling subsequent
mappers, that is, the Map phase may execute in multiple
“waves”, especially when processing very large data. Simi-
larly, Reduce tasks are scheduled once intermediate data,
output from mappers, is available.3 When multiple jobs are
submitted to the cluster, the scheduler decides how to allo-
cate available task slots across jobs.

The default scheduler in Hadoop implements a FIFO pol-
icy: the whole cluster is dedicated to individual jobs in se-
quence; optionally, it is possible to define priorities asso-
ciated to jobs. In practice, the FIFO scheduler works as
follows: it assigns tasks (Map or Reduce) in response to
heartbeats sent by each individual TaskTracker, which
reports the number of free Map and Reduce slots available
for new tasks. Task assignment is accomplished by scan-
ning through all jobs that are waiting to be scheduled, in
order of priority and job submission time. The goal is to
find a job with a pending task of the required type (Map or
Reduce). In particular, for Map tasks, once the scheduler
chooses a job, it will select greedily the more suitable task
to achieve data locality. In this work we also consider the
Hadoop Fair Scheduler, which we call FAIR. FAIR groups
jobs into “pools” (generally corresponding to users or groups
of users)and assigns each pool a guaranteed minimum share
of cluster resources, which are split up among the jobs in
each pool. In case of excess capacity (because the cluster is
over dimensioned with respect to its workload, or because
the workload is lightweight), FAIR splits it evenly between
jobs. When a slot on a machine is free and needs to be as-
signed a task, FAIR proceeds as follows: if there is any job
below its minimum share, it schedules a task of that partic-
ular job. Otherwise, FAIR schedules a task that belongs to
the job that has received less resources, based on the notion
of “deficit.”

3. HADOOP FAIR SOJOURN PROTOCOL
HFSP is a concrete implementation of the multi-processor

FSP introduced in Section 2.1. The abstract idea is simple:
prioritize jobs according to the completion time they would
have using processor sharing, and always use preemption to
allocate resources to the highest-priority job. The size of
new jobs is at first estimated roughly based on their num-
ber of tasks; by observing the running time of the first few
tasks, that estimate is then updated. Implementing HFSP
in practice, though, raises a variety of issues; in the following
we detail how we tackled them.

3.1 The Job Scheduler
HFSP runs on a multi-processor system, managing jobs

that may require a different number of Map and Reduce

3Precisely, a configuration parameter indicates the fraction
of mappers that are required to finish before reducers are
awarded an execution slot.

3

tasks: unlike FSP and like the multi-processor variant illus-
trated in Figure 2 on the preceding page, a job might need
only a fraction of the resources of a cluster, and therefore
two or more jobs may be scheduled at the same time.

Job Dependencies. In MapReduce, a job is composed by
a Map phase followed optionally by a Reduce phase. We
estimate job size by observing the time needed to compute
the first few “training” tasks of each phase; for this reason
we cannot estimate the length of the Reduce phase when
scheduling Map tasks. Because of this, for the purpose of
scheduling choices we consider Map and Reduce phases as
two separate jobs. For ease of exposition, we will thus refer
to both Map and Reduce phases as “jobs” in the remainder
of Section 3. As we experimentally show in Section 4, the
good properties of size-based scheduling ensure shorter mean
response time for both the Map and the Reduce phase,
resulting of course in better response times overall.

Scheduling Policy. HFSP works by estimating the size of
each job using the training module described in Section 3.2;
this size is then used to compute the completion time of
each job in a simulated processor-sharing scheduler (see Sec-
tion 3.3). When jobs arrive, all cluster resources are assigned
to fulfill demands of jobs ranked by increasing simulated
completion time. If a job ends up having more running
tasks than assigned, excess slots are released by using the
preemption mechanisms described in Section 3.4.

Training Phase. Initially, the training module provides a
rough estimate for the size of new jobs (Section 3.2.1). This
estimate is then updated after the first s “sample” tasks of
a job are executed (Sections 3.2.2 and 3.2.3). To guarantee
that job size estimates quickly converge to more accurate
values, the first s tasks of each jobs are prioritized, and the
above mechanism is amended so that a configurable number
of Map and Reduce “training” slots are always available, if
needed, for the sample tasks. This number is limited in order
to avoid starvation for “regular” jobs in case of a bursty
arrival of a large number of jobs.

Data locality. In order to minimize data transfer latencies
and network congestion, it is important to make sure that
Map tasks work on data available locally. For this reason,
HFSP uses the delay scheduling strategy [37], which post-
pones scheduling tasks operating on non-local data for a
fixed amount of attempts; in those cases, tasks of jobs with
lower priority are scheduled instead.

3.2 Job Size Estimation
Size-based scheduling strategies require knowing the size

of jobs. In Hadoop, we do not have a perfect knowledge
of the size of a job until it is finished; however, we can
at first estimate job size based on characteristics known a
priori such as the number of tasks; after the first sample
tasks have executed, the estimation can be updated based
on their running time.

This estimation component has been designed to result in
minimized response time rather than coming up with per-
fectly accurate estimates of job length; this is the reason
why sample jobs should not be too many (our default is
s = 5), and they are scheduled quickly. We stress that the
computation performed by the sample tasks is not thrown

away: the results computed by sample tasks will be used in
the rest of the job exactly as the other regular tasks.

3.2.1 Initial Estimation
When a new job arrives in the system, a first rough esti-

mate is used; after obtaining enough information from the
sample tasks, this estimate will be updated as described in
the following sections. In Hadoop, the number of Map and
Reduce tasks each job needs is known a priori. In turn,
each Map task processes data residing on a single, fixed-
size, HDFS block. Our first approximation will be therefore
directly proportional to the number of tasks per job.

The size of a Map (resp. Reduce) job with k tasks is,
at first, estimated as ξ · k · l, where l is the average size of
past Map (resp. Reduce) tasks, and ξ ∈ [1,∞] is a tunable
parameter that represents the propensity that the system
has to schedule jobs of unknown size. At the extreme ξ =
1, new jobs are scheduled quite aggressively based on the
initial estimate, with the possible drawback of scheduling
particularly large jobs too early. At the extreme ξ = ∞,
conversely, non-sample tasks are only scheduled if all jobs
which are not in the training phase are satisfied. This avoids
resorting to preemption for jobs that turn out to be larger
than at first envisioned, but this choice may penalize small
jobs that could be scheduled quickly as they arrive in the
scheduler, increasing the response time by adding so-called
“waves” (i.e., tasks scheduled after a first set of tasks is
already completed).

