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Chapter 1

Introduction and structure of document

This report is a supporting document towards my defense of the French Habilitation à diriger
des recherches (HDR). Unlike the PhD thesis, it is not intended as a research monograph but
rather a multi-faceted document aimed at illustrating the various dimensions of responsilities
linked with my experience as a researcher, then as associate professor, in my 16 years following
the PhD. In the writing we favor conciseness and the coherence among selected topics over
exhaustiveness.

There are two main parts in this document, pointing respectively at the research contribu-
tions per se, then at the key elements of my CV. In the first part, we present a short write-up
attempting to put into perspective the contributions brought to the area of optimization of wire-
less networks with a focus on multiple antenna (MIMO) communications. We introduce the
general philosophy underpinning the undertaken research avenues, emphasizing a form of con-
tinuity (albeit with clear evolutions) behind the various directions followed over time. Since it is
difficult to account in detail for all the research results obtained since the PhD (March 1997) in a
legible manner, we make choices as to which problem are commented in more details and which
are covered superficially. In the interest of the reader’s time, we give a very short summary of
earlier research contributions (for instance those dealing with point to point wireless optimiza-
tion) and cover in a bit more details the more recent ones because of the greater relevance that
these exhibit to some of the current hot topics in the area of communications research. This is
particularly true when it comes to the study of multi-terminal cooperative networks.

In the second part, we provide an extended CV, cover teaching and research supervision re-
sponsibilities since PhD, as well as project management experience. We then give the complete
list of publications, organized in book, book chapters, journal papers, conference papers, and
patents. To conclude the document, three publications are selected and reproduced in extenso.
They are selected among other publications for their tutorial level, and their value in highlight-
ing the three major milestones in the evolution of multiple antenna systems’s studies, namely
(i) point-to-point MIMO (2003), (ii) point-to-multipoint (multiuser) MIMO (2007), and (iii)
multipoint-to-multipoint (multicell) MIMO systems (2010).
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Chapter 2

Summary of research contributions

2.1 Introduction to the research

In this part of the document, we describe the research directions in high level terms, trying to
depict relations between addressed questions and most importantly their evolution over time.
We try and show their relevance to the broad problem of wireless communications engineering,
emphasizing common methodologies and assumptions. There is an unavoidable evolution in the
types of research scenarios considered in the last 16 years, which is the result of personal choices
and tastes. The most striking feature of this evolution lies in the fact that our early research
interests are rooted in signal processing, focussing on algorithm design at one transmitter or
one receiver while today’s focus has a clear added networking tone.

Asserting that such evolutions are dictacted by pure independent will would be pretentious.
The shift towards communication theoretic questions within a networking context also reflects
the influence of the research community. Many of today’s hot (or perceived to be) topics com-
bine classical physical layer design together with some communications protocol issues. On
can see there an effect of the growing convergence between wireless commmunications re-
search and internet related questions. This is also reflected in how both public and industrial
research funding is currently allocated.

In what follows we try and illustrate this evolution through a couple of key examples taken
from our contributions, described with varying levels of details. In the face of having to choose
what to bring forward, we opt to emphasize recent work (say the last 6 years) over earlier one.
We also favor the presentation of concepts over the mathematical models, as the latter can be
found in the publications.

The research contributions are selected as follows: We first illustrate a couple of past results
pertaining to point to point link studies. These are covered very superfically. Multi-user studies
are also summarized with a few key references given to the reader. We then turn to so-called
interference networks, featuring multiple contending point-to-multipoint links, a scenario ful-
filled by many modern wireless systems such as cellular, WLAN, or cognitive radio networks.
In this, a subset of the accomplished research work is selected and examined in more detail,

2



and specific approaches are described with the emphasis placed on the notions of information
feedback and transmitter cooperation.

Finally the final document concludes by suggesting a couple of promising open problems
for the way forward.

2.1.1 General interest and methodology

We are generally interested in the optimization of communications networks, and more specif-
ically wireless networks, through the exploitation of tools from communications theory, infor-
mation theory, and signal processing. By optimization, we understand the improvement of a
variety of network’s key performance indicators, such as the average throughput, the maximum
throughput, fairness indicators, or in some cases, more abstract information theory related per-
formance metrics such as the number of degree of freedom (DoF) or multplexing gain (MG)
which indicate the scaling factor with which the network’s throughput increases with the log-
arithm of the signal to noise ratio (SNR) in the high SNR region. The emphasis, to a large
extent, has been on original scheme constructions at the physical or the link layer by exploiting
systems’s and signals’ strucutural properties whenever possible. Some work was dedicated to
performance analysis in some cases, in particular when such type of study serves to illustrate a
new standpoint on system design or some interesting trade-off. An example is that of scaling
law analysis for interference limited networks with multi-user diversity scheduling where our
results demonstrate how powerful a suitable resource allocation can be in combatting interfer-
ence. In retrospect, it is quite striking to see how questions of the type ”how much information
or knowleddge does it take to achieve a certain decoding or estimation task” or ”how can data be
communicated or extracted with less prior information” have remained a stable point of interest
throughout the years (including PhD thesis on blind estimation!).

2.2 Point-to-point MIMO systems

2.2.1 Blind estimation for multi-channel systems

Our research is initially rooted in the area of receiver design for point-to-point wireless links,
using considerably abstracted and simplified models for the communication protocols and fo-
cussing on statistical signal processing to improve receiver performance. During the PhD, sev-
eral new techniques [1–4] are proposed which aim at the blind estimation or equalization of the
propagation channel based on the sole observation of the channel output’s second order statis-
tics (i.e. without the use of pilot sequences). It is interesting to note that the common enabler
behind the new blind approaches is the availability of multiple channel outputs corresponding
to the same transmitted sequence. A typical instance of such channels is obtained in a scenario
where the receiver is equipped with multiple antennas. Hence the work on blind second-order
estimation can be cast quite naturally in a more general framework of studies emerging in the
mid 90s under the acronym of MIMO (multiple input multiple output).
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2.2.2 Study of point-to-point MIMO systems

In the late 90s, a transition takes place in the focus of research, as we move from blind es-
timation problems to transmitter and receiver design for MIMO systems and MIMO channel
capacity studies. In the early 2000s, MIMO systems are a very promising field of research
with huge potential, yet with a number of crucial unresolved questions remain. At this stage
it is unknown to what extent the formidable gains promised by Shannon capacity analysis are
realizable in practice for MIMO. Proper channel modeling is lacking and the most well known
MIMO transmission methods are either too complex or too simple and not robust enough. At
this stage, our research primarily focusses on deriving good insightful channel models for point
to point MIMO systems, which was eventually achieved for both the flat-fading [5] and the
OFDM-based frequency selective case [6]. The models we obtain there attracted some attention
in their ability to explain quantitatively the role played by certain key parameters in increasing
or reducing the MIMO capacity, such as the antenna spacing, the position of the surrounding
scatterers, and the line of sight component. In particular the results in [5] predict the possibility
of so-called pin-hole MIMO channels which have large size yet small rank, a finding confirmed
in parallel by an experimental study made by Bell Labs researchers.

Space-time code design with limited feedback

In a second phase of studies, our effort is shifted on the problem of algorithm design for MIMO
systems in the point to point case. In the early 2000s, much focus by the community is on the
design of diversity oriented schemes, i.e. space time codes. In parallel, yet quite independently,
the importance of feedback in improving wireless system performance is gaining recognition.
Although timidly exploited in 3G networks, the trend towards building more powerful feedback
links into newer types of systems is rapidly developing. Today, feedback is exploited for several
purposes, from power control, to link adaptation, to resource allocation and scheduling, to mul-
tiple antenna transmit precoding and cooperative transmission. Yet, several years ago, feedback
was still in its infancy. Among the interesting issues related to the combination of feedback
and single user MIMO, one may ask the following question: How can space time codes, which
are by design open loop (blind) diversity methods benefit from even a small amount of feed-
back? This specififc problem was addressed in [7] where we show a few bits on instantaneous
feedback can substantially improve the classical space time block code (Alamouti type) perfor-
mance. Then a more general class of feedback was investigated by which the receiver is allowed
to send back long-term statistical information about the fading channel such as Ricean K factor
transmit and receive spatial covariance matrices. There again, one shows how such information
can be exploited by modifying the structure of the space time code. The idea, initially brought
forward by previous authors, consists in precoding the space time code matrix with a long term
beamforming matrix which is a function of second order channel statistics. A series of results
are obtained for various classes of fading channels in [8–10].
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2.3 Multi-terminal networks

2.3.1 Multi-user channels with limited feedback

Although feedback can improve the performance of point to point radio links, its role is nowhere
as crucial as in the multi-terminal case. In [11] we highlight the importance of feedback in
enabling efficient communications with multiple terminals simultaneously using the spatial di-
mention offered by MIMO. We build on prior expertise in exploiting feedback for single user
links in order to explore feedback-based transmission schemes for the downlink of multi-user
MIMO systems (a.k.a MIMO broadcast channels in the information theoretic terminology).

Since over-the-air feedback generates overhead and consumes some of the scarce spectral
resources, we address the more specific problem of limited feedback scheme design. the con-
cept of limited feedback encompasses a number of subscenarios ranging from situations where
the feedback is limited by degradations of its quality which are hard to control by the system
designer, to situations where the feedback quality is restricted on purpose to avoid an excessive
comsumption of uplink resources. Designer-independent feedback quality degradation can orig-
inate from channel noise corrupting the fedback data or CSI aging caused by various sources
of propagation, processing, decoding, and framing delays in the uplink channel. Designer-
dependent reduced feedback schemes often rely on the use of coarse quantization schemes for
channel representation (digital feedback) or the user of limited transmit power levels while
emitting channel estimates (analog feedback). Our work addresses both situations and even
combinations of these. A couple of examples of results are shown below.

The philosophy of our work within the area of reduced feedback can be summarized as
follows: Although a complete feedback protocol would entail describing (quantizing) the com-
plete channel vectors for all users with a large number of bits, reduced feedback schemes aim
at extracting most of the feedback-related gains by exploiting a suitable reduced dimensioned
representation of the same channels. Several results are obtained following this principle. They
address mainly the problems of reduced feedback-based scheduling or reduced feedback-based
MIMO spatial precoding.

Scheduling with reduced feedback

In the context of multi-user diversity scheduling, we propose in [12] (with the key idea originally
presented in [13]) a method referred to as selective multiuser diversity, whereby only terminals
which detect a high enough SNR, are allowed to engage in the feedback process towards the
base station. The idea follows the intuition that only terminals with good channel conditions are
likely to be selected by the scheduler, while others tend to waste feedback resources. There one
shows that 90 percent of the capacity of a complete feedback based system can be preserved
while just 10 percent of the feedback overhead is created.
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Precoding with reduced feedback

In most MIMO-enabled systems, feedback is both used for the user selection as well as to bring
vector channel state information to the transmitter so as to compute the precoding coefficients
(multi-user beamforming). In [14] we show how the trade-off between multi-user diversity and
multiplexing gain can be exploited to reduce feedback overhead. We proposed a method where
a small portion of feedback is allocated to all users to describe the channel with just enough
quality, based on which the base station performs user selection, while the rest of the feedback
resource is allocated to just the users which were selected in the first round so as to describe
their channel with enough accuracy for spatial precoding. This two stage feedback splitting
approach is then optimized analytically.

In [15] limited feedback multi-user precoding is proposed based on the concept of random
beamforming (RB). RB schemes are known to operate well with very low (just SNR) feedback
which is used simply for scheduling purposes, but do not work well if the number of users is low
because randomly designed beams are likely to miss all users. A new scheme is presented which
exploits the feedback in the beamforming design stage, so as to obtain a family of beamforming
schemes ranging from purely random to channel-dependant.

Multiuser precoding with delayed feedback

In most practical scenarios, perfect channel state information at transmitter (CSIT) may not be
available due to the time-varying nature of wireless channels as well as the limited resource for
channel estimation. Note that this is regardless of how many bits are affordable to use for chan-
nel quantization and feeback. Assuming, in the best case, that perfect estimation at the terminal
takes place and infinite quantization is used, the CSIT will be available for precoding purposes
only after a certain delay. The delay value typically depends on the framing structure (e.g. wait-
ing time between an uplink feedback slot and the next downlink data slot) and pre-processing
time at the base station. On the other hand, the timeliness of the delay (i.e. the relevance of
the aged CSIT to the actual channel realization) depends on the ratio of the delay value to the
fading coherence period. When the delay value approaches or exceeds the coherence period,
an interesting question is whether delayed CSIT can still be exploited to precode the downlink
data in any meaningful manner. We considered this problem in the context of the two-user
MISO broadcast channel, where the transmitter equipped with m antennas wishes to send two
private messages to two receivers each with a single antenna. For the case of perfect CSIT, the
optimal degrees of freedom (DoF) of this channel is two and achieved by linear strategies such
as zero-forcing (ZF) beamforming. When the transmitter suffers from constant inaccuracy of
channel estimation, it has been shown by Lapidoth et al. that the degrees of freedom per user is
upper-bounded by 2/3. It is also well known that the full multiplexing gain can be maintained
under imperfect CSIT if the error in CSIT decreases as O(P ) or faster as P grows [16].

Moreover, for the case of the temporally correlated fading channel such that the transmitter
can predict the current state with error decaying as O(P−α) for some constant α [0; 1], ZF can
only achieve a fraction of the optimal degrees of freedom [16]. This result somehow reveals the
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bottleneck of a family of precoding schemes relying only on instantaneous CSIT as the temporal
correlation decreases. Three years ago, a breakthrough has been made in order to overcome such
problem. In [17], Maddah-Ali and Tse showed a surprising result that even completely outdated
CSIT can be very useful in terms of degree of freedom, as long as it is accurate enough. For a
system withm ≥ 2 antennas and two users, the proposed scheme in [17], hereafter called MAT,
achieves the multiplexing gain of 2/3 per user, irrespectively of the temporal correlation. This
work shifts the paradigm of broadcast precoding from space-only to space-time alignment. The
role of perfect delayed CSIT can be re-interpreted as a feedback of the past signal/interference
heard by the receivers. This side information enables the transmitter to perform retrospective
alignment in the space and time domain, as demonstrated in different multiuser network sys-
tems (see e.g. [18]). Despite its DoF optimality, the MAT scheme is designed assuming the
worst case scenario where the delayed channel feedback provides no information about the cur-
rent one (i.e. the delay value exceeds the fading coherence period). This assumption is over
pessimistic as most practical channels exhibit some form of temporal correlation. Therefore a
fundamental question arises as to whether a better way of exploiting both delayed CSIT and
current (imperfect since predicted from the past one) CSIT exists. Studying the achievable DoF
under such CSIT assumption is of practical and theoretical interest.

We proposed a novel strategy that combined the ZF precoding, based on the imperfect cur-
rent state information, and the MAT alignment, based on the perfect past state information.
The main role of current CSIT is to reduce, via spatial precoding, the overheard interference
power in the original MAT alignment. This power reduction then enables, via source compres-
sion/quantization, to save the resources related to the transmission of the overheard interference.
The overall scheme was shown to attain a DoF of (2+α)/3 where α is an index in [0, 1] which
indicates the quality of the channel prediction obtained from ther delayed feedback: i.e. α = 0
indicates that no meaningful prediction can be realized because the delay exceeds the coherence
time, while α = 1 is the other extreme where quasi perfect prediction can be carried out. This
DoF was also shown to be the best achievable one for the two user MISO channel scenario with
delayed feedback. The initial result, published in [19], was lated generalized to encompass the
interference channel scenario, then finally the MIMO scenario [19].

2.4 Interference and multicell networks

The transition from point to point radio link towards multi-user channels is extended quite nat-
urally by adding a dimension featuring multiple parallel point-to-multipoint links. Such a situ-
ation can be found most commonly in cellular network with full spatial reuse of the spectrum,
including 3G, LTE, LTE-A or WiFi networks or other networks where otherwise competing
service providers share the same spectral resource (spectrum sharing, cognitive radios). In this
model, multiple transmitters (e.g. base stations) share spectral resources while trying to com-
municate messages to or from their users. As the SNR increases, such network are typically
inter-cell interference limited. Hence, the bulk of our work from 2009 addresses the prob-
lem of interference in multi-cell networks. Several avenues are considered for this task which
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are briefly commented below, with some examples of publications. It is worth noting that a
common viewpoint exists behind most of these contributions. First, a central notion is that of
a cooperative communication approach, by which otherwise interfering transmitters agree on
jointly optimizing their transmission parameters for the benefit of the served terminals by virtue
of a reduced interference level. The other transversal concept lies in the taking into account of
a limited feedback overhead (hard or loose) constraint, similar to the adopted philosophy in the
context of single-cell multi-user channels. In the context of multi-transmitter cooperation, the
notion of feedback can be seen in the wide sense of the terms, encompassing any type of prior
information (data, channel state,..) that is exchanged between (i) terminals and base stations,
over-the-air, and (ii) the transmitters (e.g. the base stations) themselves over a pre-established
signalling link.

Two fundamental question which underpin our research are as follows:

• how much feedback is necessary to tackle interference in cooperative networks?

• how can local information be exploited at each cooperative node for the benefit of the
overall network (a.k.a distributed schemes)?

This is a vast and challenging problem however, for which our contributions are merely
opening leads. In the below, we differentiate two kinds of approaches to cooperative multicell
communications with limited feedback. The first tackles interference through radio resource
management (RRM) methods such as power control or user scheduling. The other follows
a signal-processing based cooperative communication framework, essentially based on coordi-
nated (or jointly optimized) multiple antenna processing. The first approach is described briefly,
while the second is covered is some more depth.

2.4.1 Interference coordination through cooperative RRM

Transmitters typically control a number of parameters at the two lowest layers which have a di-
rect impact on the generated interference in neighboring cells. Interference coordination refers
to a general class of interference control schemes which exploit the coordinated selection of
such transmission parameters at the various mutually interfering base stations so as to minimize
interference while maximizing their own user’s received signal quality. For instance a coordi-
nation gain can be obtained by the jointly optimized choices of (i) power control levels, (ii) time
or frequency slot assignment, (iii) code, in CDMA, (iv) user scheduling, and by generalization
(this will appear more clearly in the next section): (v) multiple antenna precoding coefficients.

In [20] we present an overview of such RRM-based coordination methods with an emphasis
on power control based coordination. When it comes to centralized multicell power control,
in [21] we establish a striking result indicating that in certain classes of networks (two cell
networks, or general networks with either low SNR or high SNR) then binary multicell power
control is sum-rate optimal. From the initial centralized scheme, several distributed schemes
can be derived [20].
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In [22] we consider interference coordination using coordinated user scheduling. By re-
sorting to ordered statistics tools, we establish fundamental limits to scaling laws of throughput
versus the numner of users. We show that coordinated scheduling is a powerful tool towards
reducing interference while allowing the use of simple distributed scheduling rules, such as the
max SINR rule. The most important result indicates that coordinated scheduling can reduce in-
terference to the point that the coordinated network can exhibit the same capacity scaling (with
SNR) as a system without any interference. Interestingly, while coordinated scheduling can re-
duce interference, it cannot fully eliminate it, especially with a fine number of users to exploit.
The exact limits are analyzed in [23]. As a result, our study indicates that a stronger formm of
cooperation between interfering transmitters ought to be considered as well for practical nert-
work scenarios. A solution to this problem can be found in the form of multiple antenna based
cooperative communications, considered below.

2.4.2 Interference coordination with multi-antenna techniques

The role played by multiple antenna combining in mitigating interference by means of zero
forcing (ZF) (or related criteria) beamforming is well established. Over the last few years, the
combination of multiple-antenna approaches together with the concept of cooperation among
interfering wireless devices was explored, showing strong promise. In particular, TX-based
cooperation allows for avoidance of the interference before it even takes place (e.g. Network
MIMO), or helps to shape it in a way which makes it easier for the receivers (RX) to suppress it.
TX cooperation methods can be categorized depending on whether the data messages intended
at the users must be known at several TXs simultaneously or not. For systems not allowing
such an exchange (e.g. due to privacy regulations or low backhaul capabilities), interference
alignment (IA) has been shown to be instrumental [24]. In contrast, when user data message ex-
change is made possible by a specific backhaul routing architecture, multi-cell, a.k.a. “network”
MIMO, methods offer the best theoretical benefits [25].

When cooperation buys antennas

A distinct advantage of TX cooperation over conventional approaches relying on per-user in-
terference rejection, lies in the reduced number of antennas needed at each RX to ZF residual
interference. This gain is further amplified when user data messages exchange among TXs is
made possible. For instance, in the case of three interfering two-antenna TXs, relying on RX
based interference rejection alone requires three antennas to ZF the interference at each RX,
while just two are needed when coordination is enabled via IA [26]. Further, if the three user
messages are exchanged among the TXs, thus enabling network MIMO precoding, then just
one antenna per TX and RX is sufficient to preserve interference-free transmission.
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Network MIMO with user grouping

Network MIMO (Coordinated Multipoint Transmission - CoMP in the 3GPP terminology) in-
cludes strong forms of multicell cooperation, including the possibility of jointly combining all
antennas belonging to several base station together, so as to mimick a large virtual MIMO sys-
tem. A comprehensive tutorial was published regarding the theory of such systems in [27]. On
the downlink of cellular networks, this implies the existence of a high capacity backhaul by
which all user packets can be shared across the base stations, along with some of the channel
state information. The concept of grouping of users and base stations into cooperation clusters
can be used to limit the size and the complexity of such systems. In our earlier work in this area
we examined some solutions based on dynamic cell grouping, where only a finite of neighbor-
ing base stations are allowed to cooperate together, the clusters are optimized based on graph
theoretic algorithms [28].

2.4.3 Network MIMO with reduced user data sharing

As an alternative to clustering (which poses some edge effects issues), we also investigated
how just the right amount of information can be exchanged between base stations so that the
cooperation gains are balanced with the overhead linked to user data and CSI sharing. In [29] we
formulate a rate optimization problem under the constraint of a finite backhaul. We show that
packet data sharing is not always beneficial but becomes more so as the inteference is stronger.
We adopt a rate splitting formalism to find the amount of traffic that ought to be shared between
two interfering base stations. In doing so, we bring forward a family of theoretical MIMO
communications scenario bridging the MIMO interference channels and the Network MIMO
channels.

MIMO cooperation with limited CIST feedback and exchange

The benefits of multiple antenna transmit cooperation go at the expense of requiring channel
state information (CSI) at the TXs. Indeed, whether one considers cooperation with or without
user’s data sharing, the TXs should in principle acquire the complete CSI pertaining to every TX
and RX pair in the network. This is also the case for wide-sense distributed schemes (e.g. [30])
where the computation of precoders typically relies on iterative techniques where each iteration
involve the acquisition of local feedback. Yet, as local feedback is updated over the iterations,
this approach implicitly allows each TX to collect information about the precoders and chan-
nels of other TXs, hence amounting to an iterative global CSI acquisition at all TXs. Hence
such wide-sense distributed schemes can be opposed to strict sense distributed schemes where
transmitters have to make a one-shot decision about how to communicate-cooperate based on
the sole local information they have initially acquired.

At first glance, it would seem that CSI feedback and sharing requirements in transmitter
cooperation schemes grow unbounded as the network grows in size. Since over the air feedback
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and backhaul exchange links are always rate and latency limited, this means the practical appli-
cation of TX cooperation in dense large networks may be very difficult, even if one assummes
the user data packets can be routed for free to (i.e. shared across) all cooperating transmitters.

In a series of recent results, we challenge the common view that interfering TXs engaging
in a cooperative scheme can or should share global (network-wide) CSI. Instead, we formulate
the problem of a suitable CSI dissemination (or allocation) policy across transmitting devices
while maintaining performance close to the full CSIT sharing scenario. We report below a
couple of findings revealing how the need for CSIT sharing can be alleviated by exploiting spe-
cific antenna configurations or decay property of signal strength versus distance, hence making
TX cooperation distributed and scalable. We use interference alignment and network MIMO
respectively as our driving scenarios.

More specifically, for the cooperation scenario without user data message sharing where
alignment of interference is sought, we show how perfect alignment is possible in certain an-
tenna topologies without knowledge of all the channel elements at some TXs. For the network
MIMO scenario, this is not the case and we illustrate instead how power decay versus distance
can be exploited to substantially reduce the CSI sharing requirements while fulfilling optimal
asymptotic rate performance conditions. A common trait behind the findings is that differ-
ent cooperating TXs can (and often must) live with their own individual partial version of the
global CSIT. Hence, CSIT representation quality is bound to be non-uniform across TXs. Con-
sequently, we discuss briefly the problem of multiple-antenna precoding with TX-dependent
CSI.

2.5 Key notions in spatial transmitter cooperation

We consider fast fading multiple-antenna wireless networks where the transmission can be
mathematically represented by writing yi, the received signal at RX i, as

yi = Hiixi +
∑
j 6=i

Hijxj (2.1)

where xi is the signal emitted by TX i and Hij is a matrix containing the channel elements
between TX j and RX i. The transmitted symbols x = [x1, . . . ,xK ]T are then obtained from
the user’s data symbols s = [s1, . . . , sK ]

T by multiplication with a precoder T, i.e., x = Ts.
If the user’s data symbols are not shared between the TXs, the precoder T is restricted to a
particular block-diagonal structure, while it can otherwise take any form. The received filter gH

i

is then applied to the received signal yi to obtain an estimate of the transmitted data symbol.
Here, we briefly discuss the leading techniques for MIMO based cooperation with or with-

out user data message exchange. We point out commonly made assumptions in terms of CSIT
sharing and feedback design.
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2.5.1 Interference alignment for Interference Channels

When the user’s data symbols are not shared between the TXs, the setting is referred to as a
Interference Channel (IC) in the communication theoretic literature. In MIMO ICs, a method
called Interference Alignment (IA) has been recently developed and shown to achieve the max-
imal number of degrees-of-freedom (DoF), or pre-log factor, in many cases [24, 26]. As a
consequence, IA has attracted a lot of interest in the community. Here, we take the DoF as our
key performance metric, such that we focus on IA schemes.

IA is said to be feasible if the antenna configuration (i.e. the distribution of antenna elements
at the TXs and the RXs) yields enough optimization variables to allow for the interference-free
transmission of all user’s data symbols, which means fulfilling [26]

∀i,∀j 6= i, gH
i Hijtj = 0. (2.2)

Intuitively, IA consists in letting the TXs coordinate among themselves to beamform their sig-
nals such that the interferences received at each of the RXs are confined in a subspace of reduced
dimensions, which can then be suppressed by linear filtering at the RXs with a smaller number
of antennas.

2.5.2 Precoding in the Network MIMO

When the user’s data symbols are shared between the TXs, the TXs form a distributed antenna
array and a joint precoder can be applied at the transmit side [25]. Consequently, this setting
becomes similar to the single TX multi-user MIMO downlink channel and the interference
between the TXs can be completely canceled, e.g., by applying a global ZF precoder T ∝ H−1.

2.5.3 Limited feedback versus limited sharing

The limited feedback capabilities have been recognized as a major obstacle for the practical
use of the precoding schemes described above. Consequently, a large literature has focused on
this problem and both efficient feedback schemes and robust transmission schemes have been
derived, for Network MIMO [31, 32] and IA [33, 34].

Yet, all these works assume that the imperfect channel estimates obtained via limited feed-
back are perfectly shared between all the transmit antennas. This is a meaningful assumption
when the TXs are colocated but less realistic otherwise, as we shall now see.

CSIT sharing issues

One obstacle to the sharing of global CSIT follows from the fact that the amount of CSI which
has to be exchanged increases very quickly with the number of TXs. In fact, each TX needs
to obtain the CSI relative to the full multi-user channel, which consists of (NK)2 scalars in a
K-user setting with N antennas at each node.
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In addition, acquiring the CSI at a particular TX can be realized either by a direct broadcast
of the CSI to all the listening TXs or by an over-the-air feedback to the home base station
alone, followed by an exchange of the local CSIs over the backhaul, as it is currently advocated
by 3GPP LTE-A standards [35]. Note that exchange over the backhaul can involve further
quantization loss and may lead to a different CSI-aging at each TX, due to protocol latency.
Either case, the channel estimates available at the various TXs will not be exactly the same. This
leads to a form of CSI discrepancy which is inherent to the cooperation among non-colocated
TXs.

In order to capture multiple-antenna precoding scenarios whereby different TXs obtain an
imperfect and imperfectly shared estimate of the overall multi-user channel, we denote by H(j)

the network-wide channel matrix estimate available at TX j. Consequently, the precoding
schemes have to be modified to take into account that each TX will compute its precoder based
on its own channel estimate. Thus, TX j transmits xj = T(j)s based on the knowledge of H(j)

only.
The fundamental questions which arise are: (i) how complete and accurate should the esti-

mate H(j) be for each j while operating under reasonable CSI overhead constraints? and (ii)
how should precoders be designed given the likely discrepancies between various channel es-
timates? Although these questions prove to be difficult and to a large extent remain open, we
shed some light on the problem for two key scenarios in the following sections.

2.6 Aligning interference with incomplete CSIT

Let us first consider an IC, i.e., without user’s data sharing. Feasibility studies for IA are typi-
cally carried out under the assumption of full CSIT. Yet, one can show that IA feasibility and the
CSIT model are in fact tightly coupled notions. Assume for instance that all the RXs were given
a generous number of antennas equaling or exceeding the number of TXs, it is well known that
the interference could be suppressed at the RXs alone and no precoding, and hence no CSIT, is
necessary. This example suggests the existence of a trade-off between the number of antennas
and the CSI sharing requirements. Thus, it is possible to design IA algorithms using less CSIT
that conventionally thought, without performance degradations by exploiting the availability of
extra-antennas at a subset of devices. More specifically, the problem of finding the minimal
CSIT allocation which preserves IA feasibility can be formulated. The minimality refers to the
size of a CSIT allocation, defined as the total number of scalars sent through the multi-user
feedback channel.

We differentiate between antenna configurations where IA is feasible and the number of
antennas at the TXs and the RXs provide just enough optimization variables to satisfy alignment
conditions, denoted as tightly-feasible, and the ones where extra antennas are available, denoted
as super-feasible. Furthermore, we call a CSIT allocation strictly incomplete if at least one TX
does not have the complete multi-user CSI. With such concepts in place, the following lesson
can be drawn.
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2.6.1 Tightly-feasible ICs

A strictly incomplete CSIT allocation implies that some TXs compute their precoders in order
to fulfill IA inside a smaller IC formed by a subset of RXs and a subset of TXs. Most of the
time, this creates additional constraints for the optimization of the other precoders which makes
IA unfeasible. Yet, it can be shown that IA feasibility can be preserved under the following
condition [36].

Lesson 1. In a tightly-feasible IC, there exists a strictly incomplete CSIT allocation preserving
IA feasibility if there exists a tightly-feasible sub-IC strictly included in the full IC.

Exploiting this result, a CSIT allocation algorithm is derived in [36] along with an algorithm
which achieves IA based on this incomplete CSIT allocation. In a few words, it consists in giv-
ing to each TX the CSI relative to the smallest tightly-feasible sub-IC to which it belongs. The
precoders are then designed to align interference inside this smaller sub-IC, thence requiring
only a part of the total CSIT, while IA feasibility is preserved. We will see in the simulations
results presented in the following that the reduction in the CSIT size is significant. In fact, the
reduction of the CSIT allocation feeds on the heterogeneity of the antenna configuration such
that the more heterogeneous the antenna configuration is, the larger is the saving brought by
using the minimal CSIT allocation. This is particularly appealing in regards to the future net-
works where mobile units and base-stations from different generations with different number of
antennas are likely to co-exist.

2.6.2 Super-feasible ICs

In super-feasible settings, the additional antennas can be used to reduce the size of the minimal
CSIT allocation. Yet, how to exploit optimally these additional antennas to reduce the feedback
size is a very intricate problem. Still, a low complexity heuristic CSIT allocation can be derived
[36]. The main idea behind the algorithm is to let some TXs or RXs ZF less interference
dimensions such that small tightly-feasible settings are formed inside the original setting.

The effective CSIT reduction is illustrated in Figure 2.1 for a 3-user IC. The results are av-
eraged over 1000 random distributions of the antennas across the TXs and the RXs. If 12 anten-
nas are distributed between the TXs and the RXs, the setting is tightly-feasible and the previous
CSIT allocation policy for tightly-feasible settings is used. With more than 12 antennas, the
algorithm exploits every additional antenna to reduce the size of the CSIT allocation.

When the setting is tightly-feasible, the reduction in feedback size requires neither a DoF
reduction nor any additional antenna and comes in fact “for free”: It simply results from ex-
ploiting the heterogeneity in the antenna numbers at the TXs and the RXs.

2.7 A CSIT allocation policy for Network MIMO

When the user’s data symbols are jointly precoded at the TXs, complete CSIT allocation, in
the sense defined above, is needed in all the practically relevant scenarios. So in this case, a
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Figure 2.1: Average CSIT allocation size in terms of the number of antennas randomly dis-
tributed across the TXs and the RXs for K = 3 users.
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different notion of reduced CSIT sharing must be advocated. The essential ingredient of this
approach is the classical intuition that a TX should have a more accurate estimate for channels
creating the strongest interference, i.e. originating from devices in the close neighborhood. This
means that the fact that interference decays with pathloss can be exploited in principle to reduce
the CSIT sharing requirements. This concept was recently introduced in [37]. A mathematical
tool known as generalized degree-of-freedom comes handy to capture the effect of path loss
on the multiplexing gain of cooperating networks with partially shared CSIT. Additionally, a
simplified model referred to as Wyner model is used in this context to aid analytical tractability
and provide first insights into this problem.

2.7.1 Generalized degrees of freedom

TX cooperation methods are often evaluated through the prism of DoF performance. Unfortu-
nately the DoF is essentially pathloss-independent, such that a DoF analysis fails to properly
capture the behavior of a large (extended) network MIMO. An extension of the notion of DoF,
introduced in [38] as the generalized DoF, offers a much better grip over the problem as it
can better take pathloss models into account. Upon defining the interference level γ as γ ,
log(INR)/ log(SNR) with SNR denoting the signal-to-noise ratio and INR the interference-to-
noise ratio, it is possible to define the generalized DoF as the DoF obtained when the SNR and
the INR tend both to infinity for a given interference level γ.

