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Abstract—We consider in this work the problem of determining
the number of feedback bits which should be used to quantize
the channel state information (CSI) in a broadcast channel (BC)
with K transmit antennas (or equivalently K single-antenna
transmitters (TXs)) and K single-antenna receivers (RXs). We
focus on an extension of the conventional centralized CSI at
the TX (CSIT) model, where instead of having a single channel
estimate, or quantized version, perfectly shared by all the TX
antennas, each TX receives its own estimate of the global multi-
user channel. This CSIT configuration, denoted as distributed
CSIT, is particularly suited to model the joint transmission
from TXs which are not colocated. With centralized CSIT,
a very important design guideline for the feedback link was
provided by Jindal [Trans. Inf. Theory 2006] by providing a
sufficient feedback rate to ensure that the rate loss stays below
a maximum value. In the distributed CSIT setting, additional
errors occur and the design guidelines for the centralized case are
no longer valid. Consequently, we obtain a new relation between
the rate loss and the number of feedback bits. Interestingly, the
feedback rate derived in the distributed CSIT setting is roughly
K log2(K) bits larger than its counterpart in the centralized case.
This highlights the critical impact of the CSIT distributedness
over the performance.

I. INTRODUCTION

In numerous scenarios of wireless communication, the
nodes are now equipped with multiple antennas in order to
increase the number of degree of freedom (DoF), or prelog
factor, of the transmission [1]. While a DoF larger than one
can be achieved without CSIT in point-to-point systems, the
exploitation of the multiple antennas at the TX to achieve a
DoF larger than one in multi-user settings heavily relies on
the availability of sufficiently accurate CSIT [2]–[4].

Yet, obtaining the CSIT represents a challenge in fast fad-
ing channels. Indeed, in frequency division duplexing (FDD)
systems, the channel estimate has to be fed back from the RXs
which inevitably introduces some delays and degradations.
Therefore, a large body of publications has focused on the
problem of designing efficient feedback schemes and evaluat-
ing the impact of imperfect CSIT in the multiple-input single-
output (MISO) BC (See [3], [5]–[7] and reference therein).
Particularly relevant to this work are [3], [4] where the average
loss induced by using limited feedback compared to the
average rate achieved with perfect CSIT is upper bounded.

To further improve the performance and satisfy the always
growing need for higher data rates, TX cooperation is currently
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being considered for next generation wireless networks [8]–
[10]. With perfect sharing of the user’s data message and the
CSI, the different TXs can be seen as a unique virtual multiple-
antenna array serving all RXs, in a MISO BC fashion. Yet,
this type of MISO BC differs from the conventional ones in
the way feedback is obtained at the TXs. Indeed, a channel
estimate is obtained initially at a RX and has to be feedback
to every cooperating TX in order to rely on conventional
transmission schemes for the MISO BC. This can either be
done by direct transmission from every RX to all the TXs in
a broadcast fashion, e.g., using analog feedback [4], [11], or
each RX can transmit its feedback solely to a single TX, which
then forwards it to the other TXs, as currently envisioned for
the future LTE systems [12].

In both scenarios, the conventional assumption of having a
single imperfect channel estimate perfectly shared to all the
TXs, which we call hereafter the centralized CSIT configura-
tion, appears as rather optimistic in the case of non-colocated
cooperating TXs. As a consequence, we consider here a novel
CSIT configuration where every TX receives its own channel
estimate of the multi-user channel. This knowledge is then
used to compute the transmit coefficients locally without
additional communication between the TXs. This setting,
introduced in [13]–[15] as the distributed CSIT scenario, opens
new problems and remains little studied despite its practical
relevance. In [13], a precoding algorithm is provided for the
two-user case. A DoF analysis is carried out in [15] while the
CSIT dissemination problem is discussed in [16].

However, the performance have so far only been evaluated
in terms of DoF which, although helpful to get insights, is
not adapted for practical system design. In particular, it is not
known whether the feedback schemes designed in [3] for the
BC with centralized CSIT remain efficient when the CSIT is
distributed. Answering this question is the main goal of this
work.

Specifically, our main contributions are as follows. With
centralized CSIT, we derive a sufficient feedback rate to ensure
that the rate loss remains below a threshold value. Although
this setting has already been studied in [3], another quantiza-
tion scheme was considered such that a novel approach has to
be developed. Turning to the distributed CSIT configuration,
we provide also a sufficient feedback rate to ensure that the
rate loss remain below a threshold value. The comparison of
the two feedback rates allows to evaluate the impact of the
CSIT distributedness.
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Fig. 1: The transmission with centralized CSIT/precoding is symbolically represented in Figure (a) while Figure (b) represents
the distributed CSIT/precoding .