We note that these problems do not generally apply to
particularly small jobs having s or less tasks, since all tasks
are tagged as sample and in most cases scheduled quickly.

3.2.2 Map Phase Size
It has been observed [37, 15], across a variety of jobs, that

Map task execution times are generally stable and short,
with execution times around one minute. For this reason, it
is possible to perform job size estimation when the s sample
tasks are completed. Our estimation builds an approximate
cumulative distribution function (CDF) with the data points
obtained by measuring, for each sample task j of job i, the
execution time σi,j ; via regression analysis (in particular,
least-square fitting), that approximate CDF is then fitted
to a target parametric distribution. The estimated Map
phase size is finally computed as k times the expected value
of the resulting fitted distribution, where k is the number of
Map tasks for the estimated job.

Data Locality. A Map sample task could perform worse
than normal due to network latencies if operating on non-
local data. However, since the sample tasks are between the
first to be scheduled, there is a larger choice of blocks to
process, making the need of operating on remote data less
likely. In combination with the delay scheduling strategy
described in Section 3.1, we found that data locality issues
on sample tasks, as a result, are negligible.

3.2.3 Reduce Phase Size
The Reduce phase can be broken down in two parts:

Shuffle time – needed to move and merge data from map-
pers to reducers, and the execution time of the Reduce
function, which can only start when the Shuffle phase has
completed.

4

Size of Shuffle. In general, as soon as a Reduce task is
scheduled, it starts pulling data from the output of map-
pers; once data from all mappers is available, a global sort
is performed by merging all the mappers’ output. Since
each mapper output is already locally sorted, a simple O(n)
merge step is sufficient. Network transfer and sort time are
essentially proportional to the size of the data to move, and
the Shuffle performance depends mostly on the amount of
data and the characteristics of the cluster it is run on, rather
than on the type of data that is moved.

For this reason, an approximate duration of the Shuffle
phase can be computed as follows. For each of the s sample
Reduce tasks of a job that enters the training module, we
measure the time required for their Shuffle phase. This is
given by the difference between the moment a task executes
the Reduce function, and the moment the same task was
scheduled in the training module. The estimated Shuffle
time of the entire Reduce phase is then the weighted av-
erage of the individual Shuffle times of the sample tasks
multiplied by the total number of Reduce tasks of the job,
where the weights are the normalized input data size to each
sample task.

Execution Time. The execution time of the Reduce phase
is evaluated analogously to the Map phase described in Sec-
tion 3.2.2. However, Reduce tasks can be orders of magni-
tude longer than Map tasks, therefore we aim at providing
an estimate of the duration of the sample tasks before their
completion. In particular, we set a timeout ∆ (60s by de-
fault). If a sample task j of job i is not completed by the
timeout, its estimated execution time will be σ̃i,j = ∆

pi,j
,

where pi,j is the progress done during the execution stage.
The progress of a task is computed as the fraction of data
processed by a Reduce task over the total amount of its
input data.

Once we obtain the size (or an estimation of it) for each
sample task, we compute the total execution time using the
same procedure described in Section 3.2.2, using regression
analysis to fit measured data to a parametric distribution,
and multiplying the expected value of the resulting distri-
bution by the number of Reduce tasks in the job. The
final estimate of the whole Reduce phase is obtained by
adding the estimated Shuffle time to this estimated exe-
cution time.

3.3 Virtual Cluster
The estimated job size is expressed in a “serialized form”,

that is the sum of runtimes of each of its tasks. This is
useful because the physical configuration of the cluster does
not influence the estimated size; moreover, in case of fail-
ures, the number of available TaskTrackers varies, but
the size of jobs does not change. The job scheduler, though,
requires an estimated completion time that depends on the
physical configuration of the real cluster. We obtain that by
simulating a processor sharing discipline applied on a vir-
tual cluster having the same number of machines and the
same configuration of slots per machine as the real cluster.
The projected finish time obtained in the virtual cluster is
then fed to the job scheduler, which will use it to perform
its scheduling choices.

Resource Allocation. Virtual cluster resources need to be
allocated following the principle of a fair queuing discipline.

Since jobs may require less than their fair share, in HFSP,
resource allocation in the virtual cluster uses a max-min
fairness discipline. Max-min fairness is achieved using a
round-robin mechanism that starts allocating virtual cluster
resources to small jobs (in terms of their number of tasks).
As such, small jobs are implicitly given priority in the virtual
cluster, which reinforces the idea of scheduling small jobs as
soon as possible.

Job Aging. The HFSP algorithm keeps track of, in the vir-
tual cluster, the amount of work done by each job in the
system. Each job arrival or task completion triggers a call
to the job aging function, which uses the time difference be-
tween two consecutive events as a basis to distribute progress
among each job currently scheduled in the virtual cluster.
In practice, each running task in the virtual cluster makes
a progress corresponding to the above time interval. Hence,
the “serialized” representation of the remaining amount of
work for the job is updated by subtracting the sum of the
progress of all its running tasks in the virtual cluster.

3.4 Job Preemption
The HFSP scheduler uses preemption: a new job can sus-

pend tasks of a running job, which are then resumed when
resources become available. However, traditional preemp-
tion primitives are not readily available in Hadoop. The
most commonly used technique to implement preemption in
Hadoop is “killing” tasks or entire jobs. Clearly, this is not
optimal, because it wastes work, including CPU and I/O.
Alternatively, it is possible to Wait for a running task to
complete, as done by Zaharia et al. [37]. If the runtime of
the task is small, then the waiting time is limited, which
makes Wait appealing. In fact, we suspend jobs using the
Wait primitive for Map tasks which are generally small.
However, for tasks with long runtime, the delay introduced
by this approach may be too high.