For ease of exposition, we consider scenarios where all the TXs and RXs have a single
antennas. The CSI is distributed, meaning that each TX has its own channel estimate based
on which it computes its transmit coefficient without further exchange of information with the
other TXs. We denote the estimate at TX j by H(j) and its i-th row, which corresponds to the
channel from all TXs to RX i, by h

(j)
i . We consider a digital quantization with a number of bits

quantization h
(j)
i equal to B(j)

i . Therefore, TX j computes its own version of the precoding
matrix T(j) based on its own estimate H(j). It then transmits xj = eT

jT
(j)s.

2.7.2 The one-dimensional Wyner model

In the simple 1D Wyner model [39], the TXs are regularly placed along a line and solely the
direct neighboring TXs emit non-zero interference. The channel is thus represented by a tridi-
agonal matrix. Furthermore, we assume that the interference from the direct neighbors are
attenuated with a coefficient µ = P γ−1, according to the generalized DoF model.

Our objective is to evaluate how small B(j)
i can be while guaranteeing the same DoF as

a system with perfect CSIT. Obviously, sharing the most accurate CSIT to all the TXs is a
possible solution, yet, the size of the CSI required at each TX grows then unbounded with the
number of users K, making this solution both inefficient and unpractical. In contrast, a much
more efficient CSI sharing policy achieving the maximal generalized DoF, denoted as distance-
based, is summarized below [37].
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2.7.3 Distance-based CSIT allocation

We are interested in a CSIT allocation strategy, referred below as “distance-based”, whereby
each TX receives a number of CSI scalars which remains bounded as the number of users K
increases.

The distance-based CSIT allocation is obtained by setting for all i, j,

B
(j)Dist
i =d([1+(γ−1)|i−j|]+ + 2[γ + (γ−1)|i−j|]+) log2(P )e (2.3)

where [•]+ is equal to zero if the argument is negative and to the identity function otherwise,
and d•e is the ceiling operator. It can be shown that the CSIT allocation {B(j)Dist

i }i,j allows
to achieve the maximal generalized DoF, i.e., those achieved in a system with perfect feedback
[37]. The proof is based on the off-diagonal exponential decay of the inverse of the tridiagonal
channel matrix.

Setting γ = 1 (no significant pathloss attenuation) in the previous equation, a conventional
CSIT allocation is obtained where all channels are described with the same number of bits at
all TXs (uniform allocation). For γ < 1 however, the number of bits allocated decreases with
the distance |i−j| between the considered TX and the index of the quantized channel, until no
bit at all is used for quantizing the channel if the distance |i − j| between the RX and the TX
is larger than d1/(1 − γ)e. Crucially, this solution allocates to each TX a total number of bits
which no longer grows with K as only the CSI relative to a neighborhood is shared at each TX.

The different CSIT allocations are compared in Figure 2.2 for K = 15 users and γ = 0.5.
The conventional CSIT allocation consists in providing the best quality to all the TXs, while
the other strategies have the same size as the distance-based CSIT allocation, but the feedback
bits are respectively shared uniformly and according to a conventional clustering of size 3. It
can be seen from (2.3) that the ratio between the size of the distance-based CSIT allocation and
the conventional CSIT allocation is independent of the SNR. Here, the distance-based CSIT
allocation represents only 10% of the size of the conventional CSIT allocation.

Hence, the distance-based CSIT allocation achieves the maximal number of generalized
DoF with only a small share of the total CSIT, and outperforms the other schemes of compari-
son. Additionally, the user’s data sharing can also be reduced to a neighborhood without loss of
performance. Consequently, this scheme can be seen as an alternative to clustering in which the
hard boundaries of the clusters are replaced by a smooth decrease of the level of cooperation.

2.8 Distributed precoding in the Network MIMO channel

2.8.1 Defining distributed precoding

In an effort to come up with scalable cooperative transmissions methods and reduce feedback
overhead, one must be ready to consider the scenarios where the transmitters are not provided
with the full multi-user CSI but rather an incomplete, imperfect, and importantly individual ver-
sion of it. On the downlink, the base stations seek to jointly combine the users signals by using
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precoding coefficients which must be computed on the basis of this individual CSI estimates.
This scenario, coined Distributed CSI Network MIMO precoding was initially introduced to
the community in our papers [40–42]. Precoding over the D-CSI Network MIMO channel
poses new challenges due to the distributed nature of the information structure. We established
connections with a field known in the optimization theory field as Team Decision theory. In
this field, a set of network agents seek to cooperate in order to maximize a common objective.
There, performance loss with respect to a centralized optimization does not come from conflict
or competition between the agents but from the fact that they are unable to share their views of
the system state. In our wireless scenario, cooperating base stations would like to jointly invert
a common multi-user channel matrix, unfortunately each base station possesses just an incom-
ple and imperfect channel matrix estimate. For instance, a base has accurate information about
terminals in its neighborhood but weak knowledge about more distant users. The fundamental
questions which arise in this context are:

• Can one use classical precoding methods (zero-forcing, MMSE, etc..)

• What are optimal (robust) methods? What is their gain?

• What are low complexity distributed precoding techniques?

• Under a total feedback and information exchange overhead constraint, how should indi-
vidual user CSI be disseminated throughout the network?

Below we depict some leads to start answering the first and second questions. One key lesson
is the important role played by the consistency of information shared by the cooperating nodes
over the accuracy.

2.8.2 Initial results on distributed cooperative precoding

As was clear from the previous sections, an efficient CSI dissemination policy naturally leads
to a significant reduction of the CSI sharing requirements. As a consequence, the CSIT is rep-
resented non-uniformly across the TXs. Since non-uniform sharing is the best strategy in order
to maximize performance under a given feedback overhead constraint, it is a natural conse-
quence that some user’s channels will be coarsely described at certain TXs and more accurately
at others. Hence, a distributed CSI network MIMO is likely to occur in such cases.

Interestingly, the problem of designing precoders that can accommodate such a peculiar
CSIT scenario is by and large open. In particular, new robust precoding schemes should be
developed, as conventional precoders are designed under the assumption that the same imperfect
CSIT is shared perfectly among the TXs.

Let us consider the model of distributed CSI described in Section 2.7 where TX j receives
its own channel estimate H(j) with the i-th row, denoted by h

(j)
i , obtained usingB(j)

i quantizing
bits. Assume a network where each TX has roughly the same average pathloss to each RX. The
DoF which can be achieved with limited feedback is studied in [32] for the single TX MIMO
downlink channel. We can extend this to the setting of non-uniform CSI so as to gain insight
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into the design of efficient precoders. In this case, CSI scaling coefficients α(j)
i are introduced

and defined by the limit of B(j)
i /((K − 1) log2(P )) when P goes to infinity.

ZF is widely used and well known to achieve the maximal DoF in the MIMO downlink
channel with perfect CSIT [32]. One may wonder how conventional ZF performs in the pres-
ence of CSI discrepancies brought by imperfect sharing. The answer is strikingly pessimistic:
The sum DoF achieved can be shown to be equal to just Kmini,j α

(j)
i [40]. Intuitively, this can

be restated as follows.

Lesson 2. In the network MIMO with distributed CSI, the worst channel estimate across the
TXs and the users limits the DoF achieved by each user using ZF precoding.

This is in strong contrast to the single TX case studied in [32] where the quality of the feed-
back of user i relative to hi solely impacts the DoF of user i. It shows clearly the disastrous
impact of the CSI non-uniformity, since one inaccurate estimate at one TX degrades the perfor-
mances of all the users. One may also wonder whether conventional-type robust precoders [31]
can offer a better response. The answer is negative, unfortunately. Instead, a novel precoder
design is needed that is tailored to the non-uniform CSIT sharing model.

Preliminary results to this end [40] suggest that it is possible to dramatically improve the
DoF in certain scenarios. For instance, in the two-TX network, a scheme referred to as Active-
Passive (AP) ZF, consisting in letting the TX with degraded CSIT arbitrarily fix its transmit
coefficient while the other TX compensates to zero-out the interference, can be shown to recover
the optimal DoF.

2.9 Open Problems

Transmitter cooperation method form a promising answer to the interference problem in wire-
less networks. New techniques for feedback limitation and for the CSIT sharing in wireless
networks have been derived and their potential to reduce signaling overhead has been shown.
We have presented some insights into a new problem which presents serious challenges, but also
research opportunities for the future. Firstly, IA algorithms with incomplete CSIT are based on
a DoF-preserving criterion only, i.e., on the performance at asymptotically high SNR. The im-
pact of the incomplete CSIT on the performance at finite SNR should then be investigated to
obtain practical solutions. Similarly, robust precoding schemes for the MIMO network with
distributed CSI have so far considered DoF only as a metric. By and large, precoding over net-
work MIMO with distributed CSI remains a challenging problem. Designing robust schemes
at finite SNR is both interesting and, unfortunately, particularly difficult. It is important to note
the difference with the classical and much easier task of designing robust schemes for the single
decision-maker scenario (for instance for the MIMO broadcast channel). Here the cooperating
nodes must make a transmission decision while guessing the strategy used by the others, de-
spite not sharing the same view of the system state. Although this problem may in some case
be recast in the form of a single decision making problem with a Bayesian estimation frame-
work, the algorithms one derives with such approaches are typically very complex, hence lack

20



applicability. Simple, elegant, closed-form expressions that are function of the local channel
knoweledge and the knowledge of the statistics for non local channels are yet to be obtained.
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From Theory to Practice: An Overview of MIMO
Space–Time Coded Wireless Systems

David Gesbert, Member, IEEE, Mansoor Shafi, Fellow, IEEE, Da-shan Shiu, Member, IEEE,
Peter J. Smith, Member, IEEE, and Ayman Naguib, Senior Member, IEEE

Tutorial Paper

Abstract—This paper presents an overview of recent progress
in the area of multiple-input–multiple-output (MIMO) space–time
coded wireless systems. After some background on the research
leading to the discovery of the enormous potential of MIMO
wireless links, we highlight the different classes of techniques
and algorithms proposed which attempt to realize the various
benefits of MIMO including spatial multiplexing and space–time
coding schemes. These algorithms are often derived and analyzed
under ideal independent fading conditions. We present the state
of the art in channel modeling and measurements, leading to a
better understanding of actual MIMO gains. Finally, the paper
addresses current questions regarding the integration of MIMO
links in practical wireless systems and standards.

Index Terms—Beamforming, channel models, diversity, mul-
tiple-input–multiple-output (MIMO), Shannon capacity, smart
antennas, space–time coding, spatial multiplexing, spectrum
efficiency, third-generation (3G), wireless systems.

I. INTRODUCTION

D IGITAL communication using multiple-input–multiple-
output (MIMO), sometimes called a “volume-to-volume”

wireless link, has recently emerged as one of the most sig-
nificant technical breakthroughs in modern communications.
The technology figures prominently on the list of recent
technical advances with a chance of resolving the bottleneck of
traffic capacity in future Internet-intensive wireless networks.
Perhaps even more surprising is that just a few years after its
invention the technology seems poised to penetrate large-scale
standards-driven commercial wireless products and networks
such as broadband wireless access systems, wireless local
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area networks (WLAN), third-generation (3G)1 networks and
beyond.

MIMO systems can be defined simply. Given an arbitrary
wireless communication system, we consider a link for which
the transmitting end as well as the receiving end is equipped with
multiple antenna elements. Such a setup is illustrated in Fig. 1.
The idea behind MIMO is that the signals on the transmit (TX)
antennas at one end and the receive (RX) antennas at the other
end are “combined” in such a way that the quality (bit-error rate
or BER) or the data rate (bits/sec) of the communication for each
MIMO user will be improved. Such an advantage can be used to
increase both the network’s quality of service and the operator’s
revenues significantly.

A core idea in MIMO systems isspace–timesignal
processing in which time (the natural dimension of digital com-
munication data) is complemented with the spatial dimension
inherent in the use of multiple spatially distributed antennas.
As such MIMO systems can be viewed as an extension of the
so-calledsmart antennas, a popular technology using antenna
arrays for improving wireless transmission dating back several
decades.

A key feature of MIMO systems is the ability to turn multi-
path propagation, traditionally a pitfall of wireless transmission,
into a benefit for the user. MIMO effectively takes advantage
of random fading [1]–[3] and when available, multipath delay
spread [4], [5], for multiplying transfer rates. The prospect of
many orders of magnitude improvement in wireless communi-
cation performance at no cost of extra spectrum (only hardware
and complexity are added) is largely responsible for the suc-
cess of MIMO as a topic for new research. This has prompted
progress in areas as diverse as channel modeling, information
theory and coding, signal processing, antenna design and mul-
tiantenna-aware cellular design, fixed or mobile.

This paper discusses the recent advances, adopting succes-
sively several complementing views from theory to real-world
network applications. Because of the rapidly intensifying
efforts in MIMO research at the time of writing, as exemplified
by the numerous papers submitted to this special issue of
JSAC, a complete and accurate survey is not possible. Instead
this paper forms a synthesis of the more fundamental ideas
presented over the last few years in this area, although some
very recent progress is also mentioned.

1Third-generation wireless UMTS-WCDMA.

0733-8716/03$17.00 © 2003 IEEE
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Fig. 1. Diagram of a MIMO wireless transmission system. The transmitter and receiver are equipped with multiple antenna elements. Coding, modulation, and
mapping of the signals onto the antennas may be realized jointly or separately.

The article is organized as follows. In Section II, we attempt
to develop some intuition in this domain of wireless research,
we highlight the common points and key differences between
MIMO and traditional smart antenna systems, assuming the
reader is somewhat familiar with the latter. We comment on a
simple example MIMO transmission technique revealing the
unique nature of MIMO benefits. Next, we take an information
theoretical stand point in Section III to justify the gains and
explore fundamental limits of transmission with MIMO links in
various scenarios. Practical design of MIMO-enabled systems
involves the development of finite-complexity transmission/re-
ception signal processing algorithms such as space–time
coding and spatial multiplexing schemes. Furthermore, channel
modeling is particularly critical in the case of MIMO to
properly assess algorithm performance because of sensitivity
with respect to correlation and rank properties. Algorithms
and channel modeling are addressed in Sections IV and V,
respectively. Standardization issues and radio network level
considerations which affect the overall benefits of MIMO im-
plementations are finally discussed in Section VI. Section VII
concludes this paper.

II. PRINCIPLES OFSPACE-TIME (MIMO) SYSTEMS

Consider the multiantenna system diagram in Fig. 1. A com-
pressed digital source in the form of a binary data stream is fed
to a simplified transmitting block encompassing the functions
of error control coding and (possibly joined with) mapping to
complex modulation symbols (quaternary phase-shift keying
(QPSK), M-QAM, etc.). The latter produces several separate
symbol streams which range from independent to partially
redundant to fully redundant. Each is then mapped onto one
of the multiple TX antennas. Mapping may include linear
spatial weighting of the antenna elements or linear antenna
space–timeprecoding. After upward frequency conversion,
filtering and amplification, the signals are launched into the
wireless channel. At the receiver, the signals are captured by
possibly multiple antennas and demodulation and demapping
operations are performed to recover the message. The level of
intelligence, complexity, anda priori channel knowledge used
in selecting the coding and antenna mapping algorithms can
vary a great deal depending on the application. This determines
the class and performance of the multiantenna solution that is
implemented.

In the conventional smart antenna terminology, only the trans-
mitter or the receiver is actually equipped with more than one
element, being typically the base station (BTS), where the extra

cost and space have so far been perceived as more easily af-
fordable than on a small phone handset. Traditionally, the in-
telligence of the multiantenna system is located in the weight
selection algorithm rather than in the coding side although the
development ofspace–time codes (STCs)is transforming this
view.

Simple linear antenna array combining can offer a more re-
liable communications link in the presence of adverse propa-
gation conditions such as multipath fading and interference. A
key concept in smart antennas is that of beamforming by which
one increases the average signal-to-noise ratio (SNR) through
focusing energy into desired directions, in either transmit or re-
ceiver. Indeed, if one estimates the response of each antenna
element to a given desired signal, and possibly to interference
signal(s), one can optimally combine the elements with weights
selected as a function of each element response. One can then
maximize the average desired signal level or minimize the level
of other components whether noise or co-channel interference.

Another powerful effect of smart antennas lies in the concept
of spatial diversity. In the presence of random fading caused
by multipath propagation, the probability of losing the signal
vanishes exponentially with the number of decorrelated antenna
elements being used. A key concept here is that ofdiversity
order which is defined by the number of decorrelated spatial
branches available at the transmitter or receiver. When com-
bined together, leverages of smart antennas are shown to im-
prove the coverage range versus quality tradeoff offered to the
wireless user [6].

As subscriber units (SU) are gradually evolving to become
sophisticated wireless Internet access devices rather than just
pocket telephones, the stringent size and complexity constraints
are becoming somewhat more relaxed. This makes multiple an-
tenna elements transceivers a possibility at both sides of the link,
even though pushing much of the processing and cost to the net-
work’s side (i.e., BTS) still makes engineering sense. Clearly,
in a MIMO link, the benefits of conventional smart antennas are
retained since the optimization of the multiantenna signals is
carried out in a larger space, thus providing additional degrees
of freedom. In particular, MIMO systems can provide a joint
transmit-receive diversity gain, as well as an array gain upon
coherent combining of the antenna elements (assuming prior
channel estimation).

In fact, the advantages of MIMO are far more fundamental.
The underlying mathematical nature of MIMO, where data is
transmitted over amatrix rather than a vector channel, creates
new and enormous opportunities beyond just the added diver-
sity or array gain benefits. This was shown in [2], where the
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Fig. 2. Basic spatial multiplexing (SM) scheme with three TX and three RX antennas yielding three-fold improvement in spectral efficiency. Ai, Bi, and Ci
represent symbol constellations for the three inputs at the various stages of transmission and reception.

author shows how one may under certain conditions transmit
independent data streams simultaneously over the

eigenmodesof a matrix channel created by TX and RX an-
tennas. A little known yet earlier version of this ground breaking
result was also released in [7] for application to broadcast dig-
ital TV. However, to our knowledge, the first results hinting at
the capacity gains of MIMO were published by Winters in [8].

Information theory can be used to demonstrate these gains
rigorously (see Section III). However, intuition is perhaps best
given by a simple example of such a transmission algorithm over
MIMO often referred to in the literature as V-BLAST2 [9], [10]
or more generically called herespatial multiplexing.

In Fig. 2, a high-rate bit stream (left) is decomposed into
three independent -rate bit sequences which are then trans-
mitted simultaneously using multiple antennas, thus consuming
one third of the nominal spectrum. The signals are launched
and naturally mix together in the wireless channel as they use
the same frequency spectrum. At the receiver, after having
identified the mixing channel matrix through training symbols,
the individual bit streams are separated and estimated. This
occurs in the same way as three unknowns are resolved from a
linear system of three equations. This assumes that each pair
of transmit receive antennas yields a single scalar channel
coefficient, hence flat fading conditions. However, extensions
to frequency selective cases are indeed possible using either a
straightforward multiple-carrier approach (e.g., in orthogonal
frequency division multiplexing (OFDM), the detection is
performed over each flat subcarrier) or in the time domain by
combining the MIMO space–time detector with an equalizer

2Vertical-Bell Labs Layered Space–Time Architecture.

(see for instance [11]–[13] among others). The separation is
possible only if the equations are independent which can be
interpreted by each antenna “seeing” a sufficiently different
channel in which case the bit streams can be detected and
merged together to yield the original high rate signal. Iterative
versions of this detection algorithm can be used to enhance
performance, as was proposed in [9] (see later in this paper for
more details or in [14] of this special issue for a comprehensive
study).

A strong analogy can be made with code-division
multiple-access (CDMA) transmission in which multiple
users sharing the same time/frequency channel are mixed upon
transmission and recovered through their unique codes. Here,
however, the advantage of MIMO is that the unique signatures
of input streams (“virtual users”) are provided by nature in a
close-to-orthogonal manner (depending however on the fading
correlation) without frequency spreading, hence at no cost of
spectrum efficiency. Another advantage of MIMO is the ability
to jointly code and decode the multiple streams since those are
intended to the same user. However, the isomorphism between
MIMO and CDMA can extend quite far into the domain of
receiver algorithm design (see Section IV).

Note that, unlike in CDMA where user’s signatures are
quasi-orthogonal by design, the separability of the MIMO
channel relies on the presence of rich multipath which is
needed to make the channel spatially selective. Therefore,
MIMO can be said to effectivelyexploitmultipath. In contrast,
some smart antenna systems (beamforming, interference rejec-
tion-based) will perform better in line-of-sight (LOS) or close
to LOS conditions. This is especially true when the optimiza-
tion criterion depends explicitly on angle of arrival/departure
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parameters. Alternatively, diversity-oriented smart antenna
techniques perform well in nonline-of-sight (NLOS), but they
really try to mitigate multipath rather than exploiting it.

In general, one will define therank of the MIMO channel
as the number of independent equations offered by the above
mentioned linear system. It is also equal to the algebraic rank of
the channel matrix. Clearly, the rank is always both less
than the number of TX antennas and less than the number of
RX antennas. In turn, following the linear algebra analogy, one
expects that the number of independent signals that one may
safely transmit through the MIMO system is at most equal to
the rank. In the example above, the rank is assumed full (equal
to three) and the system shows anominalspectrum efficiency
gain of three, with no coding. In an engineering sense, however,
both the number of transmitted streams and the level of BER on
each stream determine the link’s efficiency (goodput3 per TX
antenna times number of antennas) rather than just the number
of independent input streams. Since the use of coding on the
multiantenna signals (a.k.a. space–time coding) has a critical
effect on the BER behavior, it becomes an important component
of MIMO design. How coding and multiplexing can be traded
off for each other is a key issue and is discussed in more detail
in Section IV.

III. MIMO I NFORMATION THEORY

In Sections I and II, we stated that MIMO systems can
offer substantial improvements over conventional smart an-
tenna systems in either quality-of-service (QoS) or transfer
rate in particular through the principles of spatial multiplexing
and diversity. In this section, we explore the absolute gains
offered by MIMO in terms of capacity bounds. We summarize
these results in selected key system scenarios. We begin with
fundamental results which compare single-input–single-output
(SISO), single-input–multiple-output (SIMO), and MIMO ca-
pacities, then we move on to more general cases that take
possible a priori channel knowledge into account. Finally, we
investigate useful limiting results in terms of the number of
antennas or SNR. We bring the reader’s attention on the fact
that we focus here on single user forms of capacity. A more
general multiuser case is considered in [15]. Cellular MIMO
capacity performance has been looked at elsewhere, taking into
account the effects of interference from either an information
theory point of view [16], [17] or a signal processing and
system efficiency point of view [18], [19] to cite just a few
example of contributions, and is not treated here.

A. Fundamental Results

For a memoryless 1 1 (SISO) system the capacity is given
by

b/s/Hz (1)

where is the normalized complex gain of a fixed wireless
channel or that of a particular realization of a random channel.
In (1) and subsequently,is the SNR at any RX antenna. As we
deploy more RX antennas the statistics of capacity improve and

3The goodput can be defined as the error-free fraction of the conventional
physical layer throughput.

with RX antennas, we have a SIMO system with capacity
given by

b/s/Hz (2)

where is the gain for RX antenna. Note the crucial fea-
ture of (2) in that increasing the value of only results in a
logarithmic increase in average capacity. Similarly, if we opt
for transmit diversity, in the common case, where the trans-
mitter does not have channel knowledge, we have a multiple-
input–single-output (MISO) system with TX antennas and
the capacity is given by [1]

b/s/Hz (3)

where the normalization by ensures a fixed total transmitter
power and shows the absence of array gain in that case (com-
pared to the case in (2), where the channel energy can be com-
bined coherently). Again, note that capacity has a logarithmic
relationship with . Now, we consider the use of diversity at
both transmitter and receiver giving rise to a MIMO system. For

TX and RX antennas, we have the now famous capacity
equation [1], [3], [21]

b/s/Hz (4)

where ( ) means transpose-conjugate andis the
channel matrix. Note that both (3) and (4) are based on
equal power (EP) uncorrelated sources, hence, the subscript
in (4). Foschini [1] and Telatar [3] both demonstrated that
the capacity in (4) grows linearly with
rather than logarithmically [as in (3)[. This result can be
intuited as follows: the determinant operator yields a product
of nonzero eigenvalues of its (channel-dependent)
matrix argument, each eigenvalue characterizing the SNR over
a so-called channel eigenmode. An eigenmode corresponds to
the transmission using a pair of right and left singular vectors
of the channel matrix as transmit antenna and receive antenna
weights, respectivelly. Thanks to the properties of the, the
overall capacity is the sum of capacities of each of these modes,
hence the effect of capacity multiplication. Note that the linear
growth predicted by the theory coincides with the transmission
example of Section II. Clearly, this growth is dependent on
properties of the eigenvalues. If they decayed away rapidly then
linear growth would not occur. However (for simple channels),
the eigenvalues have a known limiting distribution [22] and
tend to be spaced out along the range of this distribution.
Hence, it is unlikely that most eigenvalues are very small and
the linear growth is indeed achieved.

With the capacity defined by (4) as a random variable, the
issue arises as to how best to characterize it. Two simple sum-
maries are commonly used: the mean (or ergodic) capacity [3],
[21], [23] and capacity outage [1], [24]–[26]. Capacity outage
measures (usually based on simulation) are often denoted
or , i.e., those capacity values supported 90% or 99% of
the time, and indicate the system reliability. A full description
of the capacity would require the probability density function
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or equivalent. Some results are available here [27] but they are
limited.

Some caution is necessary in interpreting the above equa-
tions. Capacity, as discussed here and in most MIMO work
[1], [3], is based on a “quasi-static” analysis where the channel
varies randomly from burst to burst. Within a burst the channel
is assumed fixed and it is also assumed that sufficient bits are
transmitted for the standard infinite time horizon of information
theory to be meaningful. A second note is that our discussion
will concentrate on single user MIMO systems but many results
also apply to multiuser systems with receive diversity. Finally,
the linear capacity growth is only valid under certain channel
conditions. It was originally derived for the independent and
identically distributed (i.i.d.) flat Rayleigh fading channel and
does not hold true for all cases. For example, if large numbers
of antennas are packed into small volumes, then the gains in
may become highly correlated and the linear relationship will
plateau out due to the effects of antenna correlation [28]–[30].
In contrast, other propagation effects not captured in (4) may
serve to reinforce the capacity gains of MIMO such as multi-
path delay spread. This was shown in particular in the case when
the transmit channel is known [4] but also in the case when it is
unknown [5].

More generally, the effect of the channel model is critical.
Environments can easily be chosen which give channels where
the MIMO capacities do not increase linearly with the numbers
of antennas. However, most measurements and models available
to date do give rise to channel capacities which are of the same
order of magnitude as the promised theory (see Section V). Also
the linear growth is usually a reasonable model for moderate
numbers of antennas which are not extremely close-packed.

B. Information Theoretic MIMO Capacity

1) Background: Since feedback is an important component
of wireless design (although not a necessary one), it is useful to
generalize the capacity discussion to cases that can encompass
transmitters having some a priori knowledge of channel. To this
end, we now define some central concepts, beginning with the
MIMO signal model

(5)

In (5), is the received signal vector, is the
transmitted signal vector andis an vector of additive
noise terms, assumed i.i.d. complex Gaussian with each element
having a variance equal to . For convenience we normalize the
noise power so that in the remainder of this section. Note
that the system equation represents a single MIMO user com-
municating over a fading channel with additive white Gaussian
noise (AWGN). The only interference present isself-interfer-
encebetween the input streams to the MIMO system. Some au-
thors have considered more general systems but most informa-
tion theoretic results can be discussed in this simple context, so
we use (5) as the basic system equation.

Let denote the covariance matrix of, then the capacity of
the system described by (5) is given by [3], [21]

b/s/Hz (6)

where holds to provide a global power constraint.
Note that for equal power uncorrelated sources
and (6) collapses to (4). This is optimal whenis unknown at
the transmitter and the input distribution maximizing the mutual
information is the Gaussian distribution [3], [21]. With channel
feedback may be known at the transmitter and the optimal
is not proportional to the identity matrix but is constructed from
a waterfilling argument as discussed later.

The form of equation (6) gives rise to two practical questions
of key importance. First, what is the effect of? If we compare
the capacity achieved by (equal power transmis-
sion or no feedback) and the optimalbased on perfect channel
estimation and feedback, then we can evaluate a maximum ca-
pacity gain due to feedback. The second question concerns the
effect of the matrix. For the i.i.d. Rayleigh fading case we
have the impressive linear capacity growth discussed above. For
a wider range of channel models including, for example, corre-
lated fading and specular components, we must ask whether this
behavior still holds. Below we report a variety of work on the
effects of feedback and different channel models.

It is important to note that (4) can be rewritten as [3]

b/s/Hz (7)

where are the nonzero eigenvalues of,
, and

(8)

This formulation can be easily obtained from the direct use
of eigenvalue properties. Alternatively, we can decompose the
MIMO channel into m equivalent parallel SISO channels by
performing a singular value decomposition (SVD) of [3],
[21]. Let the SVD be given by , then and

are unitary and is diagonal with entries specified by
. Hence (5) can

be rewritten as

(9)

where , and . Equation (9) repre-
sents the system as m equivalent parallel SISO eigen-channels
with signal powers given by the eigenvalues .

Hence, the capacity can be rewritten in terms of the eigen-
values of the sample covariance matrix. In the i.i.d. Rayleigh
fading case, is also called a Wishart matrix. Wishart matrices
have been studied since the 1920s and a considerable amount is
known about them. For general matrices a wide range of
limiting results are known [22], [31]–[34] as or or both
tend to infinity. In the particular case of Wishart matrices, many
exact results are also available [31], [35]. There is not a great
deal of information about intermediate results (neither limiting
nor Wishart), but we are helped by the remarkable accuracy of
some asymptotic results even for small values of, [36].

We now give a brief overview of exact capacity results,
broken down into the two main scenarios, where the channel is
either known or unknown at the transmitter. We focus on the
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two key questions posed above; what is the effect of feedback
and what is the impact of the channel?

2) Channel Known at the Transmitter (Waterfilling):When
the channel is known at the transmitter (and at the receiver), then

is known in (6) and we optimize the capacity oversubject
to the power constraint . Fortunately, the optimal
in this case is well known [3], [4], [21], [26], [37]–[39] and is
called a waterfilling (WF) solution. There is a simple algorithm
to find the solution [3], [21], [26], [37], [39] and the resulting
capacity is given by

b/s/Hz (10)

where is chosen to satisfy

(11)

and “ ” denotes taking only those terms which are positive.
Since is a complicated nonlinear function of ,
the distribution of appears intractable, even in the Wishart
case when the joint distribution of is known.
Nevertheless, can be simulated using (10) and (11) for any
given so that the optimal capacity can be computed numeri-
cally for any channel.

The effect on of various channel conditions has been
studied to a certain extent. For example in Ricean channels in-
creasing the LOS strength at fixed SNR reduces capacity [23],
[40]. This can be explained in terms of the channel matrix rank
[25] or via various eigenvalue properties. The issue of correlated
fading is of considerable importance for implementations where
the antennas are required to be closely spaced (see Section VI).
Here, certain correlation patterns are being standardized as suit-
able test cases [41]. A wide range of results in this area is given
in [26].

In terms of the impact of feedback (channel information being
supplied to the transmitter), it is interesting to note that the WF
gains over EP are significant at low SNR but converge to zero as
the SNR increases [39], [40], [42]. The gains provided by WF
appear to be due to the correlations inrather than any unequal
power allocation along the diagonal in. This was shown in
[40], where the gains due to unequal power uncorrelated sources
were shown to be small compared to waterfilling. Over a wide
range of antenna numbers and channel models the gains due to
feedback are usually less than 30% for SNR above 10 dB. From
zero to 10 dB the gains are usually less than 60%. For SNR
values below 0 dB, large gains are possible, with values around
200% being reported at10 dB. These results are available in
the literature, see for example [39], but some simulations are
also given in Fig. 3 for completeness. The fact that feedback
gain reduces at higher SNR levels can be intuitively explained
by the following fact. Knowledge of the transmit channel mainly
provides transmit array gain. In contrast, gains such as diversity
gain and multiplexing gain do not require this knowledge as
these gains can be captured by “blind” transmit schemes such as
STCs and V-BLAST (see later). Since the relative importance
of transmit array gain in boosting average SNR decreases in the
high SNR region, the benefit of feedback also reduces.

Fig. 3. Shows the percentage relative gains in capacity due to feedback at
various SNR values, channel models (K is the Ricean factor), and array sizes.

3) Channel Unknown at the Transmitter:Here, the capacity
is given by in (4). This was derived by Foschini [1] and
Telatar [3], [21] from two viewpoints. Telatar [3], [21] started
from (6) and showed that is optimal for i.i.d.
Rayleigh fading. Foschini derived (4) starting from an equal
power assumption. The variable, , is considerably more
amenable to analysis than . For example, the mean capacity
is derived in [3], [21] and the variance in [36] for i.i.d. Rayleigh
fading, as well as [43]. In addition, the full moment generating
function (MGF) for is given in [27] although this is rather
complicated being in determinant form. Similar results include
[44].

For more complex channels, results are rapidly becoming
available. Again, capacity is reduced in Ricean channels as the
relative LOS strength increases [25], [37] . The impact of cor-
relation is important and various physical models and measure-
ments of correlations have been used to assess its impact [26],
[45]–[47]. For example, is shown to plateau out as the
number of antennas increases in either sparse scattering envi-
ronments [48] or dense/compact MIMO arrays [29], [30].

C. Limiting Capacity Results

The exact results of Section III-B above are virtually all de-
pendent on the i.i.d. Rayleigh fading (Wishart) case. For other
scenarios exact results are few and far between. Hence, it is
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useful to pursue limiting results not only to cover a broader
range of cases but also to give simpler and more intuitive re-
sults and to study the potential of very large scale systems.
The surprising thing about limiting capacity results is their ac-
curacy. Many authors have considered the limiting case where

and for some constant. This repre-
sents the useful case where the number of antennas grow pro-
portionally at both TX and RX. Limiting results in this sense we
denote as holding for “large systems.” In particular, it covers the
most interesting special case where and both become
large. It turns out that results based on this limiting approach are
useful approximations even down to ! [36], [40], [49],
[50]. We outline this work below, as well as results which are
asymptotic in SNR rather than system size.

1) Channel Known at the Transmitter:Analytical results
are scarce here but a nice analysis in [39] and [42] shows that

converges to a constant, , for “large systems” in
both i.i.d. and correlated fading conditions. The value of
is given by an integral equation. The rest of our “large system”
knowledge is mainly based on simulations. For example, linear
growth of is shown for Ricean fading in [40] as is the
accuracy of Gaussian approximations to in both Rayleigh
and Ricean cases.