II. SYSTEM MODEL

A. Transmission model
We consider two different CSIT models, the conventional

single TX BC with centralized CSIT and the distributed CSIT
BC corresponding to the joint transmission from non-colocated
TXs. Both models will be detailed in Subsection II-B. Specif-
ically, we study the transmission from K single-antenna TXs
sharing the knowledge of the users’ data symbols and using
linear precoding to transmit to K single-antenna RXs which
treat interference as noise. The channel from the K TXs to
the K RXs is represented by the channel matrix HH ∈ CK×K
with its elements independent and identically distributed (i.i.d.)
as CN (0, 1) to model a uniform Rayleigh fading environment.
We assume for simplicity that the pathloss is the same over
all wireless links and the extension to channels with different
pathloss is left for future works. The transmission is then
described as y1...

yK

 = HHx+ η =

h
H
1 x
...

hH
Kx

+

 η1...
ηK

 (1)

where yi is the signal received at the i-th RX, hH
i ∈ C1×K the

channel to the i-th RX, and η , [η1, . . . , ηK ]T ∈ CK×1 the
normalized Gaussian noise (CN (0, 1)). We denote the average
per-TX transmit power by P . We also call P the average SNR.

The transmitted signal x ∈ CK×1 is obtained from the
symbol vector s, [s1, . . . , sK ]T∈CK×1 (i.i.d. CN (0, 1)) as

x =
√
PUs =

√
P
[
u1 . . . uK

]  s1...
sK

 (2)

where U ∈ CK×K is the beamforming matrix and ui ∈ CK×1
is the beamforming vector used to transmit si to RX i. Our
focus being on the high-SNR interference-limited regime, we
are interested in canceling out the interference. Hence, we limit
ourselves to studying zero-forcing (ZF) precoders. With per-
fect CSIT, the ZF precoder is denoted by U? , [u?1, . . . ,u

?
K ]

where

u?i ,
(
IK −Hi

(
HH
i Hi

)−1
HH
i

)
hi,∀i ∈ {1, . . . ,K} (3)

with

Hi ,
[
h1 . . . hi−1 hi+1 . . . hK

]
,∀i ∈ {1, . . . ,K}. (4)

Remark 1. The ZF beamformers u?i are defined without power
normalization. Yet, it can easily be seen that E[‖u?i ‖2] = 1,∀i
and E[‖eHj U?‖2] = 1,∀j. This means that a per-user as well
as a per-TX power constraint is fulfilled on average.

The metric of interest in this work is the sum rate averaged
over the channel realizations and, in case of imperfect CSIT,
the quantization error. With perfect CSI at the RX, the average
rate of user i is written as

Ri , EH,D

[
log2

(
1 +

P |hH
i ui|2

1 +
∑
j 6=i P |hH

i uj |2

)]
(5)

where the expectation EH,D[•] denotes the expectation over
the channel realizations and over the error resulting from the
quantization scheme described in the following subsection.

B. Centralized versus distributed BC

Both CSIT scenarios are illustrated in Fig. 1.



1) BC with centralized CSIT: In the centralized CSIT
configuration (see, e.g., [3], [4]), all the TX antennas are colo-
cated and share perfectly a single imperfect channel estimate
Ĥ = [ĥ1, . . . , ĥK ]. We consider that the estimate ĥi of the
channel of user i is obtained from the following quantization
scheme which aims at minimizing the mean square error
(MSE):

ĥi = argmin
w∈Wi

‖hi −w‖2, ∀i ∈ {1, . . . ,K} (6)

where Wi is a codebook containing 2B elements. With ran-
dom vector quantization (RVQ), the codebooks are randomly
chosen and the variance of the estimation error can be shown
to be equal to σ2 = C2−

B
K with C > 0 (when feeding

back the channel vector without normalization) [3], [15]. For
the sake of simplicity, we do not use the true distribution of
the quantization error resulting from the RVQ but we instead
model the quantization error as

ĥi =
√

1− σ2hi + σδi, ∀i ∈ {1, . . . ,K} (7)

where δi ∈ CK×1 has i.i.d. CN (0, 1) elements and is inde-
pendent of hi. We define then Ĥi as

Ĥi ,
[
ĥ1 . . . ĥi−1 ĥi+1 . . . ĥK

]
,∀i ∈ {1, . . . ,K}. (8)

The ZF precoder UCCSI , [uCCSI
1 , . . . ,uCCSI

K ] is then
obtained by applying (3) with the imperfect estimates Ĥi

and ĥi,∀i.
Remark 2. The commonly used Grassmannian quantization
scheme chooses the vector w which maximizes |hH

i w| [3],
[4]. Yet, the figure of merit |hH

i w| is invariant by multi-
plication of w by a complex unit norm number. This leads
to inconsistencies between the channel estimates at the TXs
which are disastrous for joint precoding in a distributed CSIT
BC [15].