Eager Preemption. Since Reduce tasks may be orders of
magnitude longer than Map tasks, to preempt Reduce jobs
we adopt a more traditional approach, which we name ea-
ger preemption: tasks are suspended in favor of other jobs,
and resumed only when their job is later awarded resources.
Eager preemption requires implementing Suspend and Re-
sume primitives: we delegate them to the operating system
(OS). Map and Reduce tasks are launched by the Task-
Tracker as child Java Virtual Machines (JVMs); child
JVMs are effectively processes, which we suspend and re-
sume using standard POSIX signals: SIGSTOP and SIGCONT.
When HFSP suspends a task, the underlying OS proceeds
with its materialization on the secondary storage (in the
swap partition), if and when its memory is needed by an-
other process. We note that our implementation introduces
a new set of states associated to an Hadoop task, plus the
related messages for the JobTracker and TaskTracker
to communicate state changes and their synchronization.

Task Suspension. As discussed in Section 3.1, the job sched-
uler allocates cluster resources to jobs that finish first, as
computed in the virtual cluster. A new job arriving in
the system may induce – depending on its size – the job
scheduler to Suspend a running job. In practice, the job
scheduler suspends tasks, rather than jobs: task suspen-
sion works as follows. Upon reception of a heart-beat from

5

a TaskTracker, the job scheduler verifies whether a job
tagged for suspension occupies resources. If this is the case,
it suspends enough tasks of that job to provide the needed
resources to the job that should take its place.

It may happen that not all the tasks of a job have to be
suspended: in that case, tasks that have been launched last
are the ones which get suspended, for two practical reasons:
i) “oldest” tasks are the most likely ones to finish first, free-
ing resources to other tasks; ii) “young” tasks are likely to
have smaller memory footprints, resulting in lower overhead
should they be materialized to the swap partition.

Resume Locality. When a suspended job is resumed, we
take care to avoid redundant work by not restarting from
scratch tasks in a suspended state. TaskTrackers with
free slots that host suspended tasks for a resumed job will
Resume those tasks (oldest tasks get resumed first, because
of the reasons just outlined for suspension). On the other
hand, TaskTrackers with free slots but no suspended tasks
will only schedule new tasks that have not been previously
scheduled. In other words, suspended tasks will only be
rescheduled as soon as a slot frees up in the TaskTracker
they are suspended on.

Maximum Number of Suspended Jobs. Suspending tasks
has a cost in terms of storage space requirements. If many
tasks on a single machine are suspended, process data could
use a large fraction of the RAM available on a machine
and eventually could also deplete the swap space. This
is an extreme case that only arises with particular work-
loads (several jobs arriving in decreasing size); we address
it by defining a threshold on the number of tasks that can
be suspended. When too many tasks are suspended, HFSP
switches to the Wait-based preemption technique, until con-
ditions are met for reverting to eager preemption.

Setting a limit on the number of suspended processes effec-
tively implies limiting also the total amount of memory allo-
cated to suspended processes, since in Hadoop the amount
of memory allocated per Reduce task cannot exceed a con-
figurable threshold (the default is 1 GB) [2].

Side effects. Eager preemption should be used with care
in case of MapReduce jobs that operate on “external” re-
sources, e.g. that heavily use Hadoop streaming or pipes.
Our implementation can be easily extended to provide API
support to inhibit Suspend and Resume primitives for such
particular workloads.

4. EXPERIMENTS
This Section focuses on a comparative analysis between

FAIR and HFSP schedulers. For the sake of readability –
due to extremely large sojourn times – we omit the default
Hadoop FIFO scheduler from our figures.

Next, we specify the experimental setup and present a
series of results, organized in macro and micro benchmarks.
Macro benchmarks illustrate the global performance of the
schedulers we study in this work, in terms of job sojourn
times. Micro benchmarks, instead, focus on the peculiarities
of HFSP.

4.1 Experimental Setup
In this work we use both a cluster deployed on Amazon

EC2 [1] – which we label the Amazon Cluster – and the
standard Hadoop emulator, Mumak [5]. The Amazon Clus-
ter is configured as follows: we deploy 100 “m1.xlarge” EC2
instances, each with four 2 GHz cores (eight virtual cores),
4 disks that provide roughly 1.6 TB of space, and 15 GB of
RAM.4 In our experiments – with the Amazon Cluster and
with Mumak – the HDFS block size is set to 128 MB and a
replication factor of 3, while the main Hadoop configuration
parameters are as follows: we set 4 Map slots and 2 Reduce
slots per node.

Workloads. Generating realistic MapReduce workloads is
a difficult task, that has only recently received some atten-
tion. In this work, we use SWIM [8], a standard bench-
marking suite that comprises workload and data generation
tools, as described in the literature [15, 13, 14]. A workload
expresses in a concise manner i) job inter-arrival times, ii)
a number of Map and Reduce tasks per job, and iii) job
characteristics, including the ratio between output and in-
put data for Map tasks. For our experiments, we use two
workloads synthesized from traces collected at Facebook and
publicly available on [8] – that we label FB2009 and FB2010

– as done in previous works [37, 15]. Table 4 describes the
workloads we use, as generated by SWIM for a cluster of
100 nodes.

The FB2009 workload comprises 100 unique jobs, and is
dominated by small jobs, i.e., jobs that have a small number
of Map tasks and no Reduce tasks. The job inter-arrival
time is a random variable with an exponential distribution
and a mean of 13 seconds, making the total submission
schedule 22 minutes long. Experiments with the FB2009

dataset illustrate scheduling performance when the system
is not heavily loaded, but has to cope with the demand for
interactivity (small jobs).

The FB2010 workload comprises 93 unique jobs, which
have been selected by instructing SWIM to filter out small
jobs. In particular, the number of Map tasks is substantially
larger than the number of available slots in the system: Map
phases require multiple “waves” to complete. The number
of Reduce tasks varies between 10 and the number of avail-
able reduce slots in the cluster. The job inter-arrival time
is a random variable with an exponential distribution and a
mean of 38 seconds, making the total submission schedule
roughly 1 hour long. The FB2010 dataset is particularly de-
manding in terms of resources: as such, scheduling decisions
play a crucial role in terms of system response times.

Scheduler Configuration. Unless otherwise stated, HFSP
operates with the delay scheduling technique and eager pre-
emption enabled. HFSP requires a handful of parameters
to be configured, which mainly govern the estimator com-
ponent: we use a uniform distribution to perform the fitting
of the estimate job size; the sample set size s for Map and
Reduce tasks is set to 5; the parameter ∆ to estimate Re-
duce task size, is set to 60 seconds; we set the parameter
ξ = 1. For the workloads we use in our experiments, the
parameters described above give the best results.

