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Abstract

We study optimal constant-rate coding schemes for a block-fading channel with strict trans-

mission delay constraint, under the assumption that both the transmitter and the receiver have

perfect channel-state information. We show that the information outage probability is minimized

by concatenating a standard \Gaussian" code with an optimal power-controller, which allocates the

transmitted power dynamically to the transmitted symbols. We solve the minimum outage probabil-

ity problem under di�erent constraints on the transmitted power and we derive the corresponding

power allocation strategies. In addition, we propose an algorithm that approaches the optimal power

allocation when the fading statistics are not known. Numerical examples for di�erent fading chan-

nels are provided, and some applications discussed. In particular, we show that minimum outage

probability and delay-limited capacity are closely related quantities, and we �nd a closed-form ex-

pression for the delay-limited capacity of the Rayleigh block-fading channel with transmission over

two independent blocks. We also discuss repetition diversity and its relation with direct-sequence

or multicarrier spread-spectrum transmission. The optimal power allocation strategy in this case

corresponds to selection diversity at the transmitter. From the single-user point of view considered

in this paper, there exists an optimal repetition diversity order (or spreading factor) that minimizes

the information outage probability for given rate, power, and fading statistics.

Keywords: Block-fading channel, power control, channel capacity, information outage probability.
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1 Introduction

Fostered by the increasing importance of mobile wireless systems, of late a great deal of valuable

scholarly work has gone into assessing the information-theoretic limits of the channels which model the

mobile environment. This paper inscribes itself in this framework, its main goal being the derivation of

optimal constant-rate transmission schemes for the block-fading Gaussian (BF-AWGN) channel under

a strict transmission delay constraint.

The BF-AWGN channel, introduced in [1, 2], belongs to the general class of block-interference

channels described in [3]. It is motivated by the fact that, in many wireless communication situations,

changes in the propagation environment occur on a very slow time scale with respect to the signaling

rate. In the BF-AWGN channel, blocks of N symbols undergo the same \channel state" (de�ned by

the fading gain), which is random but constant over the whole block. A code word of length n =MN

spans M blocks (a group of M blocks will be referred to as a frame). Blocks can be thought of as

separated in time (e.g., in a TDMA system as in [1]), as separated in frequency (e.g., in a multicarrier

system), or as separated both in time and in frequency (e.g., in a slow time-frequency hopping system

as in [4, 5]). We consider the case where all the channel states in a frame are known to the transmitter

before transmitting a code word. Then, our model is better suited to the case of a multicarrier system

withM parallel subchannels, possibly located at non-adjacent carrier frequencies|otherwise, if blocks

were transmitted in di�erent time intervals, the transmitter Channel-State Information (CSI) would

be non-causal.1

The physical validity of the BF-AWGN model is discussed in [1], where it is observed that the

code word transmission delay is essentially determined by interleaving. For a �xed block length N , the

number of blocks M spanned by a code word is related to the system interleaving depth. Therefore,

M can be considered as a measure of the overall transmission delay. For typical practical systems,

N is fairly large [1, 5]. Then, it makes sense to study the BF-AWGN channel performance limits

as N ! 1, distinguishing between the \delay-unconstrained" case, where also M ! 1 and the

(interleaving) \delay-limited" case, where M is �xed and �nite (we refer to this case as the M -block

BF-AWGN channel).

With no delay constraint, the capacity derived in [9] is the relevant performance limit indicator.

1From a practical viewpoint, CSI at the transmitter can be provided either by a dedicated feedback channel (some

existing systems already implement a fast power control feedback channel [6, 7]) or by time-division duplex [8], where the

uplink and the downlink time-share the same M subchannels and the fading gains can be estimated from the incoming

signal.
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This applies for example to variable-rate systems, like wireless data networks [10]. On the other hand,

most of today's mobile radio systems carry real-time speech (cellular telephony), for which constant-

rate, delay-limited transmission should be considered. In this case, information outage probability,

de�ned as the probability that the instantaneous mutual information of the channel is below the

transmitted code rate, is the appropriate performance limit indicator [1, 2, 11]. As a matter of fact,

outage probability predicts surprisingly well the error probability of actual codes for practical values

of N (say N ' 100) [4, 12, 13].

The M -block BF-AWGN channel is typically not information stable, since it is characterized by a

�nite numberM of random channel states. Then, its capacity should be studied in the general frame-

work of [14], extended to continuous input, output and state spaces by standard discretization and

partitioning arguments [15][Ch. 7]. We follow the terminology of [16] and refer to the capacity of the

M -block BF-AWGN channel as to the \delay-limited" capacity. Outage probability and delay-limited

capacity are closely related. Namely, the delay-limited capacity can be obtained as the maximum rate

at which the minimum outage probability is zero.

Here we solve the problem of minimizing the outage probability of theM -block BF-AWGN channel

under the assumption that both transmitter and receiver have perfect CSI. We show that the minimum

outage probability can be achieved by transmitting a �xed code book, randomly generated with i.i.d.

Gaussian symbols, and by suitably allocating the transmitted power to the blocks. The optimal power

allocation strategy is derived subject to di�erent constraints on the transmitted power. Solving the

minimum outage probability problem, also yields a way of computing the delay-limited capacity. In

particular, an explicit formula is derived for the delay-limited capacity of the 2-block BF-AWGN

channel with Rayleigh i.i.d. blocks. This shows that a small delay (M = 2) can buy a considerable

increase in transmission reliability (the delay-limited capacity is zero for M = 1). Moreover, the

delay-limited capacity of this channel is only 5 dB away from the capacity of the AWGN channel, and

2.5 dB away from the delay-unconstrained capacity of the Rayleigh fading channel (M !1).

All the results listed above assume optimal coding over the M -block frame. A suboptimal coding

scheme is repetition diversity [1], which consists of repeating the same code word of length N over all

the M blocks. This can be viewed as the concatenation of a code of length N with a repetition code

of length M .2 In spite of its obvious suboptimality, repetition diversity might be an option because

of its simplicity. Moreover, it is useful as a model to study the performance of spread-spectrum in a

2Note the di�erence with respect to space diversity: this may be thought of as a technique to modify the fading gain

statistics after combining, and hence does not decrease the code rate.
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single-user, frequency-selective fading channel [5, 17]. In fact, theM -block BF-AWGN channel can be

seen as a simpli�ed model for a frequency-selective fading channel with M subbands, each of which

can be considered as frequency-at, and repetition diversity can be interpreted as spreading by a

factor M (the same symbol is repeated, or spread, over M subbands). With an appropriate signal

space representation, this model can be applied either to direct-sequence and to multicarrier CDMA

formats [12].

We show that the outage probability minimizing scheme for repetition diversity is equivalent to

selection diversity at the transmitter, where a single subband is used in every frame and power is

allocated optimally. This result agrees with the �ndings of [12, 18], where a similar strategy for

maximizing the rate-sum of a multiple-access channel with fading and transmitter CSI is derived.

Also, we show that for both optimal and constant power allocation there exists an optimal diversity

order (or spreading factor) which minimizes the outage probability, and that the outage probability

approaches 1 as M ! 1. These simple facts show that the common belief that \spread-spectrum

signals are more robust against frequency-selective fading" should be reconsidered, at least when

transmitter CSI is available (an even more striking result along this line was recently obtained in [19]:

it shows that, when CSI is not perfect and a \peakiness" constraint on the signal power spectral

density is imposed, an arbitrarily large signal bandwidth expansion drives the capacity to zero even

for optimal coding.)

The paper is organized as follows. In Section 2 we formally de�ne the BF-AWGN channel, recall

known results about its capacity, introduce outage probability and delay-limited capacity, and provide

a coding theorem which gives operational meaning to these quantities. In Section 3 we solve the

minimum outage probability problem, while in Section 4 the general solution is applied to simple on-o�

and Rayleigh independent fading channels. Finally, in Section 5 we summarize our main conclusions.

Notation. Here we de�ne the notation used throughout this paper:

� R+ indicates the non-negative real line and RM
+ is the non-negative orthant of theM -dimensional

real Euclidean space.

� Given two random M -vectors x and y, we denote their joint and conditional cdf's by the short-

hand notations F (x;y) and F (x j y), respectively, instead of the more complete but cumbersome

Fx;y(u;v)
�
= P (x0 � u0; : : : ; xM�1 � uM�1; y0 � v0; : : : ; yM�1 � vM�1)

Fxjy(u j v)
�
= P (x0 � u0; : : : ; xM�1 � uM�1 j y0 = v0; : : : ; yM�1 = vM�1)
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� Given a set A in the probability space of a random variable x, the indicator function of the event

fx 2 Ag is denoted by �A.

� Given a vector a of length M , we denote its arithmetic mean by hai �
= 1

M

PM�1
m=0 am.

� [x]+
�
= max(x; 0).

� Ei (n; x)
�
=
R1
1

e�xt

tn
dt (Refxg > 0).

� �k(x)
�
= e�x

Pk�1
j=0 x

j=j! = �(k; x)=�(k) where �(k; x) =
R1
x
uk�1e�udu and �(k) = �(k; 0).

� The normal distribution with mean � and variance �2 is denoted by N(�; �2), and � means

\distributed as".

2 Channel model, capacity and outage probability

Let x;y, and z be vectors in R
MN representing the channel input, output, and noise sequences,

respectively, where z is an i.i.d. � N(0; 1) sequence. We can arrange the components of x;y, and z

as M �N arrays denoted X;Y, and Z, respectively. The transmission of a code word over the (real)

BF-AWGN channel spans exactly one frame of M fading blocks. This can be written concisely as

Y = AX+ Z (1)

where A = diag(
p
�0; : : : ;

p
�M�1) is an M � M matrix whose diagonal elements are the fading

amplitudes over the current frame. Input symbols on the same row of X experience the same fading

coe�cient, i.e., they are transmitted over the same fading block. We denote by � 2 RM
+ the sequence

f�mgM�1
m=0 of fading powers in the frame. As usual, � is assumed to be statistically independent of x

and z. The transmission of a long (in�nite) sequence of code words is characterized by a sequence of

frames f�(k)g1k=�1. This can be seen as a vector random process, which we assume to be ergodic and

have �rst-order cdf F (�) (the marginal cdf's of F (�) may be di�erent).