2) BC with distributed CSIT: In the BC with distributed
CSIT, TX j has it own estimate of the global multi-user
channel denoted by Ĥ(j) = [ĥ

(j)
1 , . . . , ĥ

(j)
K ]. Note that the

channel estimate at every TX could potentially have a different
accuracy but we study in this work the configuration where the
estimates at all the TXs are of the same quality, i.e., they have
the same statistical properties. The estimate h(j)

i is obtained
from the codebook W(j)

i containing 2B elements as

ĥ
(j)
i = argmin

w∈W(j)
i

‖hi −w‖2, ∀i, j ∈ {1, . . . ,K}. (9)

Similarly to the conventional BC described above, it holds
that the variance of the estimation error is σ2 = 2−

B
K and we

model the quantization error at TX j such that

ĥ
(j)
i =

√
1− σ2hi + σδ

(j)
i ,∀i, j ∈ {1, . . . ,K}. (10)

where δ
(j)
i ∈ CK×1 has i.i.d. CN (0, 1) elements and is

independent of hi. We assume furthermore that the quan-
tization errors at the TXs are independent such that we
have E[δ

(j)
i (δ

(k)
i )H] = δikIK .

Remark 3. A practical scenario where the CSIT is distributed
arises when the CSI is broadcast from the RXs to the non-
colocated TXs in an analog manner (analog feedback) [4],
[11]. In fact, the digital quantization model used in this work
is solely a model to represent the error in the CSIT due to
the limited feeeback and the results can be directly extended
to the case of analog feedback. In this case, the number of
feedback bits can be related to the average transmit power (or
bandwidth) on the feedback channel.

The ZF precoder U(j) , [u
(j)
1 , . . . ,u

(j)
K ] computed at TX j

is then obtained from

u
(j)
i ,

(
IK −Ĥ(j)

i

(
(Ĥ

(j)
i )HĤ

(j)
i

)−1
(Ĥ

(j)
i )H

)
ĥ
(j)
i (11)

where Ĥ
(j)
i is defined as

Ĥ
(j)
i ,

[
ĥ
(j)
1 . . . ĥ

(j)
i−1 ĥ

(j)
i+1 . . . ĥ

(j)
K

]
. (12)

Even though TX j computes the whole precoder U(j), only
its jth row is actually used in the transmission. Indeed, TX j
controls only the jth antenna and emits eHj U

(j)s, where ej
denotes the j-th column vector of the identity matrix IK .
The ZF precoder UDCSI , [uDCSI

1 , . . . ,uDCSI
K ] used for the

transmission is then defined as

uDCSI
i =


eT
1u

(1)
i

eT
2u

(2)
i

...
eT
Ku

(K)
i

 , ∀i ∈ {1, . . . ,K}. (13)

III. AVERAGE RATE WITH CENTRALIZED LIMITED
FEEDBACK

We study in this section the feedback design in the conven-
tional K-user MISO BC with centralized CSIT. The scaling
of the number of feedback bits in terms of P is a well known
result [3], [4], yet, it is obtained with a different ZF precoder
and a different quantization scheme than considered here.
Furthermore, we provide additional insights by studying the
interference term |hH

i u
CCSI
j |2 for i 6= j, which represents the

interference at RX i resulting from the transmission to RX j.

Proposition 1. In the BC with centralized CSIT with σ2 =
2−

B
K , there is a subspace Aσ of probability 1 such that

EAσ [|hH
i u

CCSI
j |2] ≤ σ2, ∀i 6= j ∈ {1, . . . ,K}. (14)

Proof: See [17] for the proof.
The variance of the interference term P |hH

i u
CCSI
j |2 is a

very important figure of merit since it represent the power of
the leaked interference after ZF. Based on Proposition 1, the
following sufficient CSIT allocation can be obtained.

Theorem 1. At high SNR in the BC with centralized CSIT
with σ2 = 2−

B
K , the rate loss is upper bounded by log2(1 +

b) + o(1) bits if B = BCCSI with

BCCSI , K log2((K − 1)P )−K log2(b). (15)

Proof: See [17] for the proof.