In terms of SNR asymptotics for “large systems,” [39] gives
both low and high SNR results.

2) Channel Unknown at the Transmitter:In this situation,
we have the capacity given in (4) as . For “large systems”
(assuming the Wishart case) the limiting mean capacity was
shown to be of the form [3] where depends on ,

only through the ratio . A closed form expres-
sion for was given in [23] and the accuracy of this result
was demonstrated in [36] and [40]. The limiting variance is a
constant [27], again dependent onrather than and indi-
vidually. Convergence rates to this constant are indicated in [36]
[40]. In fact, for a more general class of fading channels similar
results hold and a central limit theorem can be stated [33], [34]
as below

(12)

where as and is a stan-
dard Gaussian random variable. See [33] and [34] for exact de-
tails of the conditions required for (12) to hold. Hence, for the
Wishart case Gaussian approximations might be considered to

using the exact mean and variance [3], [21], [36] or lim-
iting values [23], [27]. These have been shown to be surprisingly
accurate, even down to [36], [40], not only for Rayleigh
channels, but for Ricean channels as well. More general results
which also cater for correlated fading can be found in [27], [39],
and [42]. In [39] and [42], it is shown that converges
to a constant, , for “large systems” in both i.i.d. and corre-
lated fading. The value of is obtained and it is shown that
correlation always reduces . In [27], a powerful technique
is used to derive limiting results for the mean and variance in
both i.i.d. and correlated fading.

Moving onto results which are asymptotic in SNR, [39] gives
both low and high SNR capacity results for “large systems.” It

is shown that at high SNR, , and are equivalent. For
arbitrary values of , high SNR approximations are given
in [27] for the mean, variance, and MGF of .

IV. TRANSMISSIONOVER MIMO SYSTEMS

Although the information theoretic analysis can be boot-
strapped to motivate receiver architectures (as was done, e.g.,
in [1], [2]), it usually carries a pitfall in that it does not reflect
the performance achieved by actual transmission systems, since
it only provides an upper bound realized by algorithms/codes
with boundless complexity or latency. The development of
algorithms with a reasonable BER performance/complexity
compromise is required to realize the MIMO gains in practice.
Here, we summarize different MIMO transmission schemes,
give the intuition behind them, and compare their performance.

A. General Principles

Current transmission schemes over MIMO channels typically
fall into two categories: data rate maximization or diversity max-
imization schemes, although there has been some effort toward
unification recently. The first kind focuses on improving the av-
erage capacity behavior. For example, in the example shown in
Fig. 2, the objective is just to perform spatial multiplexing as
we send as many independent signals as we have antennas for a
specific error rate (or a specific outage capacity [2]).

More generally, however, the individual streams should be
encoded jointly in order to protect transmission against errors
caused by channel fading and noise plus interference. This
leads to a second kind of approach in which one tries also to
minimize the outage probability, or equivalently maximize the
outage capacity.

Note that if the level of redundancy is increased between the
TX antennas through joint coding, the amount of independence
between the signals decreases. Ultimately, it is possible to code
the signals so that the effective data rate is back to that of a
single antenna system. Effectively, each TX antenna then sees a
differently encoded, fully redundant version of the same signal.
In this case, the multiple antennas are only used as a source of
spatial diversity and not to increase data rate, or at least not in a
direct manner.

The set of schemes aimed at realizing joint encoding of mul-
tiple TX antennas are called STCs. In these schemes, a number
of code symbols equal to the number of TX antennas are gen-
erated and transmitted simultaneously, one symbol from each
antenna. These symbols are generated by thespace–time en-
codersuch that by using the appropriate signal processing and
decoding procedure at the receiver, the diversity gain and/or the
coding gain is maximized. Fig. 4 shows a simple block diagram
for STC.

The first attempt to develop STC was presented in [51] and
was inspired by the delay diversity scheme of Wittneben [52].
However, the key development of the STC concept was origi-
nally revealed in [53] in the form of trellis codes, which required
a multidimensional (vector) Viterbi algorithm at the receiver for
decoding. These codes were shown to provide a diversity ben-
efit equal to the number of TX antennas in addition to a coding
gain that depends on the complexity of the code (i.e., number
of states in the trellis) without any loss in bandwidth efficiency.



288 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 3, APRIL 2003

Fig. 4. Space–time coding.

Then, the popularity of STC really took off with the discovery
of the so-called space–time block codes (STBCs). This is due
to the fact that because of their construction, STBC can be de-
coded using simple linear processing at the receiver [in contrast
to the vector Viterbi required for ST trellis codes (STTC)]. Al-
though STBC codes give the same diversity gain as the STTC
for the same number of TX antennas, they provide zero or min-
imal coding gain. Below, we will briefly summarize the basic
concepts of STC and then extensions to the case of multiple RX
antennas (MIMO case). As the reader will note, emphasis within
space–time coding is placed on block approaches, which seem
to currently dominate the literature rather than on trellis-based
approaches. A more detailed summary of Sections IV-B and
IV-C can be found in [54].

B. Maximizing Diversity With STTC

For every input symbol , a space–time encoder generates
code symbols . These code symbols are

transmitted simultaneously from the transmit antennas. We
define the code vector as . Suppose that
thecode vectorsequence

was transmitted. We consider the probability that the decoder
decides erroneously in favor of the legitimate code vector
sequence

Consider a frame or block of data of lengthand define the
error matrix as

(13)

If ideal channel state information (CSI) ,
is available at the receiver, then it is possible to show that the
probability of transmitting and deciding in favor of is upper
bounded for a Rayleigh fading channel by [20]

(14)

where is the symbol energy and is the noise spectral den-
sity, is the rank of the error matrix and are
the nonzero eigenvalues of the error matrix. We can easily see
that the probability of error bound in (14) is similar to the prob-
ability of error bound for trellis coded modulation for fading
channels. The term represents the coding gain
achieved by the STC and the term represents a

Fig. 5. The 8-PSK 8-state STC with two TX antennas.

diversity gain of . Since , the overall diversity order is
always less or equal to . It is clear that in designing a STTC,
the rank of the error matrix should be maximized (thereby
maximizing the diversity gain) and at the same timeshould
also be maximized, thereby maximizing the coding gain.

As an example for STTCs, we provide an 8-PSK eight-state
STC designed for two TX antennas. Fig. 5 provides a labeling of
the 8-PSK constellation and the trellis description for this code.
Each row in the matrix shown in Fig. 5 represents the edge labels
for transitions from the corresponding state. The edge label
indicates that symbol is transmitted over the first antenna and
that symbol is transmitted over the second antenna. The input
bit stream to the ST encoder is divided into groups of 3 bits and
each group is mapped into one of eight constellation points. This
code has a bandwidth efficiency of 3 bits per channel use.

Fig. 6 shows the performance of 4-PSK STTCs for two TX
and one RX antennas with different number of states.

Since the original STTC were introduced by Tarokhet al. in
[53], there has been extensive research aiming at improving the
performance of the original STTC designs. These original STTC
designs were hand crafted (according to the proposed design cri-
teria) and, therefore, are not optimum designs. In recent years, a
large number of research proposals have been published which
propose new code constructions or perform systematic searches
for different convolutional STTC or some variant of the orig-
inal design criteria proposed by Tarokhet al.Examples of such
work can be found in [55]–[60] (these are mentioned only as
an example, there are many other published results that address
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Fig. 6. Performance of 4-PSK STTCs with two TX and one RX antennas.

the same issue, too numerous to list here). These new code con-
structions provide an improved coding advantage over the orig-
inal scheme by Tarokhet al., however, only marginal gains were
obtained in most cases.

C. Maximizing Diversity With STBCs

When the number of antennas is fixed, the decoding com-
plexity of space–time trellis coding (measured by the number of
trellis states at the decoder) increases exponentially as a function
of the diversity level and transmission rate [53]. In addressing
the issue of decoding complexity, Alamouti [61] discovered a
remarkable space–time block coding scheme for transmission
with two antennas. This scheme supports maximum-likelihood
(ML) detection based only on linear processing at the receiver.
The very simple structure and linear processing of the Alam-
outi construction makes it a very attractive scheme that is cur-
rently part of both the W-CDMA and CDMA-2000 standards.
This scheme was later generalized in [62] to an arbitrary number
of antennas. Here, we will briefly review the basics of STBCs.
Fig. 7 shows the baseband representation for Alamouti STBC
with two antennas at the transmitter. The input symbols to the
space–time block encoder are divided into groups of two sym-
bols each. At a given symbol period, the two symbols in each
group are transmitted simultaneously from the two an-
tennas. The signal transmitted from antenna 1 isand the
signal transmitted from antenna 2 is. In the next symbol pe-
riod, the signal is transmitted from antenna 1 and the signal

is transmitted from antenna 2. Let and be the chan-
nels from the first and second TX antennas to the RX antenna,
respectively. The major assumption here is thatand are
scalar and constant over two consecutive symbol periods, that
is

We assume a receiver with a single RX antenna. we also de-
note the received signal over two consecutive symbol periods as

and . The received signals can be expressed as

(15)

(16)

where and represent the AWGN and are modeled as
i.i.d. complex Gaussian random variables with zero mean and
power spectral density per dimension. We define the
received signal vector , the code symbol vector

, and the noise vector . Equations
(15) and (16) can be rewritten in a matrix form as

(17)

where the channel matrix is defined as

(18)

is now only a virtual MIMO matrix with space (columns)
and time (rows) dimensions, not to be confused with the purely
spatial MIMO channel matrix defined in previous sections. The
vector is a complex Gaussian random vector with zero mean
and covariance . Let us define as the set of all possible
symbol pairs . Assuming that all symbol pairs are
equiprobable, and since the noise vectoris assumed to be a
multivariate AWGN, we can easily see that the optimum ML
decoder is

(19)

The ML decoding rule in (19) can be further simplified by re-
alizing that the channel matrix is always orthogonal regard-
less of the channel coefficients. Hence, where

. Consider the modified signal vectorgiven
by

(20)

where . In this case, the decoding rule becomes

(21)

Since is orthogonal, we can easily verify that the noise
vector will have a zero mean and covariance , i.e.,
the elements of are i.i.d. Hence, it follows immediately that
by using this simple linear combining, the decoding rule in (21)
reduces to two separate, and much simpler decoding rules for
and , as established in [61]. In fact, for the above STBC,
only two complex multiplications and one complex addition per
symbol are required for decoding. Also, assuming that we are
using a signaling constellation with constellation points, this
linear combining reduces the number of decoding metrics that
has to be computed for ML decoding from to 2 2 . It is
also straightforward to verify that the SNR forand will be

SNR (22)

and, hence, a two branch diversity performance (i.e., a diversity
gain of order two) is obtained at the receiver.

MIMO Extensions: Initially developed to provide transmit
diversity in the MISO case, STCs are readily extended to the
MIMO case. When the receiver uses RX antennas, the re-
ceived signal vector at RX antenna is

(23)
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Fig. 7. Transmitter diversity with space–time block coding.

Fig. 8. Receiver for space–time block coding.

where is the noise vector at the two time instants and is
the channel matrix from the two TX antennas to theth receive
antenna. In this case, the optimum ML decoding rule is

(24)

As before, in the case of RX antennas, the decoding rule
can be further simplified by premultiplying the received signal
vector by . In this case, the diversity order provided by
this scheme is . Fig. 8 shows a simplified block diagram for
the receiver with two RX antennas. Note that the decision rule
in (21) and (24) amounts to performing a hard decision on
and , respectively. Therefore, as shown in
Fig. 8, the received vector after linear combining,, can be
considered as a soft decision for and . Hence, in the case
the STBC is concatenated with an outer conventional channel
code, like a convolutional code, these soft decisions can be fed
to the outer channel decoder to yield a better performance. Note
also that for the above 2 2 STBC, the transmission rate is
one while achieving the maximum diversity gain possible with
two TX and two RX antennas (fourth order). However, concate-
nating a STBC with an outer conventional channel code (e.g.,
a convolutional or trellis coded modulation (TCM) code) will
incur a rate loss. A very clever method to concatenate STBC
based on the Alamouti scheme with an outer TCM or convo-
lutional code was originally presented in [63]–[65]. In this ap-
proach, the cardinality of the inner STBC is enlarged to form
an expanded orthogonal space–time signal set or constellation.
This set is obtained by applying a unitary transformation to

the original Alamouti scheme. Once thisexpandedspace–time
signal constellation is formed, the design of a good space–time
TCM code based on this signal set is pretty much analogous to
classic TCM code design. In other words, classic set partitioning
techniques are used to partition signals within each block code
subset. Thus, a combined STBC-TCM construct is generated
and guaranteed to achieve full diversity by using a simple design
rule that restricts the transition branches leaving from or arriving
to each state to be labeled by codewords from the same block
code subset. This rule is the same as the original design rule
of STTC proposed by Tarokhet al. in [53]. A similar scheme
was later presented in [66]. The extension of the above STBC
to more than two TX antennas was studied in [62] and [67]–[69].
There, a general technique for constructing STBCs for
that provide the maximum diversity promised by the number
of TX and RX antennas was developed. These codes retain the
simple ML decoding algorithm based on only linear processing
at the receiver [61]. It was also shown that for real signal constel-
lations, i.e., PAM constellation, STBCs with transmission rate
1 can be constructed [62]. However, for general complex con-
stellations like M-QAM or M-PSK, itis not knownwhether a
STBC with transmission rate 1 and simple linear processing that
will give the maximum diversity gain with TX antennas
does exist or not. Moreover, it was also shown that such a code
where the number of TX antennasequals the number of both
the number of information symbols transmitted and the number
of time slots needed to transmit the code blockdoes not exist.
However, for rates 1, such codes can be found. For example,
assuming that the transmitter unit uses four TX antennas, a rate
4/8 (i.e., it is a rate 1/2) STBC is given by

(25)
In this case, at time , are transmitted from an-
tenna 1 through 4, respectively. At time ,
are transmitted from antenna 1 through 4, respectively, and so
on. For this example, rewriting the received signal in a way anal-
ogous to (17) (where ) will yield a 8 4 virtual
MIMO matrix that is orthogonal i.e., the decoding is linear,
and , where (fourth-order
diversity). This scheme provides a 3-dB power gain that comes
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from the intuitive fact that eight time slots are used to transmit
four information symbols. The power gain compensates for the
rate loss.

As an alternative to the schemes above sacrificing code rate
for orthogonality, it is possible to sacrifice orthogonality in an
effort to maintain full rate one codes for . Quasi-orthog-
onal STBC were investigated for instance in [70] in which we
can preserve the full diversity and full rate at the cost of a small
loss in BER performance and some extra decoding complexity
relative to truly orthogonal schemes.

RX Channel Knowledge (or Lack of):The decoding of ST
block codes above requires knowledge of the channel at the
receiver. The channel state information can be obtained at the
receiver by sending training or pilot symbols or sequences to
estimate the channel from each of the TX antennas to the re-
ceive antenna [71]–[78]. For one TX antenna, there exist differ-
ential detection schemes, such as differential phase-shift keying
(DPSK), that neither require the knowledge of the channel nor
employ pilot or training symbol transmission. These differen-
tial decoding schemes are used, for example, in the IS-54 cel-
lular standard ( -DPSK). This motivates the generalization
of differential detection schemes for the case of multiple TX an-
tennas. A partial solution to this problem was proposed in [79]
for the 2 2 code, where it was assumed that the channel is not
known at the receiver. In this scheme, the detected pair of sym-
bols at time are used to estimate the channel at the receiver
and these channel estimates are used for detecting the pair of
symbols at time . However, the scheme in requires the trans-
mission of known pilot symbols at the beginning and, hence,
are not fully differential. The scheme in [79] can be thought
as a joint data channel estimation approach which can lead to
error propagation. In [80], a true differential detection scheme
for the 2 2 code was constructed. This scheme shares many
of the desirable properties of DPSK: it can be demodulated with
or without CSI at the receiver, achieve full diversity gain in
both cases, and there exists a simple noncoherent receiver that
performs within 3 dB of the coherent receiver. However, this
scheme has some limitations. First, the encoding scheme ex-
pands the signal constellation for nonbinary signals. Second, it
is limited only to the STBC for a complex constellation
and to the case for a real constellation. This is based
on the results in [62] that the 2 2 STBC is an orthogonal de-
sign and complex orthogonal designs do not exist for . In
[81], another approach for differential modulation with transmit
diversity based on group codes was proposed. This approach can
be applied to any number of antennas and any constellation. The
group structure of theses codes greatly simplifies the analysis of
these schemes, and may also yield simpler and more transparent
modulation and demodulation procedures. A different nondif-
ferential approach to transmit diversity when the channel is not
known at the receiver is reported in [82] and [83], but this ap-
proach requires exponential encoding and decoding complexi-
ties. Additional generalizations on differential STC schemes are
given in [84].

D. STC in Frequency Selective Channels

Both STTC and STBC codes were first designed assuming
a narrowband wireless system, i.e., a flat fading channel.

However, when used over frequency selective channels a
channel equalizer has to be used at the receiver along with the
space–time decoder. Using classical equalization methods with
space–time coded signals is a difficult problem. For example,
for STTC designed for two TX antennas and a receiver with one
RX antenna, we need to design an equalizer that will equalize
two independent channels (one for each TX antenna) from
one receive signal. For the case of the STBC, the nonlinear
and noncausal nature of the code makes the use of classical
equalization methods [such as the minimum mean square error
(MMSE) linear equalizer, decision feedback equalizer (DFE),
and maximum-likelihood sequence estimation (MLSE)] a
challenging problem.

Initial attempts to address the problem for STTC made use of
whatever structure was available in the space–time coded signal
[85]–[87], where the structure of the code was used to convert
the problem into one that can be solved using known equaliza-
tion schemes. For the STBC, the equalization problem was ad-
dressed by modifying the original Alamouti scheme in such a
way that the use over frequency selective channels, and hence
the equalization, is a much easier task. For example, in [88],
STBC was used in conjunction with OFDM. OFDM is used to
convert the frequency selective channel into a set of indepen-
dent parallel frequency-flat subchannels. The Alamouti scheme
is then applied to two consecutive subcarriers (or two consecu-
tive OFDM block). Note that more general code designs can be
used [89].

In [90], the Alamouti scheme is imposed on a block basis (not
on symbol basis as in the original scheme) and cyclic prefixes
are added to each block. Using fast Fourier transform (FFT), a
frequency-domain single carrier is used to equalize the channel.
This is similar to OFDM except that it is a single carrier trans-
mission system and the decisions are done in the time domain.
A similar approach was proposed in [91], where the Alamouti
scheme is imposed on block basis in the time domain and guard
bands are added. The equalization is achieved by a clever combi-
nation of time domain filtering, conjugation, time reversal, and
a SISO MLSE equalizer. This scheme is similar to that in [90]
except that the equalization is now done in the time domain.

E. Maximizing Data Rate Using Spatial Multiplexing

Spatial multiplexing, of which V-BLAST [2], [9] is a partic-
ular implementation approach, can be regarded as a special class
of STBCs where streams of independent data are transmitted
over different antennas, thus maximizing the average data rate
over the MIMO system. One may generalize the example given
in Section II in the following way: Assuming a block of indepen-
dent data of size is transmitted over the MIMO
system, the receiver will obtain where is of
size . In order to perform symbol detection, the receiver
must unmix the channel, in one of several various possible ways.
Zero-forcing (ZF) techniques use a straight matrix inversion,
a simple approach which can also result in poor results when
the matrix becomes very ill conditioned as in certain random
fading events or in the presence of LOS (see Section V). The use
of a MMSE linear receiver may help in this case, but improve-
ments are found to be limited (1.5 to 2 dB in the 22 case)
if knowledge of nontrivial noise/interference statistics (e.g., co-
variance matrix) are not exploited in the MMSE.
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The optimum decoding method on the other hand is ML
where the receiver compares all possible combinations of sym-
bols which could have been transmitted with what is observed

(26)

The complexity of ML decoding is high, and even pro-
hibitive when many antennas or high-order modulations are
used. Enhanced variants of this like sphere decoding [92] have
recently been proposed. Another popular decoding strategy
proposed along side V-BLAST is known as nulling and can-
celing which gives a reasonable tradeoff between complexity
and performance. The matrix inversion process in nulling and
canceling is performed in layers where one estimates a row
from , subtracts the symbol estimates from, and continues
the decoding successively [9]. Full details and analysis on
this approach are provided in [14]. Note that the iterative
nulling and canceling approach is reminiscent of the successive
interference canceling (SIC) proposed for multiuser detection
(MUD) in CDMA receivers [93]. In fact, any proposed MUD
algorithm can be recast in the MIMO context if the input of the
MIMO system are seen as virtual users. A difference here is
that the separation is carried out in the spatial channel domain
rather than the code domain, making its success dependent
on channel realizations. On the other hand, the complexity of
CDMA-SIC is much higher than in the MIMO case since the
number of CDMA users may go well beyond the number of
virtual users/antennas in a single MIMO link.

Blind Detection: When the channel is not known at the
receiver (as well as at the transmitter) the joint detection of
MIMO signals must resort to so-called “blind” approaches.
Surprisingly, one may note that progress in this area has been
initiated long before the results of [1]–[3], in the more general
context of blind source separation (see for instance [94]). In
theseblind array processingtechniques, the input sources are
mixed linearly by a mixing matrix (here corresponding to
the MIMO channel) and separated by exploiting higher order
statistics of the receive array signals [95], [96], or covariance
subspace estimation [97] and/or some alphabet (modulation
format related) information [98] to cite just a few of the many
contributions there. The price paid for avoiding channel training
in blind approaches is in some limited loss of BER performance
and more often in the increased computational complexity.

1) Multiplexing Versus Diversity:Pure spatial multiplexing
allows for full independent usage of the antennas, however, it
gives limited diversity benefit and is rarely the best transmission
scheme for a given BER target. Coding the symbols within a
block can result in additional coding and diversity gain which
can help improve the performance, even though the data rate is
kept at the same level. It is also possible to sacrifice some data
rate for more diversity. In turn, the improved BER performance
will buy more data rate indirectly through allowing higher level
modulations, such as 16 QAM instead of 4 PSK, etc. The various
tradeoffs between multiplexing and diversity have begun to be
looked at, for instance in [99] and [100].

Methods to design such codes start from a general structure
where one often assumes that a weighted linear combination of
symbols may be transmitted from any given antenna at any given
time. The weights themselves are selected in different fashions

Fig. 9. BER comparisons for various transmission techniques over 2� 2
MIMO. At high SNR, from top to bottom: Spatial multiplexing (SM)-ZF,
SM-ML, STBC-ML, Alamouti STBC.

by using analytical tools or optimizing various cost functions
[67], [101]–[103].

Spatial multiplexing and space–time block coding can be
combined to give a transmission scheme that will maximize
the average data rate over the MIMO channel and guarantee
a minimum order of diversity benefit for each substream. In
fact, the structure of the STBC can be exploited in a way such
that the process of detecting and decoding successive steams or
layers is a completely linear process. See [54] for more details.

Numerical Comparisons:In what follows, we compare four
transmission strategies over a 22 MIMO system with ideally
uncorrelated elements. All schemes result in the same nominal
rate but offer different BER performance.

Fig. 9 plots the performance of the Alamouti code presented
in Fig. 7, spatial multiplexing (SM) with ZF and with ML de-
tection, and a spatial multiplexing scheme with ML decoding
using precoding [103]. A 4-QAM constellation is used for the
symbols except for the Alamouti code which is simulated under
16 QAM to keep the data rate at the same level as in the other
schemes. It can be seen from the figure that spatial multiplexing
with ZF returns rather poor results, while the curves for other
coding-based methods are quite similar to each other. This is
because using two independent streams and a ZF receiver in
the 2 2 case leaves each substream starving for diversity.
The Alamouti curve has the best slope at high SNR because
it focuses entirely on diversity (order four). At lower SNR, the
scheme combining spatial multiplexing with some block coding
is the best one because ML decoding allows extraction of some
diversity gain in addition to the rate (multiplexing) gain. Note
that this benefit comes at the price of receiver complexity com-
pared with Alamouti. In Section VI, we give more comparisons
with system-based constraints.

It is important to note that as the number of antennas in-
creases, the diversity effect will give diminishing returns. In
contrast, the data rate gain of spatial multiplexing remains linear
with the number of antennas. Therefore, for a larger number of
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antennas it is expected that more weight has to be put on spa-
tial multiplexing and less on space–time coding. Interestingly,
having a larger number of antennas does not need to result in
a larger number of radio frequency (RF) chains. By using an-
tenna selection techniques (see, e.g., [104]–[106]) it is possible
to retain the benefits of a large MIMO array with just a subset
of antennas being active at the same time.

F. MIMO Systems With Feedback

One common aspect amongst the algorithms presented above
is that they do not require anya priori channel information at the
transmitter to extract either transmit diversity of multiplexing
gains. Yet, the information theoretic analysis in Section III sug-
gests that additional performance can be extracted from mul-
tiple antennas in the presence of channel state information at
the transmitter (CSIT) through, e.g., waterfilling. It should be
noted that although waterfilling may be optimal from an in-
formation theoretic point of view, it is not necessarily the best
scheme using CSIT in practice. This is because the performance
of real-world MIMO links are sensitive to BER performance
rather than mutual information performance. Schemes that ex-
ploit CSIT to directly minimize BER-related metrics are there-
fore of interest, examples of which are found in [107] and [108].

One general drawback of approaches relying on complete
and instantaneous CSIT at the transmitter rather than partial
or statistical CSIT is feasibility and bandwidth overhead. This
makes waterfilling or the equivalent difficult to realize in sys-
tems in which the acquisition of CSIT is dependent on a (typ-
ically low-rate) feedback channel from RX to TX, such as in
frequency-division duplex (FDD) systems.4 For a time divi-
sion duplex (TDD) system feedback is not necessary, but only
if the period for switching between a transmitter and a receiver
(“ping-pong” time) is shorter than the channel coherence time,
which may or may not be realized depending on the mobile’s
velocity (see Section V). In an effort to bring more performance
and robustness to MIMO coding schemes at a reasonable cost
of feedback bandwidth, a few promising solutions have been re-
cently proposed to incorporate CSIT in the space–time transmit
encoder. Solutions to reduce the feedback cost include using in-
stantaneous yet partial (few bits) CSIT [109] or stastistics of
CSIT, such as long term channel correlation information [110],
[111], to name a few of the recent papers here.

V. MIMO CHANNEL MODELING

Because of the sensitivity of MIMO algorithms with respect
to the channel matrix properties, channel modeling is particu-
larly critical to assess the relative performance of the various
MIMO architectures shown earlier in various terrains. Key
modeling parameters, for which results from measurements of
MIMO, as well as SISO can be exploited include path loss,
shadowing, Doppler spread and delay spread profiles, and the
Ricean factor distribution. Much more specific to MIMO
and, hence, of interest here, are

• the joint antenna correlations at transmit and receive ends;
• the channel matrix singular value distribution.

4FDD is the main duplexing approach for 3G wireless (WCDMA, CDMA-
2000).

In practice, the latter is more accurately represented by the
distribution of eigenvalues of , denoted .
In what follows, we describe the impact of environmental pa-
rameters (LOS component, density of scattering) and antenna
parameters (spacing, polarization) on the correlation/eigenvalue
distribution.

A. Pseudostatic Narrowband MIMO Channel

1) LOS Component Model:It is common to model a wire-
less channel as a sum of two components, a LOS component and
a NLOS component. That is, . The Ricean

factor is the ratio between the power of the LOS component
and the mean power of the NLOS component.

In conventional SISO wireless deployments, it is desirable
that antennas be located where the channel between the trans-
mitter and the receiver has as high a Riceanfactor as possible.
The higher the factor, the smaller the fade margin that needs
to be allocated. For example, to guarantee service at 99% reli-
ability, the fade margin for is more than 10-dB lower
than that for (pure Rayleigh fading). Furthermore, as we
mentioned earlier, certain beamforming techniques, especially
those relying on angle-of-arrival (AOA) estimation are effective
only if the LOS component dominates.

For MIMO systems, however, the higher the Riceanfactor,
the more dominant becomes. Since is a time-in-
variant, often low rank matrix [112], its effect is to drive up
antenna correlation and drive the overall effective rank down
(more precisely the singular value spread is up). High-chan-
nels show low useable spatial degrees of freedom and, hence,
a lower MIMO capacity for the same SNR. For example, at

dB, the channel capacity for a (4, 4) MIMO channel with
is almost always higher than that with . Note,

however, that this does not mean that one would intentionally
place the antennas such that the LOS component diminishes.
Near-LOS links typically enjoy both a more favorable path loss
and less fading. In such cases, the resulting improvement in link
budget may more than compensate the loss of MIMO capacity.

Recently, experimental measurements have been carried out
to try to characterize the distribution of the factor in a cov-
erage area [113]–[115]. In [113], an empirical model was de-
rived for typical macrocell fixed-wireless deployment. The
factor distribution was modeled as lognormal, with the median
as a function of season, antenna heights, antenna beamwidth,
and distance: (antenna height) (distance) . Using
this model, one can observe that thefactor decreases as the
distance increases. The implication, from a network deployment
perspective, is that even though the use of MIMO does not ma-
terially improve the link throughput near the base station, where
the signal strength is usually high enough to support the desired
applications, it does substantially improve the quality of service
in areas that are far away from the base station, or are physically
limited to using low antennas.

In metropolitan areas, microcell deployment is popular. In a
microcell, the base station antenna is typically at about the same
height as street lamp posts, and the coverage radius is no more
than a few hundred meters. Microcell channels frequently in-
volve the presence of a LOS component and, thus, may be ex-
pected to be Ricean [116]. Similar to macrocells, in a microcell
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Fig. 10. Diagram to derive antenna correlation	. The ith (1 � i � n )
path from TX antennan to RX antennam goes through theith single-bounce
scatterer.

the factor declines when distance increases. Overall the
factor observed in a microcell tends to be smaller than that in a
macrocell.

In an indoor environment, many simulations [42] and mea-
surements [117] have shown that typically the multipath scat-
tering is rich enough that the LOS component rarely dominates.
This plays in favor of in-building MIMO deployments (e.g.,
WLAN).

2) Correlation Model for NLOS Component:In the ab-
sence of a LOS component, the channel matrix reduces to

and is usually modeled with circularly-symmetric
complex Gaussian random variables (i.e., Rayleigh fading).
The elements of can be correlated though, often due
to insufficient antenna spacing, existence of few dominant
scatterers and small AOA spreading. Antenna correlation is
considered the leading cause of rank deficiency in the channel
matrix, although as we see later, it may not always be so.

Modeling of Correlation: A full characterization of the
second-order statistics of is ,
where and are the covariance and matrix vectorization
operator (stacking the columns on top of each other), respec-
tivelly. In the following, we will introduce commonly accepted
models for . Before that, let us first review a
simple model shown in Fig. 10.

Consider a transmitter TX with antennas and a receiver
RX with antennas. For simplicity, the antenna pattern is as-
sumed to be omni-directional. Ignoring the rays that involve
more than one scatterer, the channel gain between antenna
and antenna is the summation of the contributions from each
of the scatterers

(27)

where is the number of scatterers and is the com-
plex amplitude associated with a ray emanated from antenna,
reflected by scatterer, and then received at antenna . The
correlation between and can then be given by

(28)

An appropriate model for a macrocell deployment in a
suburban environment is as follows [118]. The base station
TX is elevated above urban clutter and far away from the
scatterers, while on the other hand, the mobile terminal RX
is surrounded by scatterers. Consider that infinitely many
scatterers exist uniformly in azimuth angle around the mobile.
Furthermore, consider that the amplitudes of the scattered
rays are identical, whereas the phases of them are completely
independent. Under these assumptions, one can easily show
that , where

is the distance between antennas and .
Hence, the decorrelation distance can be as low as half a
wavelength.

It can be more involved to compute the correlation due to
antenna separation at the base station, . If the
base station is higher than its surroundings, it is often the case
that only waves transmitted within azimuth angle

can reach the mobile. Here, and correspond
to the AOA and angle spread, respectively. Let us denote the
distribution of scatterers in azimuth angle, as seen by the base
station, by . This function is referred to as a power
azimuth distribution (PAD). Given , the spatial correlation
function can be given by

(29)

where is the distance between base station antennas
and .

Let us consider a particular choice of which corresponds
to the case where scatterers are uniformly distributed on a circle.
The mobile is at the center of the circle. If the mobile is right at
the broadside direction, i.e., = 0, then

. On the other hand, if the mobile is at
the inline direction, i.e., , then

[45]. It is apparent that at deploy-
ment, to obtain the highest diversity, one must ensure that the
orientation of the base station antenna array is such that the mo-
biles are mostly distributed in the broadside direction. This is
already common practice whenever possible. Note that in order
for the antenna correlation to be low, one desires a large an-
tenna spacing at the base station; on the other hand, phase-array
beamforming will only perform well if the antennas are closely
spaced in order to prevent spatial aliasing. Thus, at deployment
one must make a choice between optimizing for beamforming
or MIMO.

In addition to the PAD chosen above, there are a few other
plausible PADs studied in the literature, e.g., uniform, truncated
normal and Laplacian [119]. Different PADs naturally leads
to different relations between antenna correlation and AOA or
angle spread. Nevertheless, all point to the general trend that
in order to reduce antenna correlation, one must increase the
antenna separation, and ensure thatis as close to zero as
possible.

Compared to macrocells, for microcell deployment, the up-
link waves arriving at the base station may come predominantly
from a few directions. In other words, is nonzero in

. Interestingly, as
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Fig. 11. Distribution of capacity as a function of angle spread for an (8, 8)
system with� = 8. In producing this figure, transmit power is evenly divided,
� = 0 ,D(T ; T ) = 3�jn� n j, andD(R ; R ) = �jm�m j.

long as the distribution of is diverse enough, the antennas
will become fairly uncorrelated, even with angle spreadsap-
proaching zero [120].

B. Impact of Spatial Correlation

The statistics of given is equal to that of
, where is an -by- matrix with i.i.d. cir-

cularly symmetric complex Gaussian entries. For convenience,
it is common to approximate the correlation matrixto be a
Kronecker product of the two local correlation matrices. That is,
let and denote the antenna correlation matrices at RX
(mobile) and TX (base station), respectively; the approximation
is . Under the assumption
that the components of are jointly Gaussian, the sta-
tistics of is identical to those of .
This is a useful form for mathematical manipulation. Fig. 11
shows the distribution of channel capacity of an (8, 8) system as
a function of angle spread, assuming that the channel statistics
can indeed be described by . In general, as
the angle spread becomes narrower, the spatial correlation in-
creases. As a result, the channel capacity decreases.

