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Abstract We consider simple Markovian games, in which several states succeed
each other over time, following an exogenous discrete-time Markov chain. In each
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tigate the approximation of the Shapley–Shubik power index in simple Markovian
games (SSM). We prove that an exponential number of queries on coalition values is
necessary for any deterministic algorithm even to approximate SSM with polynomial
accuracy. Motivated by this, we propose and study three randomized approaches to
compute a confidence interval for SSM. They rest upon two different assumptions,
static and dynamic, about the process through which the estimator agent learns the
coalition values. Such approaches can also be utilized to compute confidence inter-
vals for the Shapley value in any Markovian game. The proposed methods require a
number of queries which is polynomial in the number of players in order to achieve
a polynomial accuracy.
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1 Introduction

Cooperative game theory is a powerful tool to analyse, predict, and influence the
interactions among several players capable to stipulate deals and form subcoalitions
in order to pursue a common interest. Under the assumption that the grand coalition,
comprising all the players, is formed, it is a delicate issue to share the payoff earned
by the grand coalition among its participants.

Introduced by Lloyd S. Shapley in his seminal paper [30], the Shapley value is
one of the best known payoff allocation rules in a cooperative game with transferable
utility (TU). It is the only allocation procedure fulfilling three reasonable conditions
of symmetry, additivity and dummy player compensation (see [30] for details), under
a superadditive assumption on the coalition values. The significance of the Shapley
value is witnessed by the breadth of its applications, spanning from pure economics
[3] to Internet economics [20,32,7], politics [4], and telecommunications [17].

The concept of Shapley value is particularly meaningful also when applied to sim-
ple games [31], in which the coalition values are binary. They model winning/losing
scenarios. In this case, the Shapley value is commonly referred to as the Shapley–
Shubik power index. A specific instance of simple games are weighted voting games,
in which each player possesses a different amount of resources and a coalition is ef-
fective, i.e. its value is 1, whenever the sum of the resources shared by its participants
is higher than a certain quota; otherwise, its value is 0. The Shapley–Shubik index in
weighted voting games proves to be particularly suitable to assess a priori the power
of the members of a legislation committee, and has many applications to politics (see
[34] for an overview). Our results on simple games, except the ones in Sect. 4, also
apply to weighted voting games.

The computation of the Shapley value for each player j = 1, . . . ,P involves the
assessment of the increment of the value of a coalition brought on by the presence
of player j, over all 2P−1 possible coalitions. Hence, it is clear that the complex-
ity of the Shapley value in the number of players P is a crucial issue. Mann and
Shapley himself [21] were the first to suggest to adopt a Monte–Carlo procedure to
approximate the Shapley–Shubik index. They first proposed a very simple algorithm,
randomly generating a succession of players’ permutations and evaluate the incre-
mental value of player j with respect to the coalition formed by its preceding players
in each permutation. The Shapley–Shubik index is approximated as the average of
such increments. Then they empirically showed that the “cycling scheme” described
below is characterized by a smaller variance. First, a target player is singled out, and
the remaining players are placed in a random order. Then, this order is put through
all of its cyclic permutations, and the target player is inserted in each position in each
permutation. Thus, P(P− 1) permutations are generated, and for each of them the
incremental value of player j with respect to the coalition formed by its preceding
players is assessed. For this cycling approach, deriving a confidence interval for the
Shapley–Shubik index seems to be a hard task. Hence, Bachrach et al. adopted in [8]
the first Monte–Carlo procedure described above to compute a confidence interval.
This approximation method, presented for simple games, can be easily generalized
to any game.
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The bulk of the literature on cooperative games focuses on static games. However,
politics or economics is more like a process of continuing negotiation and bargaining.
This motivates the introduction of dynamic cooperative game theory (see, e.g., [15],
[19]). In this work, we consider that the game is not played one-shot, but rather over
an infinite horizon: There exists a finite set of static cooperative games that come one
after the other, following a discrete-time homogeneous Markov process. We call this
interaction model repeated over time as the Markovian game. Our Markovian game
model arises naturally in all situations in which several individuals keep interacting
and cooperating over time, and an exogenous Markov process influences the value of
each coalition, and consequently also the power of each player within coalitions. A
very similar model, but with non-transferable utilities, was considered in [29]. Our
model can also be viewed as a particular case of the cooperative Markov decision
process described in [5], or in [27], in which the transition probabilities among the
states do not depend on the players’ actions.

We take into account the average and the discount criterion to compute the payoff
earned by each player in the long-run Markovian game. In this article we extend the
approach by Bachrach et al. in [8] to compute a confidence interval for the Shap-
ley value in Markovian games. In [8], the authors considered a simple static game
and proved that any deterministic algorithm which approximates one component of
the Banzhaf index with accuracy better than c/

√
P needs Ω(2P/

√
P) queries, where

c > 0 and P is the number of players. Hence, when P grows large, it is crucial to find
a suitable way to approximate the power index with a manageable number of queries.
Hence, in [8] a confidence interval for the Banzhaf index and Shapley–Shubik power
index in simple games has been developed, based on Hoeffding’s inequality. In this
article, we assume that the estimator agent knows the transition probabilities among
the states. We first show that it is still beneficial to utilize a randomized approach
to approximate the Shapley–Shubik index in simple Markovian games (SSM) for a
number of players P sufficiently high. Then we propose three methods to compute a
confidence interval for the SSM that also apply to the Shapley value of any Marko-
vian game. Next we will essentially demonstrate that, asymptotically in the number
of steps of the Markov chain and by exploiting the Hoeffding’s inequality, the esti-
mator agent does not need to have access to the coalition values in all the states at the
same time. Indeed, it suffices for the estimator agent to learn the coalition values in
each state along the course of the game to “well” approximate SSM.

Let us make an overview the content of this article. We provide some useful def-
initions, background results, and motivations of our dynamic model in Sect. 2. In
Sect. 3, we motivate the significance of our Markovian model. In Sect. 4, we study
the trade-off between complexity and accuracy of deterministic algorithms approx-
imating SSM. An exponential number of queries is necessary for any deterministic
algorithm even to approximate SSM with polynomial accuracy. Motivated by this,
we propose three different randomized approaches to compute a confidence interval
for SSM. Their complexity does not even depend on the number of players. Such ap-
proaches also hold for the classic Shapley value of any cooperative Markovian game
(ShM). In Sect. 5, we provide the expression of our first confidence interval, SCI,
which relies on the static assumption that the estimator agent has access to the coali-
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tion values in all the states at the same time, even before the Markov process initiates.
Although SCI relies on an impractical assumption, it is still a valid benchmark for the
performance of the approaches yielding the confidence intervals described in Sects.
6.1 and 6.2, dubbed DCI1 and DCI2 respectively. DCI1 and DCI2 also hold under
the more realistic dynamic assumption that the estimator agent learns the value of
coalitions along the course of the game. In Sect. 6.1, we propose a straightforward
way to optimize the tightness of DCI1. In Sect. 7, we compare the three proposed
approaches in terms of tightness of the confidence interval. Finally, in Sect. 8, we
provide a trade-off between complexity and accuracy of our randomized algorithm,
holding for any cooperative Markovian game.