The FAIR scheduler has been configured with a single job

4This is the configuration used by Zaharia et. al. [37].

6

% of Jobs # Maps # Reduces Label

FB09 (Small jobs) 53 ≤ 2 0 select
(Medium jobs) 41 2 < x ≤ 500 ≤ 500 aggregate

(Big jobs) 6 ≥ 500 ≥ 500 transform
FB10 39 ≤ 1500 ≤ 10 expand

16 ≤ 1500 10 < x ≤ 100 expand and transform
11 ≤ 1500 x > 100 transform
10 1500 < x ≤ 2500 x ≤ 100 aggregate
7 1500 < x ≤ 2500 x > 100 transform

10 x > 2500 x > 100 transform

Table 1: Job types in each workload, as generated by SWIM. Jobs are labeled according to the analysis tasks
they perform. For the FB2009 dataset, jobs are clustered in bins and labeled according to their size.

 0

 0.25

 0.5

 0.75

 1

 0 0.5 1 1.5 2 2.5

F
ra

c
ti
o
n
 o

f
c
o
m

p
le

te
d
 j
o
b
s

Sojourn Time [min]

HFSP
FAIR

(a) Small jobs

 0

 0.25

 0.5

 0.75

 1

 0 20 40 60 80 100

Sojourn Time [min]

HFSP
FAIR

(b) Medium Jobs

 0

 0.25

 0.5

 0.75

 1

 0 50 100 150 200 250

Sojourn Time [min]

HFSP
FAIR

(c) Large Jobs

Figure 3: ECDFs of sojourn times for the FB2009 dataset. Jobs are clustered in classes, based on their sizes.
HFSP improves the sojourn times in most cases. In particular, for small jobs, HFSP is slightly better than
FAIR, whereas for larger jobs, sojourn times are significantly shorter for HFSP than for FAIR.

 0

 0.25

 0.5

 0.75

 1

 0 100 200 300 400 500

F
ra

c
ti
o
n
 o

f
c
o
m

p
le

te
d
 j
o
b
s

Map Time [min]

HFSP
FAIR

(a) Map phase

 0

 0.25

 0.5

 0.75

 1

 0 75 150 225 300 375

Reduce Time [min]

HFSP
FAIR

(b) Reduce phase

 0

 0.25

 0.5

 0.75

 1

 0 125 250 375 500 625 750

Sojourn Time [min]

HFSP
FAIR

(c) Aggregate

Figure 4: ECDFs of sojourn times for the FB2010 dataset. The Map phase (left) shows significant improvements
of HFSP over FAIR. Shorter sojourn times in the Map phase are reflected in the Reduce phase (middle),
which shows that HFSP outperforms FAIR in terms of sojourn times. The ECDF of aggregate job sojourn
times (right) indicates that both median and worst-case sojourn times are better with HFSP. The vertical
line at 60 minutes (the workload has been consumed) indicates 20% of completed jobs with HFSP vs. 1% of
completed jobs with FAIR.

pool, using the parameters suggested in the Hadoop sched-
uler documentation [3, 4].

4.2 Macro Benchmarks
We now use the Amazon Cluster and report the empirical

cumulative distribution function (CDF) of sojourn times for
FAIR and HFSP, when the cluster executes the FB2009 and
FB2010 workloads. Although we do not include results we
obtain with the FIFO scheduler, for reference, our experi-

ments report a mean sojourn time 5 to 10 times bigger than
that of HFSP, depending on the workload.

Figure 3 groups results according to job sizes: the FB2009

dataset contains three distinct clusters of job sizes (small,
medium and large), with small jobs dominating the work-
load. Our results indicate a general improvement of job so-
journ times in favor of HFSP. For small jobs, the fair share
of cluster resources allocated by both HFSP and FAIR is
greater than their requirements in terms of number of tasks.

7

In addition, very small jobs (with 1-2 Map tasks only) are
scheduled as soon as a slot becomes free (both under the
HFSP and FAIR), and therefore their sojourn time depends
mainly on the frequency at which slots free-up and on the
cluster state upon job arrival. Overall, we observe that
HFSP performs slightly better than FAIR for small jobs.
For medium and large jobs, instead, an individual job may
require a significant amount of cluster resources. Thus, the
advantage of HFSP is mainly due to its ability to “focus”
cluster resources – as opposed to “splitting” them accord-
ing to FAIR – towards the completion of the smallest job
waiting to be served.

Figure 4 shows the results for the FB2010 dataset. We
show the sojourn times of the Map and Reduce phases,
and the total job sojourn times. In the Map phase (Fig-
ure 4(a)), the sojourn times are smaller for HFSP than for
FAIR: the median sojourn time is more than halved. This is
a consequence of the HFSP discipline, which dedicates clus-
ter resources to individual jobs rather than spreading them
on multiple “waves”. As such, with HFSP, Reduce tasks
enter the Shuffle phase earlier than what happens with
FAIR, and have to wait less time for all their input data to
be available. Therefore, the Reduce phase is shorter with
HFSP, as shown in Figure 4(b). Clearly, the HFSP disci-
pline in the Reduce phase also contributes to short sojourn
times, with a median difference of roughly 30 minutes. Fi-
nally, the total job sojourn times indicate that the system
response time with HFSP substantially improves. For illus-
trative purposes, we show a vertical line corresponding to 60
minutes, by which all jobs of the FB2010 workload arrived
in the system. By that time, only one job completes with
FAIR, whereas more than 20% of the jobs, are served with
HFSP. More to the point, when 80% of jobs are served by
HFSP, roughly 15% of jobs are served with FAIR.

In summary, HFSP caters both to workloads geared to-
wards “interactive” small jobs and to a more efficient allo-
cation of cluster resources, which is beneficial to large jobs.
Next, we focus on HFSP in particular and study the behav-
ior of its inner components in detail.

4.3 Micro Benchmarks
In the following set of experiments, when not otherwise

stated, we use the Mumak emulator to execute the work-
loads generated by SWIM and described earlier; in addition,
we use synthetic workloads that reproduce peculiar cases to
better explain how HFSP works.