If the channel can be described by ,
then an upper bound of channel capacity can be derived. The
channel capacity given and an SNR budget can be upper
bounded by

(30)

where , and are the th largest eigenvalues for ,
and , respectively, and [45].

Even though (29) is not a very tight bound, it does offer useful
insights into the impact of spatial correlation on channel ca-
pacity. The higher the channel correlation, the more rapidly the
sequence diminishes toward zero. One can easily obtain
an upper bound on the effective channel rank from the products
of .

1) Decoupling Between Rank and Correlation:Though
convenient, one must be careful in using the
approximation. For instance a situation can arise where there
is significant local scattering around both the BTS and the
subscriber unit, causing uncorrelated fading at each end of the
MIMO link and yet only a low rank is realized by the channel
matrix. That may happen because the energy travels through a
narrow “pipe.” Mathematically, this is the case if the product
of the scattering radius around the transmitter and that around
the receiver divided by the TX–RX distance is small compared
with the wavelength, as was modeled in [112]. Such a scenario
is depicted in Fig. 12. Channels exhibiting at the same time
antenna decorrelation (at both ends)anda low matrix rank are
referred to aspinholeor keyholechannels in the literature [112],
[121]. Pinhole channels can also result from certain rooftop
diffraction effects [121]. However, most MIMO measurements
carried out so far suggest that rank loss due to the pinhole effect
is not common. In fact the results reported largely confirm the
high level of dormant capacity of MIMO arrays, at least in
urban or suburban environments. Indoor scenarios lead to even
better results. Samples of analysis for UMTS type scenarios
can be found in [122]–[126]. Measurements conducted at
2.5 GHz for broadband wireless access applications can be
found in [115].

2) Correlation Model Between Two Polarized Compo-
nents: Both reflection and diffraction processes are polariza-
tion sensitive, and can produce a rotation of the polarization
of the scattered wave compared to the incident wave. This
leads to the possibility of constructing a MIMO system using a
pair of polarized antennas at both ends, with the two antennas
potentially colocated and avoiding some of the issues above
related to lack of richness in multipath.

Consider a MIMO channel using a pair of vertical and
horizontal polarized antennas at both ends. A 22 matrix
with equal-variance complex Gaussian entries clearly is not an
appropriate narrowband channel model. First, the propagation
environment may dictate that the pass losses for the two polar-
izations are different. Secondly, the cross-polar component is
typically considerably weaker than the co-polar component. In
general, the more sparse the scatterers, the lower the effect of
cross polarization. Also, as distance between the two terminals
increases, the cross polarization decreases. The cross-polar-
ization ratio was found to be around 7.4 dB in macrocells in
the 900 MHz band [127].

In typical outdoor environments with reasonable scattering,
it has been found experimentally [127]–[129] that the co-polar
and the cross-polar received components are almost uncorre-
lated. The mean correlation coefficients are around 0.1 or below,
and were found to increase somewhat with range in microcells.
Nevertheless, as the range increases, the power difference be-
tween the co-polar and the cross-polarization components in-
creases. If the difference is high, regardless of the correlation
between the co-polar and the cross-polar components, the ef-
fective rank of the 2 2 matrix will always be two.

Overall, the use of multipolarized antenna setups for MIMO
opens the door to fairly compact MIMO designs while achieving
enhanced robustness with respect to the multipath characteristics
[130].
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Fig. 12. An example of pin-hole realization. Reflections around the BTS and subscribers cause locally uncorrelated fading. However, because the scatter rings
are too small compared to the separation between the two rings, the channel rank is low.

3) Toward Using Orthogonal Antenna Patterns:Antenna
pattern diversity at either end of the MIMO link is particularly
useful at a site where the waves are coming from diverse
angles. Like polarization diversity, it allows for the collocation
of antennas. Unlike polarization, where only two orthogonal
modes are available, it is theoretically possible to utilize
antennas with sharp patterns to obtain many more orthogonal
modes. If the incoming waves do indeed distribute uniformly
in AOA, a multimode antenna is expected to provide a large
number of diversity branches in a very small physical footprint
[131], although limited by the number of independent paths.

Since each antenna receives waves coming from different an-
gles, in general one expects the average power, Doppler spec-
trum, and delay spread profile for each antenna pattern to be
different. Thus, to model a MIMO system using antenna pattern
diversity correctly, one must be careful in specifying the corre-
lation matrix for ; a matrix of correlated, equal-variance
complex Gaussian entries may not be an appropriate model for
such a MIMO channel.

4) Effective Degrees of Freedom:In Section III, we have
shown that an channel can be decomposed into an
equivalent system consisting of parallel SISO
subchannels whose channel power gains are the eigenvalues

of . With an SNR so high that , every
additional 3 dB increase in signal power leads to an increase
of b/s/Hz in channel capacity. However, the
higher the correlation among the components of, in general
the more widely spaced the primary support regions for the
distributions of these eigenvalues. Effective degrees of freedom
(EDOF) is a quantity defined to empirically observe the number
of these SISO subchannels that effectively contribute to the
channel capacity

EDOF (31)

Although the channel matrix has rank with
probability one in general, only the power allocated to EDOF
out of these dimensions contributes to channel capacity. EDOF
is considered a slowly time-varying property of the channel.

C. Time-Varying Wideband MIMO Channel

Similar to the extension of a narrowband SISO channel
model to a wideband SISO model, it is generally accepted
that one can model a time-varying wideband MIMO channel
as a sum of a LOS component and several delayed random
fading components

where only contains a LOS component
and a random fading component. Note that is a complex

matrix and describes the linear transformation be-
tween the two antenna arrays at delay, possibly using one of
the previously mentioned flat fading models. This is simply a
tapped delay line model where the channel coefficients at the
delays are represented by matrices. Because the dimension of
the antenna array is in general much smaller than the distance
light travels between the taps, the short term statistics of these
different taps are considered uncorrelated.

As mentioned before, the performance of MIMO techniques
depends heavily on the spatial correlation of the antenna el-
ements. For a terminal with limited space resources, MIMO
works best when such a terminal is in a location where the
decorrelation distance is short. Unfortunately, in such a low
decorrelation distance environment, even if the terminal is
moving at a reasonable speed, the channel matrixcan
evolve at a very fast rate. This rate is also calledDoppler
spreadand varies from a few Hertz in stationary applications
to 200 Hz or so in fast mobile scenarios.

Clearly, the value of the Doppler spread multiplied by the
number of simultaneous users will determine the traffic over-
head incurred by channel feedback for cases where a MIMO or
STC scheme is implemented that relies on some instantaneous
form of CSIT. The Doppler spread also determines the timing
requirement from the moment of channel measurement to the
moment the transmitter adapts to the channel feedback. A full
feedback of CSIT may quickly become prohibitive in practice
and simpler rules for transmit adaptation of the MIMO signaling
algorithm may be an attractive solution [132].
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TABLE I
EXAMPLE OF STANDARDIZED MIMO CHANNELS FORIEEE BODY 802.16

In a location where a LOS component dominates, even if the
terminal is moving at a very high speed, the effective change in
channel is actually small. Thus, the rate for full channel infor-
mation feedback can be reasonable.

D. Standardized Models

Recently, MIMO models have been standardized in IEEE
802.16 for fixed broadband wireless access and third-genera-
tion partnership project (3GPP) for mobile applications. The
MIMO channel model adopted in IEEE 802.16 is described in
[133]. In [133], a total of six typical models for (2, 2) macro-
cell fixed-wireless channel are proposed. The assumption made
in the model includes vertical polarization only, the correla-
tion matrix being the Kronecker product of the local correla-
tion matrices, and every tap sharing the same antenna correla-
tion. Table I shows two of the channel models proposed in [133].
Note that the SUI-1 channel is the most correlated channel and
SUI-6 is the least correlated channel.

The discussions in 3GPP [41] are concerned with standard-
izing MIMO channel models, with the emphasis on definitions
and ranges for the following:

• power azimuth spectrum and AOA for macrocells and mi-
crocells at zero mobility, pedestrian, and vehicular mobility;

• power delay profiles for the above cases;
• Ricean -factor values for the above cases.

VI. MIMO A PPLICATIONS IN 3G WIRELESS

SYSTEMS AND BEYOND

A. Background

With MIMO-related research entering a maturing stage and
with recent measurement campaign results further demon-
strating the benefits of MIMO channels, the standardization
of MIMO solutions in third generation wireless systems (and
beyond) has recently begun, mainly in fora such as the Inter-
national Telecommunications Union and the 3GPPs. Several
techniques, seen as complementary to MIMO in improving
throughput, performance and spectrum efficiency are drawing
interest, especially as enhancements to present 3G mobile

systems, e.g., high-speed digital packet access (HSDPA)
[134]–[136]. These include adaptive modulation and coding,
hybrid ARQ, fast cell selection, transmit diversity.

B. MIMO in 3G Wireless Systems And Beyond

There is little commercial implementation of MIMO in cel-
lular systems as yet and none is currently being deployed for
3G outside pure transmit diversity solutions for MISO. Current
MIMO examples include the Lucent’s BLAST chip and pro-
prietary systems intended for specific markets such as Iospan
Wireless’ AirBurst system for fixed wireless access [137]. The
earliest lab trials of MIMO have been demonstrated by Lucent
Technologies several years ago.

In the case of 3GPP, some MIMO results are presented here,
based on link level simulations of a combination of V-Blast and
spreading code reuse [136]. Table II gives the peak data rates
achieved by the down link shared channel using MIMO tech-
niques in the 2-GHz band with a 5-MHz carrier spacing under
conditions of flat fading. The gains in throughput that MIMO
offer are for ideal conditions and are known to be sensitive to
channel conditions. In particular, the conditions in urban chan-
nels that give rise to uncorrelated fading amongst antenna ele-
ments are known to be suitable for MIMO. The gains of MIMO
come at the expense of increased receiver complexity both in
the base station and in the handsets. Also various factors such
as incorrect channel estimation, presence of correlation amongst
antenna elements, higher Doppler frequencies, etc., will tend to
degrade the ideal system performance. A brief discussion on
some of the open issues and remaining hurdles on the way to
a full scale commercialization of MIMO systems is contained
below.

1) Antenna Issues:Antenna element numbers and interele-
ment spacing are key parameters, especially the latter if the high
spectral efficiencies of MIMO are to be realized. Base stations
with large numbers of antennas pose environmental concerns.
Hence, the antenna element numbers are limited to a modest
number, say four, with an interelement spacing of around.
The large spacing is because base stations are usually mounted
on elevated positions where the presence of local scatterers to
decorrelate the fading cannot be always guaranteed. Using dual
polarized antennas, four antennas can fit into a linear space of
1.5 m at spacing at 2 GHz. For the terminal, spacing
is sufficient to ensure a fair amount of uncorrelated fading be-
cause the terminal is present amongst local scatterers and quite
often there is no direct path. The maximum number of antennas
on the terminal is envisaged to be four, though a lower number,
say two, is an implementation option. Four dual polarized patch
antennas can fit in a linear space of 7.5 cm. These antennas can
easily be embedded in casings of lap tops. However, for hand-
sets, even the fitting of two elements may be problematic. This
is because, the present trend in handset design is to imbed the
antennas inside the case to improve look and appeal. This makes
spacing requirements even more critical.

2) Receiver Complexity:MIMO channel estimation results
in increased complexity because a full matrix needs to be
tracked per path delay (or per tone in OFDM) instead of a
single coefficient. Since practical systems typically limit the
number of antenna elements to a few, this added complexity is
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TABLE II
PEAK DATA RATES OFVARIOUS MIMO A RCHITECTURES

not seen as a bottle neck. Extra complexity comes from extra
RF, hardware, and sophisticated receiver separation algorithms.
A MIMO receiver should be dual mode to support non-MIMO
mode. In the MIMO mode, it will have multiple RF chains
(equal to the number of RX antennas), and additional baseband
operations i.e., the space–time combiners and detector to
eliminate spatial interference. The additional requirements
increase the complexity of a (4,4) MIMO system to about twice
that of a single antenna receiver [136], [138], [139]. There
may also be additional processing (equalization or interference
cancellation) needed due to dispersive channel conditions
resulting from delay spread of the environment surrounding
the MIMO receiver. The complexity impact of these is not yet
fully accounted for.

Homodyne detection may provide direct conversion to base-
band and, thus, avoid the need for SAW filters in the IF circuitry.
This could reduce the RF complexity aspects of MIMO. Whilst
the overall cost impact of MIMO complexity is not clear, one
thing is clear: MIMO receivers are likely to cost more than con-
ventional receivers and in the terminal the battery life may also
be an issue.

3) System Integration and Signaling:The MIMO system
needs to be integrated and be backward compatible with an
existing non MIMO network. MIMO signaling imposes the
support of special radio resource control (RRC) messages. The
terminals need to know via broadcast down link signaling if
a base station is MIMO capable. The base station also needs
to know the mobile’s capability, i.e., MIMO or non-MIMO.
This capability could be declared during call set up. Handsets
are also required to provide feedback to the base station on the
channel quality so that MIMO transmission can be scheduled
if the channel conditions are favorable. These downlink and
uplink RRC messages are then mapped on to the layer 2
signaling messages [139].

4) MIMO Channel Model:The performance of a MIMO
system is very much influenced by the underlying channel
model especially the degree of correlation amongst the ele-
ments of the channel matrix, delay spread issues, etc. While the
propagation models for conventional radio systems have been
standardized in [140], there is no agreed MIMO channel model
by the ITU as yet.

5) CSI at Transmitter:As shown earlier, the channel
capacity is a function of the eigenmodes of the channel. The
MIMO capacity will benefit from the transmitter having a
knowledge of the channel state and may use water filling
instead of equal power allocation [21], [39] or some partial
form of feedback. Furthermore, knowing the channel corre-
lation matrix, the transmitter could optimize channel coding,

bit allocation per substream in addition to amplifier power
management [141]. Various power allocation algorithms are
discussed in [36] which are optimum during different channel
conditions. The feedback of accurate and timely CSI to the
transmitter is another open issue.

VII. CONCLUSIONS ANDFUTURE TRENDS

This paper reviews the major features of MIMO links for use
in future wireless networks. Information theory reveals the great
capacity gains which can be realized from MIMO. Whether we
achieve this fully or at least partially in practice depends on a
sensible design of transmit and receive signal processing al-
gorithms. It is clear that the success of MIMO algorithm in-
tegration into commercial standards such as 3G, WLAN, and
beyond will rely on a fine compromise between rate maximiza-
tion (BLAST type) and diversity (space–time coding) solutions,
also including the ability to adapt to the time changing nature
of the wireless channel using some form of (at least partial)
feedback. To this end more progress in modeling, not only the
MIMO channel but its specific dynamics, will be required. As
new and more specific channel models are being proposed it will
useful to see how those can affect the performance tradeoffs be-
tween existing transmission algorithms and whether new algo-
rithms, tailored to specific models, can be developed. Finally,
upcoming trials and performance measurements in specific de-
ployment conditions will be key to evaluate precisely the overall
benefits of MIMO systems in real-world wireless scenarios such
as UMTS.
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DIGITAL VISION

[From single-user 

to multiuser 

communications]

T
he last ten years have witnessed the transition of multiple-input multi-
ple-output (MIMO) communication from a theoretical concept to a
practical technique for enhancing performance of wireless networks
[1]. Point-to-point (single-user) MIMO communication promises large
gains for both channel capacity and reliability, essentially via the use of

space-time codes (diversity gain oriented) combined with stream multiplexed
transmission (rate maximization oriented). In such a traditional single-user view
of MIMO systems, the extra spatial degrees of freedom (DoF) brought by the use of
multiple antennas are exploited to expand the dimensions available for signal pro-
cessing and detection, thus acting mainly as a physical (PHY) layer performance
booster. In this approach, the link layer protocols for multiple access (uplink and
downlink) indirectly reap the performance benefits of MIMO antennas in the form
of greater per-user rates or more reliable channel quality despite not requiring full
awareness of the MIMO capability.

The situation with multiuser MIMO (MU-MIMO) techniques is radically differ-
ent as these techniques imply the use of spatial sharing of the channel by the
users, thus deeply affecting the design of the multiple access protocol. In spatial
multiple access, the resulting multiuser interference is handled by the multiple
antennas, which, in addition to providing per-link diversity, also give the DoF nec-
essary for spatial separation of the users (see e.g. [1] Part IV). In practice, MU-
MIMO schemes with good complexity/performance tradeoffs can be implemented
to realize these ideas. On the uplink or multiple access channel (MAC), the devel-
opment of MU-MIMO techniques appears as a generalization of known single-user
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MIMO (SU-MIMO) concepts to the multiuser case. As usual in
information theory, the downlink or broadcast channel (BC)
case is by far the most challenging one. Information theory
reveals that the optimum transmit strategy for the MU-MIMO
BC involves a theoretical preinterference cancellation technique
known as dirty paper coding (DPC) combined with an implicit
user scheduling and power loading algorithm. In that respect,
the role played by seminal papers such as [2] was fundamental.
In turn, several practical strategies have recently been proposed
to approach the rates promised in the MU-MIMO channel
involving concepts such as linear and nonlinear channel-aware
precoding, channel state feedback, and multiuser receivers. A
number of corresponding scheduling and user selection algo-
rithms have also been proposed, leveraging features of different
MU-MIMO strategies.

MU-MIMO techniques and performance have begun to be
intensely investigated because of several key advantages over
SU-MIMO communications.

■ MU-MIMO schemes allow for a direct gain in multiple access
capacity [proportional to the number of base station (BS)
antennas] thanks to so-called multiuser multiplexing schemes.
■ MU-MIMO appears more immune to most of propagation
limitations plaguing SU-MIMO communications such as
channel rank loss or antenna correlation. Although increased
correlation still affects per-user diversity, this may not be a
major issue if multiuser diversity [3] can be extracted by the
scheduler instead. Additionally, line-of-sight propagation,
which causes severe degradation in single-user spatial multi-
plexing schemes, is no longer a problem in multiuser setting.
■ MU-MIMO allows the spatial multiplexing gain at the BS to
be obtained without the need for multiple antenna terminals,
thereby allowing the development of small and cheap terminals
while intelligence and cost is kept on the infrastructure side.
The advantages above unfortunately come at a price. Perhaps

the most substantial cost is due to the fact that MU-MIMO
requires (although benefits from) channel state information at
transmitter (CSIT) to properly serve the spatially multiplexed
users. CSIT, while not essential in SU-MIMO communication
channels, is of critical importance to most downlink multiuser
precoding techniques. The need for CSIT feedback places a sig-
nificant burden on uplink capacity in most systems, exacerbated
in systems with wideband [e.g. orthogonal frequency division
multiplexing (OFDM)] communication or high mobility (such
as 3GPP-LTE [4], WiMax [5], etc.). Finally, another challenge
related to MU-MIMO cross-layer design lies in the complexity of
the scheduling procedure associated with the selection of a
group of users that will be served simultaneously. Optimal
scheduling involves exhaustive search whose complexity is expo-
nential in the group size and depends on the choice of precod-
ing, decoding, and channel state feedback technique.

Inspection of recent literature reveals several different
schools of thought on the MU-MIMO downlink, each advocating
a different combination of precoding, feedback, and scheduling
strategies. Precoding strategies include linear minimum mean
square error (MMSE) or zero-forcing (ZF) techniques and non-

linear approaches. Examples of the latter are vector perturba-
tion, DPC techniques, and Tomlinson-Harashima precoding
(THP) (a number of references are listed below). Many different
feedback strategies have been suggested, including vector quan-
tization, dimension reduction, adaptive feedback, statistical
feedback, and opportunistic spatial division multiple access
(SDMA). Finally, a number of scheduling disciplines have been
suggested, including max-rate techniques, greedy user selection,
and random user selection. 

PROMISES AND CHALLENGES OF MU-MIMO NETWORKS

LESSONS LEARNED FROM MULTIUSER 
INFORMATION THEORY

SYSTEM AND SIGNAL MODEL
Progress in the field of multiuser information theory has been
instrumental in understanding the fundamental nature and lim-
its of the gains associated with exploiting multiple antennas in
wireless networks, often also suggesting ideas for actual algo-
rithms. We now review some aspects of MU-MIMO information
theory with an eye for the key lessons learned from this field
towards practical system design. A complete study of MU-MIMO
information theoretic progress is beyond the scope of this article.
Good references on the topic include [6] and [1, Ch. 18 and 19].

We focus on the communication between a BS or an access
point equipped with N antennas, and U active terminals, where
each active user k is equipped with Mk antennas. Among all ter-
minals, the set of active users is roughly defined by the set of
users simultaneously downloading or uploading packets during
one given scheduling window. The length of the window is arbi-
trary but should not exceed the maximum latency expected by the
application (likely as small as a few tens of milliseconds to several
hundred milliseconds). By all means the active users over one
given window will be a small subset of the connected users, them-
selves forming a small subset of the subscribers. We consider both
the uplink and downlink but will emphasize on the challenges
associated with the downlink for several reasons explained later.

In the uplink, the received signal at the BS can be written as

y =
U∑

k=1

HT
kxk + n, (1)

where xk is the Mk × 1 user signal vector, possibly encom-
passing power-controlled, linearly combined, constellation
symbols. Hk ∈ CMk×N represents the flat-fading channel
matrix and n is the independent and identically distributed
(i.i.d.), unit-variance, additive Gaussian noise vector at the
BS. We assume that the receiver k has perfect and instanta-
neous knowledge of the channel Hk. We focus on the flat-fad-
ing model here for the sake of exposition. Wideband models,
using OFDM for example, can be accommodated by using a
dependency on a frequency index. The transpose operator is
simply used by convention for consistence with the downlink
notation and does not presume a reciprocal link.



In the downlink illustrated in Figure 1, the received signal at
the kth receiver can be written as

yk = Hkx + nk for k = 1, . . . , U, (2)

where Hk ∈ CMk×N represents the downlink channel and
nk ∈ CMk×1 is the additive Gaussian noise at receiver k. We
assume that each receiver also has perfect and instantaneous
knowledge of its own channel Hk. The transmitted signal x is a
function of the multiple users’ information data, an example of
which takes the superposition form x = ∑

k xk where xk is the sig-
nal carrying, possibly nonlinearly encoded, user k’s message, with
covariance Qk = E(xkxH

k ), with E(·) the expectation operator.
The power allocated to user k is therefore given by Pk = Tr(Qk),
where Tr is the trace operator. Under a sum power constraint at
the BS, the power allocation needs to maintain 

∑
k Pk ≤ P.

Assuming a unit variance for the noise, it is now known that
the capacity region for a given matrix channel realization can be
written as [7]:

CBC =
⋃

P1,..PU s.t.
∑

k
Pk=P

⎧
⎨

⎩(R1, ..RU) ∈ �+U, Ri ≤ log2

det
[
I + Hi(

∑
j≥i Q j)HH

i

]

det
[
I + Hi(

∑
j>i Q j)HH

i

]

⎫
⎬

⎭, (3)

where the expression should in turn be optimized over each pos-
sible user ordering. Although difficult to realize in practice, the
computation of the region above is facilitated by exploiting the
so-called duality results between the BC and the much simple to
obtain MAC capacity region, which stipulate that the BC region
can be calculated through the union of regions of the dual MAC
with all uplink power allocation vectors meeting the sum power
constraint P [8], [9]. 

The fundamental role played by the multiple antennas at
either the BS or the users in expanding the channel capacity is
best apprehended by examining how the sum rate (the point
yielded by the maximum 

∑
k Rk in the capacity region) scales

with the number of active users. 

Assuming a block fading channel model and an homoge-
neous network where all users have the same signal-to-noise
ratio (SNR), the scaling law of the sum rate capacity of MIMO
Gaussian BC, denoted as RDPC for Mk = M, fixed N and P, and
large U is given by [10]

lim
U→∞

E(RDPC)

N log log(UM)
= 1. (4)

The result in (4) indicates that, with full CSIT, the system can
enjoy a multiplexing gain of N, obtained by the BS sending data
to N carefully selected users out of U. Since each user exhibits
M independent fading coefficients, the total number of DoF for
multiuser diversity is UM , thus giving the extra gain
log log(UM).

In contrast with (4), the capacity obtained in a situation
where the BS is deprived from the users’ channel information is
reduced to (in the high SNR regime)

E(RNoCSIT) ≈ min(M, N) log SN R. (5)

DESIGN LESSONS
Information theory highlights several fundamental aspects
of MU-MIMO systems, which are in contrast much with the
conventional SU-MIMO setting. First, the results above
advocate for serving multiple users simultaneously in a
SDMA fashion, with a suitably chosen precoding scheme at
the transmitter. Although the multiplexing gain is limited by
the number of transmit antennas, the number of simultane-
ously served users is, in principle, arbitrary. How many and
which users should effectively be served with nonzero power
at any given instant is the problem addressed by the
resource allocation algorithm. Unlike in the single-user set-
ting, the spatial multiplexing of different data streams can
be done while users are equipped with single antenna
receivers, thus enabling the capacity gains of MIMO while
maintaining a low cost for user terminals. Having multiple
antennas at the terminal can thus be viewed as optional
equipment allowing extra diversity gain for certain users or
giving the flexibility toward interference canceling and mul-
tiplexing of several data streams to such users (but reducing
the number of other users served simultaneously). In addi-
tion to yielding MIMO multiplexing gains without the need
for MIMO user terminals, the multiuser setup presents the
advantage of being immune with respect to the possible ill-
behavior of the propagation channel, which often plagues
SU-MIMO communications, i.e., rank loss due to small spac-
ing and/or the presence of strong line-of-sight component
thanks to the wide physical separation between the users. 

Finally, also in contrast with the conventional SU-MIMO set-
ting, the multiplexing factor N in the downlink comes at the
condition of channel knowledge at the transmitter. In the uplink
this multiplexing gain is more easily extracted because the BS
can be safely assumed to have uplink channel knowledge and
simply implements a classical multiuser receiver to separate the
contributions of the selected users in (1). 

[FIG1] Downlink of a multiuser MIMO network. A BS
communicates simultaneously with several multiple antenna
terminals.
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In the downlink, in the absence of CSIT, user multiplex-
ing is generally not possible, as the BS just does not know in
which direction to form spatial beams. Thus, the complete
lack of channel state information (CSI) knowledge reduces
the multiplexing gain to unity [11]. The exception lies in
scenarios with terminal devices having enough antennas to
remove costream interference at the
receiver (Mk ≥ N). In the latter case,
the base may decide to either multi-
plex several streams to a single user
or spread the streams over multiple
users, achieving an equivalent mul-
tiplexing gain in both cases. This is
conditioned however on the individ-
ual user channels to be full rank.
Hence, the advantage of having CSIT
in MU-MIMO lies in the possibility of not only serving single
antenna users but also relaxing the dependence on single-
user channel full rank. 

MU-MIMO AND RESOURCE ALLOCATION
One of the fundamental lessons learned from information
theoretic studies is that resource allocation techniques help
to exploit the gains of MU-MIMO systems. From a multiuser
information theoretic perspective, the capacity region
boundary is achieved by serving all U active users simultane-
ously, where U is possibly a large number. The resource that
should be allocated to each one, in the form of, e.g., Pk, is
surely dependent on the instantaneous channel conditions
and may vary greatly from user to user. The fact that the
multiplexing gain is limited to N also suggests that the
number of users effectively served with nonzero Pk at any
given instant of time is directly related to the number of
antennas at the BS, which is considerably less than the
number of active cell users. Studies show in fact that the
optimal number of users with nonzero allocated power for
any given realization of the channel is upper bounded by N 2

[12]. In the remainder of the article we shall refer to this
subset of users as the selected users. When restricting to lin-
ear precoding techniques such as ZF, the number of served
users is directly limited by the number of DoF at the BS, N.
This motivates the need to pick a good set of users, which is
the aim of the resource allocation algorithm. In particular,
the scheduler selects among all possible active users, for
each channel realization, an optimal subgroup of terminals
and respective power levels within the subgroup, so as to
maximize a given performance metric. Such a metric can be
the sum rate or the realization of per-user rate targets while
minimizing transmit power. To maximize the sum rate, the
scheduler algorithm looks for users that exhibit a compro-
mise between a high level of instantaneous SNR (to maxi-
mize multiuser diversity [3]) and a good separability of their
spatial signatures to facilitate user multiplexing. Practical
and low complexity algorithms to solve the user scheduling
problem are presented later in this article. 

MU-MIMO SCHEMES WITH PERFECT CHANNEL
KNOWLEDGE AT THE TRANSMITTER

LINEAR PRECODING
Linear precoding is a generalization of traditional SDMA, where
users are assigned different precoding matrices at the transmit-

ter. The precoders are designed jointly
based on CSI of all the users based on
any number of designs, including ZF
and MMSE. 

From a practical point of view, the
relevant criteria are error probability,
sum rate, signal-to-interference-plus-
noise ratio (SINR), etc. The difficulty
of designing capacity-optimal down-
link precoding, mainly due to the cou-

pling between power and beamforming and the user ordering,
has lead to several different approaches ranging from transmit
power minimization while maintaining individual SINR con-
straints to worst case SINR maximization under a power con-
straint. Duality and iterative algorithms are often used to
provide solutions [13].

Consider the transmitted signal for user k given by Wksk,
where Wk denotes the precoding matrix for the kth user and sk

is the symbol vector. We assume that service will be provided to
a set of K selected users (among all active ones). Scheduling
algorithms as discussed in the sequel can be applied to perform
this selection across possible subsets. The received signal vector
at the kth user is

yk = HkWksk + Hk

K∑

l=1,l�=k

Wlsl + nk. (6)

We assume that each user has Mk antennas and will decode
the Sk ≤ Mk streams that constitute its data. The goal of lin-
ear precoding is to design {Wk}K

k=1 based on the channel
matrix knowledge, so a given performance metric is maxi-
mized for each stream.

One of the simplest approaches for finding the precoder is
to premultiply the transmitted signal by a suitably normal-
ized ZF or MMSE inverse of the multiuser matrix channel
[14], [15]. In this case, it can be assumed for simplification
that Mk = Sk = 1. Thus, Hk = hk is a row vector and Wk (the
precoding vector for the kth user) is chosen as the kth col-
umn of the right pseudoinverse (or MMSE inverse) of the
composite channel 

[
hT

1, hT
2, . . . , hT

K

]T
. In the case when the

selected users are not sufficiently separable, this approach
may result in inefficient use of transmit power, causing a
large rate loss with respect to the optimum sum capacity
solution. This problem, however, is shown to be fixed by the
scheduler when the number of active users to choose from is
large enough so near-orthogonal users with good SNR condi-
tions can be found. An additional disadvantage is that this
approach does not readily extend to multiple receive anten-
nas or streams without further degradation.

THE ADVANTAGES OF
MU-MIMO TECHNIQUES

AND PERFORMANCE OVER
SU-MIMO COMMUNICATIONS

UNFORTUNATELY COME
AT A PRICE.



A generalization of the ZF or MMSE beamforming is to
combine linear beamforming with a suitable power control pol-
icy to maximize the sum rate or realize individual SINR
requirements for each user. Several approaches have been pro-
posed, including maximizing the jointly achievable SINR mar-
gin under a total power constraint and minimizing the total
transmission power while satisfying a set of SINR constraints
[13]. Another generalization of ZF beamforming (ZFBF) is pro-
vided by block diagonalization (BD), which assumes
Mk = Sk ≥ 1 and 

∑K
k=1 Mk = N. The idea is to choose Wk such

that HlWk = 0, ∀l �= k,thus precanceling the interference in (6)
so that yk = HkWksk + nk. If we define H̃k as

H̃k =
[
HT

1 · · · HT
k−1HT

k+1 · · · HT
K

]T
, (7)

then any suitable Wk lies in the null space of H̃k. Let the singu-
lar value decomposition (SVD) of H̃k be H̃k = ŨkD̃k[
Ṽ(1)

k Ṽ(0)

k

]H
, where Ũk and D̃k are the left singular vector matrix

and the matrix of singular values of H̃k, respectively, and Ṽ(1)

k
and Ṽ(0)

k denote the right singular matrices, each corresponding
to nonzero singular values and zero singular values, respective-
ly. Any precoder Wk that is a linear combination of the columns
of Ṽ(0)

k will satisfy the null constraint. Assuming that H̃k is full
rank, the transmitter requires that the number of transmit
antennas is at least the sum of all users’ receive antennas to sat-
isfy the dimensionality constraint required to cancel interfer-
ence for each user [16]. Under the BD constraint, Wk can be
further optimized based on waterfilling. If excess antennas are
available, eigenmode selection or antenna subset selection can
be used to further improve performance [17]. 

A disadvantage of BD is that it requires Mk = Sk. This can be
solved by including the receive processing in the problem for-
mulation. For example, with a linear receive combining matrix
Vk for user k, the received signal can be expressed as

yk = VH
k HkWksk + VH

k Hk

K∑

l=1,l�=k

Wlsl + VH
k nk. (8)

The design problem then becomes selecting {Wk, Vk}K
k=1 jointly

such that VH
k Hk

∑K
l=1,l�=k Wl = 0, ∀k. This is difficult to solve in

closed form, thus several iterative solutions have been proposed,
including, e.g., [18], [19]. In such approaches, the transmitter gen-
erally computes a new effective channel for each user k using the
initial receive combining vector. Using this new effective channel,
the transmitter recomputes the transmit filter Wk to enforce a
zero interference condition, and the receive filter Vk for each user.
The algorithm repeats this process until satisfying a convergence
criterion. To extend this algorithm to multiple data streams for
each user, the matrix of right singular vectors is used based on the
number of data streams and is used to calculate the effective chan-
nel matrix [18]–[20]. To avoid the use of extra feedback between
the users and the BS, the computation of all filters (transmit and
receive) normally takes place at the BS. After this computation,
either the users must acquire the effective combined channel or
information about the transmit filters must be sent [19].

NONLINEAR PRECODING
Linear precoding provides reasonable performance but may
remain far from DPC-like precoding strategies when the avail-
able set of active users to choose from is small. Nonlinear pre-
coding involves additional transmit signal processing to
improve error rate performance. In this section, we discuss two
representative methods, one based on perturbation [21], the
other based on a spatial extension of THP [22].

Vector perturbation uses a modulo operation at the transmit-
ter to perturb the transmitted signal vector to avoid the trans-
mit power enhancement incurred by ZF methods [21]. Finding
the optimal perturbation involves solving a minimum distance
type problem and thus can be implemented using sphere encod-
ing or full search-based algorithms. 