We remark that the extension of our approaches to the Banzhaf index [10] is
straightforward.

Some notation remarks. If a is a vector, then ai is its ith component. If A is a
random variable (r.v.), then At is its tth realization. Given a set S, |S| is its cardinality.
The expression b(s) indicates that the quantity b, standing possibly for the Shapley
value, Shapley–Shubik index, coalition value, feasibility region, etc., is related to the
static game played in state s. The expression Pr(B) stands for the probability of event
B. The indicator function is written as 1I(.). With some abuse of terminology, we
will refer to a confidence interval or to the approach utilized to compute it without
distinction.

2 Markovian Model and Background results

In this article, we consider cooperative Markovian games with transferable utility
(TU). Let P be the number of players and let P = {1, . . . ,P} be the grand coalition
of all players. We have a finite set of states S = {s1, . . . ,s|S|}. In state s, each coalition
Λ ⊆ P can ensure for itself the value v(s)(Λ) that can be shared in any manner
among the players under the TU assumption. Hence, in each state s ∈ S, the game
Ψ (s) ≡ (P,v(s)) is played. Let V (s)(Λ) be the half-space of all feasible allocations
for coalition Λ in the TU game Ψ (s), i.e., the set of real |Λ |-tuple a ∈ R|Λ | such that
∑|Λ |

i=1 ai ≤ v(s)(Λ). We suppose that the coalition values are superadditive, i.e.,

v(s)(Λ1 ∪Λ2)≥ v(s)(Λ1)+ v(s)(Λ2), ∀Λ1,Λ2 ⊆ P, Λ1 ∩Λ2 = /0.

The succession of the states follows a discrete-time homogeneous Markov chain,
whose transition probability matrix is P. Let x(s) ∈ RP be a payoff allocation among
the players in the single stage game Ψ (s). Under the β -discounted criterion, where
β ∈ [0;1), the discounted allocation in the Markovian dynamic game Γsk , starting
from state sk, can be expressed as

∞

∑
t=0

β tE
(

x(St )
)
=

|S|

∑
i=1

ν(β )
i (sk)x(si)

where St is the state of the Markov chain at time t and ν(β )(sk) is the kth row of the
nonnegative matrix (I−βP)−1. We stress that β can be interpreted as the probability
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that the game terminates, at any step. Under the average criterion, if the transition
probability matrix P is irreducible, then the allocation in the long-run game Γsk can
be written as

limsup
T→∞

1
T +1

T

∑
t=0

E
(

x(St )
)
=

|S|

∑
i=1

π i x(si)

where π is the stationary distribution of the matrix P.
We define V (Λ ,Γs) as the set of feasible allocations in the long-run game Γs for

coalition Λ , coinciding with the Minkowski sum:

V (Λ ,Γs)≡
|S|

∑
i=1

σ i(s)V (si)(Λ).

where σ i(s)≡ ν(β )
i (s) if the β -discounted criterion is adopted, and σ i(s)≡ π i under

the average criterion.

Proposition 1 ([5]) V (Λ ,Γs) is equivalent to the set A of real R|Λ |-tuples a such
that ∑|Λ |

i=1 ai ≤ v(Λ ,Γs), where v(Λ ,Γs) = ∑|S|
i=1 σ i(s)v(si)(Λ), for all s ∈ S, Λ ⊆ P .

Thanks to Proposition 1, it is legitimate to define v(Λ ,Γs) as the value of coalition
Λ ⊆P in the long-run game Γs. Let us define the Shapley value in static games [30].

Definition 1 The Shapley value Sh(s) in the static game played in state s ∈ S is a real
P-tuple whose jth component is the payoff allocation to player j:

Sh(s)j = ∑
Λ⊆P/{ j}

|Λ |!(P−|Λ |−1)!
P!

[
v(s)(Λ∪{ j})− v(s)(Λ)

]
.

Now, we are ready to define the Shapley value in the Markovian game Γs, ShM(Γs),
that can be expressed, thanks to Proposition 1 and to the standard linearity property
of the Shapley value, as

ShM j(Γs) =
|S|

∑
i=1

σ i(s)Sh(si)
j , ∀s ∈ S, 1 ≤ j ≤ P. (1)

In the next sections, we will exploit Hoeffding’s inequality [16] to derive basic
confidence intervals for the Shapley value of Markovian games.

Theorem 1 (Hoeffding’s inequality) Let A1, . . . , An be n independent random vari-
ables, where Ai ∈ [ai,bi] almost surely. Then, for all ε > 0,

Pr

(
n

∑
i=1

Ai −E

[
n

∑
i=1

Ai

]
≥ nε

)
≤ 2exp

(
− 2n2 ε2

∑n
i=1(bi −ai)2

)
.
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In this work, several results are shown in the case of simple Markovian games.
They are Markovian games with transferable utility in which the value of each coali-
tion in each state can only take on binary values, i.e., 0 and 1. Simple games model
winning/losing situations, in which winning coalitions have unitary value. We say
that player i is critical for coalition Λ ⊆P\{i} in state s if v(s)(Λ ∪{i})−v(s)(Λ) =
1. The Shapley value applied to simple static games is commonly referred to as
Shapley–Shubik power index (SS). We define SSM as the Shapley value in simple
Markovian games. Of course, the relation between SS and SSM is analogous to ex-
pression (1).

All the results in this paper for simple Markovian games, except the ones in Sect.
4, are also valid for weighted voting Markovian games, which we define in the fol-
lowing.

Definition 2 A weighted voting Markovian game is a Markovian game in which each
single stage game Ψ (s) is associated to the triple (P,T (s),w(s)), where 1, . . . ,P are the
players, w(s) ∈ RP is the set of weights, and T (s) is a threshold. The binary coali-
tion values v(s) in state s are such that v(s)(Λ) = 1 whenever ∑i∈Λ w(s)

i ≥ T (s) and
v(s)(Λ) = 0 whenever ∑i∈Λ w(s)

i < T (s).

3 Motivations of the Markovian model

Many interaction situations among different individuals are not one-shot, but continue
over time. Moreover, the environment in which interactions take place is dynamic,
and this may influence the negotiation power of each individual. Under these assump-
tions, the value of each coalition varies over time. In economics, clear examples of
this situation are the continuing bargaining among countries, firms, or management
unions. This pragmatic reasoning spurred the research on dynamic cooperative games
in the last decade (see, e.g., [15], [19]). Our Markovian model is a specific instance
of a dynamic cooperative game, in which the evolution of the coalition values over
time follows an exogenous Markov chain on a finite state space. A concrete example
of our model, in which the coalition values are not bound to be binary though, can be
found in [6], where a wireless multiple access channel is considered, and several users
attempt to transmit to a single receiver. The value of a coalition of users is computed
as the maximum sum-rate achievable by the coalition when the remaining players
threaten to jam the network. The state of the system is represented by the channel
coefficients, whose evolution over time follows a Markov chain, a classic assumption
in wireless communications.