It is intuitive that the distributedness of the CSIT leads to an
increased amount of leaked interference since the precoding
coefficients are less coordinated. However, this degradation
has not yet been quantified and the feedback requirements
with distributed CSIT are unknown.

IV. AVERAGE RATE WITH DISTRIBUTED LIMITED CSI

The main goal of this section is to obtain a counterpart
for the feedback design guideline provided in Theorem 1 in
the case of distributed CSIT. Due to the distributed precoding,
the distribution of the leaked interference |hH

i u
DCSI
j |2 is more

complicated and cannot be easily obtained. To study this term,
we start by evaluating the difference U? −U(j).

Proposition 2. In the BC with distributed CSIT with σ2 =
2−

B
K , it holds with probability one that

u
(j)
k = u?k + a

(j)
k + o(σ), ∀k, j ∈ {1, . . . ,K} (16)

with
E[‖a(j)

k ‖
2] = (2K − 1)σ2. (17)

Proof: See [17] for the proof.
As the precoding at each of the TX is the same as in the

case of centralized CSIT, Proposition 2 is also valid for uCCSI
k .

We can now use Proposition 2 to state our main result.

Theorem 2. At high SNR in the BC with distributed CSIT
with σ2 = 2−

B
K , the rate loss is upper bounded by log2(1 +

b) + o(1) bits if b > 2 + 2 log(K) and B = BDCSI with

BDCSI,K log2((2K−1)(K−1)P )−K log2

(
b−2−2 log(K)
3+2 log(K)

)
.

(18)

Proof: See [17] for the proof.
Considering K large, it follows that the feedback rate should

be roughly K log2(K) larger when the CSIT is distributed
compared to the centralized case so as to ensure that the rate
loss is below the same threshold value. The second term in
the right-hand side (RHS) of (18) is the reason behind the
condition on b for using Theorem 2. Yet, it is believed to be
an artifact from the proof and that both the restriction on the
values taken by b and this additional term could be removed at
the cost of the addition of a (small) constant in the expression
of BDCSI.

V. SIMULATION RESULTS

We will verify by simulations the analytical results us-
ing 100 000 Monte-Carlo realizations of the channel and the
quantization errors. First, we show in Fig. 2 the average value
of the MSE ‖u(j)

i −u?i ‖2 (resp. ‖uCCSI
i −u?i ‖2) as a function

of the variance of the quantization error σ2 when K = 5.
Since we are interested in the high precision quantization, we
consider small values of σ2. The simulations can be seen to
overlap exactly with the theoretical results from Proposition 2
as the slope of both curves is (2K − 1) = 9.

We show then in Fig. 3 the average interference power
after normalization by the average SNR P . As expected from
Proposition 1, the average leaked interference are lower or
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i −
u?i ‖2]) as a function of σ2.

equal than σ2 in the centralized case. In contrast, it can be
seen in the case of distributed CSIT that the expected leaked
interference increases with σ2 with a slope larger than one, in
fact on the order of K. Comparing the feedback rates from
Theorem 1 and Theorem 2, it is meaningful that the leaked
interference have a different scaling in K.

Remark 4. We see in the simulations that the average leaked
interference seems to be exactly equal to σ2 in the case of
centralized CSIT. This is in fact a predictable result. Indeed,
using a different modelization of the quantization error, where
we have this time hi = ĥi + σδi with the quantization error
δi independent of the estimate ĥi, it is easily shown that the
expectation of the inner product is exactly equal to σ2.

Finally, the average rate per user in the BC with distributed
CSIT is shown in terms of the average SNR in Fig. 4 for K =
15. We show the average rate achieved when perfect CSIT is
available at the TXs and we compare it to the rate achieved
with limited feedback using different number of feedback bits.
We consider a digital feedback with BDCSI given in (18) for
b = 5+4 log(K) and with BCCSI given in (15) with the same
b. This choice of b has for consequence that the second term
of the expression of BDCSI given in (18) cancels out.

We can observe that the rate loss obtained using
BDCSI feedback bits leads to a rate loss smaller than 1 bit
while the upper bound for the rate loss per user was log2(1+
b) = 4.0732 bits. This is in agreement with our conjecture
that the second term of the feedback rate in Theorem 2 could
be replaced by a (small) constant. Indeed, according to this
conjecture, using b = 5 + 4 log(K) in the feedback rate of
Theorem 2 corresponds approximately to using b = 1 in our
conjectured feedback rate which gives a rate loss of 1 bit.

In contrast, the limited feedback scheme using BCCSI leads
to a rate loss of 8.2 bits, which is 4.1 bits higher than the
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threshold value. This means that the number of feedback bits
used is too small to satisfy the condition on the rate loss:
Assuming that the CSIT is centralized, when it is in fact
distributed, leads to an important performance degradation.