Let H denote a K × N multiuser composite channel, assum-
ing each user has a single receive antenna. The idea of perturba-
tion is to find a perturbing vector p from an extended
constellation to minimize the transmit power. The perturbation
p is found by solving

p = arg min
p′∈ACZK

‖G(s + p′)‖2, (9)

where G is a some transmit matrix such that Tr(GHG) ≤ P, s is
a modulated transmitted signal vector, and the scalar A is cho-
sen depending on the original constellation size (e.g., A = 2
for QPSK), and CZK is the K-dimensional complex lattice. ZF
or MMSE precoder can be used for the transmit matrix G. A set
of points is used to represent symbols that are congruent to
the symbol in the fundamental region. After predistortion
using ZF or MMSE precoder, the resulting constellation region
also becomes distorted and thus it takes more power to trans-
mit the original point than before distortion. Among the
equivalent points, if the transmitter sends the point that is the
one closest to the origin to minimize transmit power, the
receiver finds its equivalent image inside the fundamental con-
stellation region using a modulo operation. This problem can
be regarded as K-dimensional integer-lattice least squares
problem and thus search based algorithms can be implement-
ed. There are other methods to simplify the search based
methods [23]. 

Several algorithms have also been proposed based on varia-
tions of THP [22], [24]. THP was originally proposed for use
with Z point one-dimension pulse amplitude modulation
(PAM) signal as a temporal equalization. For this constella-
tion, THP is the same as the inverse channel filter except that
an offset-free modulo 2Z adder is used. If the result of the
summation is greater than Z, 2Z is subtracted until the final
result is smaller than Z. Similarly, if the result of the summa-
tion is less than −Z, 2Z is added until satisfying the peak con-
straint. While in the original THP, a single channel is
equalized with respect to time, spatial equalization is required
for MIMO channels. 

So far, we reviewed linear and nonlinear MU-MIMO solu-
tions to approximate the sum capacity. In Figure 2, we compare
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sum capacity and achievable sum rates for DPC, coordinated
beamforming [19], time sharing single-user closed loop MIMO
(choosing only one user having the best channel quality and
applying the SVD), and ZFBF with the dimensionality con-
straint [25]. In this case, no scheduling algorithm is required
for DPC, coordinated beamforming, and ZFBF. We investigate
scheduling issues below. Note that for the (T, 1, T ) scenario
(i.e., the user has only one receive
antenna while the BS has T transmit
antennas and there are T active
users in the network), there is a big
gap between DPC and ZFBF, but this
gap is decreased when the receivers
have multiple antennas. For addi-
tional tradeoff analysis between lin-
ear and nonlinear precoding strategies, see also [26].

In the following section, we consider the problem of
choosing a subset of users for transmission in the MIMO BC.
A brute-force complete search over all possible combinations
of users guarantees maximizing the throughput, but the
computational complexity is prohibitive when the number of
users is large. Due to the complexity of the search process,
both optimal and suboptimal approaches are considered. A
key idea for low-complexity multiuser scheduling is that of
greedy search.

OPTIMAL SCHEDULING FOR THE MU-MIMO DOWNLINK
The previous theoretical capacity results illustrate that, in
general, the MIMO BC results in transmission to more than
one user at a time. The problem of selecting a subset of users
for transmission is a user scheduling problem, and the gain is
achieved in a form of multiuser diversity. In this section we
summarize some scheduling algorithms for different MU-
MIMO solutions.

Linear beamforming can achieve the sum capacity when the
number of active users in the system is large [10], [25], [27]. In
[25], the users are equipped with only one receive antenna, and
ZFBF is performed at the transmitter. Analogous to BD, this
full search-based user selection algorithm can be extended to
the multiple stream scenario. For simplicity, in this section, we
assume that the number of receive antennas is equal to the
number of data streams, where the postcoder V is not needed,
and thus BD can be implemented.

Suppose U = {1, 2, · · · , U } is the set of all users, and Ak

one possible subset of selected users in U . Let A be the set
including all possible Ai, i.e., A = {A1,A2, · · · }. Then total
achievable rate with BD is given by 

RBD|Ak( HAk, P, σ 2) =

max∑
j∈Ak

Tr(Q j )≤P

∑

j∈Ak

log

∣∣∣∣∣∣
I +

H j W j Q j WH
j HH

j

σ 2

∣∣∣∣∣∣
, (10)

where Q j = E(x jx j)
H is the input covariance matrix for the user

j, W j is the precoding matrix earlier defined, and the same noise

variance σ 2 is assumed at all users. Therefore, the maximum total
sum rate with BD is given by RBD(H1,... ,U, P, σ 2) =
maxAk∈A RBD|Ak(HAk, P, σ 2). Denote S as the maximum num-
ber of users to be supported. For the case of BD, S ≤ N. Thus, the
cardinality of A is 

∑S
i=1 C i

U , where Cb
a is the combination of a

choosing b. Hence, it is clear that the exhaustive search over all
possible combinations is computationally prohibitive when the

number of users in the system is
increased, and thus low-complexity
user selection algorithm is desired.

GREEDY AND ITERATIVE
METHODS FOR USER GROUPING
The complexity of the optimal schedul-
ing is high, thus there has been several

suboptimal algorithms that were proposed to reduce the com-
putational complexity for user group selection [25], [27]–[29].

In the capacity-based greedy user selection algorithm, the
transmitter chooses the first user with the highest channel
capacity. Then, it finds the next user that provides the maximum
sum rate from the remaining unselected users. The algorithm is
repeated until K users are selected. Clearly, the complexity of
the capacity-based greedy user selection is no more than U × K
user sets, which greatly reduces the complexity compared to the
exhaustive search method explained in the previous section.
Note that the full search method needs to consider roughly
O(UK) possible user sets. The sum rate can be obtained under a
number of transmit schemes, including optimal nonlinear
precoders. Scheduling for the nonlinear precoders mentioned
previously is an ongoing topic of research, though few results
have appeared, including a greedy user selection for ZF DPC
(ZFDPC), which has been proposed in [27]. 

[FIG2] Ergodic sum capacity and achievable sum rate as a
function of the number of users, the number of transmit/receive
antennas. (T1, T2, T3) denotes the number of transmit antennas at
the BS, the number of receive antennas at the user, and the
number of active users in the network, respectively. Coordinated
BF refers to the method presented in [19].
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RESOURCE ALLOCATION
TECHNIQUES HELP TO
EXPLOIT THE GAINS OF
MU-MIMO SYSTEMS.
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LIVING WITH PARTIAL CHANNEL 
KNOWLEDGE AT THE TRANSMITTER

QUANTIZATION-BASED TECHNIQUES
Quantization is the first idea that comes to mind when dealing
with source compression, in this case, the random channel
matrix or the corresponding precoders
being the possible sources. The
amount of feedback depends on the
frequency of feedback (generally a frac-
tion of the coherence time), the num-
ber of parameters being quantized, and
the resolution of the quantizer. Most
research focuses on reducing the num-
ber of parameters and the required resolution. The feedback
problem has been solved in SU-MIMO communication systems
using a concept known as limited feedback precoding [30]. The
key idea of this line of research has been to quantize the pre-
coder for a MIMO channel and not simply the channel coeffi-
cients. The challenge of extending this work to the multiuser
channel is that the transmit precoder depends on the channels
of the other users in the system.

Other methods for reducing feedback in MU-MIMO chan-
nels assume a single receive antenna at the mobile—exten-
sions to multiple receive antennas is an ongoing research
topic. Some of the main results on this subject are due to [31],
[32], where the random codebook and Grassmannian quantiza-
tion ideas are used to quantize the direction of each user’s
channel hk. The main observation in [31] is that the feedback
requirements scale linearly both as the number of transmit
antennas grows and as a function of the SNR (in dB), unlike
the single-user case. The reason is that quantization error
introduces an SINR floor since it prohibits perfect inter-user
cancellation. Thus, this error must diminish for higher SNRs
to allow for a balancing between the noise and the residual
interference due to channel quantizing. An improvement can
be obtained by quantizing the channel vector and a certain
received SINR upper bound that is a function of the error
between the true and quantized channel [33]. This increases
the performance of the system and helps in user selection.
Thresholds based on sum rate constraints on the feedback
channel can also be used to reduce required feedback yet
maintain capacity scaling [34].

DIMENSION REDUCTION AND PROJECTION TECHNIQUES
In addition to quantization-based approaches where the
channel metric is discretized, dimension reduction tech-
niques can be used that involve projecting the matrix chan-
nel  onto one or more basis  vectors known to the
transmitter and receiver. In that way, the CSI matrix of size
M × N is  mapped into a p-dimensional  vector with
1 ≤ p ≤ M × N , thus reducing the dimensionality of the CSI
to p complex scalars (which in turn may be quantized).
Once the projection is carried out, the receiver feeds back a
metric ϕk = f(Hk), which is typically related to the square

magnitude of the projected signal. Antenna selection meth-
ods fall into this category. In this case, the projection is car-
ried out by the terminal itself. Alternatively, the projection
can be the result of using a particular precoder at the BS. A
good example of this approach is given by a class of algo-
rithms using unitary precoders.  We now review this

approach when Mk = 1 and the BS
serves N users. In this case, the kth
user channel is a 1 × N row vector
denoted by hk . The BS designs an
arbitrary unitary precoder Q of size
N × N ,  further scaled for power
constraint. Each terminal identifies
the projection of its vector channel

onto the precoder by hk Q, and reports an index and a scalar
metric expressing the SINR measured under an optimal
beamforming vector selection.

ϕk = max
1≤i≤N

|hk qi|2
σ 2 + ∑

j �=i |hk q j |2
, (11)

where qi denotes the ith column of Q. The scheduling algo-
rithm then consists in opportunistically assigning to each beam-
former qi the user that has selected it and has reported the
highest SINR.

When the unitary precoder must be designed without any
form of CSIT a priori, a scaled identity matrix can be used. In
this case, the algorithm falls back to assigning a different
selected user to each base antenna. In the small number of
user case, the performance of such scheme is plagued by inter-
user interference. Fortunately, interference tends to decrease
as the number of users to choose in the cell becomes high. 

When the dynamics of the system are limited (low mobil-
ity), the use of a fixed set of precoders may result in severe
unfairness between the users. This problem can be alleviated
by the randomization of the beamforming vectors. The so-
called opportunistic random beamforming (ORBF) was ini-
tially proposed for single-user setting [35] and later
generalized in [36]. The performance of these methods is
illustrated below. The idea of [36] can be recast in the con-
text above, assuming this time that Q is randomly generated
at each scheduling period according to an isotropic distribu-
tion while preserving the unitary constraint. The intuition
behind that scheme is that the columns qi, i = 1, . . . , N , are
like orthogonal beams, and if there are enough users in the
cell, each beam will be aligned with a given user’s channel
while simultaneously being nearly orthogonal to the other
selected users’ channels. With this scheme, it is possible to
spatially multiplex N users with a level of feedback given by
one scalar and one index. In the case of a large number of
active users, opportunistic multibeam schemes are shown to
yield an optimal capacity growth of N log log U for fixed N,
which is precisely the scaling obtained with full CSIT, as
shown in (4). 
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DEALING WITH SPARSE NETWORKS
A limitation of fixed or random opportunistic beamforming
approaches is that the optimal capacity scaling emerges for a
large, sometimes impractical, number
of simultaneously active users in the
cell. The performance degrades with a
decreasing number of users (sparse
networks), and this degradation is
amplified when the number of trans-
mit antennas increases, as intuition
also reveals. The lack of robustness of
these approaches in cases with small to moderate number of
users is a serious problem that can be resolved by modifying the
random beams for a better matching with the actual users’
channels. This can be done at little or no extra feedback cost by
one of several means. In one approach, the unitary constraint is
relaxed by introducing a power control across the beams. The
SINR feedback is used to adjust the power allocated to each
beam [37] or simply to turn off certain beams [38], thus reduc-
ing interuser interference when the random beams are not well
aligned with users’ channels. In Figure 3, we compare the
robustness of the single-beam ORBF [35] and multibeam ORBF
[36], both with SINR feedback with respect to the number of
active users in the cell. With four antennas at the BS, at 10 dB
SNR, simulations suggest that at least 12 simultaneously active
users are required for the multibeam gains to kick in. Whether
this condition is met in practice or not is an interesting open
research problem whose solution is likely to depend on the con-
sidered traffic, operational scenario, and delay constraint. With
less users, the lack of CSIT destroys the benefits of user multi-
plexing. Interestingly, a strategy allowing for beam power con-
trol in multibeam ORBF [37] allows for a smooth transition
between TDMA and SDMA regions, as shown in the figure. 

Yet another approach is to exploit the second-order statistics
of the channel, either in the temporal or in the spatial domain.
The time domain approach consists in exploiting the natural
temporal correlation of the channel to help refine the beams
over time [39], [40]. In the spatial domain, statistics give infor-
mation about spatial separability, which is instrumental to a
proper beamforming design. Such aspect is described below.

USE OF SPATIAL STATISTICAL FEEDBACK
In practical, especially outdoor, networks, the i.i.d. channel
model used so far does not hold, and each user tends to exhib-
it different channel statistics. The advantage of statistical CSI
is its long coherence time compared with that of the fading
channel. Several forms of statistical CSI are even reciprocal
(i.e., holds for both uplink and downlink frequency) such as
second-order correlation matrix, power of Ricean component,
etc., and do not necessitate any feedback. Overall, spatial
channel statistics reveal a great deal of information on the
macroscopic nature of the underlying channel, including the
multipath’s mean angle of arrival/departure and its angular
spread. More generally, a substantial amount of channel dis-
tribution information (CDI) is revealed by channel statistics,

which can be used to infer knowledge on mean user separabil-
ity. Clearly however, in fading channels, the CDI ought to be
complemented with some form of instantaneous channel

quality information (CQI) to extract
multiuser diversity gain. Combining
CDI and CQI can yield partial CSIT,
which is very well suited to solving
the scheduling stage of the MU-
MIMO problem. It is an open topic
for research, but some leads are pre-
sented below.

Consider the downlink of a network with single antenna
mobiles, where the BS exhibits correlated transmit antennas.
The channel is modeled as correlated Ricean fading, i.e., the
channel vector of kth user satisfies hk ∼ CN (h̄k, Rk), where
h̄k ∈ C1×N and Rk ∈ CN×N are the mean value and transmit
covariance matrix, respectively, known to the BS. A general
form of CQI is

γk = ∥∥hkQk
∥∥2

, (12)

where Qk ∈ CN×L is a training matrix containing L orthonor-
mal vectors {qki}L

i=1. Conditioned on the CQI feedback, a coarse
estimate of the instantaneous channel realization and channel
correlation at the transmitter can be calculated as the condi-
tional expectations

ĥk = E(hk|γk) R̂k = E

(
hH

k hk|γk

)
, (13)

which can be used to provide an MMSE estimate of the instanta-
neous SINR [41]. Note that with Qk = I, (12) falls back to a
channel norm feedback. 

[FIG3] The sum rate is compared for random beamforming
schemes with SINR feedback. Multibeam (SDMA) random
beamforming outperforms the single-beam (TDMA) when the
number of active users is sufficient. Power control over the
random beams allows for a smooth transition between TDMA
and SDMA. TDMA with full CSIT outperforms partial feedback
schemes for a small number of users but fails to provide
multiplexing gain when this number increases.

0 5 10 15 20 25 30 35 40 45 50
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Number of Users

S
um

 R
at

e 
(b

ps
/H

z)

Multi−Beam ORBF (Sharif et al.)
Single−Beam ORBF (Viswanath et al.)
ORBF with Beam Power Control (Kountouris et al.)
Single−Beam with Full CSIT (TDMA+MRC)

IEEE SIGNAL PROCESSING MAGAZINE [43] SEPTEMBER 2007

INFORMATION THEORY
HIGHLIGHTS SEVERAL

FUNDAMENTAL ASPECTS OF
MU-MIMO SYSTEMS.



Similarly, a maximum-likelihood (ML) estimation framework
maximizing the log-likelihood function of the probability densi-
ty function (pdf) of hk under the scalar constraint (12) can be
formulated [42]. Let L = 1, hk ∼ CN (0, Rk) and CQI feedback
γk = |hk q k|2. The solution to the ML problem

max
hk

hkRkhH
k s.t. |hk qk|2 = γk (14)

is given by the (dominant) generalized eigenvector associated
with the largest positive generalized eigenvalue of the
Hermitian matrix pair (Rk, qk qH

k ). Once the coarse channel
estimation is performed by the BS, it can be used to select up
to N users according to any number
of previously described performance
metric based on CSIT. As a second
stage, more complete CSIT may be
requested by the BS only to the
small set of selected users for a more
accurate precoding design. The per-
formance exceeds that of random
beamforming but depends on the
level of antenna correlation, i.e., angle spread σθ , as is shown
in Figure 4. Certain techniques above are suited to specific
deployments scenarios. For instance, opportunistic schemes
are suited to densely populated networks. Schemes using
temporal statistics are better suited to low mobility (indoor)
setting, while the exploitation of spatial statistics would be
more effective in outdoor cases where the elevation of the BS
above the clutter decreases the angle spread of multipath and
gives rise to Ricean models.

SYSTEM ISSUES
Although it is now widely recognized that MIMO techniques,
in their generality, will be a key element in the evolution of
broadband wireless access systems, applications of MU-MIMO
solutions have yet to emerge. While spatial diversity and

basic SU-MIMO techniques are available in several products
and standards, adaptive antenna solutions, including MU-
MIMO, are mostly considered for time division duplex (TDD)
systems in low and moderate mobility where CSI can be
obtained from estimation in the uplink. We believe, however,
that the promise is such that these techniques will be eventu-
ally available in most systems.

Note that codebook based precoding schemes for SU- and
MU-MIMO are emerging in existing and future standards [4].
MU-MIMO systems may have the potential to achieve the spec-
trum efficiency requirements set by operators for the next gen-
eration of mobile communication systems [43]. Practical

MU-MIMO applications are still chal-
lenging however, and further studies
seem needed to get a deeper under-
standing of the related tradeoffs and
system gains (number of antennas,
choice of algorithm, etc.).

When it comes to the crucial
CSIT issue,  one problem with
designing feedback metrics is that

the SINR measurement depends, among other things, on
the number of other terminals being simultaneously sched-
uled along with the user making the measurement. Certain
metrics (such as those in, e.g., [33], [36]) assume a fixed
number of scheduled SDMA users. However, in practice,
methods allowing fast transitions between TDMA and SDMA
modes will be required. In such cases, the number of simul-
taneous users and the available power for each of them will
generally be unknown at the terminal. Channel quality met-
ric design in this scenario is one of the largely open chal-
lenges in MU-MIMO.

Also, opportunistic scheduling in MU-MIMO not only
requires feedback for CSIT but also signaling of scheduling
decisions to the terminal. The feedback and control loop in
MU-MIMO introduces a nonnegligible overhead and latency in
the system, which must carefully be weighed against the
capacity gains expected from such techniques. Certain scenar-
ios look promising (e.g., broadband best-effort internet
access); others are more questionable, such as Voice over
Internet Protocol (VoIP), where small packets are to be deliv-
ered with tight delay constraints. In addition, a poorly
designed feedback channel can suffer from delays and cause
the reported channel quality metrics to the transmitter to be
outdated, bringing further degradations [44].

Another fundamental aspect is the impact of realistic
traffic models and system loads, especially on schemes rely-
ing on high user loads (e.g., random beamforming). In
recent wireless systems based on MIMO-OFDMA [5], oppor-
tunistic scheduling can be performed in up to three dimen-
sions, namely, time, frequency, and space. Different types of
traffic are likely to have different constraints with respect to
the available DoF for the scheduler. For example, real-time
services typically have tight delay constraints and limit the
flexibility of the scheduler in the time domain. One may

[FIG4] Sum rate as a function of the angle spread σθ at the BS,
where the number of transmit antennas is 2, the average SNR =
10 dB, and the number of active users in the cell is 50.
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then wonder how many effective users are available for
selection by the scheduler in each of these dimensions and
how to take advantage of the different DoF to satisfy the QoS
constraints for different types of traffic?

DISCUSSION
MU-MIMO networks reveal the unique opportunities arising
from a joint optimization of antenna combining techniques
with resource allocation protocols. Furthermore, it brings
robustness with respect to multipath richness, allowing for
compact antenna spacing at the BS and, crucially, yielding
the diversity and multiplexing gains
without the need for multiple antenna
user terminals. To realize these gains,
however, the BS should be informed
with the user’s channel coefficients,
which may limit practical application
to TDD or low-mobility settings. To
circumvent this problem and reduce
feedback load, combining MU-MIMO
with opportunistic scheduling seems
a promising direction. The success for
this type of scheduler is strongly traffic and QoS-dependent,
however. A number of complementary approaches geared
toward feedback reduction were proposed, which may restore
the robustness of MU-MIMO techniques with respect to a
wider range of application and environments. These results
and other performance studies with low feedback schemes
suggest that MU-MIMO transmitters can cope with very
coarse channel information. From a theoretical point of view,
the impact and design of an optimal form of CSIT under
finite rate feedback is still an open and exciting problem.
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Multi-Cell MIMO Cooperative Networks: A New
Look at Interference

David Gesbert, Stephen Hanly, Howard Huang, Shlomo Shamai Shitz, Osvaldo Simeone, and Wei Yu

Abstract—This paper presents an overview of the theory
and currently known techniques for multi-cell MIMO (multiple
input multiple output) cooperation in wireless networks. In
dense networks where interference emerges as the key capacity-
limiting factor, multi-cell cooperation can dramatically improve
the system performance. Remarkably, such techniques literally
exploit inter-cell interference by allowing the user data to
be jointly processed by several interfering base stations, thus
mimicking the benefits of a large virtual MIMO array. Multi-
cell MIMO cooperation concepts are examined from differ-
ent perspectives, including an examination of the fundamental
information-theoretic limits, a review of the coding and signal
processing algorithmic developments, and, going beyond that,
consideration of very practical issues related to scalability and
system-level integration. A few promising and quite fundamental
research avenues are also suggested.

Index Terms—Cooperation, MIMO, cellular networks, relays,
interference, beamforming, coordination, multi-cell, distributed.

I. INTRODUCTION

A. Dealing with interference: conventional and novel ap-
proaches

FADING and interference are the two key challenges faced
by designers of mobile communication systems. While

fading puts limits on the coverage and reliability of any
point-to-point wireless connection, e.g., between a base station
and a mobile terminal, interference restricts the reusability of
the spectral resource (time, frequency slots, codes, etc.) in
space, thus limiting the overall spectral efficiency expressed in
bits/sec/Hz/base station. At least, so has been the conventional
view until recent findings in the area of cooperative transmis-
sion. Two basic scenarios are envisioned for cooperation in
wireless networks. The first one assumes a (virtual) MIMO
model for cooperative transmission over otherwise interfering
links and will be the focus of this paper, while in the second
relays are exploited. There exist interesting conceptual bridges
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between the two setups however, as will be made clearer in
Section III and beyond.

Relay-based cooperative techniques try to mitigate detri-
mental propagation conditions from a transmitter to a receiver
by allowing communication to take place via a third party
device (mobile or base) acting as a relay. Initially developed
relay-based cooperative transmission protocols have proved to
be instrumental in mitigating fading effects (both path loss and
multipath related) in point-to-point and point-to-multipoint
communications. So-called amplify-forward, decode-forward,
compress-forward cooperation schemes exploit available relay
nodes to offer a powerful extra diversity dimension [1].

While conventional diversity and relaying schemes greatly
improve the link-level performance and reliability, they do
little to increase the quality of service to users placed in
severe inter-cell interference-dominated areas, such as the
cell boundary areas of current cellular networks. Instead,
interference should be dealt with using specific tools such as
"virtual" or "network" MIMO, so as to maximize the number
of co-channel links that can coexist with acceptable quality of
service. In the high SNR regime (achieved in, say, a small cell
scenario), this figure of merit corresponds to the maximum
number of concurrent interference-free transmissions and is
referred to as the multiplexing gain of the network, or the
number of degrees of freedom in the information-theoretic
terminology.

The conventional non-cooperative approach to interference,
via spatial reuse partitioning, prevents the reuse of any spec-
tral resource within a certain cluster of cells. Typically, the
frequency re-use factor is much less than unity, so that the
level of co-channel interference is low. Thus, interference
is controlled by fixing the frequency reuse pattern and the
maximum power spectral density levels of each base station.
Current designs do allow for full frequency re-use in each
cell (typically for Code Division Multiple Access (CDMA) or
frequency hopping spread spectrum systems) but this results
in very severe interference conditions at the cell edge, causing
a significant data rate drop at the terminals and a strong lack
of fairness across cell users. Some interference mitigation is
offered by limited inter-cell coordination, which is convention-
ally restricted to scheduling or user assignment mechanisms
(e.g. cell breathing) or soft handover techniques. Inter-cell
interference is treated as noise at the receiver side and is han-
dled by resorting to improved point-to-point communications
between the base station (BS) and the mobile station (MS),
using efficient coding and/or single-link multiple-antenna tech-
niques [2]. This approach to dealing with interference may be
characterized as passive.

0733-8716/10/$25.00 c© 2010 IEEE
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In contrast, the emerging view on network design advo-
cates a more proactive treatment of interference, which can
be accomplished through some form of interference-aware
multi-cell coordination, at the base station side. Although
the complexity associated with the coordination protocols
can vary greatly, the underlying principle is the same: Base
stations no longer tune separately their physical and link/MAC
layer parameters (power level, time slot, subcarrier usage,
beamforming coefficients etc.) or decode independently of
one another, but instead coordinate their coding or decoding
operations on the basis of global channel state and user data in-
formation exchanged over backhaul links among several cells.
Coordination protocols can exploit pre-existing finite capacity
backhaul links (e.g., 802.16 WiMax, 4G LTE) or may require a
design upgrade to accommodate the extra information sharing
overhead. There are several possible degrees of cooperation,
offering a trade-off between performance gains and the amount
of overhead placed on the backhaul and over-the-air feedback
channels. The different possible levels of cooperation are
illustrated in detail in Section II.

B. From multi-user to multi-cell MIMO

The history of base station cooperation can be traced back to
previous decades, with the concept of macroscopic diversity
whereby one or more mobiles communicate their messages
through multiple surrounding base stations to provide diver-
sity against long-term and short-term fading. In conventional
CDMA networks, soft-handoff allows a mobile to communi-
cate simultaneously with several base stations, and selection
diversity is used to select the best of these connections at any
given time. Such selection diversity increases both coverage
and capacity [3], and combined with power control, it allows
full frequency re-use in each cell. However, full frequency
re-use comes at a price: CDMA capacity is then critically
constrained by inter-cell interference, and the per-cell capacity
in a network of interfering cells is much less than that of a
single isolated cell. This reduction in capacity is measured by
the so-called “f-factor” [4]. We will see that full base station
cooperation essentially removes this interference penalty.

By “full base station cooperation” we mean that all base
stations are effectively connected to a central processing
site, as depicted in Figure 1 for the downlink scenario. On
the downlink, the network is effectively a MIMO broadcast
channel with distributed antennas. First steps toward full
base station cooperation were taken in [5], [6], [7] for the
uplink, which is effectively a MIMO multiple access channel.
In these works, the base stations cooperate to decode each
user. In [6], the model is a CDMA network, with single-user
matched filter (SUMF) decoding, but the received signals from
a mobile, at each base station, are maximal ratio combined
before decoding. With such a global receiver there are no
wasted signals causing pure interference: All received signals
carry useful information for the global decoder, and hence
interference is exploited. In [6], it is shown that with the
optimal power control, such base station cooperation elim-
inates the inter-cell interference penalty. In other words, a
network of interfering cells has the same per-cell capacity
(in numbers of users) as a single, isolated cell. This result

… …
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base station
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Fig. 1. A linear Wyner-type model with inter-cell interference spans L� =
Lr = 1 and K = 3 MSs per cell.

was extended to CDMA networks with more sophisticated
multi-user receivers (decorrelator and MMSE receivers) in [7].
Again, the interference is fully eliminated and the achievable
number of simultaneous users is same as if the cells were
isolated from each other, although in this case the per-cell
capacity benefits further from the more sophisticated multi-
user detection.

The story is not so clear-cut if we consider more fundamen-
tal, information-theoretic models, where particular physical
layers (e.g., CDMA) or receiver structures, are not assumed
a priori. Such information-theoretic results will be surveyed
in Section III. However, similar conclusions do hold at high
SNR, in terms of the degrees of freedom, as will be seen.
Pioneering work on the information-theoretic capacity of the
uplink of cellular networks with full base station cooperation
was done in the early 90s [8], [9]. In these works, it was shown
that with full base station cooperation, the traditional approach
of frequency re-use partitioning is inherently suboptimal.
Wyner [9] introduced a linear array model, and a hexagonal
cell model, which have become known as Wyner models of
cellular systems, and these are very tractable for information-
theoretic analysis. In [8], it was shown that at high SNR, the
capacity of a cellular system with fractional frequency re-use
is less than a system with full frequency re-use, by exactly
the re-use factor. This is equivalent to saying that full base
station cooperation reduces the inter-cell interference penalty
(or “f-factor”) to zero.

Although rich in content and ideas, [8], [9] stopped just
short of spelling out the connections between the multi-user
multi-cell channel and the MIMO channel. Communication
over the spatial modes of the point-to-point MIMO channel
(so-called spatial multiplexing) was formalized later in the mid
90s in [10], [11], then gradually extended to multi-user (MU-)
MIMO channels. It was at that stage only that the downlink
of the multi-cell cooperative channel, first investigated for the
downlink in 2001 [12], was recognized to be almost identical
to the so-called broadcast MIMO channel, if one ignores
the power constraint at the individual base stations. On the
uplink, there is no difference between ideal1 multi-cell MIMO
decoding and decoding over a multi-user MIMO channel.

1An ideal multi-cell MIMO channel is one where all base stations are
connected via infinite capacity backhaul links.
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Thus, a network of M ideally connected J-antenna base
stations can serve a total of MJ terminals in an interference-
free manner simultaneously, regardless of how strong the
interference is. To achieve this remarkable result, multi-user
spatial precoding and decoding is involved on the downlink
and uplink respectively, much akin to techniques used over
the MU-MIMO channel [13]. To date, progress in the area
of multi-cell MIMO cooperation continues to parallel that
realized in the more general MU-MIMO area. Nevertheless,
this domain of communications provides specific and tough
scientific challenges to communication theorists, although,
remarkably, it is already being considered within industry and
standardization fora.

C. Challenges of multi-cell MIMO

Despite their promise, multi-cell MIMO systems still pose a
number of challenges both theoretical and practical, several of
which are described in this paper. First, a thorough understand-
ing of the information-theoretic capacity of multi-cell MIMO
system accounting for fading and path loss effects, even with
an ideal backhaul, is yet to be obtained. As reviewed in this
paper, capacity results exist for simplified interference models.
Such results provide intuition for the general performance
behavior but are difficult to extend to general channel models.
Second, as multi-cell channels may involve a large number of
antennas and users, algorithm development work is required
to reduce the complexity of currently proposed precoding
and decoding schemes. Optimal precoding over the broadcast
(downlink) MIMO channel as well as optimal joint decoding
over the uplink involve non-linear computationally intensive
operations [14], [15] which scale poorly with the size of the
network. Third, the equivalence between multi-cell systems
and MIMO systems only holds in the case of ideal backhaul
conditions. Practical cooperation schemes must operate within
the constraints of finite capacity, finite latency communications
links between base stations.

Deriving good theoretic performance bounds for MIMO
cooperation over a channel with limited information exchange
capability between the cooperating transceivers is a difficult
task. As shown in this paper some results are available for
a few simplified network models. From a practical point-of-
view, a major research goal is to find good signal processing
and coding techniques that approach ideal cooperative gains
while relying on mostly local channel state information and
local user data. This problem, referred to here as distributed
cooperation, is as challenging as it is important. Efficient
partial feedback representation methods building on classical
MIMO research [16] are also desirable. From a system-
level perspective, simulations indicate that substantial gains
in capacity and increased fairness across cell locations will
be accrued from the adoption of multi-cell MIMO techniques.
Yet, a number of important practical issues must be addressed
before a very realistic assessment of system gains can be made,
such as the impact of imperfect synchronization between base
stations, imperfect channel estimation at the receiver side, and
network latency. Such aspects are addressed at the end of the
paper along with a review of current field experiments.

D. Scope and organization of paper

The theoretical treatments of interference-limited channels
on the one hand, and of cooperation protocols on the other
hand, are still maturing, mostly due to the inherent complexity
of the problem. Nevertheless, the literature in these areas has
grown to be extremely rich. For this reason, we do not attempt
complete coverage of those domains of research. Instead, we
focus on the adaptation of multi-antenna processing principles
to the context of multi-cell cooperation. We refer to the
obtained framework as multi-cell processing (MCP).

In Section II, we begin with the mathematical models for
the network and signals, and the way that information is
exchanged between the cells. Basic notations for multi-cell
cooperation are given. Next, in Section III, key information-
theoretic results are surveyed that establish closed-form ex-
pressions for sum rate bounds for several important interfer-
ence and backhaul models. In Sec. IV, the focus is the design
of practical MCP techniques, assuming an ideal backhaul. Sec.
V deals with the problem of finite capacity backhaul and
considers the feasibility of scalable and distributed MIMO
cooperation, using such concepts as partial feedback, dis-
tributed optimization, Turbo base stations, and clustering.
Sec. VI addresses system-level implementation issues due to
expected imperfections at the physical layer. Initial tests with
prototypes are reported. Finally, Sec. VII provides perspectives
and suggestions for promising research avenues in this area.

Throughout this paper we adopt the following notations:
[x]k represents the kth element of vector k; 1N , and 0N are
N × 1 vectors of all ones and all zeros, respectively; [a, b],
where a ≤ b are integer, is the interval [a, ..., b]; (·)† represent
the conjugate transpose of its argument. I denotes the identity
matrix.

II. MODELLING MULTI-CELL COOPERATION

A. System model

We consider a multi-cell network comprising M cooperat-
ing base stations assigned with the same carrier frequency.
Each cell serves K users. The base stations are equipped
with J antennas each. Due to lack of space, we mostly
focus on base station-side interference control: The users have
single-antenna terminals, unless otherwise specified. Multiple
antenna terminals can be considered to allow for the spatial
multiplexing of mutiple data streams per user, or to give user-
side multi-cell interference cancellation capability. The latter
turns out to be useful especially in the context of interference
coordination. This scenario is addressed in Section IV, but
is otherwise excluded. The base stations can assume any
geometry, however, strongly structured cell models can help
the theoretical analysis of cooperation, as is discussed in
Section III.