Our Markovian scenario can be seen as a natural extension to a dynamic context
of static situations with some uncertainty in the model. E.g., let us consider games
with agent failure (see e.g. [25,26,24]), in which each player may withdraw from the
game with a certain probability. The dynamic version of this game can be modeled
via a very simple Markov chain, where the probability of reaching a state where
a certain subset Λ of players survives only depends on Λ and not on the current
state. Interestingly, the approach utilized in [8] to approximate the Shapley value in
static games has been adapted to a cooperative game with failures in [9]. In [12],
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a coalition formation scenario with uncertainty is considered, in which the state of
the system accounts for the stochastic outcome of the collaboration among agents.
Though our model does not consider coalition formation, a simple Markov chain
can still be used to extend the scenario in [12] to a dynamic context, in which the
transition probabilities still do not depend on the starting state.

It is also worth clarifying the meaning of the Shapley value ShM on Markovian
games, defined as in (1). Classically, in static games, the Shapley value has a two-fold
interpretation. It can be thought of either as a measure of agents’ power or as a binding
agreement the agents make regarding the sharing of the revenue earned by the grand
coalition. The first interpretation still holds in Markovian games, where ShM j(Γs) is
the expected power of agent j in the long-run game Γs. The second interpretation is
sensible only when the value of the grand coalition is deterministic; since v(P,Γs) is
an expected revenue, this second interpretation fails to hold in the Markovian game.
Nevertheless, we can still view ShM under a revenue sharing perspective. Suppose
indeed that the rewards at each state are deterministic. We see from (1) that ShM j(Γs)
equals the long-run expected payoff for player j, if in each state s the deterministic
revenue Sh(s)j is assigned to player j. Therefore, {Sh(s)j }s∈S can be seen as the deter-
ministic distribution of ShM(Γs) along the course of the dynamic game, for any initial
state s ∈ S . Moreover, it is straightforward to see that such distribution procedure is
time consistent, i.e. if the state at time t ≥ 0 is St , then β tShM j(ΓSt ) is the long-run
expected revenue for player j from time t onward. For a detailed discussion on this
topic, in a more complex model in which the transition probabilities depend on the
players’ actions, we refer to [5].

4 Complexity of deterministic algorithms

Since the exact computation of the Shapley value, or equivalently of the Shapley–
Shubik index, involves the calculation of the incremental asset brought by a player
to each coalition, then its complexity is proportional to the number of such coali-
tions, i.e., 2P−1, under oracle access to the characteristic function. In this section,
we evaluate the complexity of any deterministic algorithm which approximates the
Shapley–Shubik index in a simple Markovian game.
Before starting our analysis, let us introduce some ancillary concepts. We mean by
game instance a specific Markovian game. In this paper, we implicitly assume that
all the algorithms considered (deterministic or randomized) aim at approximating the
Shapley value for player j, without loss of generality. Let us clarify our notion of
“query.”

Definition 3 A query of an algorithm (deterministic or randomized) - consists in the
evaluation of the marginal contribution of player j to a coalition Λ ⊆ P\{i}, i.e.,
v(Λ ∪{i})− v(Λ).

Now we define the accuracy of a deterministic algorithm.

Definition 4 Let us assume that the Shapley–Shubik index for player j in the simple
Markovian game Γs is SSM j(Γs) = a. Let ALG be a deterministic algorithm em-
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ploying q queries. We say that ALG has an accuracy of at least d > 0 with q queries
whenever, for all the game instances, ALG always answers SSM j(Γs)∈ [a−d;a+d].

We will first show that an exponential number of queries is necessary in order to
achieve a polynomial accuracy for any deterministic algorithm aiming to approximate
the Shapley–Shubik index in the static case. This is an extension of Theorem 3 in [8]
to the Shapley–Shubik index, and its proof is in Appendix A.

Theorem 2 Any deterministic algorithm computing one component of the Shapley–
Shubik index in the simple static game in state s requires Ω(2P/

√
P) queries to

achieve an accuracy of at least 1/(2P), for all s ∈ S.

We remark that Theorem 2 does not apply to weighted voting games. There ex-
ist algorithms that exploit the weight/quota structure of a weighted voting game to
decrease the complexity of the exact computation of the Shapley-Shubik index with
respect to simple games. Algorithms based on generating functions are proposed in
[33] and [11]. A pseudo-polynomial time algorithm based on a dynamic program-
ming technique is described in [22]. In [18] the authors devise a fast deterministic
algorithm whose time complexity is O(1.415PP). The complexity of such algorithms
is still exponential in the number of players. In [28] and [23] it is shown that the
problem of determining whether a player of a weighted voting game is a dummy
one is NP-complete. On the other hand, in the literature there does not exist - up
to our knowledge - an approximation result analogous to Theorem 2 specifically for
weighted voting games.

Finally, we are ready to derive a trade-off between the accuracy and the complex-
ity of a deterministic algorithm approximating the Shapley–Shubik index in a simple
Markovian game, as a function of the number of players P.

Corollary 1 There exists c > 0 such that any deterministic algorithm approximating
one component of the Shapley–Shubik index in the simple (but not weighted voting)
Markovian game Γs requires Ω(2P/

√
P) queries to achieve an accuracy of at least

c/P, for all s ∈ S.

The results of the current section clearly discourage from computing exactly or
even approximating SSM with a deterministic algorithm when the number of players
P is large. Motivated by this, in the next sections we will direct our attention toward
randomized approaches to construct confidence intervals for SSM, whose complexity
does not even depend on P.

5 Randomized static approach

In this section, we will propose our first approach to compute a confidence interval
for the Shapley value in Markovian games. The expression of the confidence inter-
val that we will propose holds for the Shapley value of any Markovian game (ShM).
Nevertheless, in the following sections, we will provide some results holding specifi-
cally for the Shapley–Shubik index in the particular case of simple Markovian games
(SSM). Let us first define our performance evaluator for a randomized algorithm.
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Definition 5 Let 1−δ be the probability of confidence. The accuracy of a random-
ized algorithm is the length of the confidence interval produced by the randomized
algorithm to approximate SSM.

In parallel, the reader learns the notion of accuracy of a deterministic algorithm from
Definition 4. Throughout the paper, we suppose that the transition probability matrix
P is known by the estimator agent. In this section, we also assume that the value of
all coalitions in each single stage games are available off-line to the estimator agent.