2.1 Capacity with no delay constraints

In this section we consider BF-AWGN channels with block length N � 1 and M arbitrarily large.

We assume that f�mgM�1
m=0 is asymptotically ergodic [20] as M !1.3 These channels form a family,

indexed by the block length N = 1; 2; : : : . It is well-known that, with perfect CSI, all channels in

3This assumption is su�cient to ensure the information stability of the channel [14].
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the family have the same capacity, independent of N [3]. In this case, the following result holds

(see [1, 2, 3, 9]):

Proposition 1. Under the average transmitted power constraint E[x2] � P (x is a component of

vector x), the capacity of the BF-AWGN channel is given by:

1. With perfect CSI at the receiver and no CSI at the transmitter,

Cconst(P) = E

�
1

2
log(1 + �P)

�
(2)

2. With perfect CSI at both the receiver and the transmitter,

Copt(P) = max


E

�
1

2
log(1 + �)

�
(3)

where the maximization is over the power allocation functions  = (�) such that E[] � P.

�

Remark. For all N = 1; 2; : : : , capacities (2) and (3) are achieved by sequences of codes with block

length MN , as M ! 1. Capacity (2) is achieved by random codes whose symbols are generated

independently according to the Gaussian distribution N(0;P). In the sequel, this coding scheme

will be referred to as \single-codebook, constant-power" transmission. In [9], the proof that (3) is

achievable was obtained by using a coding scheme based on multiplexing di�erent code books with

di�erent rates and average powers, where the multiplexer and the corresponding demultiplexer are

driven by the fading process f�mg. We refer to such scheme as \multiple-codebook, variable-power"

(or also \variable-rate, variable-power") transmission [9]. Now, the latter is not necessary in order to

achieve (3). In fact, the same capacity can also be achieved by a single codebook with i.i.d. symbols

� N(0; 1), where the m-th block of N symbols is scaled by
p
(�m) before transmission [21]. From a

practical point of view, this scheme (referred to as \single-codebook, variable-power" transmission) is

especially appealing, since it can be simply implemented by concatenating a conventional \Gaussian"

encoder with a power-controller driven by the transmitter CSI.

A �nal remark on the results stated in Proposition 1 is about terminology. Although Cconst(P) and

Copt(P) are expressed in the form of ensemble averages, there is no reason to refer to these quantities

as \average" capacities. In fact, because of ergodicity, the information density [14] of sample pairs of

input and output sequences converges to Cconst(P) (or to Copt(P), depending on the input distribution)

with probability 1 asM !1 and given N . Thus, Cconst(P) and Copt(P) are not averages of achievable
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rates over an ensemble of channel realizations, but rather achievable rates for all channel realizations,

with probability 1. �

The power allocation function achieving Copt(P) is [9]

(�) =

�
1

�
� 1

�

�
+

(4)

where � is the solution of the constraint equationZ 1

�

�
1

�
� 1

�

�
dF (�) = P (5)

The resulting expression for Copt(P) is

Copt(P) =

Z 1

�

1

2
log(�=�)dF (�) (6)

Example: Capacity with Rayleigh fading. For further reference (this result will be used later

on, to assess the e�ect of �nite interleaving), consider a Rayleigh fading channel with D-th order

independent space diversity and maximal-ratio combining. The channel gain after combining has

pdf [22]

f(�) =
DD�(D�1) exp(�D�)

(D � 1)!
(7)

where we assume a normalized average channel gain E[�] = 1. The capacity with constant power is

computed via integration by parts of (2) (see [23])

Cconst(P) =
1

2

 
�D(�D=P)Ei (1;D=P) +

D�1X
k=1

1

k
�k(D=P)�D�k(�D=P)

!

Eq. (5) in this case becomes, for D = 1,

1

�
e�� � Ei (1; �) = P

and, for D > 1,

1

�
�D(D�)�

D

D � 1
�D�1(D�) = P

The capacity with optimal power allocation is given by [23]

Copt(P) =
1

2

 
Ei (1;D�) +

D�1X
k=1

1

k
�k(D�)

!

where � is the solution of (5), and if D = 1 the summation in the RHS above is void.
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Fig. 1 shows Cconst(P) and Copt(P) for D = 1,2,3. The AWGN channel capacity Cawgn(P) =

1
2
log(1 + P) is shown for comparison.4 Optimal power allocation o�ers only a small improvement

over constant power for rates above 0:5 bit/symbol, especially for D > 1. A moderate space diversity

order (e.g., D = 3) is su�cient to approach the AWGN capacity by less than 1 dB. Finally, while

Cconst(P) � Cawgn(P) because of Jensen's inequality, no similar inequality exists for Copt(P), which

may be larger than Cawgn(P) for low P (for D = 1, the cross-over is about P = 0 dB).

2.2 Performance limits under a delay constraint

We now focus on delay-limited transmission at constant rate R. For a given �nite M , we consider a

family of M -block BF-AWGN channels indexed by the block length N = 1; 2; : : : . As discussed in

Section 1, we are interested in the limiting performance asN !1. Next, we introduce the information

outage probability and the capacity of the M -block BF-AWGN channel. Then, we provide a coding

theorem which gives operational meaning to these quantities.

De�nition 1: Instantaneous mutual information. The maximum instantaneous mutual in-

formation IM (�;) of the M -block BF-AWGN channel for a given sequence of input powers  =

(0; : : : ; M�1), where m
�
= E[jxmN+nj2] for all n = 0; 1; : : : , is given by

IM (�;)
�
=

1

M

M�1X
m=0

1

2
log(1 + �mm) (8)

This is achieved by independent Gaussian inputs xmN+n � N(0; m). �

The sequence of instantaneous powers  de�nes the allocation of the transmitted power to the M

blocks. Since the transmitter has perfect CSI,  depends on � (we shall use equivalently the notations

 and (�)). In general, this dependence is expressed by the conditional cdf F ( j �). Then, (�)

is a random function of � (deterministic functions are special cases). In this paper, we consider the

following class of power allocation functions:

De�nition 2: Probabilistic stationary memoryless power allocation. The class of probabilis-

tic stationary memoryless power allocation functions is the set of all time-invariant random functions

4All the numerical results in this paper can be translated immediately into results for the more standard circularly-

symmetric complex channel [1] with average energy per symbol Es, noise power spectral density N0 and signaling rate

W symbols/s by letting P = Es=N0 and by multiplying the information rates by 2W . In this way, the information rates

are expressed in information units per second.
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 = (�), RM
+ ! R

M
+ , whose conditional cdf F (j�) has the following property. Consider a sequence

of M -block frames, indexed by k = 0; 1; : : : ; ��1. Let �(k) and (k) be the channel gain and the power

allocation vectors in the k-th frame. Then,

F ((0); � � � ;(��1) j �(0); � � � ;�(��1)) =

��1Y
k=0

F ((k) j �(k)) (9)

�

We de�ne the short-term average transmitted power as the normalized power sum over a frame of M

blocks. The resulting short-term power constraint is given by

1

MN

M�1X
m=0

N�1X
n=0

jxmN+nj2 � P (10)

Next, consider a sequence of M -block frames. We de�ne the long-term average transmitted power as

the normalized power sum over the whole sequence. The resulting long-term power constraint is given

by

1

K

K�1X
k=0

1

MN

M�1X
m=0

N�1X
n=0

���x(k)mN+n

���2 � P (11)

Under the assumptions of stationary and memoryless power allocation and ergodic fading, the RHS

of (10) converges to hi with probability 1, and (11) converges to E[hi] where expectation is with

respect the joint distribution of (�;). Then, we have

De�nition 3: Power constraints. For an arbitrary non-negative constant P, the short-term power

constraint is given by

hi � P with probability 1 (12)

and the long-term power constraint is given by

E[hi] � P (13)

�

For a given function (�) satisfying (12) or (13), IM (�;) is a random variable. Following [1] we

de�ne the information outage probability as
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De�nition 4: Information outage probability. Let  satisfy (12) or (13). The information

outage probability evaluated at rate R is given by:

Pout(R;P)
�
= P (IM (�;) < R) (14)

�

In the following, we are mainly concerned with the minimization of Pout(R;P) with respect to the choice

of the power allocation function in the class de�ned by De�nition 2. More precisely, minimization

is over the conditional cdf's F (j�) satisfying (12), (13) or both. The minimum outage probability

is intimately related to the capacity of the M -block BF-AWGN channel. In order to distinguish the

channel capacity without delay constraints from the capacity of the M -block channel, the latter is

referred to as the \delay-limited" capacity [16]. We have

De�nition 5: Delay-limited capacity. The delay-limited capacity of the M -block BF-AWGN

channel, subject to a short-term (resp., long-term) power constraint, is given by

Cdelay(P)
�
= sup


inf

�2R
M

+

IM (�;) (15)

where the supremum is over all F (j�) satisfying (12) (resp., (13)). �

The next proposition is a coding theorem which follows as an application of the results of [14].

Proposition 2. The maximum �-achievable 5 rate of the M -block BF-AWGN channel subject to a

short-term (resp., long-term) power constraint is given by

C�(P) = sup


supfR : Pout(R;P) � �g (16)

where the supremum is over all F (j�) satisfying (12) (resp., (13)). Also, the delay-limited capacity

(15) is given by Cdelay(P) = lim�!0+ C�(P).

Proof. See Appendix A. �

Remark. As a consequence of Proposition 2 and De�nition 1, we notice that the minimum outage

probability is achieved by random codes whose symbols in the m-th block are i.i.d. � N(0; m), for

the optimal choice of . Any such code can be obtained as the concatenation of a code with i.i.d.

5See Appendix A for the de�nition of �-achievable rate used in this paper.
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symbols � N(0; 1) with a power-controller scaling the m-th block of N symbols by
p
m. Therefore, all

minimum outage probabilities (and delay-limited capacities) obtained in this paper can be achieved

by single-codebook, variable-power transmission schemes. �

Example: Delay-limited capacity with Rayleigh fading. By specializing the results of [16] to

our case, we obtain immediately the delay-limited capacity in the case M = 1 as

Cdelay(P) =
1

2
log

�
1 +

P

E[1=�]

�
In the case of Rayleigh fading with D-th order independent space diversity, from the above we obtain

Cdelay(P) =
1

2
log

�
1 +

D � 1

D
P

�
Fig. 2 compares Cdelay(P) for D = 2; 3 with the AWGN capacity. Note that without diversity, i.e.,

for D = 1, the delay-limited capacity of the Rayleigh fading channel is zero: in fact, E[1=�] = 1,

which expresses the fact that \channel inversion" requires transmission of an in�nite average power.

