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ABSTRACT

Crowd density analysis is a crucial component in visual
surveillance for security monitoring. This paper proposes a
novel approach for crowd density estimation. The main con-
tribution of this paper is two-fold: First, we propose to es-
timate crowd density at patch level, where the size of each
patch varies in such way to compensate the effects of per-
spective distortions; second, instead of using raw features to
represent each patch sample, we propose to learn a discrim-
inant subspace of the high-dimensional Local Binary Pattern
(LBP) raw feature vector where samples of different crowd
density are optimally separated. The effectiveness of the pro-
posed algorithm is evaluated on PETS dataset, and the results
show that effective dimensionality reduction (DR) techniques
significantly enhance the classification accuracy. The perfor-
mance of the proposed framework is also compared to other
frequently used features in crowd density estimation. Our
proposed algorithm outperforms the state-of-the-art methods
with a significant margin.

Index Terms— Crowd density, local binary pattern, di-
mensionality reduction, classification

1. INTRODUCTION

There is currently significant interest in visual surveillance
systems for crowd density analysis. In particular, the estima-
tion of crowd density is receiving much attention in security
community. Its automatic monitoring could be used to detect
potential risk and to prevent overcrowd (e.g. in religious and
sport events). Many stadium tragedies could illustrate this
problem, as well as the Love Parade stampede in Germany
and the Water Festival stampede in Colombia. To prevent
such mortal accidents and for safety control, crowd density
estimation could be used. It is extremely important informa-
tion for early detection of unusual situations in large scale
crowd to ensure assistance and emergency contingency plan.

In order to address the problem of crowd density estima-
tion, many works have been proposed so far. In this con-
text, the classification introduced by Polus [1] is commonly
adopted. Based on that, the crowd density is categorized into
5 levels: free, restricted, dense, very dense, and jammed flow.

One of the key aspects of crowd density analysis is related
to the crowd feature extraction. Early attempts to handle this
problem generally made use of texture features. In this per-
spective, Marana et al. assume [2] that high density crowd
has fine patterns of texture, whereas, images of low den-
sity have coarse patterns of texture. Based on this assump-
tion, many texture features have been proposed such as: Gray
Level Co-occurrence Matrix (GLCM) [2, 3], Gradient Ori-
entation Co-occurrence Matrix (GOCM) [4] and wavelet [5].
Among these features, GLCM is probably the most frequently
used, from which usually 4 statistical properties are selected
(contrast, homogeneity, energy, and entropy). These statis-
tical texture features have the limitation of giving a global
information for the entire image, and that could discard local
information about the crowd. Also, these features could deal
with occlusions that prevalently exist in crowded scenes only
to some extent. As a result, the use of local texture features,
especially some variants of LBP [6], has been an active topic
of recent research. For instance, in [7], LBP is used in blocks,
then, Dual-Histogram LBP is applied for crowd density esti-
mation. In [8], the dynamic texture of the walking crowd is
used by extracting a sparse spatio-temporal local binary pat-
tern (SST-LBP) feature. Afterwards, the statistical property of
SST-LBP is used as crowd feature. In [9], the authors propose
to compute GLCM on LBP image instead of the original gray
image. Finally, in [10], a crowd density estimation approach
using histogram model classification is proposed, where the
histogram model is based on an improved uniform local bi-
nary pattern features.

The methods mentioned above generally perform crowd
density level classification directly using the high dimensional
LBP-based feature vector, which might incur at least two
problems: first, the high dimensional feature vector increases
the computation time; second and more important, these high
dimensional feature vectors generally contain components ir-
relevant to crowd density, and the use of the whole feature
vector without any feature selection process could lead to un-
satisfactory classification performances.

The contribution of this paper is then two-fold: First, the
patch level analysis step involves the estimation of patch size
in the real-world coordinates with incorporation of the effects
of perspective distortions on patches size. Second, instead



of using the raw LBP feature for classification, we propose
the combination of Principle Component Analysis (PCA) and
Linear Discriminant Analysis (LDA) to find a low dimen-
sional discriminative subspace in which same-density-level
samples are projected close to each other while different-
density-level samples are projected further apart. This process
is favourable for the later multi-class Support Vector Machine
(SVM) classification step since the influence of feature com-
ponents irrelevant to crowd density is minimized.
The remainder of the paper is organized as follows: we intro-
duce our proposed approach for crowd density estimation in
Section 2. The proposed approach is evaluated using PETS
dataset and the experimental results are summarized in Sec-
tion 3. Finally, we briefly conclude and discuss some poten-
tial future works in Section 4.