Assumption 1 The estimator agent has access to all the coalition values in each
state:

{v(s)(Λ), ∀Λ ⊆ P, s ∈ S}

at the same time, before the Markovian game starts.

It is clear that, under Assumption 1, the estimator agent can perform an off-line
randomized algorithm to approximate ShM.

Remark 1 Assumption 1 seems to be impractical for the intrinsic dynamics of the
model we consider. Nevertheless, the randomized approach based on Assumption 1
that we propose next (SCI) will prove to be an insightful performance benchmark
for two methods (DCI1 and DCI2) described in Sect. 6, based on a more realistic
dynamic assumption.

First, let us find a formulation of the Shapley value in the Markovian game which
is suitable for our purpose. Let X be the set of all the permutations of {1, . . . ,P}. Let
Cχ( j) be the coalition of all the players whose index precedes j in the permutation
χ ∈ X , i.e.,

Cχ( j)≡ {i : χ(i)< χ( j)}. (2)

We can write the Shapley value of the Markovian game Γs, both for the discount and
for the average criterion, as

ShM j(Γs) =
|S|

∑
i=1

σ i(s)Sh(si)
j

=
1
P! ∑

χ∈X

|S|

∑
i=1

σ i(s)
[
v(si)(Cχ( j)∪{ j})− v(si)(Cχ( j))

]
= Eχ

[
|S|

∑
i=1

σ i(s)
[
v(si)(Cχ( j)∪{ j})− v(si)(Cχ( j))

]]
,

where Eχ is the expectation over all the permutations χ ∈ X , each having the same
probability 1/P!.

We now propose our first algorithm to compute a confidence interval for ShM j(Γs),
for each player j and initial state s. For each query, labeled by the index k = 1, . . . ,m,



10 Konstantin Avrachenkov et al.

let us select independently over a uniform distribution on X a permutation χk of
{1, . . . ,P}. Let us define Z( j) as the random (over χ ∈ X) variable

Z( j)≡
|S|

∑
i=1

σ i(s)
[
v(si)(Cχ( j)∪{ j})− v(si)(Cχ( j))

]
(3)

= v(Cχ( j)∪{ j},Γs)− v(Cχ( j),Γs)

and let Zk( j) be the kth realization of Z( j). We remark that Z( j) implies the compu-
tation of |S| queries, one in each state. Thanks to Hoeffding’s inequality, we can write
that for all ε > 0,

Pr

(∣∣∣∣∣ 1
m

m

∑
k=1

Zk( j)−ShM j(Γs)

∣∣∣∣∣≥ ε

)
≤ 2exp

(
− 2mε2

[y− y]2

)
where

y = max
C⊆P

|S|

∑
i=1

σ i(s)
[
v(si)(C ∪{ j})− v(si)(C )

]
,

y = min
C⊆P

|S|

∑
i=1

σ i(s)
[
v(si)(C ∪{ j})− v(si)(C )

]
.

We remark that, in the case of simple games,
[
y− y

]2 ≤ [∑|S|
i=1 σ i(s)

]2. Now we are
ready to propose our first confidence interval, based on Assumption 1.

Static Confidence Interval 1 (SCI) Let 1≤ j ≤P, s∈ S. Fix an integer n and set δ ∈
(0;1). Then, with probability of confidence 1−δ , ShM j(Γs) belongs to the confidence
interval [

1
m

m

∑
k=1

Zk( j)− ε(m,δ ) ;
1
m

n

∑
k=1

Zk( j)+ ε(m,δ )

]
,

where

ε(m,δ ) =

√
[y− y]2 log(2/δ )

2m
. (4)

In the case of simple games, (4) becomes

ε(m,δ ) =

√√√√[∑|S|
i=1 σ i(s)

]2
log(2/δ )

2m
. (5)

Under the average criterion, (5) can be written as ε(m,δ ) =
√

log(2/δ )/[2m].

Not surprisingly, the confidence interval SCI is analogous to the one found in
[8] for static games. Indeed, the intrinsic dynamics of the game is surpassed by As-
sumption 1, for which the estimator has global knowledge of all the coalition values,
even before the Markov process initiates. Therefore, from the estimator agent’s point
of view, there exists no conceptual difference between the approach in [8] and SCI,
except for the complexity, which increases by a factor |S| in the dynamic game.
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6 Randomized dynamic approaches

In this section we will propose two methods to compute a confidence interval for
SSM, for which Assumption 1 on global knowledge of coalition values is no longer
necessary. Indeed, the reader will notice that their conception naturally arises from
the assumption that the estimator agent learns the coalition values in each single stage
game while the Markov chain process unfolds, as formalized below.

Assumption 2 The state in which the estimator agent finds itself at each time step
follows the same Markov chain process of the Markovian game itself. The estimator
agent has local knowledge of the game that is being played, i.e., at step t ≥ 0 the
estimator agent has access only to the coalition values associated to the static game
in the current state St .

Remark 2 The approaches described in this section can also be employed under As-
sumption 1. Indeed, any algorithm requiring the query on coalition values separately
in each state can also be run under a static assumption.

In the following, we still assume that the transition probability matrix P is known
by the estimator agent. As in Sect. 5, the randomized approaches that we are going to
introduce hold for the Shapley value of any Markovian game.

6.1 First dynamic approach

We propose our first randomized approach to compute a confidence interval for ShM,
holding both under the static Assumption 1 and under the dynamic Assumption 2.
Let χ ∈ X be, as in Sect. 5, a random permutation uniformly distributed on the set
{1, . . . ,P}. Let us define Y (si)( j) as the random (over χ ∈ X) variable associated to
state si:

Y (si)( j)≡ v(si)(Cχ( j)∪{ j})− v(si)(Cχ( j)). (6)

Our dynamic approach suggests to sample the r.v. Y (si)( j) ni times in state si. Let
n = ∑|S|

i=1 ni be the total number of queries. We can still exploit Hoeffding’s inequality
to say that, for all ε ′ > 0,

Pr

(∣∣∣∣∣ |S|∑
i=1

σ i(s)
ni

ni

∑
t=1

Y (si)
t ( j)−ShM j(Γs)

∣∣∣∣∣≥ nε ′
)

≤

2exp

(
− 2[nε ′]2

∑|S|
i=1 σ2

i (s)[x(i)− x(i)]2/ni

)

where, for all i = 1, . . . , |S|,

x(i) = max
C⊆P

v(si)(C ∪{ j})− v(si)(C )

x(i) = min
C⊆P

v(si)(C ∪{ j})− v(si)(C )
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We notice that, in the case of simple games, x(i) = 1 and x(i) = 0 for all i = 1, . . . , |S|.
Now set ε̃ = nε ′. Now we are ready to propose our second confidence interval for
ShM j(Γs), the first one holding under Assumption 2.