VI. DISCUSSION OF THE RESULTS

Considering a distributed CSIT configuration where every
TX has its own channel estimate and cooperates with the
other TXs without any additional exchange of information,
we have derived a sufficient feedback rate which ensures
that the rate loss compared to the transmission with perfect

CSIT remains below a threshold value. Interestingly, the
expression obtained in Theorem 2 can be seen to increase
more quickly with the number of users K than its counterpart
in the BC with “centralized” CSIT in Theorem 1. Hence, the
CSI discrepancies resulting from the distributedness of the
CSIT can lead to important performance degradations, if not
taken into account in the feedback design. An upper-bound
for the rate loss for a given amount of feedback has been
derived and the derivation of a lower-bound is the focus of
undergoing research. However, the statistical distribution of
the interference with distributed CSIT makes this problem
relatively intricate. Furthermore, the extension of the analysis
to scenarios with different pathloss between every TX and
every RX represents a challenging and interesting research
problem.

REFERENCES

[1] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European
Transaction on Communications, vol. 10, pp. 585–595, 1999.

[2] S. A. Jafar and A. J. Goldsmith, “Isotropic fading vector broadcast
channels: The scalar upper bound and loss in degrees of freedom,” IEEE
Trans. Inf. Theory, vol. 51, no. 3, pp. 848–857, Mar. 2005.

[3] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE
Trans. Inf. Theory, vol. 52, no. 11, pp. 5045–5060, Nov. 2006.

[4] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO
achievable rates with downlink training and channel state feedback,”
IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2845–2866, Jun. 2010.

[5] D. J. Love, R. W. Heath, V. K. N. Lau, D. Gesbert, B. D. Rao, and
M. Andrews, “An overview of limited feedback in wireless commu-
nication systems,” IEEE J. Sel. Areas Commun., vol. 26, no. 8, pp.
1341–1365, Oct. 2008.

[6] T. Yoo, N. Jindal, and A. Goldsmith, “Multi-antenna downlink channels
with limited feedback and user selection,” IEEE J. Sel. Areas Commun.,
vol. 25, no. 7, pp. 1478–1491, Sep. 2007.

[7] S. Wagner, R. Couillet, M. Debbah, and D. Slock, “Large system
analysis of linear precoding in correlated MISO broadcast channels
under limited feedback,” IEEE Trans. Inf. Theory, vol. 58, no. 7, pp.
4509–4537, July 2012.

[8] M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, “Network
coordination for spectrally efficient communications in cellular systems,”
IEEE Wireless Communications, vol. 13, no. 4, pp. 56–61, Aug. 2006.

[9] O. Somekh, O. Simeone, Y. Bar-Ness, and A. M. Haimovich, “Dis-
tributed multi-cell zero-forcing beamforming in cellular downlink chan-
nels,” in Proc. IEEE Global Communications Conference (GLOBE-
COM), 2006.

[10] D. Gesbert, S. Hanly, H. Huang, S. Shamai (Shitz), O. Simeone,
and W. Yu, “Multi-cell MIMO cooperative networks: a new look at
interference,” IEEE J. Sel. Areas Commun., vol. 28, no. 9, pp. 1380–
1408, Dec. 2010.

[11] O. E. Ayach and R. W. Heath, “Interference alignment with analog
channel state feedback,” IEEE Trans. Wireless Commun., vol. 11, no. 2,
pp. 626–636, Feb. 2012.

[12] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS long term evolution:
From theory to practice, 2nd ed. Wiley, 2011.

[13] R. Zakhour and D. Gesbert, “Team decision for the cooperative MIMO
channel with imperfect CSIT sharing,” in Proc. Information Theory and
Applications Workshop (ITA), 2010.

[14] P. de Kerret and D. Gesbert, “The multiplexing gain of a two-cell MIMO
channel with unequal CSI,” in Proc. IEEE International Symposium on
Information Theory (ISIT), 2011.

[15] ——, “Degrees of freedom of the network MIMO channel with dis-
tributed CSI,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6806–6824,
Nov. 2012.

[16] ——, “CSI sharing strategies for transmitter cooperation in wireless
networks,” IEEE Wireless Commun. Mag., vol. 20, no. 1, pp. 43–49,
Feb. 2013.

[17] P. de Kerret, J. Hoydis, and D. Gesbert, “Rate loss analysis of transmitter
cooperation with distributed CSIT,” 2013, extended version. Available
from arvix.org.