The results of [16] do not apply to the case of M -block transmission, for �nite M > 1. In the rest of

the paper we solve the minimum outage probability problem for general M -block transmission and we

provide an explicit expression of the delay-limited Rayleigh fading channel capacity for M = 2 and

D = 1.

3 Minimum outage probability

In this section we solve the minimum outage probability problem for both short-term and long-

term constraints. In the �rst case, we obtain the standard \water-�lling" solution, which maximizes

IM (�;) for any given � (some extra technicalities, related to the uniqueness of the solution, are

needed). Next, we solve the more interesting (and challenging) problem of outage probability min-

imization under long-term constraint. Further, we briey discuss the case where both short- and

long-term constraints are present, and exhibit a general method for computing the delay-limited ca-

pacity. Finally, we analyze the suboptimal scheme based on repetition diversity. 6

6Since  = (�) is a random function, de�ned by its conditional cdf F (j�), all optimization problems in the following

are to be intended with respect to F (j�). However, it is convenient to give the solution directly in terms of , rather

than in terms of its conditional cdf.
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3.1 Short-term power constraint

The constrained minimization problem can be stated as8<: Minimize P (IM (�;) < R)

Subject to hi � P with probability 1
(17)

It should be rather intuitive that the solution to the above problem must maximize IM (�;) for all �

(or at least, for all � in a certain subset of RM
+ ), so that (17) can be reduced to a mutual-information

maximization problem, whose solution is well-known [15]. Formally, we have the following proposition:

Proposition 3. Problem (17) is solved by

b(�) =
8<: 

st(�) if � =2 U(R;P)

g(�) if � 2 U(R;P)
(18)

where g(�) is an arbitrary function RM
+ ! R

M
+ such that hg(�)i � P with probability 1, st(�) is the

solution of the maximization problem8<: Maximize IM (�;)

Subject to hi � P
(19)

and where U(R;P), the outage region, is given by

U(R;P) =
�
� 2 RM

+ : IM (�;st(�)) < R
	

(20)

Since g(�) is arbitrary, the solution of (17) is in general not unique.

Proof. See Appendix B. �

For the sake of completeness and for future use we obtain the explicit form of st(�) and of the

outage region U(R;P). The solution of (19) is readily obtained by using Lagrange multipliers and

Kuhn-Tucker conditions [15]. Let the region Q � R
M
+ be de�ned by

Q =
�
� 2 RM

+ : �0 � � � � � �M�1
	

(21)

and assume � 2 Q. Then, the m-th component of st(�) is given by

stm(�) =

�
�st(�;�)� 1

�m

�
+

for m = 0; : : : ;M � 1 (22)
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where

�st(�;�) =
1

�

��1X
`=0

1

�`
+
M

�
P (23)

and � is the unique integer in f1; : : : ;Mg such that 1=�m � �st(�;�) for m < � and 1=�m > �st(�;�)

for m � �.

The function st(�), de�ned by (22) and (23) for � 2 Q, is extended to the whole RM
+ by sorting the

components of � in non-increasing order, computing (22) on the sorted fading vector, and applying the

inverse permutation to the resulting power allocation vector. Similarly, in order to study the outage

region U(R;P), it is convenient to give an explicit expression for the intersection U(R;P) \ Q and

obtain the inequalities de�ning U(R;P) outside Q by permuting the coordinate axes. Hence, without

loss of generality, we shall consider only the case � 2 Q.

The region Q is divided into M subregions Vi de�ned by the inequalities8<: �st(i;�) � 1=�m m = 0; : : : ; i� 1

�st(i;�) < 1=�m m = i; : : : ;M � 1
(24)

Since � in (23) exists and is unique, fVi : i = 1; : : : ;Mg is a partition of Q. Notice that, for � 2 Vi,

exactly i blocks are used for transmission (i.e., are given positive instantaneous power). The minimum

outage probability is obtained as the probability that � belongs to the outage region U(R;P), whose

intersection with Vi is given explicitly by

U(R;P) \ Vi =
(
� 2 Q :

1

M

i�1X
m=0

1

2
log
�
�m�

st(i;�)
�
< R

)
for i = 1; : : : ;M (25)

When � 2 U(R;P), an outage event occurs irrespective of the choice of g(�). Then, the most sensible

choice is to set g(�) = 0, i.e., to turn o� transmission. However, this is not the only choice, unless

some other constraints are taken into account.

3.2 Long-term power constraint

The constrained minimization problem can be stated as8<: Minimize P (IM (�;) < R)

Subject to E[hi] � P
(26)

Before stating the main result of this section, which provides a general solution for (26), we need some

lemmas and de�nitions.
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Consider the minimization problem, dual of (19)8<: Minimize hi

Subject to IM (�;) � R
(27)

We have

Lemma 1. Assume � 2 Q. Then the m-th component of lt(�), solution of (27), is given by

ltm(�) =

�
�lt(�;�)� 1

�m

�
+

for m = 0; : : : ;M � 1 (28)

where

�lt(�;�) =

 
e2MRQ��1
`=0 �`

!1=�

(29)

and where � is the unique integer in f1; : : : ;Mg such that 1=�m � �lt(�;�) for m < � and 1=�m >

�lt(�;�) for m � �.

Proof. See Appendix C. �

The function lt(�), de�ned by (28) and (29) for � 2 Q, is extended to the whole RM
+ by component

permutation. Hence, without loss of generality, we shall consider only the case � 2 Q.

Lemma 2. 
lt(�) is continuous for � 2 R

M
+ ;� 6= 0 and




lt(�)

�
is a non-increasing function of

�m, for all 0 � m �M � 1.

Proof. See Appendix C. �

Let u be a non-negative real random variable with cdf F (u) and consider the maximization of the

linear functional subject to linear constraints8<: Maximize E[w(u)]

Subject to 0 � w(u) � 1 and E[u w(u)] = P

(30)

Then,

Lemma 3. The solution of (30) is

bw(u) =
8>>><>>>:

1 for u < s�

w� for u = s�

0 for u > s�

(31)
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where for s 2 R+, we let

P(s) =

Z
[0;s)

u dF (u) ; P(s) =

Z
[0;s]

u dF (u) (32)

and where w� is given by

w� =
P� P(s�)

P(s�)� P(s�)
(33)

with s� = supfs : P(s) < Pg.

Proof. See Appendix C. �

Note that in Lemma 3 w� = 0 if P = P(s�) and w� ! 1 if P! P(s�). Moreover, if F (u) is continuous

in u = s�, then P(s�)�P(s�) = s�P (u = s�) = 0, so that fu = s�g is a set of probability measure zero

and the value of w� can be any real in [0; 1] without a�ecting neither the objective nor the constraint

of (30).

For s 2 R+ we de�ne the regions

R(s) =
n
� 2 RM

+ :
D

lt(�)

E
< s
o

R(s) =
n
� 2 RM

+ :
D

lt(�)

E
� s
o

(34)

The boundary surface B(s) of R(s) is the set of points � such that



lt(�)

�
= s. Then, we de�ne the

two average power sums P(s) and P(s) as

P(s) =

Z
R(s)

D

lt(�)

E
dF (�) ; P(s) =

Z
R(s)

D

lt(�)

E
dF (�) (35)

and the power sum threshold s� by

s� = sup fs : P(s) < Pg (36)

Finally, we de�ne the weight w� by

w� =
P� P(s�)

P(s�)� P(s�)
(37)

We are now ready for

Proposition 4. Problem (26) is solved by

b(�) =
8<: 

lt(�) if � 2 R(s�)

0 if � =2 R(s�)
(38)

while if � 2 B(s�), b(�) = 
lt(�) with probability w� and b(�) = 0 with probability 1 � w�, where

R(s);R(s);B(s); s� and w� are de�ned by (34{37).
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Proof. See Appendix D. �

Remark. The power allocation b(�) given by Proposition 4 corresponds to setting a threshold

s� such that, if the power sum



lt(�)

�
> s�, transmission is turned o�, while if




lt(�)

�
< s�

transmission is turned on and the power is allocated according to lt(�), i.e., the allocation that

requires the minimum power sum in order to avoid an outage event (see (27)). The threshold s� is

chosen so that the long-term power is actually equal to P. If F (�) is not continuous, a randomization

may be needed if



lt(�)

�
= s�, i.e., if � 2 B(s�). Again, the probability w� of transmitting in this

case is chosen so that the long-term power is equal to P.

The optimal power allocation strategy of Proposition 4 has an economic interpretation: If fading

is very bad, the power required to compensate for it would cost too much in terms of average power.

Then, it is more convenient to accept an outage and turn o� transmission. In this way, we save power

for compensating for more favorable fading conditions. �

The resulting minimum outage probability is given by

bPout(R;P) = 1� w�P (� 2 B(s�))� P (� 2 R(s�)) (39)

In order to compute (39) we need an explicit form for R(s). Again, it is convenient to give an explicit

expression for the intersection R(s)\Q and obtain the inequalities de�ning R(s) outside Q by permuting

the coordinate axes. The region Q is divided into M subregions Wi de�ned by the inequalities8<: �lt(i;�) � 1=�m m = 0; : : : ; i� 1

�lt(i;�) < 1=�m m = i; : : : ;M � 1
(40)

Since � in (29) exists and is unique, fWi : i = 1; : : : ;Mg is a partition of Q. Notice that, for � 2Wi,

exactly i blocks are used for transmission (i.e., are given positive instantaneous power). Thus, the

intersection of R(s) with Wi is given by

R(s) \Wi =

(
� 2 RM

+ :
i

M

"
�lt(i;�)� 1

i

i�1X
m=0

1

�m

#
< s

)
for i = 1; : : : ;M (41)

The intersections R(s) \Wi are obtained by replacing < by �.