2. PROPOSED APPROACH

In this section, our proposed approach for crowd density es-
timation is presented. First, patch level analysis is intro-
duced. Then, to determine the contents of each image patch
under analysis, texture features are extracted using subspace
learning (or dimensionality reduction) on block-based LBP.
Specifically, the feature vectors are projected into discrimi-
nant space using LDA over the PCA subspace. Afterwards,
the extracted features are classified into different crowd den-
sity levels by applying SVM.

2.1. Patch Level Analysis

We propose to perform crowd density estimation at frame
sub-regions, which is commonly referred as patch level.
Crowd density at patch level is more appropriate than at frame
level, since it enables both the detection and the location of
potential crowded areas. Actually, in many video surveil-
lance applications and for security reasons, not only the esti-
mation of the crowd level is required, but also the location of
the crowd within the whole frame. Moreover, estimating the
crowd density at image patches enables to work within Re-
gions of Interest (RoI). In fact, more interest is usually given
to the prediction of the crowd level in some specific areas
compared to others, such as in the walkways.

To assign image patches to crowd density levels, the first
difficulty underlied in our paper concerns the implementation
of crowd levels definition introduced by Polus [1]. It consists
of defining 5 crowd levels according to the range of density.
This definition has been widely used for crowd density esti-
mation, but, the estimation of the real size (of image, or im-
age blocks) is usually neglected in previous works. In our
proposed approach, we use the camera calibration parameters
[11] to transform the image coordinates to the real-world co-
ordinates, from which we can estimate the real size of any
RoI within a frame. At this stage, we also take into account
the effects of perspective distortions on patch size. Similar

to the real size estimation, this problem is also not studied in
the literature except in [12], where an approximation of the
perspective map is made by linearly interpolating the two ex-
treme lines of the scene. The effects of perspective distortions
can be simply explained by the fact that objects far away from
the camera appear smaller than the closest ones [13]. There-
fore, to use only one definition of crowd levels under different
locations within the whole frame, the effects of perspective
distortions have to be compensated on the patch sizes in such
way that all the extracted patches correspond to a similar size
in the real-world coordinates.

2.2. Block-based Local Binary Pattern extraction and
histogram sequence normalization

Recently, LBP [6] has aroused increasing interest in many ap-
plications of image processing and computer vision, in partic-
ular, it has been extensively related to the field of face recog-
nition. Likewise, substantial progress has been achieved over
the last years in crowd density analysis using LBP. The advan-
tage of using LBP as feature extractor is that it is a powerful
descriptor that characterizes the structure of the local image
texture which is highly relevant to the crowd density. LBP
operator is based on labeling the pixels of an image by thresh-
olding the 3 x 3-neighborhood of each pixel with the center
value and considering the result as a binary digit. Then, a
binary number is obtained by concatenating all binary values
in a clockwise direction, starting from the top left neighbor.
Thus, for a given pixel at (xc, yc) position, the LBP code in
decimal form is defined as:

LBP (xc, yc) =

P−1∑
p=0

S(ip − ic)2p (1)

where ic and ip denote, respectively, the gray values of the
center pixel and theP surrounding pixels. S refers to a thresh-

olding function defined as: S(x) =

{
1 if (x ≥ 0)

0 otherwise
In our proposed approach, each image patch is spatially di-
vided into several non-overlapping blocks from which LBP
codes are computed. Then, histogram of each block is ex-
tracted by collecting the occurrence of LBP codes. Finally,
the histogram pieces computed from different blocks are con-
catenated into a single histogram sequence to represent a
given image patch. Assume that each image patch is divided
into m blocks B1, B1, .., Bm, the histogram of each image
patch is formulated as follows:

H = ((h10, h
1
1, ..., h

1
L−1), ..., (h

m
0 , h

m
1 , ..., h

m
L−1)))

hjl =
∑

(x,y)∈Bj
f{LBP (x, y) = l}

(2)

where [0, ..., L − 1] denotes the range of gray levels in LBP

map, and f is defined as: f{A} =

{
1 if (A is true)
0 otherwise
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Fig. 1. Block-based LBP extraction and Histogram sequence normalization

Given different patch sizes, it is important to apply block
normalization to each feature vector (i.e. LBP histogram se-
quence defined in (2)). For this purpose, L1 − sqrt [14] de-
fined as follows is used:

H =
√
H/(|| H ||1 +ε) (3)

where ε is a small constant.
The histogram sequence defined in (3) is used as texture de-
scriptor. An overview of the block-based LBP extraction and
the histogram normalization on image patch is shown in Fig-
ure 1. For more accuracy, we resort to dimensionality reduc-
tion techniques in order to reduce the dimension of feature
vector (L x m) before performing the classification step.