In the uplink, the received signal at the mth BS, m ∈ [1, M ]
can be written as

ym =
M∑
l=1

K∑
k=1

hm,l,kxl,k + zm, (1)

where xl,k is the symbol transmitted by the k-th MS in the
lth cell, hm,l,k denotes the J element channel vector from the
k-th user of cell l towards the mth BS, z is the noise vector
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containing additive noise and any inter-cell interference not
accounted for by the M cooperating cells alone, for instance
if the networks features more than M BSs.

The model for the downlink can be easily obtained from the
one above. We will reuse some symbols, but their meaning will
be clear from the context. The signal received at the k-th user
in the m-th cell is written as:

ym,k =
M∑
l=1

h†
l,m,kxl + zm, (2)

where xl is the transmitter signal vector with J elements
transmitted from the l-th BS containing possibly precoded
(beamformed) information symbols for several users. Note
that, as a convention, the downlink channel vector from the
l-th BS towards the k-th user in the m-th cell is denoted
by the complex conjugated form of the corresponding uplink
channel hl,m,k. This is done to allow the exploration of
interesting duality results between uplink and downlink, as
seen in Sections III and IV. Note that this represents a con-
venient writing convention rather than an actual assumption
on physical reciprocity of the uplink and downlink channels.
Where/if such an assumption of reciprocity (e.g., TDD system)
is actually needed will be made clear in the paper.

B. The different levels of multi-cell cooperation

In this paper we distinguish simpler forms of multi-cell co-
ordination from those requiring a greater level of information
sharing between cells.
1) Interference coordination: The performance of current

cellular networks can already be improved if the BSs share the
channel state information of both the direct and interfering
links, obtained from the users via feedback channels (see
Fig 2). The availability of channel state information (CSI)
allows BSs to coordinate in their signaling strategies, such
as power allocation and beamforming directions, in addition
to user scheduling in time and frequency. This basic level of
coordination requires a relatively modest amount of backhaul
communication and can be quite powerful if enough users
co-exist in the system (multi-user diversity) [17]. No sharing
of transmission data, or signal-level synchronization between
the base stations is necessary. We refer to such schemes as
interference-coordination. In this case, the downlink signal at
the l-th base, xl, is a combination of symbols intended for its
K users alone.
2) MIMO cooperation: On the other hand, when base

stations are linked by high-capacity delay-free links, they can
share not only channel state information, but also the full data
signals of their respective users (see Fig. 3). A more powerful
form of cooperation can be achieved. In this scenario, the con-
cept of an individual serving base for one terminal disappears
since the network as a whole, or at least a group of cells, is
serving the user. The combined use of several BS antennas
belonging to different cells to send or receive multiple user
data streams mimicks transmission over a MIMO channel and
is referred to here as MIMO cooperation. In principle, MIMO
cooperation transforms the multi-cell network into a multi-
user MIMO (MU-MIMO) channel for which all propagation
links (including interfering ones) are exploited to carry useful

mobiles
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Fig. 2. Illustration of interference coordination for the downlink. The BSs
acquire and exchange channel state information (but not the data symbols)
pertaining to all relevant direct and interfering links, so as to optimize
jointly their transmission parameters (time-frequency scheduling, power level,
beamforming

data, upon appropriate precoding/decoding. In this case, the
downlink signal, xl, is a combination of symbols intended for
all MK users. In contrast, interference-coordination schemes
try to mitigate the generated interference, but they cannot
really exploit it. For instance, beamforming may be used
in each cell if the base stations are equipped with multiple
antennas. In this case the beams typically try to strike a
compromise between eliminating the inter-cell interference
and maximizing the received energy to/from the user within
the cell of interest. Ideally the choice of such beams across
multiple cells is coordinated.

Although some interference-coordination ideas are promis-
ing, they are touched upon rather briefly in this paper, mainly
in Section IV. MIMO cooperation schemes are the main focus
of our attention.
3) Rate-limited MIMO cooperation: In the intermediate

case, the base stations are linked by limited-capacity backhaul
links. Typically, channel state information is shared first, then
only a substream of user data or a quantized version of the
antenna signals are shared among the base stations, which
allows partial interference cancellation. Such hybrid scenarios
are investigated from an information-theoretic point of view in
Section III, then from an algorithmic perspective in Sections
IV and V.
4) Relay-assisted cooperation: Instead of cooperating

through backhaul links, it is also possible to consider channel
models in which a separate relay node is available to assist the
direct communication within each cell. Relay communication
is relevant to the multi-cell MIMO network because it can
be beneficial not only in strengthening the effective direct
channel gain between the BS and the remote users, but also in
helping with intercell interference mitigation. Relay enabled
cooperation is studied in Sec. III-E.

III. CAPACITY RESULTS FOR MULTI-CELL MIMO
COOPERATION

In this section, we address the impact of cooperation on
cellular systems from an information-theoretic standpoint. We
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Fig. 3. Illustration of multi-cell MIMO for the downlink. The BSs, each
equipped with J antennas, acquire and share channel state information and
user data, so as to mimic the behavior of a large MIMO array with MJ
antennas

mostly focus on the performance of MCP but we also consider
the interplay of such techniques with cooperation in the form
of relaying at the Mobile Stations (MSs) level.

A. Introduction

The analysis of MCP was started in the early works [8][9]
for the uplink and [12] for the downlink. The analysis in
these works is based on the assumption that the BSs are
connected via unrestricted backhaul links (error-free and un-
limited capacity) to a Central Processor (CP) and focuses on
models that, in information theoretic terms, can be seen as
symmetric Gaussian multiple-access or broadcast interference
channels. In these models, typically referred to as Wyner-type
models, a number of users per cell is served by a single-
antenna BS, as in a multiple access or broadcast channel,
and interference takes place only between adjacent cells, as in
partially connected interference networks [18]. Both models
where cells are arranged on a line or in a more conventional
bidimensional geometry can be considered, where the first
class may model systems deployed along a highway or long
corridor (see [19] for an implementation-based study), while
the second applies to more general scenarios.

In this section, we consider the multi-cell MIMO scenario of
Fig. 3 (i.e. with backhaul links allowing for some exchange of
CSI and data symbols information), however we will focus on
simplified cellular models that extend the Wyner-type models
considered in the initial works [8], [9], [12]. Specifically,
we consider the presence of limited-capacity and limited-
connectivity backhaul links, fading channels and the interplay
of MCP with relaying. We will focus on the per-cell sum-
rate as the criterion of interest. It should be noted that, while
the considered models capture some of the main features
and practical constraints of real cellular systems, such as the
locality of interference and constrained backhaul links, other
features such as user-dependent path loss are not accounted
for (see, e.g., [20]). Therefore, the models at hand can be seen
as useful simplifications of real cellular settings, that enable
insights and intuition to be obtained via analysis. It should be
also noted that the use of sum rate as a system metric may
mask other interesting features of multi-cell cooperation such

as improving the balancing of user’s quality of service from
cell center to cell edge.

B. The Linear Wyner Model

In this section, we review a basic system model for multiple
cell networks introduced in [8], [9]. We focus the attention
on linear Wyner-type models, as done in the original works.
Extension of the given results to planar models is possible,
though not always straightforward and we refer to [21] for
further discussion on this point. An extension of the model
to include relays is discussed in Section III-E of the present
paper. A linear Wyner-type model is sketched in Fig. 1. We
now present the corresponding signal models for uplink and
downlink.
1) Uplink: A general linear Wyner-type model is charac-

terized by M cells arranged on a line (as for a highway
or corridor), each equipped with a single-antenna (J = 1)
base station (BS) and K single-antenna MSs. In this class of
models, inter-cell interference at a given BS is limited to L�

BSs on the left and Lr on the right. Considering the uplink,
the received signal (1) at the mth BS, m ∈ [1, M ], at a given
time instant t ∈ [1, n] (n is the size of the transmitted block)
can then be specialized as

ym(t) =
L�∑

l=−Lr

hT
m,m−l(t)xm−l(t) + zm(t), (3)

where xm(t) is the K × 1 (complex) vector of signals
transmitted by the K MSs in the mth cell, the K × 1 vector
hm,l(t) contains the channel gains {hm,l,k} towards the mth
BS from mobiles in the lth cell (see Fig. 1 for an illustration)
and zm(t) is complex symmetric Gaussian noise with unit
power and uncorrelated over m and time. We assume equal
per-user power constraints

1
n

n∑
t=1

|[xm(t)]k|2 ≤ P

K
, (4)

for all m ∈ [1, M ] and k ∈ [1, K], so that the per-cell
power constraint is given by P . Notice that model (3) assumes
full frame and symbol-level synchronization among cells and
users, even though extensions of the available results to the
asynchronous case may be possible following, e.g., [22].

The model (3) discussed above reduces to the following
special cases that will be referred to throughout this section:

• Gaussian Wyner model: This corresponds to a static
scenario with symmetric inter-cell interference and cell-
homogeneous channel gains, i.e., we have L� = Lr = L
and hm,m−k(t) = αk1K with αk = α−k and α0 = 1.
By cell-homogeneous, we mean that the channel gains do
not depend on the cell index m, but only on the distance
between interfering cells (see also discussion below on
edge effects). Parameter L can be referred to as the inter-
cell interference span. Moreover, inter-cell gains αk ≥ 0,
k ∈ [1, L], are deterministic (no fading) and generally
known to all terminals. It is remarked that in this class
of models, all users in the same cell share the same path
loss. We also emphasize that the original model in [8],
[9] had L = 1, so that the system referred to here as
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Gaussian Wyner model is to be seen as an extension of
[8], [9];

• Gaussian soft-handoff model: This corresponds to a
static cell-homogeneous system like the Gaussian Wyner
model, in which, however, there is no symmetry in the
inter-cell channel gains. Specifically, we have inter-cell
interference only from the left cells as L� = L, Lr = 0
and hm,m−k(t) = αk1, with α0 = 1, where, as above,
αk ≥ 0 are deterministic quantities. This model accounts
for a scenario in which users are placed at the border
of the cell so that inter-cell interference is relevant only
on one side of the given cell. In a number of works,
including [23], [24], the Gaussian soft-handoff model is
studied with L = 1, which can be seen as describing a
soft-handoff situation between two adjacent cells;

• Fading Wyner model: This model incorporates fading,
accounted for by random channel gains hm,k(t), in the
Gaussian Wyner model. In particular, we have L� =
Lr = L and hm,m−k(t) = αkh̃m,m−k(t) where vectors
h̃m,m−k(t), t ∈ [1, n], are independent over m and k and
distributed according to a joint distribution πk with the
power of each entry of h̃m,m−k(t) normalized to one.
For simplicity, similar to the Gaussian Wyner model,
statistical symmetric inter-cell interference is assumed,
i.e., αk = α−k (and α0 = 1) and πk = π−k. As for
temporal variations, two scenarios are typical: (i) Quasi-
static fading: Channels h̃m,m−k(t) are constant over the
transmission of a given codeword (i.e., for t ∈ [1, n]); (ii)
Ergodic fading: Channels h̃m,m−k(t) vary in an ergodic
fashion along the symbols of the codeword. The ergodic
model was studied in [25] with L = 1;

• Fading soft-handoff model: This model is the fading
counterpart of the Gaussian soft-handoff model, and has
L1 = L, L2 = 0, and hm,m−k(t) = αkh̃m,m−k(t)
where h̃m,m−k(t) are independent and modelled as for
the fading Wyner model. This scenario was considered
in [26], [27] (under more general conditions on the joint
distribution of vectors h̃m,m−k(t)).

In order to remove edge effects, we will focus on the regime of
a large number of cells, i.e., M → ∞. This way, all cells see
exactly the same inter-cell interference scenario, possibly in a
statistical sense, as discussed above. An alternative approach,
considered, e.g., in [8], [23], would be to consider a system
in which cells are placed on a circle, which would exhibit
homogeneous inter-cell interference for any finite M. It is
noted that, however, the two models coincide in the limit of
large M and, in practice, results for the two models are very
close for relatively small values of M [21].

We now rewrite model (3) in a more compact matricial
form. We drop dependence on time t for simplicity. To
proceed, construct a M × MK channel matrix H such that
mth row collects all channel gains to mth BS, i.e., [hT

m,1,
hT

m,2, ...,h
T
m,m, hT

m,m+1, ..., hT
m,M ], where hT

m,m−k with
k /∈ [−Lr, L�] are to be considered as zero. We can then
write the M × 1 vector of received signals y = [y1, ..., yM ]T

as
y = Hx + z, (5)

where x = [xT
1 · · ·xT

M ]T is the vector of transmitted signals

cell number m - 1
base station

m m + 1

base station
(a)

(b)

CP
C C C

CC

Fig. 4. Backhaul models for MCP: (a) Central processor (CP) with finite-
capacity backhaul links (of capacity C); (b) Local finite-capacity backhaul
between adjacent BSs (of capacity C, uni- or bi-directional). Dashed lines
represent backhaul links.

and z the uncorrelated vector of unit-power Gaussian noises.
From the definition above, it is clear that, in general, H is a
finite-band matrix (in the sense that only a finite number of
diagonals have non-zero entries). Moreover, it is not difficult
to see that for Gaussian Wyner and Gaussian soft-handoff
models, matrix H has a block-Toeplitz structure, which will
be useful in the following.
2) Downlink: Define as ym the K × 1 vector of signals

received by the K MSs in the mth cell, y = [yT
1 · · ·yT

M ]T ,
and x as the M × 1 transmitted signal by the BSs. We then
have from (2)

y = H†x + z, (6)

where z is the vector of unit-power uncorrelated complex
Gaussian noise and channel matrix H is defined as above.
We assume a per-BS (and thus per-cell) power constraint
1
n

∑n
t=1 |[x(t)]m|2 ≤ P for all m ∈ [1, M ].

3) Multi-Cell Processing: For both uplink and downlink,
we will consider the two following models for the backhaul
links that enable MCP, see Fig. 4.

• Central processor (CP) with finite-capacity backhaul
(Fig. 4-(a)): In this case, all BSs are connected to a CP for
joint decoding (for uplink) or encoding (for downlink) via
finite-capacity backhaul links of capacity C [bits/channel
use]. Recall that the original works [8], [9], [12] assume
unlimited backhaul capacity, i.e., C → ∞;

• Local finite-capacity backhaul between adjacent BSs
(Fig. 4-(b)): Here BSs are connected to their neigh-
boring BSs only via finite-capacity links of capacity C
[bits/channel use], that may be uni- or bi-directional.

It is noted that two models coincide in the case of unlimited
backhaul capacity C → ∞. Also, we remark that another
popular model assumes that only BSs within a certain cluster
of cells are connected to a CP for decoding. This model will
be considered as well, albeit briefly, below.

C. Capacity Results for the Wyner Uplink Model

In the rest of this section, we elaborate on the per-cell
sum-rate achievable for the uplink of the Wyner-type models
without relays reviewed above. When not stated otherwise, we
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will focus on the Gaussian Wyner model. Fading models are
discussed in Sec. III-C5. Throughout, we assume that channel
state information (CSI) on gains {αk} is available at all nodes.
1) Single-Cell Processing (SCP) and Spatial Reuse: Con-

sider at first a baseline scheme, where Single-Cell Processing
(SCP) is performed, so that each BS decodes individually its
own K users by treating users in other cells as Gaussian noise.
A standard technique to cope with inter-cell interference is
spatial reuse, that consists in activating at a given time (or
equivalently in a given subband) only one cell every F ≥ 1
cells. Parameter F is referred to as the spatial reuse factor.
SCP with special reuse is easily seen to achieve the per-cell
sum-rate in Eq. 7 where L is the inter-cell interference span.
Rate (7) is obtained by either letting all users in a given cell
transmit at the same time with power FP/K , which we refer
to as Wide-Band (WB) transmission, or by intra-cell TDMA,
whereby each user in a cell transmits with power FP for
a fraction of time 1/K. Notice that such power allocations
satisfy the per-block power constraint (4), due to the fact that
each cell transmits for a fraction 1/F of the time.

A few remarks are in order. First, as seen in (7), if the reuse
factor F is larger than the inter-cell interference span L, SCP
with spatial reuse completely eliminates inter-cell interference
and provides a non-interference-limited behavior with per-cell
multiplexing gain2 equal to 1/F , whereas otherwise the sys-
tem operates in the interference-limited regime [8], [9]. From
this, we conclude that the presence of inter-cell interference,
if handled via SCP, leads to a rate degradation with respect to
an interference-free system at high SNR given by a factor of
L [8]. In the low SNR regime, instead, where noise dominates
inter-cell interference, using the formalism of [28]3, it can be
seen that inter-cell interference does not cause any increase in
the minimum (transmit) energy-per-bit necessary for reliable
communications Eb/N0min, which equals ln 2 = −1.59dB, as
for interference-free channels. However, if one observes also
the slope of the spectral efficiency S0 [bits/s/Hz/(3dB)], which
accounts for a higher-order expansion of the spectral efficiency
as the SNR P → 0, the loss due to inter-cell interference is
seen also in the low-SNR regime. In fact, we have for rate
(7):

Eb

N0 min

= ln 2 and S0 =

{ 2

F
“
1+4

P�L/F�
k=1 α2

kF

” if F ≤ L

2
F if F > L

,

(8)
where we recall that interference-free channels have S0 = 2.
The conclusions here are related to the analysis in [29] on the
suboptimality of TDMA for multiuser channels. As shown
below, MCP allows to overcome the limitations of SCP and
spatial reuse discussed here.

2The per-cell multiplexing gain is defined as the limit
limP→∞ R(P )/ log P, where R(P ) is the given achievable per-cell
sum-rate. A system is said to be interference-limited if the multiplexing gain
is zero, and non-interference-limited otherwise.

3Reference [28] proposes to expand an achievable rate R as a function
of the energy-per-bit Eb = P/R as R � S0

3dB

“
Eb
N0 dB

− Eb
N0 min,dB

”
,

where N0 is the noise spectral density (normalized to 1 here) and Eb
N0 min

=

1
Ṙ(0)

and S0 = (2 ln 2)
(Ṙ(0))2

(−R(0))̈
, where R(P ) is the considered rate (in

bits/channel use) as a function of the power P .

2) Unlimited Backhaul: Assume at first unlimited backhaul
links to a CP, i.e., C → ∞. The per-cell sum-capacity
RMCP (P ) with MCP in this scenario (for any M ) is given
by [9]:

RMCP (P ) =
1
M

log2 det
(
IM +

P

K
HH†

)
(9a)

=
1
M

M∑
m=1

log2

(
1+

P

K
λi(HH†)

)
(9b)

=
∫ ∞

0

log2

(
1+

P

K
x

)
dFHH†(x), (9c)

where λi(HH†) denotes eigenvalues of the argument matrix
and FHH†(x) is the empirical distribution of such eigenvalues:

FHH†(x) =
1
M

M∑
m=1

1(λi(HH†) ≤ x). (10)

The per-cell capacity (9) is achieved by performing ideal
multi-user detection at the CP (which can in practice be real-
ized by following approaches such as [30]). Moreover, it can
be attained via both an intra-cell TDMA scheme where users
transmit with power P for a fraction of time 1/K and by the
WB scheme (whereby all users transmit with full power P/K
at all times). It is noted that the optimality of TDMA is strictly
dependent on the per-block power constraint (4), and would
not hold under more restrictive conditions, such as peak or
per-symbol power constraints. More general conditions under
which TDMA is optimal, under per-block power constraints,
can be found in [8]. For instance, from [8], it is found that
TDMA would generally not be optimal in scenarios where
users had different intra- and inter-cell channel gains, such
as in fading scenarios (see Sec. III-C5). For the Gaussian
Wyner model of interest here, using Szego’s theorem, we get
that for M → ∞ rate (9) can be written [9] in a simple
integral form as in (11). Expression (11) can be interpreted
by considering the case K = 1 (without loss of generality,
given the optimality of intra-cell TDMA) and identifying the
signal received at the CP as the output (for each time instant)
of a Linear Time Invariant (LTI) filter, whose input is given
by the signals transmitted by the MSs and whose impulse
response is δm +

∑L
k=1 αkδm−k +

∑L
k=1 αkδm+k (δm is the

Kronecker delta). This integral cannot be evaluated in closed
form in general. It should be noted that in other scenarios,
such as the Gaussian soft-handoff model with L = 1, the
corresponding integral can be instead calculated in closed form
[23][24]. Notice that multiplexing gain of the MCP capacity
(11) is one, as for an interference-free scenario. Moreover, the
minimum energy-per-bit is given by

Eb

N0 min

=
ln 2

(1 + 2
∑L

k=1 α2
k)

, (12)

showing an energy gain due to MCP with respect to SCP
and to an interference-free system given by (1 + 2

∑L
k=1 α2

k)
(parameter S0 is not reported here for lack of space but can
be obtained from [21]).
3) Limited Backhaul to the CP: Consider now the scenario

in Fig. 4-(a), where the BSs are connected to a CP via finite-
capacity links. At first, we remark that the achievable per-cell
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RSCP (P, F ) =

⎧⎨
⎩

1
F log2

(
1 + FP

1+2FP
P�L/F�

k=1 α2
kF

)
if F ≤ L

1
F log2 (1 + FP ) if F > L

, (7)

RMCP (P ) =
∫ 1

0

log2

⎛
⎝1 + P

(
1 + 2

L∑
k=1

αk cos(2πkθ)

)2
⎞
⎠ dθ (11)

sum-rate is limited by the cut-set upper bound

RUB(P, C) = min{C, RMCP (P )}. (13)

Moreover, here, the performance depends on the knowledge
of codebooks used by the MSs at the BSs. Assume at first
that the BSs are unaware of the codebooks used by the MSs
(oblivious BSs). In [31], this scenario is considered, and a
per-cell achievable sum-rate is derived for a strategy whereby
the BSs simply compress (to C bits/channel use) and forward
the received signals to the CP. Compression is followed by
(random) binning, exploiting the fact that the other BSs have
correlated information, according to standard techniques in
distributed source coding (see, e.g., [32]). Decoding at the
CP is done by jointly4 decompressing the signals forwarded
by the BSs and decoding the codewords transmitted by the
users. A simple expression is found for this achievable rate in
[31]:

ROBL(P, C) = RMCP (P (1 − 2−r)), (14)

where RMCP is defined in (11) and r is the solution of the
fixed-point equation:

ROBL(P (1 − 2−r)) = C − r. (15)

In other words, the finite-capacity links entail a SNR loss of
(1 − 2−r) with respect to the unlimited backhaul capacity
(11). It is noted that parameter r has the interpretation of
the amount of capacity C that is wasted to forward channel
noise to the CP [31], [32]. Also, we remark that rate (14)
does not match the upper bound (13) in general. However,
this is not always the case, and thus optimality of (14) is
proved, in the regimes with C → ∞ (in which compression
noise becomes negligible), on the one hand, and P → ∞
(in which the performance is limited by C), on the other. It
is also interesting to point out that for low-SNR, the power
loss of the oblivious scheme at hand with respect to (11) is
quantified by calculating parameter Eb/N0min as Eb/N0min =
ln 2(1 + 2

∑L
k=1 α2

k)−1(1 − 2−C). Comparing this with (12),
one sees that in the low-SNR regime, the loss of (14) with
respect to (11) is neatly quantified by 1 − 2−C . As a final
remark, the optimal multiplexing gain of one is achieved if
the backhaul capacity C scales as log P, which coincides with
the optimal behavior predicted by the upper bound (13).

We now consider a different scenario where BSs are in-
formed about the codebooks used by the MSs both in the
same cell and in the interfering cells. In [31], a scheme is
considered where partial decoding is carried out at the BSs.

4It is interesting to notice that while joint decompression/ decoding yields
no performance benefits for regular interference-free systems [33], this is not
the case in the presence of interference (see also [34], [35]).

According to this approach, each MS splits its message and
transmitted power into two parts: The first is intended to be
decoded locally by the in-cell BS (with possible joint decoding
also of the signals from the interfering BSs) and transmitted
over the limited link to the CP, while the second part is
processed according to the oblivious scheme and is decoded by
the CP as discussed above. This scheme is shown to provide
advantages over the oblivious rate (14) when the inter-cell
interference is low (it is easy to see that it is optimal for
αk = 0, k > 0) and for small C. Another strategy that
exploits codebook knowledge at the BSs is the structured
coding scheme proposed in [36] and reviewed below.

In [36], it is proposed that the BSs, rather than decoding
the individual messages (or parts thereof) of the MSs as in
[31], decode instead a function of such messages or, more
precisely, of the corresponding transmitted codewords. The
key idea that enables this operation is the use of structured,
rather than randomly constructed, codes. Each MS employs
the same nested lattice code and the signal received at any mth
BS can be written from (11) as ym =

∑L
k=−L αkxm−k + zm.

Recalling that a lattice code is a discrete group, the (modulo5)
sum of the lattice codewords xm−k, weighted by integer
coefficients, is still a codeword in the same lattice code and
can thus be decoded by the mth BS. The problem is that
the channel coefficients αk are generally not integers. The
mth BS can however decode an arbitrary linear combination∑L

k=−L bkxm−k with bk ∈ Z (and by symmetry bk = b−k)
and b0 �= 0 and treat the remaining part of the signal as
Gaussian noise. The index of the decoded codeword can
then be sent to the CP, that decodes based on all received
linear combinations. This leads to the achievable rate [36]
shown in (16) where B ={(b0, .., bL) ∈ Z : b0 �= 0 and
b2
0 + 2

∑L
k=1 b2

k ≤ 1 + P (1 + 2
∑L

k=1 α2
k)}. As shown in

[36], this rate may outperform (14) for low and high inter-
cell interference ([36] considers the case L = 1). Moreover,
[36] proves that rate (16) can be improved by superimposing
additional messages to the lattice codewords.
4) Local BS backhaul: In this section, we turn to the

model in Fig. 4-(b), where BSs are connected only to their
neighboring BS via finite-capacity links. At first, for reference,
we consider the related cluster-decoding setting of [37], where
each BS, say the mth, can decode based not only on the locally
received signal ym but also on the received signals from i�
BSs on the left (ym−k with k ∈ [1, i�]) and ir BSs on the
right (ym+k with k ∈ [1, ir]). Notice that this accounts for
a situation where unlimited capacity backhaul links connect

5The modulo operation is taken with respect to the coarse lattice forming
the nested lattice code.
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RLAT = min

{
C, max

(b0,..,bL)∈B
− log

(
b2
0 + 2

L∑
k=1

b2
k − P (b0 + 2

∑L
k=1 αkbk)2

1 + P (1 + 2
∑L

k=1 α2
k)

)}
, (16)

BSs, but only within a certain range of cells. Reference [37]
obtains the maximum multiplexing gain of this setting for
a Gaussian soft-handoff model with L = 1 with intra-cell
TDMA (or equivalently K = 1). The model of [37] also
assumes that MSs are aware, before choosing the transmitted
codewords, of the messages of the MSs in J� cells on the left
and Jr cells on the right. This is a simple way to account for
cooperation at the MS level, and will be further discussed in
Sec. III-E. The maximum multiplexing gain is given by

J� + Jr + i� + ir + 1
J� + Jr + i� + ir + 2

, (17)

showing that with clustered decoding the multiplexing gain
is generally less than one, but larger than 1/2, as achievable
with SCP and spatial reuse (see Sec. III-C1). Moreover, this
shows that (for the soft-handoff model), left and right side
informations have the same impact on the multiplexing gain,
and the same applies to cooperation at the MSs or cluster
decoding. Multiplexing gain (17) is achieved by successive
interference cancellation at the BSs, where BSs exchange
information about the decoded signals (see also below), and
Dirty Paper Coding (DPC)-based cooperation at the users. It
is noted that this scheme requires knowledge of the codebooks
used in adjacent cells by both BSs and MSs. A model with
cluster decoding at the BSs, but no cooperation amongst the
mobiles, is considered in [38, Section IV], where similar
general conclusions about the multiplexing gain are obtained.

In the presence of finite-capacity backhaul, the inter-BS
links can be used to provide limited-rate information about
the received signal or a processed version thereof to adjacent
BSs. Such "relaying" has in general the double purpose of
providing information about the useful signal of the recipient
but also of the interference. This observation has also been
made in the context of interference relay channels (see review
in [39]). Along these lines, it is noted that the model and
techniques at hand are very related to interference channels
with "conferencing" decoders studied in [34], [40]. Consider,
as in [41], a soft-handoff model with L = 1 and unidirectional
backhaul links allowing information to be passed to the right.
Assuming knowledge of only the local codebook, a successive
decoding scheme can be devised in which each BS decodes
the local message and sends the quantized decoded codeword
to the neighboring (right) BS for interference mitigation. It is
not difficult to see that such a scheme has zero multiplexing
gain since it is not able to fully mitigate the interference.
This is in contrast with the case where BSs have information
about the codebooks used in adjacent cells. In this case, as in
[37] (see discussion above), it becomes possible to perform
joint decoding of the local message and of (possibly part
of) the interfering message, and to use the backhaul link
to convey directly hard information (messages) rather than
soft information about the decoded codewords. This allows a
non-interference limited behavior to be attained: Specifically,
assuming that C grows like β log P, the multiplexing gain

min(1, 0.5 + β) can be attained [41].
5) Fading Channels: In this section, we discuss available

results on the sum-rate of fading Wyner and soft-handoff
models. We consider both quasi-static and ergodic fading
below.

a) Quasi-static Fading: With quasi-static fading, the
outage capacity is typically used as a performance criterion
[42]. This is, generally speaking, the maximum rate that guar-
antees reliable transmission for a given percentage of channel
realizations (the measure of whose complement is referred to
as outage probability). This setting implies either lack of CSI
at the users (so that rate adaptation is not possible) or inelastic
constant-rate applications. Using such a criterion in a large-
scale cellular system with MCP proves to be challenging: In
fact, on the one hand, defining outage as the event where
any of the users’ messages are not correctly decoded leads to
uninteresting results as the number of cells M grows large; On
the other hand, defining individual outage events, as studied in
[43] for a two-user MAC, appears to be analytically intractable
for large systems (see [44] for related work).

A tractable performance criterion is instead obtained by
considering the achievable per-cell sum-rate (9) for given
channel realizations in the limit as the number of users per
cell K and/or the number of cells M grow large, where
the limit is defined in an almost sure sense. It is noted that
such per-cell sum-rate is achievable by appropriate choice
of distinct rates by the MSs, and such choice depends on
the current realization of the channel matrices. The practical
significance of this criterion is thus limited to instances in
which, thanks to appropriate signaling, such rate adaptation is
possible. Therefore, we review these results below as they are
practically more relevant in the context of ergodic channels.

b) Ergodic Fading: With ergodic fading, the per-cell
sum-capacity is given by the expectation of (9c) with respect
to the distribution of H, i.e., Rerg

MCP (P ) = E[RMCP (P )]. It
is noted that such rate can be attained, due to the (stochastic)
symmetry of the considered model (neglecting edge effects by
taking the limit M → ∞) by equal rate allocation to all users.
Moreover, it is achieved by a WB scheme (all users transmit
at the same time), the rate of intra-cell TDMA being generally
smaller. This is in contrast with Gaussian (unfaded) models, as
discussed in Sec. III-C1, and is in line with standard results for
multiple access channels [45], [46]. It is also noted that with
SCP, when treating interference as noise as in (7), intra-cell
TDMA may instead be advantageous over WB when intercell
interference takes place and exceeds a given threshold [46].
Some performance comparison between intra-cell TDMA and
spatial reuse in the presence of MCP for the soft-handoff
model with L = 1 and Rayleigh fading can be found in [47].

To evaluate Rerg
MCP (P ), one can either use approximations

based on bounding techniques as in [25] or the fact that, if
FHH†(x) converges almost surely in some asymptotic regime
of interest to some limiting distribution (spectrum) F (x), then
Rerg

MCP (P ) converges to (9c) with FHH†(x) = F (x) (see, e.g.,
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[48]). We discuss below two such regimes.
Consider first the asymptotics with respect to K and M

(with the inter-cell interference span L kept fixed). Let us
assume that the distribution πk of vectors h̃m,k (recall Sec.
III-B) is such that each channel vector can be seen as a
realization of a stationary and ergodic process with unit power
and mean 0 ≤ μ ≤ 1 (and thus variance 1−μ2). In this case,
it can be verified that matrix HH† converges almost surely to
a deterministic Toeplitz matrix due to the strong law of large
numbers [8]. Now, using Szego’s theorem, similarly to (11),
we have that for K → ∞ and M → ∞ (taken in this order)
we obtain (18) (see [25]).

Notice that we recover (11) for μ = 1, which corresponds
to an unfaded scenario. It can be proved, similarly to [25], that
(18) is decreasing in μ2, which implies that fading is beneficial
in the limit of a large number of users. It is remarked that this
may not be the case for a finite number of users K, as can
easily be seen by noticing that for K = 1 and no inter-cell
interference, one obtains a point-to-point link for which fading
is known not to increase the rate [25], [26]. It is noted that
the potential benefits of fading are related to the independence
of the fading gains towards different BSs and thus cannot be
mimicked by the MSs [25][23] (see also [8, Section 5.1.2]
for a discussion on the effect of fading on the multiplexing
gain, and on the power offset term). Moreover, from Jensen’s
inequality, it can be seen that (18) is an upper bound on the
ergodic per-cell capacity for any number of users K [25].
Finally, rate (18) does not depend on the actual (stationary and
ergodic) distribution πk but only on its first two moments.

Consider now a regime where K is fixed and M grows to
infinity. An approximation of the limiting spectrum F (x), and
thus of the per-cell rate Rerg

MCP (P ), has been obtained in [49]
for the fading Wyner model with L = 1 and Rayleigh fading
using free probability tools. Such approximation is seen to
be accurate only for small values of the interference gain α1.
In [26], [27], exact results on the convergence of per-cell rate
(9a) are studied for the fading soft-handoff model. Almost sure
convergence to a limit that depends on the Lyapunov exponent
of a certain product of matrices is shown (see also [50] for
related work). A central limit theorem is also proven in [27]
along with a corresponding large deviation result, providing
evidence to the fact that, given the limited randomness present
in matrix H (due to the banded structure), convergence is
slower than in classical random matrix theory (see, e.g., [51]).
Finally, [52] characterizes the high-SNR behavior (in the sense
of [53]) of (9a) as M grows large and K = 1 user and L = 1.
Performance bounds are also provided for K > 1. The result
shows that such behavior depends on the specific distribution
πk, lending evidence to the conclusion that, in the case of
finite-band matrices, the limit spectrum depends on the entries’
distribution, unlike standard random matrix theory [25], [48].
We also remark that in the fading soft-handoff model with
Rayleigh fading, L = 1, and intra-cell TDMA (or equivalently
K = 1), the ergodic rate Rerg

MCP (P ) can be found in a compact
integral form as shown in [54], [23]. Reference [47] obtains
related bounds for K > 1.