Impact of Cluster Size. The goal of this experiment is to
study the behavior of both HFSP and FAIR, when cluster
resources available for scheduling decisions are scarce. In-
deed, many real-life deployments [7] are smaller than 100
nodes, yet they are used to execute a large number of jobs
on big data volumes. We use the FB2009 dataset, because it
contains a mix of different job sizes, including small jobs. In
our experiments, we vary the cluster size in the range of 10
to 100 machines. When the cluster size is small, we increase
accordingly the storage space available at each node, to ac-
commodate the data volume used in the FB2009 workload.

Figure 5 reports the mean job sojourn time for HFSP
and FAIR, as a function of the number of machines in the
cluster. When resources are scarce, HFSP achieves consid-
erably smaller mean job sojourn times due to its ability to
“focus” cluster resources to individual jobs. Put otherwise,

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60 70 80 90 100

A
v
e
ra

g
e

 s
o

jo
u
rn

 t
im

e
 [
m

in
]

Cluster nodes number

HFSP
FAIR

Figure 5: Impact of cluster size on scheduling per-
formance, for both HFSP and FAIR, using the
FB2009 dataset.

for equivalent job sojourn times, the FB2009 workload re-
quires a smaller cluster when HFSP is used, as compared
to other schedulers, which is a desirable property as it may
relate to significant cost savings. Clearly, our results hold
(and the gap in favor of HFSP is even more substantial),
when the FB2010 dataset is used.

Robustness to Estimation Errors. In this experiments we
study whether HFSP incurs performance degradation when
job size – an essential ingredient for the correct operation of
the scheduler – is incorrect. We do so by injecting artificial
errors on the job size estimates reported by the Training
module of HFSP, and measure the impact in terms of mean
job sojourn times.

For this experiment, we focus only on errors injected in
the estimator of the Map phase size. To do so, we use
a modified, Map only version of the FB2009 dataset. In
practice, the Map size estimate used by the virtual cluster
of HFSP is a random variable uniformly distributed in the
range [θ() ·(1−α), θ() ·(1+α)], where θ() is the size estimate
computed as in Section 3.2, and α ∈ [0.1, 1] is the artificial
error we inject. We repeat each experiment 20 times for
each value of α, to gain statistical confidence in our results.

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
e
ra

g
e
 S

o
jo

u
rn

 T
im

e
 [
s
]

α

FAIR
HFSP (α=0)

Figure 6: Impact of job size estimation errors on
HFSP performance, using a Map only version of the
FB2009 dataset.

Figure 6 reports the mean sojourn time for different α val-
ues. In addition, we show as a reference the mean sojourn
time for the same experiments using FAIR, which are clearly
not affected by estimation errors, and the mean sojourn time

8

achieved by HFSP with α = 0. In our experiments, HFSP is
particularly resilient to wrong estimates: indeed, the mean
sojourn times is slightly affected only for extremely large er-
rors. Indeed, macroscopic changes in sojourn time happen
only when long jobs are scheduled before much shorter ones,
which would then incur a large sojourn time. In the FB2009

dataset – which is grouped in classes according to job size
– “reversals” (i.e., jobs that are scheduled in a different or-
der) only happen within the same class, with only a modest
impact on sojourn times.

Data Locality. Next, we focus on data locality and mea-
sure the fraction of tasks that read data from the local disk
of the machine they run on.

We use the same experiments described in Section 4.2,
where we use the Amazon Cluster to execute the FB2009 and
FB2010 datasets, for both HFSP and FAIR. For the sake of
brevity, we only report results for the FB2009 dataset.

FAIR achieves 98% of data locality whereas HFSP always
achieves 100% of data locality, over a total of more than
14,000 tasks across all experiments. Clearly, the delay sched-
uler mechanism [37] is beneficial to both FAIR and HFSP.
Additionally, we observe that the result we obtain is also a
consequence of resource allocation: with HFSP, a job sched-
uled for execution receives (if the cluster size allows it) all
the resources required for its processing, whereas with FAIR,
it is granted fewer resources. As a consequence HFSP copes
better with the random data placement strategy used by
HDFS, and obtains more local tasks, which contributes to
shorter job execution times and hence smaller sojourn times.

4.4 Job Preemption
We now study in detail the various preemption mecha-

nisms we discuss in Section 3.4. First, we compare the
behavior of HFSP with eager preemption, with the Wait
primitive, and with a Kill primitive, for a simple workload.
The goal of such experiment is to illustrate the benefits of
eager preemption, in terms of job sojourn times, and to dis-
cuss when alternative mechanisms are to be preferred. Then,
we move to another set of experiments, in which we study
the performance of the Suspend and Resume operations,
executed in a small local cluster.

For the first set of experiments we use a simple, synthetic
workload composed of five jobs, and focus solely on Reduce
tasks, since Map tasks are not preempted with HFSP. We
set up a small cluster in Mumak, with 4 machines with 2
Reduce slots each. In our workload, the first job, j1, has
11 reduce tasks each of duration roughly 500 seconds and
arrives at time 2 minutes and 20 seconds. All the other
jobs arrive at time 2 minutes and 30 seconds and all have
one Reduce task, except for j2 that has two Reduce tasks.
For jobs j2 · · · j5, Reduce task times are smaller than the
one of j1.

Figure 7 illustrates a resource allocation graph that we
obtain by processing Hadoop log files: on the y-axis we re-
port the cumulative slot utilization per job, on the x-axis we
report time, in minutes. In Figure 7(a), which shows the be-
havior of HFSP with eager preemption, when jobs j2, j3, j4
and j4 arrive, they preempt j1 and occupy the cluster with
their tasks. Note that HFSP suspends only the required
number of tasks of j1 to accommodate the newly arrived
jobs. When jobs j2 · · · j5, the suspended tasks of job j1 are
resumed. The average sojourn time in this simple example

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16 18 20

to
ta

l
s
lo

t
n

u
m

b
e

r

time [min]

12

3

3

3

4

5

(a) HFSP with eager preemption

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16 18 20

to
ta

l
s
lo

t
n

u
m

b
e

r

time [min]

1 2

3

4

5

5

(b) HFSP with Wait

Figure 7: Resource allocation graphs for a simple
workload, with and without eager preemption.

is about 9 minutes. Instead, in Figure. 7(b), in which HFSP
uses the Wait primitive, when jobs j2, j3, j4 and j4 arrive,
the cluster is fully occupied by j1. As such, HFSP waits for
job j1 to complete the required number of tasks necessary
to allocate the new jobs, before proceeding with scheduling.
As a consequence, the average sojourn time is 15 minutes,
roughly 40% larger than with preemption. We also repeat
the very same experiment by implementing a simple Kill
primitive: in this case, job j1 has a larger completion time
because 6 of its tasks are killed due to the arrival of jobs
j2 · · · j5, and thus need to be scheduled again. We omit the
resource allocation graph for this case, as it is very similar
to that in Figure 7(a).