By comparing (25) and (41) it is immediate to see that (although the regions Vi and Wi do not

coincide) the region R
M
+ � R(s�) is actually equal to U(R;P) de�ned by (25), calculated for P = s�.

Then, we may de�ne a more general outage region U(R; s) = R
M
+ � R(s) (or equivalently, by using
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(25) with P = s). If F (�) is continuous, the minimum outage probability under either the short-term

or long-term constraint is given by the same integralZ
U(R;s)

dF (�) (42)

computed for s = P (short-term) and for s = s� (long-term). If F (�) has discontinuities, B(s�) may

have positive probability measure. Then, randomization with probability w� on the boundary must

be taken into account when computing the outage probability (with long-term constraint only).7

3.3 Minimum outage probability under both long-term and short-term constraints

Consider the problem 8>>><>>>:
Minimize P (IM (�;) < R)

Subject to E[hi] � P

and to hi � P� with probability 1

(43)

where P� > P, otherwise the �rst constraint is irrelevant. Proposition 4 can be easily modi�ed in

order to provide the solution of (43). We have

Proposition 5. Problem (43) is solved by

b(�) =
8<: 

lt(�) if � 2 R(bs)
0 if � =2 R(bs) (44)

where bs �
= minfs�;P�g. For � 2 B(bs) we distinguish two cases: i) If bs = s�, then b(�) = 

lt(�) with

probability w� and b(�) = 0 with probability 1 � w�, where w� is given by (37). ii) If bs = P
�, then

b(�) = 
lt(�) with probability 1.

Proof. In essence, the above proposition states that one of the two constraints in (43) is always re-

dundant, so that it is always possible to minimize the outage probability with respect to one constraint

while satisfying the other. This is obviously a solution of the problem.

If s� � P
�, then hb(�)i � s� � P

� for all �, so that the short-term constraint is automatically

satis�ed, and since in this case bs = s�, b(�) coincides with (38), which minimizes the outage probability
under the long-term constraint.

7Even though typical fading models have continuous cdf, there are practical cases of interest where the fading distri-

bution appears as discrete. This occurs for example when the transmitter can use only a coarsely quantized information

about the fading levels, or in mobile satellite systems when the fading is modeled as an on-o� process depending on the

presence or absence of a line-of-sight propagation path [24].
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If P� < s�, then from the de�nition (36) of s� it follows that E[hb(�)i] = P(P�) � P , so that the

long-term constraint is automatically satis�ed. Moreover, the outage probability with power allocationb(�) is given by
R
U(R;P�)

dF (�), which is the minimum outage probability with short-term constraint

P
� (this follows from the fact that U(R; s) = R

M
+ �R(s), as shown above). Thus, b(�) minimizes the

outage probability under the short-term constraint. �

By letting P!1 in (43), so that the long-term constraint becomes irrelevant, Proposition 5 provides

an alternative solution to the minimum outage probability problem with short-term constraint. This

di�ers substantially from the solution of Proposition 3. In fact, the solution of Proposition 3 maximizes

the instantaneous mutual information by keeping a constant power sum equal to the short-term power,

while the solution of Proposition 5 minimizes the power sum by keeping a constant mutual information

equal to the code rate. Also, note that when P!1, the zero power allocation in (44) can be replaced

by any arbitrary function g(�) such that hg(�)i = P
�.

3.4 General solution for the delay-limited capacity

From (42), the zero-outage condition is achieved when
R
U(R;s)

dF (�) = 0, where s = P for the short-

term constraint and s = s� for the long-term constraint. In the latter case, if F (�) has discontinuities

and B(s�) has a positive probability measure, the condition w� = 1 must be added. This means that

transmission is never turned o�. De�ne � = inffj�j : F (�) > 0g. If � > 0, there exists s� < 1

such that, for all s � s�, U(R; s) is contained in a ball of radius � centered at the origin. Therefore,R
U(R;s)

dF (�) = 0 for all s � s�. In this case, the rate R can be reliably transmitted with short-term

power s� and long-term power P(s�). Then, (R; s�) and (R;P(s�)) are points on the delay-limited

capacity curves subject to the short-term and to the long-term constraints, respectively.

If � = 0, the delay-limited capacity subject to the short-term constraint is zero, while the delay-

limited capacity subject to the long-term constraint can be computed from the limit P1
�
= lims!1 P(s).

If P1 < 1, reliable transmission at rate R is possible with minimum required long-term power P1.

Then, (R;P1) is a point on the delay-limited capacity curve.

3.5 Adaptive power allocation

For given M and P, the optimal power allocation of Proposition 4 depends on the fading statistics

only through the threshold s�. For known fading statistics, this value can be computed in advance.

However, in actual implementations the fading statistics may not be known a priori. In this case, the
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threshold s� must be estimated from the fading samples. A simple heuristic algorithm is the following:

1. Initialize s�0 = P.

2. For k = 1; 2; : : : , let

s�k = s�k�1

"
1 + �

 
P� 1

k

k�1X
i=0

Db(�(i))
E!#

(45)

and use the threshold s�k to determine b(�(k)), given by (38) with � = �
(k) and s� = s�k.

The above algorithm is motivated by the following argument. Let u =



lt(�)

�
, and assume that its

cdf F (u) is continuous and increasing, so that the pdf f(u) exists and is positive for all u > 0 (from

Lemma 2, a necessary and su�cient condition for the existence and positivity of f(u) is that the

fading has continuous cdf and takes values of the whole RM
+ . The most important fading models, like

Rayleigh, Rice, Nakagami and Log-normal [10] belong to this class). We consider the cost function

G(s) = (P� P(s))2, where P(s) de�ned in (35) can be rewritten as

P(s) =

Z s

0

uf(u) du

Since P(s) is an increasing function of s, it is straightforward to see that G(s) has a unique minimum

at s� solution of P(s) = P. (This solution does not exist only if P > lims!1P(s), in which case s�

is in�nite and the optimal power allocation is trivially obtained by transmitting always with power

allocation lt(�) without any threshold. Also in this case (45) yields the correct estimate: in fact,

s�k ! 1 as k ! 1.) Moreover, G(s) is convex for s close to s�. The unique minimum s� can be

approximated by using the recursion

s�k = s�k�1 � �
d

ds
G(s)

����
s=s�

k�1

(46)

for a su�ciently small step size �. The derivative of G(s) is given by

d

ds
G(s) = �2sf(s)

�
P�

Z s

0

uf(u)du

�
(47)

The integral in (47) is the (ensemble) average transmitted power with the long-term power allocation

with threshold s. By invoking ergodicity, it can be approximated by the time averageZ s

0

uf(u)du � 1

k

k�1X
i=0

Db(�(i))
E

(48)
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The term f(s) in (47) is unknown. However, since it is positive it can be replaced by a positive

constant without changing the sign of dG(s)=ds. Finally, by using (48) in (47), by replacing f(s) by

1=2 and by substituting the approximate derivative into (46) we obtain (45).

The convergence of the algorithm (for a decreasing sequence of step sizes) is not guaranteed because

G(s) is not globally convex. However, with the initialization s�0 = P, divergent behaviors or convergence

to local minima were never observed in our experiments. As usual, the step size must be chosen by

trading acquisition time for tracking precision. A gear-shifting strategy which uses a step size in the

acquisition mode and another one in the tracking mode might be a good option. In order to track

a slowly-varying fading statistics, the algorithm may be modi�ed by using an exponentially decaying

window with an appropriate forgetting factor. An interesting feature of the above algorithm is that

initially, i.e., for small k, s�k ' P, so that a short-term power constraint is applied. As long as k

increases, and hence the estimate of the fading statistics improves, s�k approaches s
�, and a long-term

power constraint is applied.

3.6 Repetition diversity

We conclude this section by exhibiting expressions for the outage probability and for the optimal

power allocation with repetition diversity. The instantaneous mutual information of the repetition

diversity channel with gains � and power allocation  and with optimal (maximal-ratio) combining

at the receiver is given by

I
rep
M (�;) =

1

2M
log

 
1 +

M�1X
m=0

�mm

!
(49)

For constant-power transmission this reduces to 1
2M

log(1 + P
PM�1

m=0 �m). The outage probability is

again de�ned as the probability P (I
rep
M (�;) < R). In the following we let �max

�
= max` �`. By the

same arguments developed in the previous two sections, it is immediate to show that the optimal

power allocation functions subject to the short-term and the long-term power constraints are given by

� Short-term: for m = 0; : : : ;M � 1 let

bm =

8<: MP if �m = �max

0 otherwise

� Long-term: for m = 0; : : : ;M � 1 let

bm =

8<: (e2MR � 1)=�m if �m = �max > ��

0 otherwise
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where we de�ne, in analogy with (35),

P
rep(�) =

Z
(�;1)

e2MR � 1

�max

dF (�max) ; P
rep
(�) =

Z
[�;1)

e2MR � 1

�max

dF (�max)

and where the threshold �� is given by �� = inf f� : Prep(�) < Pg. If F (�max) has discontinuities,

randomization might be needed if �max = ��. In this case, bm = (e2MR � 1)=�m with probability w�

if �m = �max = ��, and zero elsewhere. The value of w� is given by

w� =
P� Prep(��)

P
rep
(��)� Prep(��)

In analogy with the case of optimal coding, we can de�ne the delay-limited capacity with repetition

diversity (see (15)). The same discussion carried out in Section 3.4 applies in this case. In particular,

if � = inff�max : F (�max) > 0g = 0, the delay-limited capacity subject to the long-term constraint

can be computed from the limit P
rep

0 = lim�!0 P
rep
(�). If P

rep

0 <1, reliable transmission at rate R is

possible with minimum required long-term power P
rep

0 . Then, (R;P
rep

0 ) is a point on the delay-limited

capacity curve.

The optimal power allocation with either short-term or long-term constraint corresponds to se-

lection diversity at the transmitter. Thus, selection combining and maximal-ratio combining at the

receiver (with the assumption of perfect CSI) are equivalent, since the signal is transmitted over only

one of the blocks. By looking at theM -block channel as a simpli�ed model for spread-spectrum signals

over a frequency selective channel [5, 17, 12], this shows that it is expedient to spend all the available

power in a single subband, rather than spreading the signal power over the entire channel bandwidth.8

4 Applications

In this section we apply the results previously derived to two examples of channel statistics: the

independent on-o� and the independent Rayleigh BF-AWGN channels. In addition, a closed-form

expression for the delay-limited capacity in the case of Rayleigh fading withM = 2 blocks is obtained.