Finally, we point to [46], where the effect of fading on a
Wyner model with ideal cooperation only between adjacent
cell sites is studied.

c) MIMO Fading Models: Another extension is to con-
sider multiple antennas at the BS, with fading from each
antenna to each user. Uplink models comparing SCP to
MCP in this context are considered in [55], [56]. In [55]
an asymptotic regime is considered in which the number of
antennas at the base station, and the number of mobiles, grow
large together, in a circular Wyner model. It is shown that the
degrees of freedom depend on the system loading (number of
users per base station antenna), but, if SCP and MCP are both
optimally loaded (respectively), then MCP gains over SCP by
a factor of three, but the gap can be reduced to a factor of
two via the use of a re-use factor of two, with even and odd
cells in separate bands.

d) Channel uncertainty: Channel uncertainty has not
been adequately treated in the network MIMO literature to
date. Its importance can be seen from the point to point
MIMO channel where it is known that the number of transmit
antennas should not exceed the number of symbols in the
coherence block [57]. The reason is that part of the block of
symbols must be used for training so that the MIMO channels
can be measured at the receiver. If the coherence time is long
relative to the symbol period then the number of antennas
can be large, but if the coherence time is one symbol duration
then one antenna is optimal. Note that the limiting asymptotics
discussed in c) implicitly assume that the coherence time is
growing with the number of users. Thus, channel uncertainty
has implications for MIMO scalability, and we will discuss
this issue further in Section V.
6) Numerical Results: We now focus on a numerical ex-

ample for a Gaussian Wyner model with L = 1. Fig. 5 shows
the per-cell sum-rate achievable by the techniques discussed
above, namely SCP with spatial reuse F = 1 and F = 2
(7), ideal MCP (11), oblivious processing at the BSs (14)
with backhaul capacity C = 5 and lattice coding (16) with
C = 5. We have P = 15dB and the inter-cell interference
power gain α2

1 is varied. It can be seen that SCP with spatial
reuse F = 1 provides interference-limited performance, while
with F = 2 inter-cell interference is eliminated, but at the
cost of possibly reducing the achievable rate. MCP provides
remarkable performance gains, and can potentially benefit
from larger inter-cell power gains α2

1. When the backhaul
capacity is restricted to C = 5 (which is of the order of the
per-cell achievable rates at hand), it is seen that by choosing
the best between the oblivious BS scheme and the lattice-
based scheme, one performs fairly close to the bound of
ideal MCP. Moreover, lattice-based coding has performance
advantages over oblivious processing for sufficiently large or
small interference, large P (not shown here) and moderate C.
Increasing the capacity C to say C = 8, leads to an almost
ideal rate with the oblivious strategy (consistently with its
asymptotic optimality for P → ∞), while lattice coding does
not improve its performance.

D. Capacity Results for the Wyner Downlink Model

In this section, we review corresponding results for the
downlink. Reference results using SCP and frequency reuse
are similar to Sec. III-C1 and need not be discussed here.
We focus, as for the uplink, on Gaussian models and briefly
discuss the impact of fading in Sec. III-D3.
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Fig. 5. Uplink of a Gaussian Wyner model with L = 1: Per-cell sum-rate
achievable by SCP with spatial reuse F = 1 and F = 2 (7), ideal MCP
(11), oblivious processing at the BSs (14) with backhaul capacity C = 5 and
lattice coding (16) with C = 5 versus the inter-cell interference power gain
α2

1 (P = 15dB).

1) Unlimited Backhaul: Consider first the case of unlimited
backhaul. Reference [12] derives achievable rates based on the
linear precoding dirty paper coding strategy of [58]. The per-
cell sum-capacity is instead derived in [23] using the uplink-
downlink duality results of [59] as

RMCP (P ) =
1
M

min
Λ

max
D

log2

det
(
Λ + P

K HDH†
)

det (Λ)
, (19)

with Λ and D being diagonal MK ×MK matrices with the
constraints tr(Λ) ≤ M and tr(D) ≤ M. This rate is known to
be achieved by dirty paper coding at the CP. For the Gaussian
Wyner (circulant) model, it can be shown that the per-cell sum-
capacity (19) is exactly equal to the corresponding capacity for
the uplink (11) for M → ∞. It follows that, as for the uplink,
intra-cell TDMA, where only one user is served per-cell, is
optimal with Gaussian (unfaded) channels.
2) Limited Backhaul to a CP: Similarly to the uplink,

strategies to be used in the presence of limited backhaul to a
CP depend on the level of codebook information available at
the BSs. For oblivious BSs, reference [60] proposes to perform
joint DPC under individual power constraint at the CP and then
send the obtained codewords to the corresponding BSs via the
backhaul links. The BSs simply transmit the compressed DPC-
codewords. Since the transmitted quantization noise decreases
the overall SNR seen by the MSs, joint DPC at the CP is
designed to meet lower SNR values and tighter power con-
straints than those of the unlimited setup [23]. The resulting
per-cell rate is shown to be equal to (11) but with a degraded

SNR
P̄ =

P

1 +
1+P(1+2

PL
k=1 α2

k)
2C−1

(20)

due to quantization noise. Similarly to the corresponding result
(14) for the uplink, this rate is generally suboptimal but it
achieves cut-set bound (13) (which is still a valid bound
also for the downlink) for C → ∞ (where the compression
noise is dominant). However, unlike for the uplink, this rate
is not optimal for P → ∞: This fact can be understood
by noticing that in the high-SNR regime, the compression
noise dominates the performance, and, in the downlink, the
compression noise is dealt with independently by each MS,
unlike in the uplink, where decompression is performed jointly
at the CP. Interestingly, for low-SNR the power loss in terms
of Eb/N0min turns out to be exactly the same as for the uplink,
being given by (1 − 2−C). Moreover, as for the uplink rate
(14), optimal multiplexing gain of 1 per-cell is achieved if
C ∼ log P.

Reference [60] also considers the case where the BSs
possess codebook information about adjacent BSs belonging
to a given cluster and proposes to perform DPC within the
given cluster. The main conclusion of [60] is that the oblivious
scheme is the preferred choice for small-to-moderate SNRs or
when the backhaul capacity C is allowed to increase with
the SNR. On the other hand, for high SNR values and fixed
capacity C, a system with oblivious BSs is limited by the
quantization noise, and knowledge of the codebooks at the
BSs becomes the factor dominating the performance.
3) Fading Channels: Following the discussion in Sec.

III-C5, here we focus on the ergodic fading scenario. For this
setting, the per-cell sum-capacity is given by Rerg

MCP (P ) =
E[RMCP (P )] using (19). Evaluating this quantity is not an
easy task due to the min-max operation involved. In [23],
upper and lower bounds on Rerg

MCP (P ) are derived for the
fading soft-handoff model with L = 1 and Rayleigh fading,
along with asymptotic SNR characterizations. An important
finding from such analysis is that, for large number K of users
per cell, the per-cell sum-rate capacity scales as log log K ,
which is the same type of scaling as for interference-free
systems. A suboptimal scheme is then proposed in [61] based
on zero-forcing (ZF) beamforming and a simple user selection
(scheduling) rule whereby one user is served in each cell at
any given time in an intra-cell TDMA fashion. It is found
that, even this suboptimal scheme is able to achieve the same
optimal scaling law of log log K with Rayleigh fading.

An illustration of the achievable per-cell rates in a fading
Wyner model with L = 1 and α2

1 = 0.4 is shown in Fig.
6. Specifically, the per-cell achievable rates with SCP and
spectral reuse F = 1 and F = 2 (obtained similarly to Sec.
III-C1), with ideal MCP (shown is the upper bound of [23])
and with the ZF beamforming and scheduling scheme of [61]
are plotted versus the power P and for K = 50 users per
cell. The interference-limited behavior of SCP with F = 1
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is apparent and so is the performance gain achievable via
MCP. It is also interesting to notice that the suboptimal ZF
beamforming scheme performs relatively close to the upper
bound set by ideal MCP.

E. Relay-aided Models

In modern cellular systems, the presence of dedicated
relays is considered to be instrumental in extending coverage
by enabling multi-hop communications or, more generally,
cooperation at the MS level [62]. Here, we briefly review a
model that accounts for the presence of dedicated relays, one
per cell, in a Wyner-type setting (first considered in [63]). We
focus on the uplink for simplicity and assume that the users
are sufficiently far from the BSs so that the direct link from
MS to BS can be neglected. We thus end up with two Wyner-
type models, one from the users to the relays and one from the
relays to the BSs (see Fig. 7). We will refer to these as first
and second hop, respectively. We assume that the relays are
full-duplex so that they can transmit and receive at the same
time. The protocols we consider, except when stated otherwise,
work by pipelining transmission on the two hops: The mobiles
send a new message to the relays in every block, while the
relays transmit to the BSs a signal obtained by processing the
samples received in the previous block. Given the assumption
of no direct link between mobiles and BSs, it is easy to see
that results with half-duplex relays are immediately derived
by halving the spectral efficiencies obtained for the full-duplex
case (a new message can only be sent once every two blocks).

Denoting as L� and Lr the maximum inter-cell interference
spans on the left and right, respectively, for the two hops, we
can write the signal model, similar to (5), as follows. The
M × 1 signal received at the relays can be written as

yR= Hx + TxR + zR, (21)

where H is defined as in (5), and contains the channel gains
for the first hop (MSs-relays), x is as in (5) and zR is the
Gaussian noise. The new element here is the M ×1 signal xR

transmitted by the relays. The possible interference among
relays in different cells is accounted for by matrix T. Here,
we assume that there is interference only between relays in
adjacent cells, and that such interference is symmetric, so that
T is a symmetric Toeplitz matrix with first row equal to [0
μ 0T

M−2], where μ represent the inter-relay gains. Finally, the
signal received at the BSs is given by

y = HRxR+z, (22)

where now HR is the matrix containing the channel gains
from relays to BSs and is defined similarly to H (see also Fig.
7). We assume per-relay (and thus per-cell) power constraint
1
n

∑n
t=1 |[xR(t)]m|2 ≤ Q, for m ∈ [1, M ].

Consider now the performance of cooperation in cellular
networks in the presence of dedicated relay stations, following
the uplink model discussed above. Depending on whether
one assumes SCP or MCP, the system can be seen as an
interference network with relays or as a multiple access
channel with multiple relays and a multiple-antenna receiver,
respectively. We remark that, in both cases, general conclusive
results are unavailable even in the simple two-user cases con-
sidered in [39], [64]. Analysis, in terms of achievable per-cell
sum-rate and corresponding upper bounds, has been pursued
by assuming different transmission strategies and intra-cell
TDMA (or equivalently K = 1). Specifically, reference [63]
considers half-duplex amplify-and-forward (AF) processing at
the relays, [65] studies half-duplex decode-and-forward (DF)
relays, [66] full-duplex AF operation, [67] full-duplex DF and
[68] full-duplex compress-and-forward, CF. In the following,
we briefly review some results for the full duplex case.

In [66], the performance of AF with both SCP and MCP
is studied. Relays simply delay the received symbol by at
least one time unit, amplify and forward it, sample by sample.
Closed-form analytical expressions are obtained for the per-
cell sum-rate based on the observation that the received signal
can be seen as the output of a two-dimensional LTI channel
via Szego’s theorem. The performance of both SCP and MCP
is shown to be independent of the time-delay applied by
the relays. It is observed that the rates of both schemes
are decreasing with the intra-relay interference factor μ. It
is also shown that using the full power Q of the relays is
unconditionally optimal only for the MCP scheme, while this
is not the case with SCP.

In [68], CF relaying with SCP and MCP is studied. Here,
the relays operate in blocks, as explained in Sec. III-B, by
collecting a number of received samples and compressing
the received signal using a vector quantizer. Each BS for
SCP, or the CP for MCP, decodes based on the quantized
signals received from either the local relay (for SCP) or all
the relays (for MCP). For MCP, due to the correlation among
the received signals at the relays, distributed compression
techniques are applied similarly to [31]. Moreover, the CF
scheme with MCP exploits side information available at the
CP regarding the signals transmitted by the relays (which are
in fact decoded at the CP). It is proved that the scheme can
completely remove the effect of the inter-relay interference. It
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Fig. 7. Relay-aided linear Wyner models with inter-cell interference spans
L� = Lr = 1 and K = 3 MSs per cell.

is noted that, in the nomenclature of the standard IEEE 802.16j
[62], both CF and AF, which are non-regenerative relaying
schemes, classify as transparent relaying strategies in that no
knowledge of their presence is required at the mobiles. Also,
the relays do not require information regarding the codebooks
used by the terminals.

Finally, in [67], a regenerative relaying scheme based on
DF is considered. Here, codebook information is required
at the relays and generally the proposed schemes are non-
transparent. The idea is to use rate splitting at the mobile
in a similar manner to the standard technique for interference
channels [69] so that each relay decodes not only the message
of the local mobile (recall that we are assuming intra-cell
TDMA), but also part of the message of the adjacent mobiles.
This way, the relays can cooperate while transmitting towards
the BSs by beamforming the common information.

A comparison among the performance of the schemes
described above is shown in Fig. 8 versus the ratio Q/P
between the power constraint at the relays (Q) and that at
the MSs (P ). A first observation is the interplay between SCP
or MCP (i.e., cooperation at the BSs) and cooperation via
dedicated relays through different strategies. Specifically, it
can be seen that if SCP is deployed, DF is advantageous with
respect to CF, and also with respect to AF, if the power of
the sources is sufficiently larger than that of the relays. It
is noted that CF performs very poorly due to its inability to
beamform the users’ signals towards the BSs, unlike DF and
AF. However, if MCP is in place, the situation is remarkably
different in that DF is outperformed by both CF and AF unless
the sources’ power is sufficiently larger than that of the relays.
This is because DF is limited by the performance bottleneck
due to the need to decode at the relay stations, which prevents
the system from benefiting from MCP. Finally, it is seen that
the proposed CF scheme performs close to optimal if the relay
power is sufficiently large.

We finally recall a different model for cooperation at
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Fig. 8. Per-cell sum-rates achieved by different relaying schemes with SCP
or MCP versus the ratio Q/P between the power constraint at the relays (Q)
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the mobile level that does not involve dedicated relays but
inter-mobile transmission. Namely, [70] models the inter-user
links as orthogonal to the main uplink channel, whereas a
generalized feedback model (in the sense of [71]) is considered
in [67].

F. Conclusions from the Information-Theoretic Models

This section has illustrated, via information-theoretic ar-
guments, the advantages of cooperation in cellular systems.
Cooperation among the BSs (or MCP) has been shown to be
able to potentially increase the sum-capacity of the network
by an amount proportional to the inter-cell interference span
(i.e., number of BSs interfered by a local transmission) with
respect to standard single-cell strategies with spatial reuse.
While initial work demonstrated such benefits under idealistic
conditions, in terms of, e.g., absence of fading and perfect
backhaul, more recent research has confirmed the promises of
MCP under more practical conditions.

In this section, we have reviewed more recent research
that includes practical constraints such as limited backhaul
bandwidth, localized base station clustering, and the effect
of fading. We conclude that with oblivious BSs there is an
Eb/N0min penalty incurred by limited backhaul, but the capac-
ity is unaffected provided that the backhaul bandwidth scales
as log SNR. Not surprisingly, the impact of BS clustering is
not significant provided that the clusters are sufficiently large,
see equation (17). On the other hand, the effect of fading is
somewhat surprising. As well known for general MIMO links,
fading provides the degrees of freedom. But with MCP, it turns
out that with a large number of users and BSs, the capacity
is increasing in the variance of the fading.

The performance benefits of cooperation at the MS level
have been reviewed as well, along with considerations re-
garding the strong interplay between the design of relaying
strategies and MCP techniques. Here, there is much scope
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for further research, and most of the results reported are of
a preliminary nature: Even the simple relay channel is an
open problem in information theory. But achieveable rates can
easily be calculated for particular schemes such as AF, CF, and
DF. We conclude that for sufficiently powerful relays, CF is
the best technique under MCP. These results show that the
MCP model with relays is stimulating new efforts in network
information theory.

The presentation has also briefly touched upon the potential
gains achievable by exploiting novel transmission strategies
such as structured codes. Other advanced techniques, not dis-
cussed here, such as interference alignment are also expected
to have an important role to play in cooperative cellular
systems (see, e.g., [72]). Other related issues of interest are
the impact of imperfect channel state information and robust
coding strategies [73]. This area remains an active and fertile
field for research and is briefly addressed in the next sections.

IV. TRANSMISSION AND CODING TECHNIQUES

This section provides an overview of transmission and
signaling strategies for practical multi-cell MIMO networks,
in which the base-stations cooperate. The nature of coop-
eration (interference coordination or MCP) determines the
suitable strategies in various cases. Some of these strategies
are straightforward extensions of traditional MIMO signaling
techniques, while many others require novel and nontrivial
ideas. This section also reviews the possible optimization
methods. The optimization space involves scheduling, power
allocation, transmit and receive beamforming, as well as
choices of transmission strategies. One of the objectives of
this section is to highlight the difference between single-cell
MIMO techniques and multi-cell techniques. When appropri-
ate, the possible distributed implementation of an algorithm is
mentioned, since distributed processing is a primary challenge
for the design of multi-cell MIMO networks. However this
issue is visited in greater detail in Section V. Below we
distinguish between the techniques involving CSI exchange
only (interference coordination) and the MCP schemes which
require both CSI and user data exchange, and provide an
overview of coding, precoding and optimization strategies in
each of these cases.

A. Interference coordination strategies

Consider first a basic level of coordination where only the
channel state information of the direct and interfering channels
are shared among the BSs, a setup illustrated earlier in Fig.
2. The availability of channel state information allows the
transmission strategies across the different cells to adapt to
the channel state jointly. Transmission strategies can include
scheduling, power control, beamforming, as well as advanced
coding methods specifically designed for interference mitiga-
tion.
1) Coordinated power control: In an interference-limited

cellular network, joint power control and scheduling across
the multiple BSs that adapts to the channel condition of the
entire network can bring improvement over traditional per-
cell power control. This is especially evident when cellular
topology is such that cells significantly overlap.

The resource allocation problem in the multi-cell setting
has been studied extensively in the literature [17], [74], [75],
[76], [77], [78], [79]. In the following, we consider a simple
scenario where both the BS and the remote users are equipped
with a single antenna to illustrate the main challenge in multi-
cell power control. In this setting, there is a surprising result
for the special case of an arbitrary two-cell set-up where the
optimum sum-rate maximizing power allocation policy is in
fact binary, i.e. the optimum strategy involves either both
cells operating at maximum allowed power or one cell being
completely shut down [74]. This result does not extend to
more than two cells however.

In a more general setting, consider an orthogonal frequency-
division multiple-access (OFDMA) system in which multiple
users within each cell are separated in the frequency domain.
Note that the multiple access across the multiple cells is not
orthogonal since we allow for full reuse of the frequency
tones from one cell to the next. The joint power control and
scheduling problem is that of deciding which user should be
served and how much power should be used on each frequency
tone. Mathematically, in a multi-cell network with M cells,
K users per cell, and N OFDM tones, let hn

l,m,k denote the
channel response between the lth BS and the kth user in the
mth cell in tone n. Let Pn

l denote the power allocation at the
lth BS and nth tone. The multi-cell downlink weighted rate
maximization problem is

max
M∑
l=l

K∑
k=1

αlkRlk (23)

s.t. Rlk =
∑

n∈Nlk

log

(
1 +

Pn
l |hn

l,l,k|2∑
j �=l Pn

j |hn
j,l,k|2 + 1

)

where Nlk denotes the set of frequency tones in which the kth
user in the lth cell is scheduled. Here, αlk signals the priority
of each user, whose value is typically determined by higher-
level protocols, and the background noise variance is assumed
to be one without loss of generality. Further, either peak or
total power constraints are typically imposed in addition.

Numerically finding the global optimal solution to the above
optimization problem is known to be a difficult problem [80].
No convex reformulation of the above problem is known,
even in the simpler case of fixed scheduling. In [81], [77],
[78], [82], an approach which iterates between scheduling and
power allocation has been proposed, but the core difficulty,
namely the nonconvexity of the signal-to-interference-and-
noise (SINR) expression remains.

One approach for solving the power allocation problem is
to let each cell independently optimize its own transmission
power in a game theoretical model, where the multiple cells
eventually converge to a competitive optimum (e.g., [83], [84],
[85]). However, further performance gain can be obtained if
cells cooperate.

One idea is to encourage an interfering transmitter to lower
its transmit power whenever it causes too much interference
to neighboring transmitter-receiver pairs. Toward this end, a
promising approach is to devise a mechanism to measure the
impact of each transmitter’s interference on its neighbors’
transmissions, then to coordinate BSs based on the exchange
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of these measures. This idea is called interference pricing,
which has been proposed for the power spectrum adaptation
problem for the wireless ad-hoc network [86], [87], [88],
[89], the digital subscriber line network [90], and is also
applicable to wireless multi-cell networks [78], [82]. As shown
in these studies, coordinating power control can already yield
appreciable improvement in the overall sum rate as compared
to a non-coordinated system.
2) Coordinated beamforming: When the BSs are equipped

with multiple antennas, the availability of additional spatial
dimensions allows the possibility of coordinating beamform-
ing vectors across the BSs, further improving the overall
performance. This idea has been explored in [91], [76], [92],
[93], [94].

The optimization problem associated with multi-cell joint
scheduling, beamforming and power allocation inherits the
nonconvex structure of the multi-cell power control problem
discussed above. However, there is a particular formulation
that enjoys efficient and global optimal solution — this is
when the problem is formulated as the minimization of the
transmit power across the BSs subject to SINR constraints in
a frequency flat channel for the case where the remote users
are equipped with a single antenna only. This formulation is
most applicable to constant bit-rate applications with fixed
quality-of-service constraints.

Let wl,k be the downlink transmit beamforming vector for
the kth user in the lth cell, the downlink SINR for the kth
user in the lth cell can be expressed as:

Γl,k =
|h†

l,l,kwl,k|2∑
n�=k |h†

l,l,kwl,n|2 +
∑

j �=l,n |h†
j,l,kwj,n|2 + 1

(24)

where hj,l,k is now the vector channel from the jth BS to the
kth user in the lth cell. Let γl,k be the SINR target for the
kth user in the lth cell. We can formulate, for example, a total
downlink transmit power minimization problem as follows:

minimize
M∑
l=1

K∑
k=1

||wl,k||2 (25)

subject to Γl,k ≥ γl,k, ∀l = 1 · · ·M, k = 1 · · ·K
where the minimization is over the wl,k’s, which implicitly
include both transmit direction and transmit power optimiza-
tion. For simplicity, we assume that the set of SINR targets
are feasible.

Intuitively, coordinating beamforming vectors across the
BSs are beneficial when the number of BS antennas exceeds
the number of simultaneous users in each cell, in which
case the BS has spare spatial dimensions for interference
mitigation. In the case where the number of spare dimensions
exceeds the number of dominant interferers in every cell, a
complete nulling of interference within each cell is possible
using a per-cell zero-forcing solution. Insight into the optimal
cell loading under coordinated beamforming has been obtained
in [95] using large systems analysis.

The key challenge to coordinated beamforming is to co-
ordinate the BSs in such a way as to enable them to find an
optimal solution jointly without excessive exchange of channel
state information. This turns out to be possible using a tool
known as uplink-downlink duality.

The transmit downlink beamforming problem for the multi-
cell system is first considered in the classic work of [96],
where an algorithm for iteratively optimizing the beamforming
vectors and power allocations is proposed. The key idea is
to consider a virtual dual uplink network with transmitters
and receivers reversed (so that the uplink channels are the
Hermitian transpose of the original downlink channels). The
algorithm of [96] proposes to use the optimal uplink receiver
beamformers (which are easy to find using the minimum
mean-squared error (MMSE) criterion) as the downlink trans-
mit beamformer, then to iterate between the beamformer
update step and the power update step to satisfy the target
SINRs. The optimality of this algorithm can be established
for the single-cell network using several different techniques
based on convex optimization methods [97], [98], [99], [100],
[101]. In particular, the semidefinite relaxation approach of
[98] and the second-order cone programming reformulation of
[101] also lead to new and more efficient numerical algorithms
for finding the optimal beamformers and powers. Further, it is
possible to show that uplink-downlink duality is an example
of Lagrangian duality in optimization [59].

The use of convex optimization ideas for establishing dual-
ity and for optimal beamforming can be extended to the multi-
cell setting [102], [92]. One consequence of the duality result
is that it suggests a way of implementing optimal multi-cell
beamforming and power control in a distributed fashion for a
time-division duplex (TDD) system, where channel reciprocity
guarantees that the actual uplink channels are identical to the
virtual dual uplink channels. In this case, the optimal transmit
beamformers for the downlink can just simply be set as the
MMSE receive beamformers for the uplink. Together with
a distributed downlink power control step, this provides a
distributed and optimal solution to the problem (25) [92].

The duality result can be further extended to account for the
optimization objective of minimizing per-BS or per-antenna
powers. The idea is to set up the optimization problem as that
of minimizing the weighted sum power, where the weights can
be adjusted to tradeoff powers among different BS antennas,
and where the weights enter the dual channel as scaling
factors for the dual virtual noise variances [59], [92]. In
addition, duality also holds for the case where the remote
users are equipped with multiple receive antennas as well
[103]. However, the iterative updating of transmit beamformer,
receive beamformer and the power is no longer guaranteed to
converge to the global optimal solution; only a local optimal
solution is guaranteed in this case.

Finally, duality holds not only for the power minimization
problem formulated in (25), but also for the complementary
problem of rate region maximization subject to power con-
straints (e.g., [104], [105]). This latter problem is of interest
in variable rate-adaptive applications. However, as both uplink
and downlink networks are MIMO multi-cell interference
networks, finding the optimal solution to either problem is
a challenging task. In this realm, [106] used an approach
based on the first-order condition of the optimization problem,
and [107] used a rate profile approach to reach the boundary
points of the rate region. In addition, much work has also
been done to identify solutions from a competitive (e.g., [108])
or egotistic vs. altruistic points of view [109], [93], [110].
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Although competitive optimal solutions are not global optimal
solutions for the entire network, they nevertheless can offer
improvement over existing static networks.
3) Coding for interference mitigation: So far, we have

focused on transmission strategies which treat intercell in-
terference as noise. For interference-limited networks, it is
possible to further improve these strategies by considering
the possibility of detecting then subtracting the interference.
In currently deployed cellular networks, interference signals
are typically too weak to be detected by out-of-cell users.
The key to make interference decoding work is to specifically
design transmit signals to facilitate detection at neighboring
cells — as suggested by information theoretical results on the
interference channel.

The largest known achievable rate region for the two-user
interference channel is the celebrated Han-Kobayashi region
[69] derived based on the idea of splitting each user’s transmit
signal into a common message, which is decodable by all
receivers, and a private message, which is decodable by the
intended receiver only. In other words, by lowering the rate
of part of the transmitted message to allow it to be decoded
by out-of-cell users, the overall interference level would be re-
duced, enabling a higher overall rate. The recent work of [111]
provides further insights into this scheme by showing that a
particular common-private splitting can get within one bit to
an outer bound of the two-user interference channel. The key
insight is to set the private message power seen at the opposite
receiver to be at the background noise level, whereas anything
above that should be decoded. Although the outer bound of
[111] applies only to the two-user single-antenna case, in a
multi-cell MIMO network, adjacent cells can be paired and
the optimal beamforming and power splitting problem can be
solved together to produce significant performance gain for
the overall network [112].

Finally, for an interference channel with more than two
transmitters, it is also possible to specifically design transmit
signals so that the interferences are always constrained at
confined subspaces at each receiver. This allows the receiver
to efficiently reject the interference. This idea, known as inter-
ference alignment, has been shown to achieve significantly im-
proved multiplexing gain for the MIMO interference network,
where both the transmitters and the receivers are equipped
with multiple antennas [72]. Practical implementation of these
ideas for wireless networks is an active area that is currently
attracting much research.

B. Coding strategies for MCP networks

The coding and optimization strategies considered in the
previous sections require the sharing of the channel state
information only. Significant further improvement in data rates
is possible, if, in addition, the BSs are synchronized and the
data streams for all the active users or the received signals
at all antennas are shared between the BSs via high-capacity
backhaul links [113], [114], [115], [116], [117], [118]. This
setup is illustrated in Fig. 3. Many coding strategies have been
proposed in the literature for this setting (e.g., [119], [120],
[121], [122], [123].) The antennas from all the BSs are in this
case effectively pooled together to form a giant antenna array.

The uplink channel can then be modeled as a multiple access
channel with multiple transmitters and a single multi-antenna
receiver. The downlink channel can be modeled as a broadcast
channel with a single multi-antenna transmitter and multiple
receivers.
1) Uplink: The capacity region of the uplink multiple-

access channel is achieved with superposition coding and
successive decoding [15]. The idea is to decode each user’s
codeword based on the observation sequence of the entire
antenna array (using a linear beamformer across the BSs), then
to subtract the decoded codewords in a successive fashion.
To achieve this multiple-access channel capacity region, the
cooperating BSs theoretically need to share their observation
sequence, which requires infinite backhaul capacity.

There is an important special case where the multiple-
access channel capacity can be approximately achieved by just
the linear detection of each user’s individual message using
a receive beamformer across all BSs, without the nonlinear
successive decoding step. This happens when the interfering
links are much weaker than the direct links (but the interfer-
ence level is still much stronger than the background noise).
Consider the following example where the channel matrix H
between the K single-antenna BSs and K remote users is near
diagonal:

y = Hx + z. (26)

The capacity region of this multiple-access channel is almost
a rectangle with each user achieving close to its interference-
free capacity. This is because a joint receiver across the
BSs can simply employ a zero-forcing receiver with rows
of H−1 as the beamformers. As H−1 is nearly diagonal, it
produces minimal noise enhancement. Thus, the single-user
interference-free capacity can be nearly achieved for all users
with just linear decoding, without the successive decoding
step.

Note that for the diagonally dominant network, the above
network-wide zero-forcing strategy is superior to an alternative
strategy where each BS performs detection based on the
received signal at its own antennas only, but BSs share the
decoded bits for interference subtraction. In this case, the
BSs must follow a particular decoding order with intercell
interference subtracted successively. This alternative strategy
is clearly suboptimal, because it achieves the single-user
interference-free bound only for the last user in any partic-
ular decoding order, but not for earlier users. In contrast,
the linear strategy mentioned earlier achieves the single-user
bound simultaneously for every user in a diagonally dominant
interference network.
2) Downlink: The capacity region of the downlink broad-

cast channel is achieved with a dirty-paper coding strategy at
the encoder [14]. The idea is to fix an encoding order, then
transmit each user’s codeword using a transmit beamformer
across all the antennas at all cooperating BSs, and successively
encode each user’s codeword while treating the messages
already encoded as known interference. From an information
theoretical point of view, the known interference can be
completely pre-subtracted without using extra power at the
transmitter. This is called dirty-paper coding [124]. Dirty-
paper coding can be approximately implemented in practice
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using Tomlinson-Harashima precoding or lattice precoding
strategies (see e.g., [125], [126]).

When the channel matrix associated with the interference
network is diagonally dominant, the zero-forcing strategy is
again near optimal. Consider again the single-antenna case:

y = H†x + z. (27)

The zero-forcing strategy precodes x = (H†)−1u, where
u is the information symbol. When H† is near diagonal,
it produces minimal power enhancement at the transmitter,
resulting in a near rectangular achievable rate region. Note that
this network-wide zero-forcing strategy requires joint transmit
beamforming across the BSs, but no dirty-paper coding. This
is again superior to the alternative strategy of dirty-paper
coding without joint beamforming for the diagonally dominant
interference network, analogous to the uplink case discussed
earlier.
3) Optimization: For a cellular network with an arbitrary

topology and a general channel matrix, the optimization of
a network-wide beamforming vector together with the suc-
cessive decoding or dirty-paper precoding orders becomes a
relevant question. Consider first the uplink channel:

y =
K∑

k=1

Hkxk + z (28)

where y is the network-wide receive signal, and xk is the
transmit signal for user k, who may be equipped with multiple
antennas as well, and the noise vector z has a normalized unit
variance. Let the optimization problem be formulated as that of
maximizing the weighted sum rate

∑
k αkRk. Because of the

polymatroid structure of the multiple-access channel capacity
region, the optimal decoding order is completely determined
by the relative values of αk [127]. The user with the smallest
αk should be decoded first; the user with the largest αk last.

Without loss of generality, let α1 ≤ α2 · · · ≤ αK . The
resulting weighted sum rate can be expressed as

K∑
k=1

αkRk =
K∑

k=1

αk log
det
(∑K

j=k HjSjH
†
j + I

)
det
(∑K

j=k+1 HjSjH
†
j + I

) (29)

where Sk is the transmit covariance matrix of user k. The
above rate expression is a convex function of Sk. Thus, the
weighted sum rate optimization problem for the uplink can be
solved efficiently. The eigenvectors of the resulting optimal
Sk give the optimal transmit beamformers. The network-wide
receive beamformers for user k are the MMSE beamformers
with interference from the first k − 1 users subtracted.

For the downlink channel

yk = H†
kx + z, (30)

(where again the noise variance is normalized to one), al-
though a straightforward formulation of the achievable rate
region does not result in a convex formulation, a key result
known as uplink-downlink duality [128] enables the downlink
transmit covariance optimization problem to be translated
to the uplink. Uplink-downlink duality guarantees that the
capacity region of the downlink channel is identical to the
capacity region of the dual uplink, where the transmitters and

the receivers are interchanged, and the channel matrices are
Hermitian transpose of each other, and where the same sum-
power constraint is applied to both. Thus, to find the optimal
downlink beamformer, one only needs to solve the optimal
uplink problem with a sum power constraint, then use the
covariance transformation technique of [128] to translate the
optimal uplink solution to the downlink.