2.3. Discriminative subspace learning

As described in the previous section, the LBP feature vec-
tor extracted from an image patch is high-dimensional, which
brought the inconvenience for the modeling and classifica-
tion steps due to the so-called “curse of dimensionality”.
Moreover, the feature vector contains substantial amount of
component dimensions which is irrelevant to the underlying
crowd density and could have even a negative effect on the
classification performance. One simple way to handle this
problem is to apply the so called uniform patterns [10]. But,
the use of uniformity measure has the limitation of loosing
some texture information, which is not appropriate for crowd
measurement. That why, we instead propose to use dimen-
sionality reduction techniques to alleviate the effect of high-
dimensional feature vector.

Linear Discriminant Analysis is a well-known, simple,
but efficient approach to dimensionality reduction, and is
widely used in various classification problems. It aims to find
an optimized projection Wopt that projects D dimensional
data vectors U into a d dimensional space by: V =WoptU , in
which intra-class scatter (SW ) is minimized while the inter-
class scatter (SB) is maximized. SW and SB are determined
according to:

SW =

c∑
j=1

lj∑
i=1

(uji − µj)(u
j
i − µj)

T , (4)

and

SB =

c∑
j=1

lj(µj − µ)(µj − µ)T , (5)

where uji is the ith sample of of class j, µj is the mean of
class j, c is the number of classes, and lj is the number of
samples in class j. Wopt is obtained according to the objective
function:

Wopt = argmax
W

WTSBW

WTSWW
= [w1, . . . , wg] (6)

where {wi|i = 1, . . . , g} are the eigenvectors of SB and SW
which correspond to the g largest generalized eigenvalues ac-
cording to:

SBwi = λiSWwi, i = 1, . . . , g (7)

Note that there are at most c − 1 non-zero generalized eigen-
values, so g is upper-bounded by c−1. Since SW is often sin-
gular, it is common to first apply Principal Component Analy-
sis (PCA) [15] to reduce the dimension of the original vector.
This dimensionality reduction process of PCA followed by
LDA is well accepted in face recognition domain and is com-
monly referred to as “Fisherface” [16]. In our work, we adopt
the same strategy in crowd density estimation problem.

2.4. Multi-Class SVM classifier

Once the dimensionality reduction (PCA+LDA) is applied on
LBP feature vectors (defined in (3)), the crowd density clas-
sification is performed by adopting SVM [17]. Since SVM
is originally two-class based pattern classification algorithm,
multi-class SVM classifier is constructed by combining sev-
eral binary classifiers.

Let consider a training set of N pairs
(v1, l1), ..., (vN , lN ), where vi ∈ Rd refers to the reduced
feature vector of a given image patch i, and li ∈ {1, ..., c}
is the label which indicates the crowd density level of a
sample vi. Using “One-against-one” [18], to classify an input
feature vector vi, k(k − 1)/2 binary SVM classifications
are performed and the output of all their decision functions
are combined. For this purpose, “Max Wins” strategy is
employed, in which the class of a given feature vector is the



one that gets the highest number of votes.
In our experiments, two types of SVM kernels are evaluated:
Linear kernel: k(x, y) = x.y

Radial Basis Function (RBF) kernel: k(x, y) = e|x−y|
2/2σ2

3. EXPERIMENTAL RESULTS

3.1. Dataset

The proposed algorithm is evaluated within PETS 2009 public
dataset 1. In particular, we selected some frames from S1

and S2 Sections. Then, we define different crowd levels [1]
according to the range of people in 13m2, see Table 1.

Levels of Crowd
Density

Range of Density
(people/m2)

Range of People

Free Flow < 0.5 < 7

Restricted Flow 0.5-0.8 7-10
Dense Flow 0.81-1.26 11-16
Very Dense Flow 1.27-2.0 17-26
Jammed Flow > 2.0 > 26

Table 1. Definition of different crowd levels according to the
range of density, and according to the range of people in an
area of an approximate size 13m2.

Actually this area (13m2) corresponds to the real size of
image block of size 226 x 226 (in the bottom of a frame).
Then, the remaining image patches from bottom to top are
carefully selected with different patch sizes according to their
spatial localization in order to attenuate the effects of perspec-
tive distortions before estimating crowd levels. The extraction
of multi-scale patches is shown in Figure 2.
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Fig. 2. Multi-scale patches

Afterwards, we manually labeled these image patches accord-
ing to the congesting degrees of the crowd defined in Table 1.
Using PETS dataset, we could not reach level 5 of the crowd
(Jammed Flow), therefore, only four levels are experimented.
For each crowd level, 200 image patches are selected, 100 for
training and another 100 patches for testing. This results in a
4-class training set and a testing set of 400 samples each.
SVM parameters are optimized within the training set, using

1http://www.cvg.rdg.ac.uk/PETS2009/

cross-validation (we randomly choose 20 patches to tests, for
each crowd level). The same strategy was adopted for select-
ing PCA and KNN parameters.