4.1 On-o� fading

A simple fading model for the M -block BF-AWGN channel assumes that each block is either totally

faded or unfaded, independently of the others. The gains �m are Bernoulli i.i.d. with P (�m = 0) = p.

8With this observation we do not intend to question the merits of classical CDMA. For example, the selection diversity

technique proposed here would be easy to intercept by eavesdroppers. Moreover, CDMA is used in multiuser systems,

where multiple-access interference rather than fading is the main impairment.
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We refer to this channel as on-o� BF-AWGN.9

Under the short-term average power constraint, the optimal power allocation strategy is

bm(�) =
8<: M

�
P if �m = 1

0 if �m = 0
(50)

where � =
PM�1

m=0 �m is the Hamming weight of �, binomially distributed with parameters (M;p).

The resulting minimum outage probability is

bPout(R;P) = P (� < �0)

where �0 is the smallest integer for which
�
2M

log
�
1 + MP

�

�
� R. Under the long-term average power

constraint, the regions R(s) can be de�ned in terms of the weight � of � as

R(s) =
n
� 2 f0; 1gM :

�

M
(e2MR=� � 1) < s

o
Let �(s) be the largest � such that �

M (e2MR=� � 1) � s. We have

P(s) =

MX
�=�(s)+1

�
M

�

�
pM��(1� p)�

�

M
(e2MR=� � 1)

P(s) =

MX
�=�(s)

�
M

�

�
pM��(1� p)�

�

M
(e2MR=� � 1)

From the above expressions, using (36) and (37) we can determine s� and w� for every pair (R;P).

The solution lt(�) of (27) is given by

ltm(�) =

8<: e2MR=� � 1 if �m = 1

0 if �m = 0

Finally, by letting �� = �(s�), the optimal power allocation strategy given by Propositions 4 can be

written as

b(�) =
8<: 

lt(�) if � > ��

0 if � < ��
(51)

9This model does not represent only an extreme simpli�cation of fading. Consider for example a multicarrier multi-

media network where �xed-rate services (e.g., voice and video) share several subcarriers with variable-rate bursty services

(e.g., �le transfer). A common centralized multiple-access protocol allocates the subcarriers to the di�erent services. A

�xed-rate service transmits information at rate R and makes use of M subcarriers, but some of these subcarriers may

be assigned dynamically to some other variable-rate service with higher priority, with a certain probability. We are

interested in the minimum outage probability of �xed-rate users in such system.
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while if � = �� we transmit with power allocation lt(�) with probability w� and we turn o� trans-

mission with probability 1� w�. The resulting minimum outage probability is

bPout(R;P) = P (� < ��) + (1� w�)P (� = ��)

The outage probability with constant power is given by

Pout(R;P) = P

�
� <

2MR

log(1 + P)

�
(52)

With repetition diversity we obtain the following outage probabilities:

� Repetition diversity with constant power:

Pout(R;P) = P

�
� <

e2MR � 1

P

�
(53)

� Repetition diversity with optimal short-term power allocation:

Pout(R;P) =

8<: 1 if 1
2M

log(1 +MP) < R

pM else
(54)

� Repetition diversity with optimal long-term power allocation:

Pout(R;P) =

8<: 1� MP

e2MR�1 if 1
2M log(1 + MP

1�pM ) < R

pM else
(55)

Fig. 3 shows the outage probability vs. P in the cases discussed above for p = 0:1, M = 8 and R = 0:5

bit/symbol. In all cases, the asymptotic outage oor as P ! 1 is equal to pM . The delay-limited

capacity of the on-o� BF-AWGN channel is zero: in fact Pout(R;P) � pM .

4.2 Rayleigh fading with M = 1 and M = 2

We consider now a BF-AWGN channel modeled as a set of M independent Rayleigh fading channels.

The vector � of the fading gains has independent exponentially-distributed components with mean 1.

Case M = 1. For both constant and short-term power transmission, the outage probability is given

by [1]

bPout(R;P) = 1� exp(�(e2R � 1)=P)
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(notice that forM = 1, constant and optimal power allocation under the short-term constraint always

coincide). With optimal power allocation and long-term constraint, s� is the solution of

(e2R � 1)Ei

�
1;
e2R � 1

s

�
= P

and the resulting outage probability is

bPout(R;P) = 1� exp(�(e2R � 1)=s�)

The corresponding power allocation function is given by

b(�0) =
8<: (e2R � 1)=�0 �0 > s�

0 otherwise

Fig. 4 shows the above outage probabilities vs. P for R = 0:5 bit/symbol. We observe that optimal

power allocation with long-term constraint decreases dramatically the outage probability with respect

to constant-power transmission (the average-power saving is about 22 dB at Pout = 10�3). This result

di�ers conspicuously from the one obtained from capacity calculations, which show a very small gain

o�ered by optimal power allocation (see Fig. 1). However, as anticipated in Section 2, the delay-limited

capacity of this channel for M = 1 is zero since P1 =1 for all R > 0.

Case M = 2. From the inequalities (41) de�ning R(s), we obtain the curve B(s) (the boundary of

the region R(s)), which for �0 � �1 is given by

�1 = �(�0; s) for �0 � e4R�1

�0 = x1 for �0 > e4R�1

We de�ne x0 = (e2R � 1)=s, x1 = (e4R � 1)=(2s) and

�(�0; s) = �0

 
e2R +

p
e4R � 1� 2s�0

1 + 2s�0

!2

For �0 < �1, the equations de�ning B(s) are obtained by exchanging �0 and �1. Fig. 5 shows B(s)

for R = 0:5 and s = 0; 5 and 10 dB. As s increases, the outage region U(R; s) (i.e., the region below

the curve B(s)) shrinks but keeps the same shape.

In order to compute the outage probability with short-term power constraint, we have to integrate

f(�) = e��0��1 over U(R;P). We obtain

bPout(R;P) = �1 + e�2x0 � 2e�x1 � 2

Z x1

x0

e�z��(z;s) dz

�
s=P

(56)
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As for the outage probability with long-term power constraint, we compute �rst P(s) as a function of

s, then, for each value of P, we compute s� as the solution of P(s) = P. Finally, we obtain bPout(R;P)
from (56) evaluated at s = s�. From (35) we get

P(s) = (e4R � 1)

�
Ei (1; x1)� Ei

�
1;
sinh(4R)

s

��
+ �e2R

�
1� erf(

p
x0)

2
�
�

�Ei
�
1; x1e

�4R� e�x1 + Ei (1; x0)e
�x0 �

�
(
2
p
�e2R

 Z x1

x0

e�zerf(
p
�(z; s))p
z

dz +

Z 1

x1

e�zerf(
p
ze�2R)p
z

dz

!
+

+

Z x1

x0

�
1

z
e��(z;s) + Ei (1; �(z; s))

�
e�zdz

�
(57)

These integrals, as well as the equation P(s) = P, must be solved numerically. Fig. 6 shows P(s) vs.

s for R = 0:5 bit/symbol. Both the result of (57) and of Monte Carlo simulation are included, and

show perfect agreement. The horizontal asymptote is the delay-limited capacity power limit.

The optimum power allocation function is given explicitly as follows:8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

If 0 < �0 < e�4R�1 and �1 > (e4R � 1)=2s� then: b0 = 0 b1 = (e4R � 1)=�1

and �1 < (e4R � 1)=2s� b0 = 0 b1 = 0

If e�4R�1 < �0 < �1 and �0 > �(�1; s
�) then: b0 = e2Rp

�0�1
� 1

�0
b1 = e2Rp

�0�1
� 1

�1

and �0 < �(�1; s
�) b0 = 0 b1 = 0

If �1 < �0 < e4R�1 and �1 > �(�0; s
�) then: b0 = e2Rp

�0�1
� 1

�0
b1 = e2Rp

�0�1
� 1

�1

and �1 < �(�0; s
�) b0 = 0 b1 = 0

If �0 > e4R�1 and �0 > (e4R � 1)=2s� then: b0 = (e4R � 1)=�0 b1 = 0

and �0 < (e4R � 1)=2s� b0 = 0 b1 = 0

The outage probability for constant power allocation in the general case of M independent blocks

is immediately calculated from the M -fold convolution of the distribution of log(1 + �P) [1]. With

repetition diversity we obtain explicit expressions for the outage probability for any M :

� Repetition diversity with constant power:

Pout(R;P) = 1��M�1

�
e2MR � 1

P

�
(58)

� Repetition diversity with optimal short-term power allocation:

Pout(R;P) =

�
1� exp

�
�e

2MR � 1

MP

��M
(59)
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� Repetition diversity with optimal long-term power allocation:

Pout(R;P) = (1� exp(���))M (60)

where �� is the solution of

P(�) = (e2MR � 1)

M�1X
k=0

�
M � 1

k

�
(�1)kEi (1; (k + 1)�) = P

Figs. 7, 8, and 9 show the above outage probabilities vs. P for R = 0:5, 1:0 and 2:0 bit/symbol. The

power gain obtained by optimal long-term power allocation with respect to constant power is still very

large, especially for large R, but it is reduced with respect to the case M = 1 (e.g., for R = 0:5 it

is about 15:5 dB at Pout = 10�3). This fact can be explained by observing that, as M ! 1, both

outage probabilities for optimal and for constant power allocations converge to their capacity limits,

i.e., they are close to 1 if R > Copt(P) (resp., if R > Cconst(P)) and zero if R < Copt(P) (resp., if

R < Cconst(P)). Since Copt(P) and Cconst(P) are very close, we expect that the gain of optimal with

respect to constant power allocation reduces as M increases. These limits hold under the assumption

that the sequence � is asymptotically ergodic as M !1. Moreover, it is immediate to see that both

short-term and long-term power allocation yield the Copt(P) capacity limit (in fact, as M ! 1 the

two constraints coincide), while constant power yields Cconst(P). A simple direct proof of convergence,

based on the analysis of the limiting outage probability as M ! 1 can be given irrespective of the

fading statistics as long as ergodicity holds (we skip this for the sake of brevity).