It is possible to define alternative scenarios in which HFSP
could achieve better sojourn times with the Wait primitive.
In general, when task runtimes are short, the Wait primitive
is to be preferred: eager preemption may need to perform
process swapping, which could take longer than the remain-
ing time for the task to complete. Instead, when task run-
times are long, eager preemption is a more sensible choice,
as it brings shorter sojourn times.

Next, we study the time it takes, for the OS, to perform
the Suspend and Resume operations, as this determines to
a great extent whether eager preemption is to be preferred
over the Wait primitive.

Swap Times. Recall that, in our implementation of HFSP,
when one or more tasks of a job are preempted, the memory
that they are using can be claimed by other tasks sched-
uled to occupy their slot. In this case, the Operating Sys-
tem (OS) may swap the memory contents to disk. When

9

such preempted task are resumed, the OS reloads in mem-
ory the swapped process from disk. As such, the Suspend
and Resume operations may introduce delays that we seek
to compare to task times. We remark that such delays are
bounded: indeed, the memory footprint of a task is limited
by the way a MapReduce job is engineered. When a task is
preempted, the amount of memory it uses is bounded by the
amount of RAM per slot, a parameter configured in Hadoop.
As such, the disk I/O that characterizes cluster machines,
together with the amount of RAM used by Reduce tasks,
are the main factors to consider when configuring HFSP to
use eager preemption.

To verify our claim, we perform the following experiment
on a local cluster, with a single TaskTracker and a single
Reduce slot. The hardware configuration we use is as fol-
lows: the TaskTracker machine has 8 GB of RAM, and a
local 7.2Krpm disk with a read/write I/O speed of roughly
100 MBps. The Linux “swappiness” [9] is configured to a
small (5) value; in addition, swap size is configured such that
it can accommodate several memory dumps.

We define a simple workload5 in which a job with a single
Reduce task occupies 6 GB of RAM (with randomly gener-
ated data), and the heap space of the child JVM running the
task is set to 6 GB. Then, a new job with a single Reduce
task arrives in the system, and preempts the initial job. The
“swap” time is defined as the time it takes for the system to
Suspend the initial Reduce task and to Resume it. The
new job is characterized by a variable memory footprint,
varying from 0.5 GB up to 6 GB.

 0

 25

 50

 75

 100

 125

 150

 175

 0 1 2 3 4 5 6

S
w

a
p
 t
im

e
 [
s
]

Process swap size [GiB]

Figure 8: Swap times for a small cluster, using a
synthetic workload of two jobs with one Reduce task
each. The second Reduce task has a variable mem-
ory footprint, which corresponds to the amount of
data swapped to disk by the OS, as reported on the
x-axis.

Figure 8 reports the swap time for the experimental setup
described above. Swap time is approximately linear in the
size of the memory footprint of the preempting task, up to
a process swap size of 5 GB. Our results indicate that the
Suspend and Resume primitives operates roughly at disk
raw-speed: for example, for a process swap size of 2 GB, the
systems writes, and then reads 2 GB in roughly 40 seconds,
giving an I/O speed of roughly 100 MBps. Then, swap per-
formance slightly decreases after 5 GB, which accounts for
the overhead of the OS trying to balance resources dedicated
to the swap partition and to caching.

5We omit Map tasks, as they are not preempted with HFSP.

Putting the results in perspective, we now refer to the ex-
periments with the FB2010 dataset described in Section 4.2.
Our logs indicate that at most 10% of running tasks have
been suspended and then resumed: such tasks belong to
10 different jobs of the workload. In those experiments,
the JVM heap space for a Reduce task is set to 1 GB [2],
which means that Suspend and Resume operations induce
at most a swap time around 20 s. Since the average duration
of preempted tasks is one order of magnitude larger than the
swap time, we conclude that eager preemption is a sensible
configuration for HFSP with the workload we used.

5. DISCUSSION
We now discuss several points that complement the work

we have presented so far.

Preemption Performance. Some works have considered
job preemption primitives alternative to the ones we pro-
pose in this work. For example, Cheng et al. [16] present a
detailed analysis of a Kill primitive to implement job pre-
emption and come up with a method to select the best tasks
to kill to avoid hurting too much job performance. Instead,
Anantharanayanan et al. [11] observe that job preemption
can be implemented at the “application-level”, meaning that
individual tasks may be suspended and resumed by Hadoop,
which would require a dedicated memory-management mod-
ule to handle preemption.

One reason to avoid using OS paging might be that it
could affect system stability [11]: a large number of interac-
tive applications that require more RAM than that available
on the system, substantially hinder the task of the OS.

Given the results we show in Section 4.4, it is reasonable
to assume that an “application-level” preemption mecha-
nism cannot perform better in moving data from/to RAM
and disk, than what we propose in our work. In addition,
Hadoop jobs are not interactive applications that would need
frequent context switching. As such, while we do not dis-
miss any effort to study alternative mechanisms, we believe
the eager preemption we present in this work to be effective
and practical in achieving its goals.

Job with Different Priorities. The design of HFSP takes
as a reference the Processor Sharing (PS) discipline to com-
pute the order of the jobs to be scheduled. In PS, each job
receives its equal share of the resources. A natural extension
of the work would provide different priorities, or weights, to
jobs: in this case, we shall consider the Generalized Pro-
cessor Sharing (GPS) discipline, where each job receives an
amount of resources in proportion to its weight. For in-
stance, if J is the set with all the jobs in the system, then

job k with weight wk will receive a fraction
wk∑
i∈J wi

of the

resources. This computation can be easily incorporated in
the job aging computation done by the HFSP algorithm.