The duality result established in [128] solves the optimal
downlink beamforming problem with a sum power constraint
across all the antennas. In a multi-cell network, the power
usages across the BSs cannot easily be traded with each
other. In addition, each antenna is typically constrained by
the linearity of its power amplifier, and hence is peak power
constrained. Thus, a more sensible approach is to apply a per-
BS or per-antenna power constraint at each cell.

The uplink-downlink duality result can be generalized to
accommodate the per-antenna power constraint [59] as men-
tioned in Section III. The additional ingredient is to recognize
that transmit power constraints for the downlink are reflected
in the dual uplink as the noise covariances. In particular, for
the weighted per-antenna power minimization problem for the
downlink, its dual uplink would have its noise variances scaled
by the same weights. Further, to enforce per-antenna power
constraints, one would need to search over all such weights
in the downlink. This amounts to searching over all possible
noise variances.

More precisely, for a downlink broadcast channel with per-
antenna power constraint Pi in each of its antennas, the dual
uplink is a multiple-access channel with the same sum power
constraint

∑
i Pi, but whose noise covariance matrix is a

diagonal matrix with qii on its diagonal and constrained by∑
i

qiiPi ≤
∑

i

Pi. (31)

Numerically, the weighted rate sum maximization problem
for the downlink becomes a minimax problem in the uplink
with maximization over uplink transmit covariances and mini-
mization over uplink receiver noise covariances. This minimax
problem is concave in transmit covariance and convex in noise
covariance, so it can be solved using convex optimization
techniques.

The discussion so far focuses on capacity maximization.
When practical coding and modulation schemes are used, an
SNR gap needs to be included in the achievable rate com-
putation. Unfortunately, accurate expressions of the SNR gap
in the multiuser setting are not easy to obtain. Furthermore,
although duality still holds with the inclusion of gap, the dual
uplink problem is no longer tractable. The issue is that with an
additional gap term, (29) is no longer a concave function of the
transmit covariance matrices. Work on finding the approximate
optimal ordering and beamformers for the single-receive-
antenna case includes [129], but the optimization problem in
its full generality remains open.

C. Coding Strategies with Rate-Limited Cooperation

In this section, we focus on channel models where the BSs
cooperate via rate-limited backhaul links as in Fig. 4-(b), or
via independent relay nodes with rate-limited connections to
the BSs. These channel models are practically relevant, but the
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information theoretical capacities of these channels are often
unknown, except for certain simplified models as mentioned in
Section III. This situation is not really surprising considering
the fact that the capacity of even the simplest single-transmitter
single-receiver and single-relay channel is still open. Thus,
instead of capacity analysis, this section focuses on effective
interference mitigation techniques in these settings.
1) Receiver Cooperation: In the uplink direction, receiver

cooperation can be realized either with a dedicated relay
node with fixed-capacity links to the BSs, or with rate-
limited conferencing links between BSs which act as relays
for each other. In these so-called relay-interference channels,
the objective of the relay strategy is typically to mitigate
interference, rather than to enhance direct transmission. Well-
known strategies such as decode-and-forward and compress-
and-forward can both be employed toward this goal.

Consider first a two-user interference channel employing
Han-Kobayashi style common-private information splitting.
Consider a practical regime of interest where the interfering
links are “weak”, but where interference is still stronger than
background noise. In this case, the rates of the common
messages are typically constrained by the interfering links.
Thus, when the receivers are equipped with conferencing links,
the common message rates can be effectively increased if each
receiver decodes the common message from its own transmit-
ter, then forwards a bin index of the common message to
the other receiver. Such a decode-and-forward strategy allows
each conferencing bit to increase the common information rate
(and hence the overall achievable rate) by one bit, up to a limit.
This strategy can be shown to be sum capacity achieving in
the asymptotic high SNR regime for a simpler Z-interference
channel [40]. A more sophisticated coding strategy, which
consists of a two-round conferencing with quantization as the
first step and binning as the second step, can in fact be proved
to be within 2 bits to the capacity region of this channel model
for all interference regimes [34].

The decode-and-forward strategy discussed above can be
thought of as an interference-forwarding strategy, as the relay
decodes and then forwards part of the signal that would have
caused interference. The knowledge of the interference can
either help the interfered transmit-receive pair subtract the
interference, hereby increasing its direct transmission rate, or
help the interfering transmitter-receiver pair increase its com-
mon message rate. This interference-forwarding strategy has
been used in various studies, including interference channel
models with a dedicated relay node [130], [131], [132], [133],
[134].

In existing multi-cell networks where the Han-Kobayashi
style common-private information splitting is not deployed,
interference mitigation can be effectively carried out using
compress-and-forward or amplify-and-forward strategies. An
interesting result in this area is due to the works [135], [136],
[137] that show that when a relay observes the precise inter-
ference sequence of a transmitter-receiver pair, every relaying
bit to the receiver can increase the direct transmission rate
by one bit in the noiseless limit. This can be achieved using
a compress-and-forward strategy where the relay quantizes
its observation of the interference with Wyner-Ziv coding
[138], and the receiver first decodes the quantized version

of the interference, then subtracts part of the interference
before decoding the direct transmission. In fact, the asymptotic
optimality of compress-and-forward in the noiseless limit
continues to hold when the relay observes a linear combination
of the transmitted signal and the interference. This idea can
be further extended to show that a single relay can help both
transmitter-receiver pairs of an interference channel using a
universal strategy called generalized hash-and-forward [139].
Interestingly, although amplify-and-forward is typically not
optimal in these settings, the amplify-and-forward strategy can
be significantly improved with nonlinear amplification [140].
2) Transmitter Cooperation: In the downlink direction,

when the BSs are equipped with rate-limited backhaul links
at the transmitter, the BSs can still cooperate using a variety
of techniques. One idea is to share part of the common in-
formation among the transmitters (assuming a Han-Kobayashi
coding strategy is deployed), which allows the transmitters
to cooperatively send shared common messages; this idea
has been pursued in [141], [142]. Another idea is to share
part of the private message, which allows the possibility of
partial zero-forcing or dirty-paper coding at the transmitter;
these possibilities have been explored in [143], [105], [144],
[142]. In certain high SNR and interference-limited asymptotic
regimes, it is possible to show that each cooperation bit
can improve the direct transmission rate sum by one bit
[144]. However, in general, the question of which transmission
strategies should be adopted in specific cases remains very
much open.

V. SCALABLE COOPERATIVE SCHEMES

The potential benefits associated with exploiting or elim-
inating interference in cellular networks are huge. However,
there are several practical hurdles which need to be overcome,
over which we now draw the interested reader’s attention.

In this section, we address the important issue of scalability.
The first models of base station cooperation were centralized
in nature, and a natural implementation would consist of a
central processing unit, or controller, to which all the base
stations are directly connected. The downside to this is that
it has a single point of failure and would be an expensive
infrastructure to build. Such an architecture would place
enormous demands on the back-haul network, as all traffic
would have to be routed to and from the central node, causing
excessive delays. Besides the problem of user data sharing,
there is also the issue of channel state information at the
transmitter (CSIT) which also must be shared amongst base
stations, and between mobiles and base stations. This is an
additional signaling burden associated with MCP. Thus, when
it comes to an assessment of the real advantages of MCP in
realistic networks, a fundamental question arises: Might it be
that the capacity increase due to MCP is outweighed by the
signaling overhead it implies?

The information theoretic picture, examined in Section III,
reveals that the capacity of the backhaul should grow in pro-
portion to the capacity targeted on the over-the-air section of
the network, to avoid being a bottleneck for traffic. Neverthe-
less, the complete answer to our question seems highly system
and scenario dependent and is the focus of ongoing research. A
simpler yet related problem would be: how to design practical
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MCP schemes whose overhead scales favorably when the size
of the network grows large? This section considers research
that has attempted to reduce the overhead required to achieve
most of the benefits of cooperation.

One can distinguish two lines of research devoted to over-
head reduction. The first deals with deriving efficient repre-
sentations of the channel state information, which is conveyed
to precoding and decoding algorithms. In the second, (perfect
or possibly partial) CSI is assumed and attention is focused
instead on implementing scalable cooperation schemes via
distributed precoding and decoding algorithms. There is not
a great deal of difference between trying to obtain efficient
channel representations in multi-cell MIMO or in MU-MIMO
setups. Since a rich body of literature already exists for this
problem, we simply refer the reader to past special journal
issues on this topic such as [16], [145]. As a note of caution we
point out that existing work on limited CSIT representation for
MU-MIMO systems does not take into account the specifics of
the multi-cell MIMO channel, such as the different channels
from each base station to each user, whose path loss coefficient
depends on the user’s location in the network. In what follows,
we assume that a CSI model already exists at the base stations
through feedback channels. We present some concepts related
to distributed precoding and decoding and clustering.

A. Impact of channel uncertainty

1) Network capacity: As discussed in Section III-C5, chan-
nel uncertainty affects the scalability of point to point MIMO
channels. The number of transmit antennas that can effectively
be used is limited by the coherence duration in symbol times.
What are the implications for network MIMO? Recently, this
issue has been explored in [146], where random matrix theory
is exploited to obtain tractable formulas for per-cell rates,
involving parameters such as the number of base stations and
the coherence duration in symbol times. It is claimed that the
per-cell rate can in some cases decrease with the number of
base stations, due to the cost of measuring the extra channel
parameters. This conclusion may impact the optimal cluster
size to use in network MIMO (see Section V-C for a discussion
of clustering in the context of MCP). On the other hand, this
analysis does not take into account the impact of intercluster
interference, leaving open further research on this issue.
2) Downlink: Distributed precoding with partial informa-

tion sharing: The general problem of distributed multi-cell
precoding, whereby the l-th base station must design op-
timally its transmit beamforming vectors on the basis of
partially shared CSIT and partially shared user data is largely
open. Interestingly, in the case of fully shared user data
(MIMO cooperation), this problem can be shown to fall
within the framework of team decision theory, which reviews
optimization problems in which different agents (here, the
base stations) must act cooperatively despite not sharing the
same view of the system state [147]. In our context, the
problem can be formalized as follows: the users are assumed
to feedback their channel state information to all base stations,
in a broadcast fashion. As the distance between the user
and surrounding bases differ, the quality of feedback for a
given channel coefficient is unequal at different base stations.

An optimization problem, by which the beamforming vectors
are designed taking into account the locally received CSIT
feedback as well as the expected quality level for the feedback
received at other bases, is formulated [147]. The obtained
beamformers can range smoothly from fully distributed to
fully centralized, depending on the feedback model.

Rather than a partial sharing of CSIT along with fully
shared user data, another particular framework for distributed
precoding assumes a partial sharing of the user data, but under
perfect CSIT sharing. A possible practical model for this is
as follows: the finite backhaul links are used to convey two
types of traffic. The first type is routed in the interference-
coordination mode, i.e. a message to user k in cell m is
routed to base station m alone, while the second type of
traffic is duplicated to all cooperating bases, in the MIMO
fashion. The first and second types are referred to as private
and common, respectively. An optimization problem can be
formulated by which the total user rate is optimally split
across private and common information, as a function of the
finite backhaul capacity and of the channel state information
[148]. By comparing private and common information rates,
one can assess the value of MIMO cooperation depending on
the interference strength model.

B. Distributed processing using Turbo Base Stations

1) Uplink: distributed decoding: We now consider the
problem of uplink decoding of multiple base station signals
jointly. The fact that the complexity of the general multi-user
detection problem grows exponentially with the number of
users [149] raises a question of scalability: A priori, it looks as
though the multiuser decoding of all users might be intractable
as the size of the network grows large. On the other hand,
the very localized structure of the interference offers hope of
salvation from the apparent intractability, and it motivates the
search for decentralized algorithms.

An interesting question to ask is whether the global uplink
task of demodulating all the users’ data symbols can be
distributed across a network of interacting base stations. In
this context, each base station is individually performing
local computations, and then passing the results to immediate
neighbors for further processing. It is very natural to try and
apply well known message passing techniques from coding
theory, such as the iterative method of Turbo decoding.

A first step in this direction is taken in [150], which
considers an uplink multi-user detection (MUD) problem.
Each base station first does an independent MUD to try
and separate the desired same-cell user from the co-channel
interferers in other cells. However, the desired user is also
heard at the neighboring base stations, and to gain the benefits
of macrodiversity, the base stations share their log-likelihood
ratios. The base station controller computes an a posteriori
log-likelihood ratio using the log-likelihoods from the local
base stations, which is in essence the first step of the Turbo-
decoder. Later works, such as [151], provided an explicit
connection to Turbo-decoding, and propose iterative, message
passing algorithms.

A related problem is to find the most likely sequence of
bits transmitted in the network. This problem has a simplified
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Fig. 9. Hidden Markov model of linear cellular array

structure due to the local interference coupling, which may
make it amenable to a solution via dynamic programming
[152].

Turbo decoding is an example of belief propagation on a
graph. Communication on the uplink of a one dimensional,
linear cellular array model, with one user per cell (as consid-
ered in [8], [9]), can be modeled by a Markov chain moving to
the right along the linear array, see Figure 9. Each state of the
Markov chain corresponds to the choice of code words in three
consecutive cells. For example, state S1 in Figure 9 consists of
the codewords chosen by users 1,2, and 3, respectively. Each
base station observes a noisy version of the superposition of
the three signals, so it is a hidden Markov model, and a one-
dimensional probabilistic graph can be associated with this
model. The (forward-backward) BCJR algorithm [153] can be
applied to compute the MAP estimates of the codewords [154].
This is a one dimensional graphical model, with clustering to
provide the Markov structure. Although simple, this model
allows an exploration of issues such as distributed computa-
tion, parallelism, complexity, and accuracy [154], [155], [156],
[157], [158], [30], [159].

Since the complexity of the BCJR grows exponentially with
the size of the state space, Gaussian models are considered in
[155], [156], where linear estimation techniques are optimal.
The analogous problem is Kalman smoothing, and a forward-
back Kalman smoother is proposed. Note that the delay and
complexity are linear in the network size, but the local nature
of the interference can be exploited. In [157] a parallelized
version of the forward-backward algorithm is proposed, which
allows base stations to make estimates at any time. If the
coupling between base stations is weak, or the noise is strong,
then accurate estimates are obtained after a small number of
message passings. Thus, the complexity and delay, per base
station, need not grow with the array size in practice.

More realistic two dimensional cellular array models are
more problematic. Forward-backward methods no longer ap-
ply, and the associated probabilistic graph models now have
loops. The uplink decoding problem is considered in [30], and
two graphical models are investigated. The belief propagation
algorithm is applied, and it is found that in spite of the loops,
error rates near the single user lower bound are obtained, for
fading channels. The numerical complexity per base station is
a constant, independent of the network size.

Since the complexity of the sum-product algorithm (i.e.

belief propagation) grows exponentially with the number of
variable nodes connected to a function node, it is of interest
to look for suboptimal approaches that reduce the complexity,
especially when there are many interfering users per cell.
In this case, the computation of the log-likelihood messages
sent from a variable node to a function node is in essence
an MUD computation. In [160], symbols are grouped, and a
posteriori probabilities are computed within a group, treating
the interference from the other groups as Gaussian noise,
with the mean and variance determined from the a priori
probabilities. Thus, a reduced complexity group-wise MUD
scheme is proposed. This paper also incorporates an LDPC
(Low Density Parity Check) code, so that the graph is in time
as well as space.
2) Downlink: Distributed beamforming: The downlink is

a broadcast channel in which all base station antennas are
pooled. If attention is restricted to linear techniques, then the
problem to be solved is that of macroscopic beamforming. As
was exposed earlier in Section IV, duality between the uplink
and downlink allows some of the above methods to be used on
the downlink, also. The downlink beamforming problem can
be recast as an equivalent, virtual, uplink estimation problem,
in which the downlink data symbols to be transmitted become
observables in the uplink problem, and belief propagation on
the virtual uplink graph finds the samples to be transmitted by
each base station, i.e. the outputs of the global precoder. These
samples are obtained by the sum-product message passing
algorithm [159].

C. Limited cooperation via clustering

Current cellular networks typically connect base transceiver
stations (BTS’s) to base station controllers (BSC’s), and in
some implementations the BSC handles the base-band signal
processing and encoding/decoding [150]. It is therefore very
natural to consider clustered models, in which the processing
is done locally at the BSC, which is connected to the adjacent
base stations. The collection of base stations served by a
BSC forms a cluster, each cluster behaving as a network
MIMO system, but now there is interference between adjacent
clusters. In this case, there is not a single, centralized node,
but many nodes, each independently encoding and decoding
signals for the mobiles in the local cluster. The advantages of
the clustered model are 1) relevance to currently implemented
systems 2) reduced computational complexity 3) reduced
demands on the back-haul network since only neighboring
base stations (i.e. those which are mutually interfering the
most) are engaged in cooperation, and 4) increased robustness
to node failures (a base station can be served by more than
one system controller). The disadvantages when compared
with full network-wide cooperation are 1) increased levels of
intercell interference in some areas (since adjacent clusters
will interfere), 2) reduced diversity, and 3) lower capacity.
Tradeoffs between these factors have been considered in a
number of research papers.

It is well known that network MIMO has the capability
to eliminate intercell interference. In models in which inter-
ference is treated as noise, a notion of effective bandwidths
can be developed, which allows a definition of user capacity
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Fig. 10. Cluster decoding using pairs of base stations

region [6], [161], [7]. It can be shown that in these models,
base station cooperation and optimal power control effectively
eliminate inter-cell interference [162], [5], [6], [7]. In other
words, the user capacity region of a network of K cooperating
base stations is the same as that of K non-interfering (isolated)
cells, as was pointed out in Section III. However, this relies
on global cooperation. Consider instead a very simple model
consisting of three base stations labelled 1, 2, and 3, as
depicted in Figure 10. Suppose base stations 1 and 2 cooperate
to decode the users between them (cluster 1, 2), and base
stations 2 and 3 cooperate to decode the users between them
(cluster 2, 3). With full cooperation, there is a capacity limit on
the sum of the effective bandwidths in the two cells. With the
limited cooperation described here, the user capacity region is
reduced, with additional constraints imposed by each cluster.
It is shown in Theorem 9.6 in [5] that the user capacity region
is the intersection of three regions: one corresponding to each
of the two-receiver clusters, and one corresponding to the
three-receiver system (the user capacity region under global
processing).

Extensions of the above simple three antenna model to more
complex networks, including linear and planar models, are
considered in [163]. In these models, MCP "receivers" are
associated with clusters of antennas, and adjacent receivers
share common antennas, as in the simple three antenna model
above. In [163] the focus is the information-theoretic capacity,
and since the transmitters interfere at nearby receivers, the
techniques used come from the theory of interference chan-
nels. Upper and lower bounds on achievable rates are derived.

The impact of clustering on the information-theoretic ca-
pacity of multi-cell processing (MCP) has been considered
more recently in [38], [23], [164], and in other works surveyed
in Section III-C4 (i.e. capacity results for the uplink, with
local base station backhaul). In [23], the degrees of freedom
are shown to be reduced by a factor of N/(N + 1) or
(N −1)/(N +1), when N is even or odd, respectively, where
N is the number of base stations in each cluster. In [38]
a similar result is obtained for a limiting regime in which
the number of antennas at each base station grows large, in
proportion to the number of users in each cell. In this case, the
corresponding result is (N − 2)/N , for N ≥ 3: The limiting
asymptotics wash out the effect of even or odd parity. Recently,
[164] has undertaken a large system analysis of MCP, with
clustered decoding, fair user scheduling, and a realistic path
loss model.

A practical way to reduce inter-cluster interference is to
use frequency planning. For example, one can employ two

frequency bands, and by employing appropriate power control
in each band, and alternating the roles of each band in
adjacent clusters, the impact of inter-cluster interference can
be mitigated, whilst maintaining full frequency re-use in each
cell [165], [166]. Another approach to clustering is to limit
the base station cooperation to the users that really need it
i.e. those users near the cell boundaries. The problem then
becomes that of grouping users into appropriate clusters for
joint MUD. These ideas related to dynamic clustering have
started to be investigated in [167], [168] among others.

Clustering reduces the information available to encoders
and decoders alike. Information-theoretic approaches in which
encoders and decoders are limited to knowledge of the code-
books of users in adjacent cells only are to be found in [154],
[41], [37]. Clustering can also create unfairness for mobiles
that happen to lie near the boundary of a cluster. A way to
treat this problem is to introduce a family of clusters, so that
every cell gets a turn at being on a cluster boundary. A round
robin across the clusters provides fairness to all the users [38],
[165], [166]. Dynamic clustering based on channel strength
information also helps to mitigate the unfairness effects in the
long run. Clustering has also recently been considered in the
context of linear precoding. In [169] mobiles are classified as
cluster interior or cluster edge users. Within a cluster, block
diagonalization subject to per base station power constraints
is performed, but, as in coordinated beamforming, nulls are
also steered to neighboring edge users.

VI. REAL-WORLD IMPLEMENTATION AND PERFORMANCE

The previous sections have addressed the theoretical per-
formance of cooperative networks, including some non-ideal
assumptions such as limited backhaul bandwidth and channel
uncertainty. In this section, we discuss these and other topics
related to the real-world implementation of cooperative tech-
niques in cellular networks. We discuss the practical aspects of
system implementation and present system-level simulations
and prototypes which hint at the potential and problems of
real-world cooperative cellular networks.

A. System implementation

In the practical implementation of any coherent wireless
communication system, issues including synchronization and
channel estimation need to be addressed. In addition, downlink
MU-MIMO transmission requires channel state information at
the base station transmitters, and cooperative networks require
an enhanced backhaul network connecting base stations with
each other or with a central processor.
1) Synchronization: Downlink MIMO cooperation across

multiple base stations requires tight synchronization so that
there is ideally no carrier frequency offset (CFO) between the
local oscillators at the base stations. Sufficient synchronization
could be achieved using commercial GPS (global positioning
system) satellite signals for outdoor base stations [170]. For
indoor base stations, the timing signal could be sent from an
outdoor GPS receiver using a precisely timed network proto-
col. In the absence of a GPS signal, each base could correct
its offset based on CFO estimatation and feedback from the
mobiles [171]. On the uplink, CFO results in interference
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between subcarriers of an OFDM transmission. Techniques for
joint detection and CFO compensation in uplink coordinated
multi-cell MIMO OFDM systems have been proposed in
[172].
2) Channel estimation: Coherent combining at the receiver

or coherent pre-combining at the transmitter provides SNR
gain when the channel state is known. Sufficient resources
must be allocated to pilot signals to ensure reliable estimation
of the channel state, accounting for the fact that the estimation
is performed on each transmit/receive antenna pair with no
combining benefit. In the context of network coordination with
spatially distributed bases, the extent of the coordination could
depend on the range of reliable channel estimation, and there
is a tradeoff between increasing the coordination network size
at the expense of increased pilot overhead.

For estimation of channels at the transmitter in time-division
duplex (TDD) networks, one can rely on the reciprocity of
the uplink and downlink channels so that channel estimation
on the uplink can be used for downlink transmission. In this
sense, channel estimation at the receiver and at the TDD
transmitter face similar challenges. However, the TDD system
faces additional challenges if the number of users is much
larger than the total spatial degrees of freedom, and if the users
transmitting uplink data are not the same as those receiving
downlink data. Pilot signals and protocols should be designed
to address these issues without resulting in excessive training
overhead. For example, these issues could be addressed by
allowing only high priority users receiving downlink data to
transmit uplink pilots, regardless of whether they have uplink
data to send.

Estimation of channels at the base station transmitters in
frequency-division duplex (FDD) networks face much greater
challenges, as mentioned in Section V. In FDD networks, the
channel estimates obtained at the mobile receiver must be
conveyed to the transmitter, typically over a limited-bandwidth
uplink feedback channel. While quantized channel estimates
could be fed back, current cellular standards such as LTE
[173] implement transmitter “codebooks" consisting of fixed
precoding (i.e., beamforming) vectors. Under these standards,
the mobile estimates the downlink channel and feeds back an
index to its desired precoding vector. In cooperative networks,
these codebooks would be designed to contain codeword
vectors up to size MJ , where M is the number of bases and
J is the number antennas per base. Because the codebooks for
cooperative networks contain more codewords than for con-
ventional networks, additional feedback bits will be required
to index the codebooks, most likely leading to an increase in
the uplink feedback rate.

Note that the problems for obtaining channel estimates
at the transmitter are encountered in single-cell MU-MIMO
downlink transmission, but they are more complicated in
multi-cell coordinated networks due to the size of the net-
works and the potential latency introduced in distributing the
estimates across the bases.
3) Backhaul issues: Strategies for rate-limited cooperation

described in Sections III and V require a high-bandwidth,
low-latency backhaul network for connecting the base sta-
tions with each other or with a central processor [174][143].
Compared to a conventional network with no coordination,

interference coordination techniques shown in Figure 2 require
the sharing of channel state information among cooperating
bases. MIMO cooperation requires the sharing of both channel
state information and user data. As shown in Figure 3, the
data symbols of all users must be known at all cooperating
bases. With coordination among a cluster of L base stations,
the data is sent to these base stations results in a factor
of L increase in the backhaul bandwidth. Compared to the
exchange of data, the bandwidth required for exchanging
channel state information are minimal for the case of moderate
mobile speeds [175]. Of course the bandwidth requirements
for exchanging channel information increase for higher mobile
speeds and more frequency selective channels.

As an alternative to sending the data signals and beamform-
ing weights separately to the bases, one could send a quantized
baseband signal. A linearly quantized signal was shown to
achieve a significant fraction of the ideal unquantized sum-
rate performance in an uplink coordinated network [175].

In the context of the 3GPP LTE-Advanced standard [176],
network coordination techniques are known as coordinated
multi-point (CoMP) transmission or reception. Downlink
CoMP transmission requires standardization of signaling and
will be addressed as a study item starting in September of 2010
for possible consideration in Release 11 of LTE-Advanced. On
the other hand, uplink CoMP reception can be implemented
in a proprietary fashion, and could be introduced earlier as a
vendor-specific feature.

B. Simulated System Performance

Network coordination was studied for an indoor network
with eight access points arranged in a line and using a
TDD framing structure based on WiMAX [177]. Detailed
simulations that model the physical layer of the network
employed joint zero-forcing precoding and MMSE detection
across all access points for the downlink and uplink, respec-
tively. Results confirm that a multiple-fold increase in spectral
efficiency is achievable for both the uplink and downlink with
conventional channel estimation based on linear interpolation.
Interpolation based on minimum mean squared error (MMSE)
was also considered but was shown to have nearly identical
performance. It is potentially more accurate, but because
it requires the estimation of the channel’s time-frequency
covariance, it is also potentially less robust for higher-speed
mobiles.

The downlink cooperative performance of a large multi-
cell FDD network was evaluated in the context of 3GPP
LTE parameters [178]. Using pilot signals with powers set
according to LTE simulation assumptions, mobiles could not
reliably acquire the pilots from multiple base stations, and
as a result, cooperation could occur among only a limited
set of bases. This was a major limiting factor, reducing the
throughput gain by 50% compared to the ideal theoretical
performance. Limited uplink feedback for conveying channel
estimates to the base was another important limiting factor,
reducing throughput by about 30%. Overall, the performance
gains of network coordination in terms of mean throughput
were about 20%. These relatively pessimistic results highlight
the importance of designing efficient pilot signaling to en-
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able effective channel acquisition and estimation for larger
networks and higher mobility users.

C. Prototypes and testbeds

The feasibility of cooperative techniques have been demon-
strated in “over-the-air" networks of limited size. A downlink
cooperative network with four distributed base antennas serv-
ing two users was implemented using zero-forcing precoding
[179] as described in Section IV. The proposed system showed
significant gains in mean sum-rate capacity (as a function of
measured SINR) compared to a conventional time-multiplexed
baseline.

Two outdoor testbeds for implementing network coordina-
tion have been developed under the EASY-C project (Enablers
for Ambient Services and Systems Part C- Cellular networks),
a collaboration between academia and industry for the research
and development of LTE-Advanced technologies. One testbed
in Berlin, Germany, consists of four base station sites (seven
sectors) connected through a high-speed optical fiber network
[180]. An even larger testbed consists of ten base station sites
(28 sectors) distributed in downtown Dresden, Germany [181].
Network coordination has been recently demonstrated over
limited portions of each testbed.

Using two distributed base antennas and two users, the
Berlin testbed demonstrated downlink network coordination
for an FDD LTE trial system [182]. It accounted for many
practical implementation aspects including synchronization,
CSI uplink feedback, limited modulation and coding schemes,
and a finite-bandwidth backhaul connection between the bases.
Zero-forcing precoding based on limited CSI feedback was
implemented jointly across the two bases. The Dresden testbed
demonstrated a similarly detailed field trial for an LTE uplink
system, also consisting of two bases and two users [183].
MMSE detection was performed jointly across the bases. In
both systems, the users had low mobility (or were stationary),
and the systems were isolated so there was no intercell
interference. In these relatively benign environments, network
coordination was shown to provide significant performance
gains over the conventional interference-limited strategy. In
particular, it is claimed that MCP can provide median rate
gains on the order of at least 50 percent, as well as increased
fairness, and improved diversity, taking into account the prac-
tical constraints of their system.

Some testbeds are currently testing MCP principles together
with the use of relays, in the scenario of so-called mesh
networks [184] . Recently a large integrated research project
called ARTIST4G funded by the EU and comprising over
20 academic and industrial partners throughout Europe was
launched and is fully dedicated to the development of multi-
cell cooperation techniques in future cellular networks. These
testbeds and projects allow the exploration of system-level
issues discussed in this section as well as broader issues that
include hybrid ARQ, resource allocation, and user scheduling.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Although the underlying MIMO theoretic concepts are well
understood, cooperative systems are still in their infancy and
much further research is required in order to fully understand

these systems and to practically achieve the full benefits of
multi-base cooperation. Unlike standard MIMO systems where
the cost of multi-antenna processing lies in the extra hard-
ware and software at individual devices, cooperative MIMO
techniques do not necessarily require extra antennas. Rather,
the cost lies in the additional exchange of information (user
data and channel state) between the devices engaged in the
cooperation, or between the devices and the central controller
in a centralized architecture. Furthermore, the information
exchange is subject to tight delay constraints which are diffi-
cult to meet over a large network. MIMO-cooperation offers
additional benefits over simpler beamforming coordination
schemes, but it requires user data sharing among several BSs
and more complex precoding and decoding.

This tutorial began, in Section III, with an extensive re-
view of capacity results for the classical Wyner model and
its variants, including limited backhaul bandwidth, localized
clustered MCP, and relay assisted MCP. The main conclusions
are summarized in Section III-F. Although the Wyner model
is mathematically tractable, attention must now steer to more
realistic models of cellular communication.

Fading is included in the Wyner model, but the fading
parameters are always assumed to be known perfectly at the
mobiles and/or base stations. Future work must consider the
impact of channel uncertainty, and the cost of measuring the
channels in the network. Channel measurement issues may
impact the optimal size of clusters in clustered MCP. Bounds
on capacity under channel uncertainty are needed, and the cou-
pling of channel uncertainty with limited backhaul bandwidth
is an important area yet to be explored. Information-theoretic
models provide tractable, elegant capacity formulas that are
amenable to optimization, and performance bounds against
which practical schemes can be compared. More importantly,
however, they provide insights into the key performance
bottlenecks, which can then be addressed in more practically
oriented research.

Section IV reviewed the transmission and coding techniques
required to approach the information-theoretic limits. This
included a review of the celebrated uplink-downlink duality
theory for the MIMO broadcast channel, which in a rough
sense is the model for MCP on the downlink. However,
network MIMO has additional constraints, such as limited
backhaul bandwidth, the need for decentralized processing,
and per base station power constraints. Recent research has
included per base station power constraints, and introduced
notions such as coordinated beamforming, along with the
development of the associated Lagrangian optimization the-
ory. Coordinated beamforming is intermediate between SCP,
where only local information is used, and MCP, where global
information is available to a central processor. In coordinated
beamforming, the BS knows the data and channel state of the
users in its own cell, but it also knows the channel state of
users in adjacent cells, and this enables a joint optimization
problem to be solved.

One challenge for the future is to move these ideas from
theory to practice. Joint optimization across many cells may
be problematic when channels are changing due to mobility.
One approach may be to reformulate the problem in terms
of channel statistics, rather than require instantaneous channel
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knowledge. Another approach may be to look for simplified,
suboptimal beamforming structures which nevertheless come
close to optimality in practical settings.

Other challenges addressed include coordinated power con-
trol, and the multi-cell joint problems of scheduling, power
control, and rate allocation across the frequency spectrum.
Many of these problems are computationally intractable, in
general, and the way forward may be to look for structure
in real-world networks that allows the problems to be solved
in polynomial time. Recent work on fractional frequency re-
use in OFDMA systems provides a new set of techniques
that could be applied to network MIMO in a joint multi-
cell optimization. Recent work at the cutting edge of network
information theory, including interference alignment, network
coding, and the recent progress on the interference channel,
all provide new ways to approach the fundamental problem:
how do we achieve maximum spectral efficiency in a multiple
cell network?

Sections V and VI address a few of the fundamental
and practical issues, such as scalability, synchronization, and
channel estimation. It is highly unlikely that a future net-
work MIMO system will be built according to a centralized
architecture. Recent research has considered the problem of
distributing the network-wide optimization problems, so that
much of the processing can be done locally, with limited
communication between nearby nodes. One option is clustered
MCP, in which small clusters of BSs collaborate together
on uplink decoding and downlink beamforming. Turbo base
stations provide another approach, in which soft information
is passed between adjacent BSs, allowing iterative, probabilis-
tic graph-based methods to provide decentralized solutions
to similar problems. Other interesting approaches lending
themselves to distributed implementations are game and team
decision theoretic approches.

Behind such problems, a recurrent and quite fundamental
issue is associated with the aquisition of channel state infor-
mation. An important open question is to determine just how
much channel state information is needed at each particular
node in the network, including information that has been
measured at other nodes in the network. This question gives
rise to a fundamental feedback resource allocation problem.
Cooperation gains go at the expense of feedback resource,
hence such a cost is justified when interference is strong
enough. More generally, a fundamental trade-off between
cooperation and information exchange exists which remains
to be explored theoretically.

Another important problem in practice is that of synchro-
nizing the BSs so that there is no carrier frequency offset. GPS
offers one approach, but future work may consider methods
of distributed clock synchronization. From a practical point
of view, distributed precoding and decoding at multiple bases,
which are designed to offer cooperation gains while exploiting
primarily local channel state and user data information are of
high interest and will attract significant research efforts in the
years to come.
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