Optimal power allocation under the short-term constraint does not provide any signi�cant gain

with respect to constant power. As M increases, the outage probability with short-term constraint is

always very close to that for constant power. This helps understanding why optimal power allocation

does not yield signi�cant gains in terms of capacity. On the other hand, optimal power allocation

under the long-term constraint provides dramatic power gains for small M (i.e., in strictly delay-

limited conditions.). Long-term power allocation yields zero outage probability for P � P1 (optimal

coding) and P � P
rep

0 (repetition diversity). These power thresholds (denoted by the vertical solid

lines in the �gures) are the delay-limited capacity limits, i.e., the average powers required to transmit

reliably at rate R over the 2-block BF-AWGN channel for optimal coding and repetition diversity,

respectively.

We can compute explicitly the delay-limited capacity limits by letting s� ! 1 (optimal coding)

and �� ! 0 (repetition diversity). From the asymptotic expansion [25]

Ei (1; z) = ��� log z +O(z); z ! 0
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(� denotes the Euler's constant) and from the fact that the integrals in the expression (57) of P(s)

vanish as s!1, we �nd:

� Optimal coding:

P1 = (e4R � 1) log
�
1 + e�4R

�
+ e2R(� � 4 arctan(e�2R))� 4R

� Repetition diversity:

P
rep

0 = (e4R � 1) log 2

Fig. 10 shows the delay-limited capacity and, for comparison, the AWGN capacity and the capacity

of a Rayleigh fading channel with optimal and constant power allocation. We could not obtain a

closed-form evaluation of the delay-limited capacity for M > 2. However, this can be computed by

Monte Carlo simulation of P(s) for very large s and di�erent values of R. Results for M = 4 are

shown in Fig. 10. With optimal coding, the delay-limited capacity is only 5 dB away from the AWGN

capacity and 2.5 dB from the Rayleigh capacity for high rates. This gap is further reduced at low

rates. For M = 4, these gaps are reduced by 1.2 dB (high rates). Repetition diversity su�ers from a

large delay-limited capacity penalty, especially for high rates, while it yields good results for low rates.

This result shows that transmitter CSI and optimal power allocation may have a substantial impact on

the performance of delay-limited systems, and that reliable transmission can be achieved by allowing

for a very small delay (M = 2; 4) and a small power penalty with respect to unconstrained-delay

transmission (M !1).

Finally, Fig. 11 shows the long-term average transmitted power when algorithm (45) is used to

estimate the optimal threshold s�. This curve was obtained by Monte Carlo simulation with P = 2

dB, M = 2, and R = 0:5 bit/symbol. We used a constant step size � = 0:01. The algorithm is able to

approach the desired long-term power even if the fading statistics is totally unknown a priori.

4.3 Optimal M for repetition diversity

From the outage probability expressions (53{55) and (58{60) we observe that, for both the on-o�

and the Rayleigh fading statistics, there is an optimal M minimizing the outage probability with

repetition diversity. This optimal M depends on R, P, on the type of power allocation and on the

fading statistics, and can be determined numerically from the outage probability expressions.

By viewing the M -block BF-AWGN as a very simple model for a frequency selective channel

with M subbands and repetition diversity as spreading (see Section 1), the above fact shows that
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there exists an optimal spreading factor above which it is not convenient to spread the signal (at

least from the single-user outage probability point of view considered here). On the contrary, when

optimal coding is used, the outage probability of either constant and optimal short-term and long-term

power allocation generally decreases as M increases (to be precise, the outage probability is strictly

decreasing for Rayleigh fading, while it is not in the on-o� channel for constant and short-term power

allocation). Tables 1 and 2 show Pout(R;P) for some values of M , R = 0:5 bit/symbol and P = 10 dB

for the on-o� and the independent Rayleigh BF-AWGN channels, respectively. In Table 2, the zero

outage values correspond to M , P and R for which R � Cdelay(P).

5 Conclusions

In this paper we considered the problem of transmitting at constant rate over a slowly-varying fading

Gaussian channel under a strict transmission delay constraint. As in [1, 2, 4, 13], we adopted the

BF-AWGN channel model, where the transmission of a code word spans a �nite number M of fading

blocks. However, di�erently from the above referenced works, we assumed that the transmitter has

perfect knowledge of the fading gains over all the M blocks before transmitting a code word, so that

it can compensate for the fading and reduce the information outage probability.

We showed that minimum outage probability can be achieved by a single-codebook, variable-power

scheme, obtained by concatenating a conventional \Gaussian" code with a power-controller, which

scales the power of the transmitted symbols according to an optimal power allocation strategy. This

scheme is particularly appealing for practical applications, since it requires no variable-rate coding or

multiplexing of several codebooks. Thus, the minimum outage probability problem reduces to �nding

optimal power allocation strategies.

We have derived the optimum power allocation strategy for both optimal coding and repetition

diversity, under di�erent constraints on the transmitted power. In the case of long-term power con-

straint, the optimal power allocation depends on the fading statistics through the value of a power

threshold above which transmission must be turned o�. We presented an adaptive algorithm that

estimates this threshold without prior knowledge of the fading statistics. We also showed that the

minimum outage probability problem is closely related to the delay-limited capacity problem, and

that our solution yields the delay-limited capacity of the M -block BF-AWGN channel. This method

is general, although closed-form results appear to be di�cult to obtain for correlated fading and/or

M > 2. Nevertheless, Monte Carlo simulation can be used to compute both the minimum outage
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probability and the delay-limited capacity in the general case.

For repetition diversity, we showed that the optimal power allocation strategy is selection diversity

at the transmitter, and that there exists an optimal diversity order which minimizes the outage prob-

ability. This may lead to some interesting considerations for spread-spectrum in frequency-selective

fading channels, if we view repetition diversity as a simpli�ed model for spreading.

As an application, we presented closed-form results for a simple on-o� fading model and for the

independent Rayleigh fading channel withM = 1 and M = 2 blocks. Optimal power allocation under

a long-term power constraint yields impressive performance improvements with respect to constant-

power transmission. This shows that transmitter CSI and dynamic power allocation has a huge impact

on the performance of delay-limited wireless systems, if instantaneously large power peaks are possible.

We conclude by pointing out some suggestions for further research.

� Minimum outage probability and delay-limited capacity are achieved only in the limit for N !

1. However, in practice, N must be �nite and instantaneously large power peaks can last only

for a few frames. Then, more practical optimization problems should consider, for example, the

maximization of the error exponent of theM -block BF-AWGN channel [2, 13] for �xed and �nite

N [26] and the construction of actual low-complexity coding schemes suited to dynamic power

allocation [27].

� A key assumption of this work is the availability of perfect CSI at the transmitter. A more

realistic assumption is that the transmitter is provided with (noisy) measurements of the past

fading gains and uses some form of prediction to allocate power to the current frame. Outage

probability minimization in this case is another very interesting problem.

� Our outage probability minimization results can be combined with transmit antenna diver-

sity [11, 28, 29, 30]. This combination is the subject of a forthcoming companion paper [31] (see

also [32]).
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APPENDIX

A Proof of Proposition 2

This proof is largely based on the results and notations of [14]. In particular, we indicate by liminf i.p.

and by limsup i.p. the liminf and the limsup in probability, de�ned in [14]. Also, when an equality

(resp., inequality) holds \for su�ciently large N", we use =
N
(resp., �

N
). Moreover, when not otherwise

speci�ed, equalities (resp., inequalities) between random variables are to be intended in probability,

i.e., for two sequences of random variables fANg and fBNg, AN =
N
BN and AN �

N
BN mean that, for

arbitrary non-negative �; � and su�ciently large N , P (jAN � BN j � �) � 1 � � and P (AN � BN �

��) � 1� �, respectively.

Consider the M -block BF-AWGN channel and let (a;b) be a pair of input and output sequences

of length MN generated according to the joint pdf pyjx;�(bja)qxj�(a), where

pyjx;�(bja) =
M�1Y
m=0

N�1Y
n=0

1p
2�

exp

�
�1

2
jbmN+n �

p
�mamN+nj2

�
is the MN -th order channel transition pdf conditioned on � and where qxj�(a) is the MN -th order

input distribution. This is also conditioned on � since the transmitter has perfect CSI and can choose

the input distribution accordingly.

The normalized information density of (a;b) is de�ned by [14]

iMN (a;b)
�
=

1

MN
log

pyjx;�(bja)
pyj�(b)

where pyj�(b) is the marginal conditional pdf of the channel output sequence.

In order to get rid of some annoying technicalities related to the continuity of �-achievable rates

with respect to �, in this paper we follow the alternative more \regular" de�nition of achievability

given in [14][Sect. IV]. Namely, a rate R is �-achievable if there exists a sequence of (n;Mn; �n)-codes

such that lim infn!1
1
n logMn � R and lim supn!1 �n � �. While this has almost no impact on the

operational signi�cance of outage probability and capacity, it allows us to characterize the maximum

�-achievable rate (�-capacity) and the channel capacity by the compact expressions [14][Th. 6]

C� = sup
X

supfR : FI(R) � �g for 0 � � < 1

C = lim
�!0+

C� (61)

where sup
X
denotes the supremum over the input distributions and FI(R) is the limiting cdf, for large

block length, of the normalized information density.
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Armed with these results, all what we have to show is that, for any choice of the input pdf

qxj�(a) satisfying a given input power constraint, the limit of normalized information density cdf is

lower bounded by the cdf of the instantaneous mutual information IM (�;) de�ned in (8), and that

IM (�;) is the limit in probability of iMN (x;y) when x is conditionally Gaussian with (mN + n)-th

component � N(0; m).