Job Size Estimation. In some cases, task execution time,
which contributes to job duration, could be regarded as
a highly variable quantity, making task time distributions
highly skewed, thus difficult to estimate.

We remark that in HFSP, the estimator is designed as a
pluggable module that can be replaced by more sophisti-
cated estimation techniques, therefore providing more accu-

10

rate predictions. In addition, in recent work Kwon et al. [24]
address and greatly mitigate the issue of skew in task pro-
cessing times with a plug-in module that seamlessly inte-
grates in Hadoop, which can be used in conjunction with
HFSP. Moreover, Popescu et al. [27] present an appealing
approach to predict MapReduce “query” runtime, that can
be also used in HFSP. We conclude by remarking that the
original FSP discipline has also been studied in the case of
inaccurate job size information [25]: according to such work,
FSP is a stable algorithm that is robust to inaccurate job
size, a result that we confirm in the context of this paper.

6. RELATED WORK
MapReduce in general and Hadoop in particular have re-

ceived a lot of attention recently, both from the industry and
from academia. In this work we focus on job scheduling, and
consider the literature pertaining this domain. Several theo-
retical works tackle scheduling problems in a multi-processor
system – see for instance [18]. These works, which represent
elegant and important contributions to the domain, consider
jobs with a simple structure (i.e., a single phase) and make
several simplifying assumptions on the underlying execution
system. The main objective of such theoretical studies is to
offer bounds on job performance provide optimality results.
In contrast, in this work we take a system approach, and fo-
cus on the design and implementation of a scheduling mech-
anism taking into account all the details and intricacies of a
real system.

More recently, the problem of job scheduling in MapRe-
duce has revived interest in theoretical approaches to study
job performance. Some works [12, 26] provide interesting ap-
proximability results but fail in providing a truthful model
of the underlying MapReduce system. In the same vein,
but with results that are readily applicable, Tan et al. [31]
identify several shortcomings of the FAIR scheduler we also
study in this work and proposes an elegant model of job
runtimes. Their contribution aims at mitigating job star-
vation problems that arise when job runtimes are heavily
skewed. In contrast, our goal is, more generally, to over-
come problems of processor-sharing disciplines with respect
to job sojourn times. As such, the results of Tan et al. could
be extended to cover our scheduler.

The works that are more closely related to ours, because
they have a system approach to scheduling and aim at the
design and implementation of a scheduling discipline, are nu-
merous. For instance, the FAIR scheduler and its enhance-
ment with a delay scheduler [37] is a prominent example
to which we compare our results. Another work by Tan et
al. [32] provides more system details on the mechanism used
to overcome job starvation with the FAIR scheduler. Several
other works [29, 22, 20, 21] focus on resource allocation and
strive at achieving fairness across jobs, but do not consider
sojourn times. Sandholm and Lai [30] study the resource as-
signment problem through the lenses of a bidding system to
achieve a dynamic priority system and implement quality of
service for jobs. Kc and Anyanwu [23] address the problem
of scheduling jobs to meet user-provided deadlines, but as-
sume job runtime to be an input to the scheduler. Finally,
the work that is more closely related to ours is Flex [36],
which provides a framework for the optimization of any
given performance metric. In particular, when the perfor-
mance metric is chosen to be the “max-sum” sojourn-time,
Flex should minimize the average sojourn time, whereas in

our work we cannot make any optimality claims. Flex is im-
plemented as an add-on on top of the FAIR scheduler, and
shares similar design principles to our work. For example,
when configured to operate as a size-based scheduler, Flex
implements an estimation module to infer job sizes. Unfor-
tunately, we could not compare our proposal to Flex because
it is a proprietary software without a sufficient documenta-
tion describing its internals.

Finally, various recent approaches [34, 35, 10, 27, 33] have
been proposed to infer the size of MapReduce jobs for spe-
cific application scenarios. HFSP is designed such that the
estimator module can be easily plugged with other mecha-
nisms, benefiting from advanced and tailored solutions.

7. CONCLUSION
The problem of scheduling jobs in parallel systems have re-

ceived a lot of attention in the past, including works that at-
tempted at producing elegant mathematical models of such
systems with the goal of studying the hardness of obtain-
ing optimal scheduling. In this work we took a systems
approach, glossing over mathematical constructs and opti-
mality analysis: instead we were interested in studying the
benefits of a size-based approach to scheduling jobs in a real
system, namely Hadoop.

Our work was motivated by the realization that MapRe-
duce has evolved to the point where shared clusters are used
for a wide range of workloads, which include an increasingly
large fraction of interactive data processing tasks. Existing
schedulers in the state-of-the-art suggest, to overcome the
inherent limitations of a simple first-come-first-served disci-
pline, cluster resources to be shared equally among running
jobs. As a consequence, we have witnessed the raise of de-
ployment best practices in which long sojourn times were
compensated by over-dimensioned Hadoop clusters. Armed
with the realization that a large fraction of cluster resources
were used for a small amount of time, given a selection of
real-world workload traces, in this work we set off to study
the benefits of a new scheduling discipline that targeted at
the same time short sojourn times and fairness among jobs.

The HFSP scheduler we proposed in this article brought
up several challenges. First, we came up with a general
architecture to realize practical size-based scheduling disci-
plines, where job size is not assumed to be known a priori.
The HFSP scheduling algorithm solved many problems re-
lated to the underlying discrete nature of cluster resources,
how to keep track of jobs making progress towards their
completion, and how to implement eager preemption primi-
tives. Then, we used statistical tools to infer task time dis-
tributions and came up with an approach aiming at avoid-
ing wasting cluster resources while estimating job sizes. Fi-
nally, we performed a comparative analysis of HFSP with
the two standard schedulers that are most widely used today
in production-level Hadoop deployments, and showed that
HFSP brings several benefits in terms of shorter sojourn-
times, even in small, highly utilized clusters.