3.2. Experiments

As described in Section 2.2, LBP features are extracted from
3 x 3 blocks in each patch sample, and PCA and LDA sub-
spaces are trained with the labeled training set. The projec-
tions of training samples are further used for training multi-
class SVM classifiers as described in Section 2.4. The perfor-
mance is evaluated in two ways. First, for each test sample,
the feature vector using block-based LBP is projected into the
learned PCA and LDA subspaces, and is identified as one of
the four classes by the multi-class SVM classifiers following
One-against-One strategy. The top-1 identification accuracy
is reported. Second, the Receiver Operating Characteristics
(ROC) curve of each class is reported to demonstrate the dis-
criminative power of our proposed feature for each crowd
density level separately. Furthermore, in our experiments,
both of linear and RBF SVM kernels are evaluated. Their
performances are compared to K-Nearest Neighbour (KNN)
classifier. We also compare our proposed feature (i.e. cus-
tomized LBP) to other texture features, namely, HOG [14],
Gabor wavelet [19] and GLCM [2].

3.3. Results and analysis

We first report the classification accuracy achieved by using
SVM on the raw LBP features and on LBP plus dimensional-
ity reduction techniques (LBP+PCA+LDA).

Features Extractor
Kernel Classifier LBP LBP+PCA+LDA

Linear One vs. One 71.00% 87.25%
RBF One vs. One 70.00% 89.75%

Table 2. Improvement in the classification accuracy made by
the dimensionality reduction on LBP feature using both linear
and RBF kernels of SVM

As shown in Table 2, the classification accuracy is improved
by around 20% using RBF kernel (and around 16% using
linear kernel), after applying dimensionality reduction tech-
niques over using directly raw LBP features. These results
demonstrate the relevance of the discriminant feature selec-
tion process. It is also important to note that using Uniform
LBP instead of LBP does not provide good results.

Obviously, a key step in crowd density estimation is the
choice of texture feature. That is why, we compare our pro-
posed feature LBP+DR (which stands for LBP+PCA+LDA)
with other frequently used texture features: HOG, Gabor, and
GLCM, see Figure 3.
In this Figure, we also include comparison between SVM
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Fig. 3. Comparisons of our proposed feature with other texture features using Linear SVM, RBF SVM, and KNN classifiers

(for both linear and RBF kernels) and KNN classifiers.
These comparisons clearly show that our proposed feature
(LBP+DR) outperforms all the other texture features. In addi-
tion, the classification accuracy using SVM shows substantial
improvement over KNN classification (with better results of
RBF kernel compared to linear kernel). In overall, the com-
bination LBP+DR+SVM (using RBF kernel) gives the best
results in terms of classification accuracy (89.75%) with a
significant margin compared to the other tested texture fea-
tures. As illustrated in Figure 3, SVM classifier using RBF
kernel has almost the best overall performance for all afore-
mentioned texture features, and is thus selected for next ex-
periments.

At this stage, we intend to evaluate the accuracy of texture
features for each crowd level independently from the others;
it means to explore how much each texture feature is discrim-
inative to a specific level. To achieve this goal, ROC curve
for each crowd level class is reported, see Figure 4. Then, the
performance of each texture feature in a specific crowd level
is measured by computing the area under the curve (AUC)
and the accuracy (ACC), the results are reported in Table 3.
As it shown in Figure 4 and also demonstrated in Table 3,
LBP+DR outperforms all other texture features at any crowd
level. Also, the results show that the tested texture features
presented better discriminative ability for free and very dense
flows (level 1 and level 4) compared to restricted and dense
flows (level 2 and level 3). So, most of the confusions in the
classification step are made in the intermediate classes, how-
ever, the results show that LBP+DR succeed to overcome this
difficulty, in terms of AUC and ACC.

4. CONCLUSION

Crowd density estimation has emerged as a major component
for crowd monitoring and management in visual surveillance
domain. In this paper, we focus on texture analysis to char-
acterize the crowd. In particular, we apply PCA and LDA
to enhance the discriminative and descriptive power of LBP
features. Furthermore, we include a large comparative study
to prove that among numerous texture features only few of

them are discriminative to the crowd. The experimental re-
sults highlight the role of low-dimensional compact represen-
tation of LBP on the classification accuracy. In addition, our
proposed approach is robust enough to perform well in dif-
ferent levels of the crowd. Also, by means of comparisons
with other texture features, our proposed approach has been
experimentally validated showing accurate results. For fu-
ture works, there is still untapped potential to reduce the com-
plexity of the multi-classification problem. Also for tests, al-
though jammed crowd level could not be investigated using
PETS, the use of this dataset is relevant since it is well known
in video surveillance community, and is publically available,
thus additional comparisons could be performed. Neverthe-
less, we plan to use more challenging datasets as perspective.
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