Fix an arbitrary vector  = (0; : : : ; M�1). For all R � 0, we want to show that

P (IM (�;) < R) �
N
P (iMN (x;y) < R) (62)

where the input distribution is constrained by:

limsup i.p.
N!1

1

N

N�1X
n=0

jxmN+nj2 � m for m = 0; : : : ;M � 1 (63)

Since the channel is conditionally memoryless given �, from [14][Th. 10] we obtain that

iMN (x;y) �
N

1

MN

M�1X
m=0

N�1X
n=0

log
pyjx;�(ymN+njxmN+n)

pyj�(ymN+n)
(64)

where pyjx;�(bmN+njamN+n) is the 1-st order (mN +n)-th channel transition pdf and pyj�(bmN+n) is

the 1-st order (mN + n)-th output marginal pdf. Since the channel has additive noise and the noise

is stationary and ergodic, we can write the RHS of (64) as

� 1

MN

M�1X
m=0

N�1X
n=0

log pyj�(bmN+n)� h(z) (65)

for su�ciently large N , where h(z) is the di�erential entropy of the noise. Let ey be the output sequence

resulting from conditionally independent Gaussian inputs exmN+n � N(0; m), and let gm(bmN+n)

denote the resulting conditional (mN + n)-th marginal output pdf, given by

gm(bmN+n) =
1p

2�(�mm + 1)
exp

�
� jbmN+nj2
2(�mm + 1)

�
We can write

1

MN

M�1X
m=0

N�1X
n=0

log
gm(eymN+n)

pyj�(ymN+n)
�
N

1

MN

M�1X
m=0

N�1X
n=0

log
gm(ymN+n)

pyj�(ymN+n)

�
N

0 (66)

where the �rst inequality of (66) holds since

1

MN

M�1X
m=0

N�1X
n=0

jeymN+nj2 =
N

1

M

M�1X
m=0

�mm + 1
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and, from (63),

1

MN

M�1X
m=0

N�1X
n=0

jymN+nj2 �
N

1

M

M�1X
m=0

�mm + 1

The second inequality of (66) follows from [14][Th. 8, (a)]. By collecting (64), (65) and (66), we obtain

iMN (x;y) �
N
iMN (ex; ey)

where ex is an independent Gaussian sequence such that exmN+n � N(0; m) and ey is the resulting

output sequence. From the weak law of large numbers, it is immediate to show the following equalities

iMN (ex; ey) =
N

IM (�;)

1

N

M�1X
n=0

jexmN+nj2 =
N

m for m = 0; : : : ;M � 1

Then, (62) follows. Since the m's are arbitrary, condition (63) expresses any input power constraint.

Hence, the supremum over X in (61) can be replaced without loss of optimality by the supremum over

all power allocation functions , having established that the optimal input distribution is conditionally

independent Gaussian, entirely speci�ed by .

Finally, Proposition 2 follows from (61) by noting that Pout(R;P) is the left-continuous version of

FI(R), and that left or right continuity have no e�ect on the supremum of fR : Pout(R;P) � �g.

B Proof of Proposition 3

We write the outage probability as

P (IM (�;) < R) = E[�fIM (�;)<Rg] (67)

Consider the solution st = 
st(�) to the problem (19). This is a deterministic function of �. De�ne

�st(�)
�
= �fIM (�;st(�))<Rg

and notice that U(R;P) given in (20) can be written as U(R;P) = f� 2 R
M
+ : �st(�) = 1g. For any

random function (�) satisfying the short-term constraint, we have

�st(�) � �fIM (�;(�))<Rg with probability 1 (68)

In fact, for all � such that �st(�) = 0, the above inequality is trivially satis�ed, while for all � such

that �st(�) = 1 also �fIM (�;)<Rg = 1 with probability 1 (otherwise, for some �, there would be
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(�) for which IM (�;(�)) > IM (�;st(�)), which contradicts the de�nition of st). Now, let g(�)

be any random function satisfying the short-term constraint, and rewrite (18) as

b(�) = (1� �st(�))st(�) + �st(�)g(�)

Clearly, hbi � P with probability 1 and

�st(�) = �fIM (�;b(�))<Rg

From the above equality, by using (68) into (67), we get

P (IM (�;) < R) � E[�st(�)] = P (IM (�; b) < R)

for all  satisfying the short-term constraint.

C Proof of Lemmas

C.1 Proof of Lemma 1

Let us set m = y2m, for m = 0; : : : ;M � 1, let � 2 R be the Lagrange multiplier, and consider the

Lagrangian functional

�(t) =

M�1X
m=0

�
(ym + t m)

2 � �
1

2
log(1 + �m(ym + t m)

2)

�
We have a minimum if and only if �0(0) = 0 and �00(0) > 0 for arbitrary functions  m =  m(�). We

obtain

�0(0) =

M�1X
m=0

 m

�
2ym � �

�mym

1 + �my2m

�
and

�00(0) =

M�1X
m=0

 2
m

�
2� �

�m(1� �my
2
m)

(1 + �my2m)
2

�
The choice

y2m =

�
�

2
� 1

�m

�
+

(69)

yields �0(0) = 0 for all  m's. Since hi is decreasing with , the minimum is obtained when the

constraint is satis�ed with equality. By substituting (69) into �00(0) we get

�00(0) =

M�1X
m=0

Bm 
2
m
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where

Bm =

8<:
8
�

h
�
2
� 1

�m

i
for y2m > 0

�2�m
h
�
2
� 1

�m

i
for y2m = 0

By comparing the expressions of y2m and of Bm and by recalling that � must be positive in order

to satisfy the constraint equation, we see that �00(0) > 0. Then, the solution (69) is the (unique)

minimum. Finally, by letting 2=� = �(�), independent of m, we obtain the solution in the form

ltm(�) =

�
�(�)� 1

�m

�
+

(70)

where �(�) can be obtained by solving the constraint equation IM (�; b) = R. This proves eq. (28) of

Lemma 1.

Solution of the short-term constraint equation. Here we consider the equation

1

M

M�1X
m=0

1

2
log

�
1 + �m

�
�(�)� 1

�m

�
+

�
= R (71)

Let us assume, without loss of generality, that � 2 Q i.e., �m � �m+1 for m = 0; : : : ;M � 2 and that

at least �0 > 0 (otherwise we have outage in any case). Let us de�ne

� = jfm : 1=�m � �(�)gj

(jSj denotes the cardinality of the set S). Hence, we see that

�(�) = �lt(�;�)
�
=

 
e2MRQ��1
m=0 �m

!1=�

Let �[�] = 1
�(2MR �

P��1
m=0 log(1=�m)) and �[�] = jfm : 1=�m � e�[�]gj. Then, (71) is solved

by �nding � over f1; : : : ;Mg such that �[�] = �. In the following we prove the existence and the

uniqueness of such solution.

Existence. Since 1=�0 � e2MR=�0 = e�[1], we get �[�] � 1. Also, by de�nition, �[M ] � M . We

want to show that the equation

�[�] = � (72)

has a solution, for any assigned � 6= 0. We have

�[�]� �[�+ 1] =
1

�+ 1
(�[�] � log(1=��)) (73)
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Then, �[�] > � ) �[�] � log(1=��) � 0 ) �[�] � �[� + 1]. Hence, for �[�] > �, the sequence �[�] is

non-increasing. Moreover, from (73) we get

�[�+ 1]� log(1=��) =
�

�+ 1
(�[�]� log(1=��))

so that, �[�] > � ) �[� + 1] � log(1=��) � 0 ) �[� + 1] � � + 1. Then, either �[�] > � for all

� = 1; : : : ;M � 1, which implies that �[M ] = M , or �[�] = � for some � < M . In both cases the

solution exists.

Uniqueness. Assume there exist two values �1 and �2, with �1 < �2, such that �[�1] = �1 and

�[�2] = �2. Then,

log(1=��2�1) > �[�1] and log(1=��2�1) � �[�2]

By inverting the sign of the former inequality and adding the result to the latter, we obtain

(�2 � �1) log(1=��2�1) <

�2�1X
m=�1

log(1=�m)

which contradicts the non-increasing assumption on �.

C.2 Proof of Lemma 2

Because of symmetry, without loss of generality we can consider only � 2 Q. It is immediate to see

that lt(�) is continuous for all � 6= 0 in the interior of each Wi (the regions Wi are de�ned by (40)).

Then, we need only to check continuity on the boundaries. Consider the surface Si, boundary of Wi

and Wi�1, de�ned by

Si =

�
� 2Wi : �

lt(i;�) =
1

�i�1

�
From the equality de�ning Si we obtain

�lt(i;�) = �lt(i� 1;�) (74)

Then, let a0 2 Si and a be an arbitrary point of Wi�1. For i� 1 � m �M � 1, ltm(a) = ltm(a0) = 0

and for 0 � m � i � 2, lima!a0
ltm(a) = ltm(a0) because of (74). Then, lt(�) is continuous also in

� 2 Si;� 6= 0.

Since lt(�) is continuous, we can show that



lt(�)

�
is non-increasing in �m by showing that

@
@�m




lt(�)

�
� 0 in the interior of each Wi, for i = 1; : : : ;M . By using (28) and (29) and by
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di�erentiating with respect to �m we get

@

@�m

D

lt(�)

E
=

8><>:
1

M�m

�
1

�m
� �lt(i;�)

�
m = 0; : : : ; i� 1

0 m = i; : : : ;M � 1

Since � 2Wi, the RHS of the above equation is non-positive for all m = 0; : : : ;M � 1.

C.3 Proof of Lemma 3

For s 2 R+, let P(s) and P(s) be de�ned by (32), bw(u) given by (31). The function bw(u) de�ned
above satis�es the constraint with equality,

E[u bw(u)] = P(s�) + w�s�P (u = s�)

= P(s�) +
P� P(s�)

P(s�)� P(s�)
s�P (u = s�)

= P

and achieves the objective function value

E[ bw(u)] = Z
[0;s�)

dF (u) + w�P (u = s�) (75)

We are to show that any other 0 � w(u) � 1 such that E[w(u)] is larger than (75) must violate the

constraint. For any such w(u), we have

E[u w(u)] � P = E[u w(u)]�E[u bw(u)]
=

Z
(s�;1)

u w(u)dF (u) + s�(w(s�)� w�)P (u = s�)�
Z
[0;s�)

u (1� w(u))dF (u)

� s�

(Z
(s�;1)

w(u)dF (u) + (w(s�)� w�)P (u = s�)�
Z
[0;s�)

(1� w(u))dF (u)

)
� s� fE[w(u)] �E[ bw(u)]g (76)

Then, if E[w(u)] > E[ bw(u)] we get E[u w(u)] > P, i.e., w(u) violates the constraint.
D Proof of Proposition 4

The proof is organized in two steps. First, we show that the solution of (26) must be in the form

b(�) =
8<: 

lt(�) with probability bw(�)
0 with probability 1� bw(�) (77)
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where lt(�) is the solution of (27) and where bw(�) is a weight function RM
+ ! [0; 1], solution of the

problem 8<: Maximize E[w(�)]

Subject to 0 � w(�) � 1 and E[hb(�)iw(�)] = P

(78)

Then, we use Lemma 1, 2, and 3 along with the de�nitions (34 - 37) to complete the proof.