There are several avenues that we are considering as part
of our future work. First, we will extend our experimental
study to cover a wider range of workloads, including those
presenting issues related to skew in task time distributions.
In this work, on of our goal was to avoid wasting work done,
both during the training phase, and by using eager preemp-
tion. We plan to investigate how to integrate our preemp-
tion mechanism with the “speculative execution” mode of

11

Hadoop, since in some cases, it could be beneficial to sac-
rifice some work done by a job to gain in system reactivity
for scheduling decisions. Finally, we will study the problem
of scheduling complex job workflows, that result from the
composition of several sub-jobs.

8. REFERENCES
[1] AWS elastic compute cloud.

http://aws.amazon.com/ec2/.

[2] Hadoop cluster setup. http://hadoop.apache.org/
docs/stable/cluster_setup.html.

[3] Hadoop fair scheduler. http://hadoop.apache.org/
docs/stable/fair_scheduler.html.

[4] Hadoop MapReduce JIRA 1184. https:
//issues.apache.org/jira/browse/MAPREDUCE-1184.

[5] Hadoop Mumak. https:
//issues.apache.org/jira/browse/MAPREDUCE-728.

[6] Hadoop: Open source implementation of MapReduce.
http://hadoop.apache.org/.

[7] Hadoop wiki, powered by.
http://wiki.apache.org/hadoop/PoweredBy.

[8] Statistical workload injector for mapreduce.
https://github.com/SWIMProjectUCB/SWIM.

[9] sysctl linux kernel documentation. http://www.
kernel.org/doc/Documentation/sysctl/vm.txt.

[10] S. Agarwal et al. Re-optimizing Data-Parallel
Computing. In Proc. of USENIX NSDI, pages 21–35,
2012.

[11] G. Anantharanayanan et al. True elasticity in
multi-tenant clusters through amoeba. In Proc. of
ACM SOCC, pages 24:1–24:7, 2012.

[12] H. Chang et al. Scheduling in MapReduce-like
Systems for Fast Completion Time. In Proc. of IEEE
INFOCOM, pages 3074–3082, 2011.

[13] Y. Chen. We don’t know enough to make a big data
benchmark suite - an academia-industry view. In
Proc. of WBDB, 2012.

[14] Y. Chen, S. Alspaugh, and R. Katz. Interactive query
processing in big data systems: A cross-industry study
of mapreduce workloads. In Proc. of VLDB, pages
1802–1813, 2012.

[15] Y. Chen, A. Ganapathi, R.Griffith, and R. Katz. The
case for evaluating mapreduce performance using
workload suites. In Proc. of IEEE MASCOTS, pages
390–399, 2011.

[16] L. Cheng, Q. Zhang, and R. Boutaba. Mitigating the
negative impact of preemption on heterogeneous
mapreduce workloads. In Proc. of CNSM, pages
189–197, 2011.

[17] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proc. of USENIX
OSDI, pages 107–113, 2004.

[18] K. Fox and B. Moseley. Online scheduling on identical
machines using SRPT. In In Proc. of ACM-SIAM
SODA, pages 120–128, 2011.

[19] E. Friedman and S. Henderson. Fairness and efficiency
in web server protocols. In Proc. of ACM
SIGMETRICS, pages 229–237, 2003.

[20] A. Ghodsi et al. Dominant resource fairness: Fair
allocation of multiple resources types. In Proc. of
USENIX NSDI, pages 24–38, 2011.

[21] B. Hindman et al. Mesos: A platform for fine-grained
resource sharing in the data center. In Proc. of
USENIX NSDI, pages 22–22, 2011.

[22] M. Isard et al. Quincy: fair scheduling for distributed
computing clusters. In Proc. of ACM SOSP, pages
261–276, 2009.

[23] K. Kc and K. Anyanwu. Scheduling Hadoop jobs to
meet deadlines. In Proc. of CloudCom, pages 388–392,
2010.

[24] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia.
Skewtune: mitigating skew in mapreduce applications.
In Proc. of ACM SIGMOD, pages 1934–1937, 2012.

[25] D. Lu, D. L. Huanyuan, and P. Dinda. Size-based
scheduling policies with inaccurate scheduling
information. In Proc. of IEEE MASCOTS, pages
31–38, 2004.

[26] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlos.
On scheduling in map-reduce and flow-shops. In In
Proc. of ACM SPAA, pages 289–298, 2011.

[27] A. D. Popescu et al. Same queries, different data: Can
we predict query performance? In Proc. of SMDB,
pages 275–280, 2012.

[28] K. Ren, Y. Kwon, M. Balazinska, and B. Howe.
Hadoop’s adolescence: A comparative workload
analysis from three research clusters. In Technical
Report, CMU-PDL-12-106, 2012.

[29] T. Sandholm and K. Lai. MapReduce optimization
using regulated dynamic prioritization. In Proc. of
ACM SIGMETRICS, pages 299–310, 2009.

[30] T. Sandholm and K. Lai. Dynamic proportional share
scheduling in Hadoop. In Proc. of JSSPP, pages
110–131, 2010.

[31] J. Tan, X. Meng, and L. Zhang. Delay tails in
MapReduce scheduling. In Proc. of ACM
SIGMETRICS, pages 5–16, 2012.

[32] J. Tan, X. Meng, and L. Zhang. Performance analysis
of Coupling Scheduler for MapReduce/Hadoop. In
Proc. of IEEE INFOCOM, pages 2586 –2590, 2012.

[33] C. Tian, H. Zhou, Y. He, and L. Zha. A dynamic
mapreduce scheduler for heterogeneous workloads. In
Proc. of IEEE GCC, pages 218–224, 2009.

[34] A. Verma, L. Cherkasova, and R. H. Campbell. ARIA:
automatic resource inference and allocation for
mapreduce environments. In Proc. of ICAC, pages
235–244, 2011.

[35] A. Verma, L. Cherkasova, and R. H. Campbell. Two
Sides of a Coin: Optimizing the Schedule of
MapReduce Jobs to Minimize Their Makespan and
Improve Cluster Performance. In Proc. of IEEE
MASCOTS, pages 11–18, 2012.

[36] J. Wolf et al. FLEX: A slot allocation scheduling
optimizer for MapReduce workloads. In Proc. of ACM
MIDDLEWARE, pages 1–20, 2010.

[37] M. Zaharia et al. Delay scheduling: A simple
technique for achieving locality and fairness in cluster
scheduling. In Proc. of ACM EuroSys, pages 265–278,
2010.

12