Dynamic Confidence Interval 1 (DCI1) Let 1 ≤ j ≤ P, s ∈ S. Fix the number of
queries n and set δ ∈ (0;1). Then, with probability of confidence 1− δ , ShM j(Γs)
belongs to the confidence interval[

|S|

∑
i=1

σ i(s)
ni

ni

∑
t=1

Y (si)
t ( j)− ε̃(n,δ ) ;

|S|

∑
i=1

σ i(s)
ni

ni

∑
t=1

Y (si)
t ( j)+ ε̃(n,δ )

]
,

where

ε̃(n,δ ) =

√√√√ log(2/δ )
2

|S|

∑
i=1

σ2
i (s)
ni

[x(i)− x(i)]2. (7)

In the case of simple games, (7) becomes

ε̃(n,δ ) =

√√√√ log(2/δ )
2

|S|

∑
i=1

σ2
i (s)
ni

. (8)

Optimal sampling strategy In this section we focus exclusively on simple Markovian
games. It is interesting to investigate the optimum number of times n∗i that the variable
Y (si)( j) should be sampled in each state si, in order to minimize the length of the
confidence interval DCI1, keeping the confidence probability fixed. We notice that, by
fixing 1−δ , we can find the optimal values for n1, . . . ,n|S| by setting up the following
integer programming problem: min

n1,...,n|S|
∑|S|

i=1 σ2
i (s)[x

2(i)− x2(i)]/ni

∑|S|
i=1 ni = n, ni ∈ N

(9)

Remark 3 If the static Assumption 1 holds, then the computation of the optimum
values n∗1, . . . ,n

∗
|S| in (9) is the only information we need to maximize the accuracy

of DCI1, since the sampling is done off-line. Otherwise, if Assumption 2 holds, the
estimator does not know in advance the succession of states hit by the process, hence
it is crucial to plan a sampling strategy of the variable Y (si)( j) along the Markov
chain. Of course, a possible strategy would be, when n is fixed, to sample n∗i times
the variable Y (si)( j) only the first time the state si is hit, until all the states are hit.
Nevertheless, this approach is clearly not efficient, since in several time steps the
estimator is forced to remain idle.

Motivated by Remark 3, now we devise an efficient and straightforward sampling
strategy, consisting in sampling Y (si)( j), each time the state si is hit, an equal number
of times over all i = 1, . . . , |S|. Let us first show a useful classical result for Markov
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chains. Let η be the number of steps performed by the Markov chain. Let ηi be the
number of visits to state si, i.e.,

ηi =
η−1

∑
t=0

1I(St = si).

Theorem 3 ([2]) Let {St , t ≥ 1} be an ergodic Markov chain. Let π̂(η)
i ≡ηi/η . Then,

for any distribution on the initial state and for all i = 1, . . . , |S|,

π̂(η)
i

η↑∞−→ π i with probability 1,

where π is the stationary distribution of the Markov chain.

It is evident from (7) that ε̃(n,δ ) ∈ Θ(n−1/2). Now we will show under which
conditions the straightforward sampling strategy described above allows to achieve
asymptotically for n ↑ ∞ the best rate of convergence of ε̃(n,δ ), for δ fixed. The
reader can find the proof of the next theorem in Appendix D.

Theorem 4 Suppose that Assumption 2 holds. Let the Markov chain of the simple
Markovian game be ergodic. Fix the confidence probability 1−δ . Under the average
criterion, if each time the state si is hit then the estimator agent samples the r.v.
Y (si)( j) a constant number of times not depending on i (e.g., 1), then with probability
1:

√
n ε̃(n,δ ) n↑∞−→ inf

n∈N
min

n1 ,...,n|S|:

∑i ni=n

√
n ε̃(n,δ ) =

√
log(2/δ )

2
.

6.2 Second dynamic approach

Since Hoeffding’s inequality has a very general applicability and does not refer to
any particular probability distribution of the random variables at issue, it is natural
to look for confidence intervals especially suited to particular instances of games. In
this section, we will show a third confidence interval for the Shapley value of the
Markovian game Γ which is tighter i) the higher the confidence probability 1− δ is
and ii) the tighter the confidence intervals [li;ri] are. As an example, in Sect. 6.2, we
will show a tight confidence interval for simple Markovian games.

We still assume that the estimator agent samples the r.v. Y (si)( j) ni times, in each
state si. Here, we suppose to know beforehand that Sh(si)

j lies in the confidence in-
terval [li;ri] with probability of at least 1− δi. In general, the extrema li and ri may
depend on ni, ∑ni

t=1 Y (si)
t ( j), and δi.

As in the case of DCI1, the randomized approach proposed in this section also holds
both under the static Assumption 1 and under the dynamic Assumption 2. It is based
on the following lemma, whose proof is in Appendix C.
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Lemma 1 Let A1, . . . ,Ak be k random variables such that Pr(Ai ∈ [li;ri]) ≥ 1− δi.
Let ci ≥ 0, for i = 1, . . . ,k. Then

Pr

(
k

∑
i=1

ci Ai ∈

[
k

∑
i=1

cili ;
k

∑
i=1

ciri

])
≥

k

∏
i=1

[1−δi]

The reader should keep in mind that, the smaller the single confidence levels
δ1, . . . ,δk are, the tighter the lower bound on the confidence probability ∏k

i=1(1−δi)
is. Now we are ready to present our second dynamic approach. Let the r.v. Y (si)( j) be
defined as in (6).

Dynamic Confidence Interval 2 (DCI2) Set δi ∈ (0;1), for all i = 1, . . . , |S|. Let[
l(si)

(
ni,

n

∑
t=1

Y (si)
t ( j),δi

)
; r(si)

(
ni,

n

∑
t=1

Y (si)
t ( j),δi

)]
(10)

be the confidence interval for Sh(si), with probability of confidence 1 − δi, for all
i = 1, . . . , |S|. Let 1 ≤ j ≤ P, s ∈ S. Then, with probability of confidence ∏|S|

i=1(1−δi),
ShM j(Γs) belongs to the confidence interval[

|S|

∑
i=1

σ i(s) l(si)

(
ni,

ni

∑
t=1

Y (si)
t ( j),δi

)
;

|S|

∑
i=1

σ i(s)r(si)

(
ni,

ni

∑
t=1

Y (si)
t ( j),δi

)]
.

We notice that the confidence interval DCI2 reveals the most natural connection
between the issue of computing confidence intervals of the Shapley value in static
games, already addressed in [8], and in Markovian games under the dynamic As-
sumption 2.

We already saw in Sect. 6.1 that the accuracy of DCI1 can be maximized by
adjusting the number of queries n1, . . . ,n|S| in each state. Here, in addition, we could
optimize DCI2 also over the set of confidence levels δ1, . . . ,δ|S|, under the nonlinear
constraint:

|S|

∏
i=1

[1−δi] = 1−δ .