Step 1. The outage probability resulting from the power allocation function given by (77) is

bPout(R;P) = 1� E[ bw(�)] (79)

Let  be an arbitrary power allocation in the class of probabilistic stationary memoryless power

allocation functions satisfying E[hi] � P, and consider the region A(�; R) = f 2 R
M
+ : IM(�;) �

Rg. The outage probability resulting from  is

Pout(R;P) = 1� P ( 2 A(�; R)) (80)

We are to show that bPout(R;P) � Pout(R;P), where bPout(R;P) is given by (79). To this purpose, let

�A denote the indicator function of f 2 A(�; R)g and de�ne the weight function

w(�) = E[�Aj�] (81)

where expectation is with respect to F (j�). Now, 0 � w(�) � 1, so that w(�) is a valid weight

function. Then, de�ne the new power allocation


0(�) =

8<: 
lt(�) with probability w(�)

0 with probability 1� w(�)

where lt is the solution of (27). By de�nition of lt, the outage probability P 0
out(R;P) resulting from


0 is equal to Pout(R;P). In fact,

P 0
out(R;P) = 1� E[w(�)]

= 1� E[E[�Aj�]]

= 1� E[�A]

= 1� P ( 2 A(�; R)) (82)
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Moreover, 0 satis�es the long-term power constraint. In fact,

P � E[hi]

� E[�A hi]
a
� E[�A

D

lt
E
]

= E[E[�A

D

lt
E
j�]]

b
= E[

D

lt
E
E[�Aj�]]

= E[
D

lt
E
w(�)]

= E[



0�]

where (a) follows by noting that for all � such that �A = 1, then



lt
�
� hi by de�nition of lt, and

(b) follows from the fact that lt is a deterministic function of � (see Lemma 1). Since w(�) is just

one of the possible weight functions satisfying E[



lt
�
w(�)] � P, we have E[ bw(�)] � E[w(�)] where

bw(�) is the solution of (78) (note that the solution of (78) must satisfy the constraint with equality).

From the last inequality and from (82) we get bPout(R;P) � Pout(R;P).

Step 2. The explicit expression of lt(�) is given by Lemma 1. We use Lemma 2 and Lemma 3 in

order to �nd the explicit expression of the optimal weight function bw(�). The power sum u =



lt(�)

�
is a function RM

+ ! R+. For a given F (�), the power sum is a non-negative random variable with cdf

F (u) = P (
D

lt(�)

E
� u) =

Z
R(u)

dF (�)

We can apply Lemma 3 to u and �nd s� and w� which yield the maximum of E[w(u)] subject to

E[u w(u)] � P. Finally, from Lemma 2 we have that lt(�) is continuous and that



lt(�)

�
has a

gradient all of whose components are non-positive. This implies that for any 0 � s < s0 < 1, the

regions R(s) and R(s0) de�ned by (34) satisfy R(s) � R(s0). Thus, the intervals u < s�, u = s�, and

u > s� on the non-negative u-axis correspond to the regions R(s�), to the boundary surface B(s�),

and to the complement region RM
+ � R(s�), respectively.
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M Const. Opt. short-term Opt. long-term Rep. const. Rep. short-term Rep. long-term

1 1.0e-1 1.0e-1 1.0e-1 1.0e-1 1.0e-1 1.0e-1

2 1.0e-2 1.0e-2 1.0e-2 1.0e-2 1.0e-2 1.0e-2

3 1.0e-3 1.0e-3 1.0e-3 1.0e-3 1.0e-3 1.0e-3

4 3.7e-3 1.0e-4 1.0e-4 3.7e-3 1.0e-4 1.0e-4

5 4.6e-4 1.0e-5 1.0e-5 8.1e-2 1.0e-5 1.0e-5

6 5.5e-5 5.5e-5 1.0e-6 1.0 1.0 4.7e-2

7 1.7e-4 6.4e-6 1.0e-7 1.0 1.0 4.4e-1

8 2.3e-5 7.3e-7 1.0e-8 1.0 1.0 6.8e-1

9 2.9e-6 8.2e-8 1.0e-09 1.0 1.0 8.2e-1

10 3.7e-7 9.1e-9 1.0e-10 1.0 1.0 9.0e-1

11 1.2e-6 1.0e-9 1.0e-11 1.0 1.0 9.4e-1

12 1.6e-7 5.4e-9 1.0e-12 1.0 1.0 9.7e-1

Table 1: Outage probability of the on-o� BF-AWGN channel with M blocks, p = 0:1, R = 0:5

bit/symbol and P = 10 dB.
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M Const. Opt. short-term Opt. long-term Rep. const. Rep. short-term Rep. long-term

1 9.5e-2 9.5e-2 2.5e-4 9.5e-2 9.5e-2 2.5e-4

2 2.1e-2 1.5e-2 0.0 3.6e-2 1.9e-2 0.0

3 6.0e-3 2.8e-3 ? 0.0 3.4e-2 9.0e-3 0.0

4 1.6e-3 6.6e-4 ? 0.0 6.5e-2 9.5e-3 0.0

5 4.9e-4 1.3e-4 ? 0.0 2.0e-1 2.1e-2 0.0

6 1.4e-4 3.0e-5 ? 0.0 6.0e-1 7.5e-2 0.0

7 4.4e-5 6.4e-6 ? 0.0 9.6e-1 2.8e-1 0.0

8 1.3e-5 1.8e-6 ? 0.0 1.0 7.1e-1 1.6e-1

9 4.1e-6 ... 0.0 1.0 9.6e-1 4.1e-1

10 1.2e-6 ... 0.0 1.0 1.0 6.1e-1

11 3.9e-7 ... 0.0 1.0 1.0 7.5e-1

12 1.2e-7 ... 0.0 1.0 1.0 8.4e-1

Table 2: Outage probability of the Rayleigh BF-AWGN channel with M blocks, R = 0:5 bit/symbol

and P = 10 dB. The values marked by ? are obtained by Monte Carlo simulation (a minimum of 1000

outage events were counted for each value).
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Figure 1: AWGN and Rayleigh fading channel capacity with optimal and constant power allocation

and space diversity order D = 1; 2; 3.
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Figure 2: Rayleigh fading channel delay-limited capacity with space diversity order D = 2; 3. The

AWGN capacity is shown for comparison.



G. Caire et al.: Optimum power control over fading channels 45

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

-5 0 5 10 15 20 25 30

P o
ut

Average Tx power P (dB)

On-Off BF-AWGN, R=1/2 bit/symbol, p=0.1, M=8

a b c d

e

f

Figure 3: Outage probability vs. P for the on-o� BF-AWGN channel with p = 0:1, M = 8 and

R = 0:5 bit/symbol. a) Optimal long-term power. b) Optimal short-term power. c) Constant power.

d) Repetition diversity, short-term power. e) Repetition diversity, long-term power. f) Repetition

diversity, constant power.
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bit/symbol.

0

1

2

3

4

5

6

7

-10 -5 0 5 10 15 20 25 30 35 40

R
 (

na
t/s

ym
bo

l)

Average Tx power P (dB)

AWGN and delay-limited BF-AWGN capacity

Cawgn(P)
Cconst(P)
Copt(P)
Cdelay(P),M=2
Cdelay(P),M=2,Rep-div
Cdelay(P),M=4
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and repetition diversity. The AWGN capacity and the capacity of a Rayleigh fading channel without

delay constraint are shown for comparison. Monte Carlo simulation for optimal coding and M = 4 is

also included.
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Footnotes

1. From a practical viewpoint, CSI at the transmitter can be provided either by a dedicated feedback

channel (some existing systems already implement a fast power control feedback channel [6, 7])

or by time-division duplex [8], where the uplink and the downlink time-share the same M

subchannels and the fading gains can be estimated from the incoming signal.

2. Note the di�erence with respect to space diversity: this may be thought of as a technique to

modify the fading gain statistics after combining, and hence does not decrease the code rate.

3. This assumption is su�cient to ensure the information stability of the channel [14].

4. All the numerical results in this paper can be translated immediately into results for the more

standard circularly-symmetric complex channel [1] with average energy per symbol Es, noise

power spectral density N0 and signaling rate W symbols/s by letting P = Es=N0 and by mul-

tiplying the information rates by 2W . In this way, the information rates are expressed in

information units per second.

5. See Appendix A for the de�nition of �-achievable rate used in this paper.

6. Since  = (�) is a random function, de�ned by its conditional cdf F (j�), all optimization

problems in the following are to be intended with respect to F (j�). However, it is convenient

to give the solution directly in terms of , rather than in terms of its conditional cdf.

7. Even though typical fading models have continuous cdf, there are practical cases of interest

where the fading distribution appears as discrete. This occurs for example when the transmitter

can use only a coarsely quantized information about the fading levels, or in mobile satellite

systems when the fading is modeled as an on-o� process depending on the presence or absence

of a line-of-sight propagation path [24].

8. With this observation we do not intend to question the merits of classical CDMA. For example,

the selection diversity technique proposed here would be easy to intercept by eavesdroppers.

Moreover, CDMA is used in multiuser systems, where multiple-access interference rather than

fading is the main impairment.

9. This model does not represent only an extreme simpli�cation of fading. Consider for example

a multicarrier multimedia network where �xed-rate services (e.g., voice and video) share several
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subcarriers with variable-rate bursty services (e.g., �le transfer). A common centralized multiple-

access protocol allocates the subcarriers to the di�erent services. A �xed-rate service transmits

information at rate R and makes use of M subcarriers, but some of these subcarriers may be

assigned dynamically to some other variable-rate service with higher priority, with a certain

probability. We are interested in the minimum outage probability of �xed-rate users in such

system.