Simple Markovian games The aim of this section is twofold. First, we suggest meth-
ods to compute a confidence interval for the Shapley–Shubik index in simple static
games, as a complement of the study in [8]. Secondly, we stress that such methods
can be utilized to compute efficiently the confidence interval DCI2 for SSM, as it is
clear from the definition of DCI2 itself.
In [8], the authors derived a confidence interval for the Shapley value of a single
stage game, based on Hoeffding’s inequality. Nevertheless, for simple static games, a
tighter confidence interval can be obtained, by applying the following approach. Let
χ ∈ X be a random permutation of {1, . . . ,P}. Let us assume that {χk ∈ X}, k ≥ 1,
are uniform and independent. Let us define the Bernoulli variable Y (s)( j) as in (6).
As pointed out in [8], we can interpret the Shapley–Shubik index SS(s)

j as

SS(s)
j = Pr

(
Y (s)( j) = 1

)
.
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Let Y (s)
1 ( j), . . . ,Y (s)

n ( j) be independent realization of Y (s)( j). It is evident that
n

∑
k=1

Y (s)
k ( j)∼ B(n,SS(s)

j ),

where B(a,b) is the binomial distribution with parameters a,b. Hence, computing a
confidence interval for SS(s)

j boils down to the computation of confidence intervals
of the probability of success of the Bernoulli variable Y (s)( j) given the proportion of
successes ∑n

k=1 Y (s)
k ( j)/n, which is a well-know problem in literature. Of course, this

might be accomplished by using the general Hoeffding’s inequality as in [8], but over
the last decades some more efficient methods have been proposed, like the Chernoff
bound [13], the Wilson’s score interval [36], the Wald interval [35], the adjusted Wald
interval [1], and the “exact” Clopper–Pearson interval [14].

7 Comparison among the proposed approaches

In this section we focus on simple Markovian games, and we compare the accuracy
of the proposed randomized approaches. We know that, under the static Assumption
1, we are allowed to use any of the three methods presented in this article, SCI,
DCI1, and DCI2, to compute a confidence interval for the Shapley–Shubik index in
simple Markovian games. In fact, DCI1 and DCI2 involve independent queries over
the different states, and this can also be done under Assumption 1. Therefore, it makes
sense to compare the tightness of the two confidence intervals SCI and DCI1.

Lemma 2 Consider simple Markovian games. Let 2ε(n,δ ) be the accuracy of SCI
(see Eq. (5)). Let 2ε̃(n,δ ) be the accuracy of DCI1 (see Eq. (8)). Then, for any integer
n and for any confidence probability 1−δ ,

ε(n,δ )≤ ε̃(n,δ ).

An interested reader can find the proof of Lemma 2 in Appendix E.

Remark 4 The reader should not be misled by the result in Lemma 2. In fact, n being
equal in the two cases, the number of queries needed for confidence interval SCI is |S|
times bigger than for DCI1, since each sampling of the variable Z( j), defined in (3),
requires |S| queries, one per each state. The comparison between the two confidence
intervals would be fair only if the estimator agent knew beforehand the coalition
values of the long-run game {v(Λ ,Γs)}s,Λ .

According to Remark 4, we should compare the length of the confidence interval for
the static case, 2ε(n,δ ), with the one for the dynamic case, 2 ε̃(|S|n,δ ), calculated
with |S| times many queries. Intriguingly, the relation between the tightness of SCI
and DCI is now, for a suitable query strategy, reversed, as we show next.

Theorem 5 In the case of simple Markovian games, for any integer n,

min
n′1,...,n

′
|S| :

∑i n′i=|S|n

ε̃(|S|n,δ )≤ ε(n,δ ).
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Proof We can write

min
n′1 ,...,n

′
|S|:

∑i n′i=|S|n

|S|

∑
i=1

σ2
i (s)
n′i

≤
|S|

∑
i=1

σ2
i (s)

∑|S|
k=1 n′k/|S|

=
|S|

∑
i=1

σ2
i (s)
n

≤

[
∑|S|

i=1 σ i(s)
]2

n
, (11)

where the last inequality holds since σ i(s)≥ 0. Hence, by inspection over the expres-
sions (5) and (8), the thesis is proved.

Theorem 5 clarifies the relation between the confidence intervals SCI and DCI1,
under the condition of simple Markovian games. We highlight its significance in the
next two remarks.

Remark 5 Theorem 5 claims that the approach DCI1 is more accurate than SCI for
a suitable choice of n′1, . . . ,n

′
|S|, when the number of queries is equal for the two

methods. In essence, this occurs because the dynamic approach allows us to tune the
number of queries in the coalition values according to the weight σ i(s) of each state
si in the long-run game. Moreover, the queries on coalition values are independent
among the states, hence providing more diversity to the statistics.

Remark 6 As we already remarked, the dynamic Assumption 2 is more pragmatic
and less restrictive than the static Assumption 1. Let us now give some insights on
the accuracy that can be achieved by the approaches SCI and DCI1 under Assump-
tions 1 and 2. The approach DCI1 can be also utilized under static Assumption 1,
and in finite time DCI1 is more accurate under Assumption 1 than under Assumption
2. Indeed, for a fixed n and under the static Assumption 1, the value of n′1, . . . ,n

′
|S|

in (11) can always be set to the optimum value, since the algorithm DCI1 is run
off-line. Instead, under the dynamic Assumption 2, the sequence of states over time
S0,S1,S2, . . . is unknown a priori by the estimator agent, hence n′1, . . . ,n

′
|S| cannot be

optimized for a finite n. Hence, in finite time, the static Assumption 1 has still an edge
over the dynamic Assumption 2 for the implementation of DCI1.
Nevertheless, we know from Theorem 4 that, for the average criterion in ergodic
Markov chains, there exists a query strategy enabling to achieve an optimum rate
of convergence for DCI1’s accuracy. Therefore, we can conclude with the following
consideration. Under the average criterion, DCI1, when employed under the dynamic
Assumption 2, can be asymptotically as accurate as DCI1 itself and more accurate
than SCI, when both of these approaches are employed under the stronger static As-
sumption 1.

In addition to what has just been discussed, simulations showed that when the
number of queries n and the confidence level δ are equal for the two methods, then
the effective confidence probability for SCI is generally higher than for DCI1, i.e.,
the lower bound 1− δ is loose. We explain this by reminding that the centers of the
confidence intervals SCI and DC1, respectively,

1
m

m

∑
k=1

Zk( j) ,
|S|

∑
i=1

σ i(s)
ni

ni

∑
t=1

Y (si)
t
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are already two estimators for SSM(Γs), and the former possesses a smaller variance
than the second one.

1−δ a2≻1 (%)
.97 100
.95 99.9
.9 87.5
.8 57.7

Table 1 Percentage a2≻1 of cases in which the confidence interval DCI2 is narrower than confidence
interval DCI1, at different confidence probabilities. The Clopper–Pearson interval is considered for DCI2.

Regarding the performance of confidence interval DCI2, the simulations con-
firmed our intuitions. We utilized the Clopper–Pearson interval to compute a con-
fidence interval for the Shapley–Shubik index in simple static games, and we saw
that the tightness of DCI2 increases when the confidence probability approaches 1.
Let a2≻1 be the percentage of simple Markovian game instances, generated randomly,
in which the confidence interval DCI2 is narrower than confidence interval DCI1. In
Table 1, we show, for each value of confidence probability 1−δ , the values of a2≻1
obtained from simulations. We see that for 1−δ < 0.8, the two confidence intervals
have a comparable length. For 1−δ ≥ 0.8, the confidence interval DCI2 is apparently
tighter than DCI1 under these settings.

8 Complexity of confidence intervals

In Sect. 4, we motivated the importance of devising an algorithm that approximates
SSM with a polynomial accuracy in the number of players P without the need of an
exponential number of queries. In this section we show that the proposed randomized
approaches SCI and DCI1 fulfill this requirement, since they only require a polyno-
mial number of queries to reach an accuracy which is polynomial in P. Interestingly,
the number of queries required by SCI and DCI1 does not even depend on the number
of players P.

Proposition 2 Fix the confidence level δ and the length of confidence interval 2ε .
Then n queries are required to compute the confidence interval SCI, where

n =

[
y− y

]2 log(2/δ )
2ε2 .

Proof The proof follows straightforward from the expression of confidence interval
SCI.

Proposition 3 Fix the confidence level δ and the length of confidence interval 2 ε̃ .
Then, there exist values of n1, . . . ,n|S|, with ∑i ni = n, such that n queries are required
to compute the confidence interval DCI1, where

n ≤
|S|
[
y− y

]2 log(2/δ )
2 ε̃2 .
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Proof The proof follows straightforward from Theorem 5.

From Propositions 2 and 3, we derive the following fundamental result on the com-
plexity of SCI and DCI1.

Theorem 6 Let p(P) be a polynomial in the variable P. The number of queries re-
quired to achieve an accuracy of 1/p(P) is O(p2(P)), for both the confidence inter-
vals SCI and DCI1.

Since we did not provide an explicit expression for the confidence interval DCI2, then
we cannot provide a result analogous to Theorem 6 for DCI2 likewise. Anyway, we
notice that the expression (10) of confidence interval DCI2 does not depend on the
number of players P. Moreover, if the Hoeffding’s inequality is used to compute the
confidence interval for the Shapley value in the static games, then a result similar to
Theorem 6 can be derived for DCI2.

Remark 7 Corollary 1 and Theorem 6 explain in what sense the proposed randomized
approaches SCI and DCI1 are better than any deterministic approach, according to
Definitions 4 and 5 of “accuracy”. For instance, in order to achieve an accuracy in
the order of P−1, for a number of players P sufficiently high, the number of queries
needed by SCI and DCI1 is always smaller than the number of queries employed by
any deterministic algorithm.

9 Conclusions

In Sect. 4, we proved that an exponential number of queries is necessary for any de-
terministic algorithm even to approximate SSM with polynomial accuracy. Hence,
we directed our attention to randomized algorithms and we proposed three different
methods to compute a confidence interval for SSM. The first one, described in Sect. 5
and called SCI, assumes that the coalition values in each state are available off-line to
the estimator agent. SCI can be seen as a benchmark for the performance of the other
two methods, DCI1 in Sects. 6.1 and DCI2 in Sect. 6.2. The last two methods can be
utilized also if we pragmatically assume that the estimator learns the coalition values
in each static game while the Markov chain process unfolds. DCI2 reveals the most
natural connection between confidence intervals of the Shapley value in static games,
presented in [8], and in Markovian games. As a by-product of the study of DCI2, we
provided confidence intervals for the Shapley–Shubik index in static games, which
are tighter than the one proposed in [8]. In Sect. 6.1, we proposed a straightforward
way to optimize the tightness of DCI1. In Sect. 7, we compared the three proposed
approaches in terms of tightness of the confidence interval. We proved that DCI1 is
tighter than SCI, with an equal number of queries and for a suitable choice of the
number of queries on coalition values in each state. This occurs essentially because
DCI1 allows us to tune the number of samples according to the weight of the state.
Hence, we showed that, asymptotically, the dynamic Assumption 2 is not restrictive
with respect to the much stronger static Assumption 1, under the average criterion
and for what concerns SCI and DCI1. The simulations confirmed that DCI2 is more
accurate than the SCI and DCI1 when both the confidence probability is close to 1 and
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a tight confidence interval for the Shapley–Shubik index of static games is available,
like the Clopper–Pearson interval. Finally, in Sect. 8, we showed that a polynomial
number of queries is sufficient to achieve a polynomial accuracy for the proposed al-
gorithms. Hence, in order to compute SSM, the proposed randomized approaches are
more accurate than any deterministic approach for a number of players sufficiently
high. The three proposed randomized approaches can be utilized to compute confi-
dence intervals for the Shapley value in any cooperative Markovian game, as well.
Our results on simple games, except the ones in Sect. 4, also apply to weighted vot-
ing games. In Table 2 we summarize the features of the three proposed confidence
intervals: SCI, DCI1, and DCI2.

SCI Confidence interval based on Hoeffding’s inequality. Valid under static As-
sumption 1. Its general formulation in (4) holds for the Shapley value in
any Markovian game, as well. The number of queries required to achieve
an accuracy of 1/p(P) is O(p2(P)) (Theorem 6).

DCI1 Confidence interval based on Hoeffding’s inequality. Valid under both
static Assumption 1 and dynamic Assumption 2. Its general formulation
in (7) holds for the Shapley value in any Markovian game, as well. The-
orem 4 provides a sampling strategy maximizing its accuracy, applicable
under dynamic Assumption 2. The number of queries required to achieve
an accuracy of 1/p(P) is O(p2(P)) (Theorem 6).

DCI2 Confidence interval valid under both static Assumption 1 and dynamic As-
sumption 2. Its formulation holds for the Shapley value in any Markovian
game, as well.

SCI vs. DCI1 Under the static Assumption 1, there exists a sampling strategy for which
DCI1 is at least as tight as SCI, for any number of sampling n (see Theorem
5). Under dynamic Assumption 2 and average criterion, DCI1 can be made
at least as tight as SCI asymptotically, for n ↑ ∞ (see Theorem 4).

DCI1 vs. DCI2 By utilizing Clopper–Pearson intervals, DCI2 is tighter than DCI1 for all
1−δ > 0.8, simulations suggest (see Table 1).

Table 2 Summary of results for the three proposed approaches to compute confidence intervals for the
Shapley–Shubik power index in Markovian games, i.e., SCI, DCI1, and DCI2.
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A Proof of Theorem 2

Proof We will prove that there exists a class F of game instances for which any deterministic algorithm
computing SS(s)

j with accuracy of at least 1/(2P) must utilize Ω(2P/
√

P) queries. Similarly to [8], let us

construct F when P is odd. Let Λ ⊆ P\{ j}. There exists a set Do of
( P−1
[P−1]/2

)
/2 coalitions of cardinality
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[P−1]/2 such that player j is critical only for Do. In particular, for |Λ | ≤ [P−1]/2, v(s)(Λ) = 0; if |Λ |=
[P− 1]/2, then, if Λ ∈ Do, v(s)(Λ ∪{ j}) = 1, otherwise v(s)(Λ ∪{ j}) = 0. The values of the remaining
coalitions are 1 if and only if they contain a winning coalition among the ones constructed so far. The
Shapley value for player j is thus

SS(s)
j =

([P−1]/2)!([P−1]/2)!
2(P)!

(
P−1

[P−1]/2

)
=

1
2P

Hence, for any deterministic algorithm ALGo employing a number of queries smaller than µo(P), where

µo(P) =
1
2

(
P−1

[P−1]/2

)
,

there always exists an instance belonging to F for which ALGo would answer SS(s)
j = 0. By Stirling’s

approximation, we can say that µo(P) ∈ Ω(2P/
√

P). Let us now construct the class F of instances when
P is even and P > 2. Let De be a set of

( P−2
[P−2]/2

)
coalitions of cardinality [P−2]/2, belonging to C \{ j},

such that player j is critical only for De. Then

SS(s)
j =

(P/2−1)!(P/2)!
(P)!

(
P−2

[P−2]/2

)
=

1
2[P−1]

>
1

2P
.

Similarly to before, for any deterministic algorithm ALGe using a number of queries smaller than

µe(P) =
(

P−1
[P−2]/2

)
−
(

P−2
[P−2]/2

)
=

P−2
P

(
P−2

[P−2]/2

)
,

there always exists an instance belonging to F for which ALGe would answer SS(s)
j = 0. By Stirling

approximation, we can say that µe(P) ∈ Ω(2P/
√

P). Hence, a number of samples µ ∈ Ω(2P/
√

P) is
needed to achieve an accuracy of at least 1/(2P). Hence, the thesis is proved.

B Proof of Corollary 1

Proof Any deterministic algorithm employs a certain number of queries in each state s in order to compute
SSM j(Γs) = ∑|S|

i=1 σ i(s)SS(si)
j . Let I0 be a game instance in which player j is a dummy player in all the

single stage games {v(s)}s∈S, i.e., SS(s)
j = 0 for all s ∈ S. Let I1 be a game instance such that SS(s)

j = 0 for

all s except for sk , for which σ(sk) ̸= 0, and such that the game Ψ (sk) belongs to the class F of instances
described in the proof of Theorem 2. Therefore,

SSM j(Γs) =
σ k(s)

2P

in the case that P is odd and

SSM j(Γs) =
σ k(s)

2[P−1]

if P is even. Hence, any deterministic algorithm needs Ω(2P/
√

P) queries in state sk to achieve an accuracy
better than σ k(s)/(2P). Set c = σ k(s)/2. Hence, the thesis is proved.

C Proof of Lemma 1

Proof We will provide the proof for continuous random variables; the proof for the discrete case is totally
similar. By induction, it is sufficient to prove that, if Pr(A1 ∈ [l1;r1])≥ 1−δ1 and Pr(A2 ∈ [l2;r2])≥ 1−δ2,
then

Pr(A1 +A2 ∈ [l1 + l2 ; r1;r2])≥ (1−δ1)(1−δ2).
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Let fA be the probability density function of the r.v. A. Let f Ai
(x) = fAi (x)1I(x ∈ [li;ri]), i = 1,2. Then

Pr
(
A1 +A2 ∈ [l1 + l2;r1;r2]

)
=
∫ r1+r2

l1+l2
fA1+A2 (x)dx

=
∫ r1+r2

l1+l2

∫
R

fA1 (x− τ) fA2 (τ)dτ dx

≥
∫ r1+r2

l1+l2

∫
R

f A1
(x− τ) f A2

(τ)dτ dx

=
∫
R

∫
R

f A1
(x− τ) f A2

(τ)dτ dx

=
∫
R

f A1
(x)dx

∫
R

f A2
(x)dx

= Pr(A1 ∈ [l1;r1]) Pr(A2 ∈ [l2;r2])

≥ (1−δ1)(1−δ2).

Hence, the thesis is proved.

D Proof of Theorem 4

Proof Let us consider the following constrained minimization problem over the reals: min
ω1 ,...,ω|S|

∑|S|
i=1 σ2

i (s)/ωi

∑|S|
i=1 ωi = n, ωi ∈ R.

(12)

By using e.g. the Lagrangian multiplier technique, it is easy to see that the optimum value for ωi is

ω∗
i =

σ i(s)n

∑|S|
k=1 σ k(s)

and that the minimum value of the objective function is

ξ ∗ =

[
∑|S|

i=1 σ i(s)
]2

n
. (13)

The value ξ ∗ clearly represents a lower bound for the optimization problem over the integers in the case
of simple games. Since we deal with the average criterion, let σ i(s)≡ π i. Now we can find a lower bound
for

√
n ε̃(n,δ ) over n that does not depend on the number of queries n:

inf
n∈N

min
n1 ,...,n|S| :
∑i ni=n

√
n ε̃(n,δ ) =

= inf
n∈N

min
n1 ,...,n|S|∈N:

∑i ni=n

√√√√ n log(2/δ )
2

|S|

∑
i=1

π2
i

ni

= inf
q1 ,...,q|S|∈Q

+ :

∑i qi=1

√√√√ log(2/δ )
2

|S|

∑
i=1

π2
i

qi

= min
x1 ,...,x|S|∈R

+ :

∑i xi=1

√√√√ log(2/δ )
2

|S|

∑
i=1

π2
i

xi
(14)

=

√
log(2/δ )

2
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and the optimum value of xi in (14) is

x∗i =
π i

∑|S|
k=1 πk

= π i .

For Theorem 3,

ni/n
n↑∞−→ π i with probability 1.

Hence, ni/n converges with probability 1 to the optimum value x∗i and, by continuity, the thesis is proved.

E Proof of Lemma 2

Proof In the case of simple Markovian games, the optimization problem (9) turns into min
n1 ,...,n|S|

∑|S|
i=1 σ2

i (s)/ni

∑|S|
i=1 ni = n, ni ∈ N.

(15)

Let us consider the constrained minimization problem over the reals in (12). Since evidently ξ ∗, defined
in (13), is not greater than the minimum value of the objective function in (15), then by straightforward
inspection over the expressions (5) and (8) the thesis is proved.
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