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Abstract — We study the performance limits of
a radio system consisting of a transmitter with t
antennas and a receiver with r antennas over a
block-fading additive white Gaussian noise chan-
nel. We derive the optimal coding scheme mini-
mizing the information outage probability and an-
alyze its performance in terms of outage proba-
bility and delay-limited capacity. We show that,
asymptotically, the delay-limited capacity grows
linearly with m , min(t, r) and is almost indepen-
dent of the number of fading blocks M which im-
plies the existence of a trade-off between spatial
(multiple antennas) and time diversity (interleav-
ing).

I. Channel model, capacity and outage
probability

We consider a multiple-antenna system with t transmit
and r receive antennas and a block-fading additive white
Gaussian noise (BF-AWGN) channel with M blocks. We
call it a t × r BF-AWGN channel. On each block the
fading gain is constant. Code words of MNt complex
symbols are transmitted as M blocks of Nt symbol. Each
block is divided into t sub-blocks of N symbols. Finally,
each sub-block is transmitted from a different antenna,
so that approximately t symbols/s/Hz are transmitted.
At the receiver, each antenna receives the superposition
of the t transmitted symbols affected by fading and ad-
ditive noise. The outputs of the r receiving antennas are
processed jointly.

The discrete-time baseband equivalent channel model
can be written as

yk[n] = Akxk[n] + zk[n] (1)

for k = 1, . . . , M and n = 1, . . . , N . Here, Ak ∈ C
r×t

is the matrix of complex channel gains, xk[n] ∈ C
t and

yk[n], zk[n] ∈ C
r are the n-th transmitted, received and

noise vectors. The noise vector is circularly-symmetric
complex Gaussian distributed ∼ Nc(0, I). The following
transmit power constraint is assumed:

E[|xk[n]|2] = Tr(E[xk[n]xk[n]†]) ≤ Γ

Channel state information (CSI), i.e., knowledge of Ak,
is assumed to be available at the receiver (CSIR) and at
the transmitter (CSIT).
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Following a standard approach [6], we obtain a more
convenient equivalent model for (1) from the SVD decom-
position Ak = UkSkV

†
k [3] (Uk and Vk are unitary ma-

trices and the main diagonal of Sk contains the singular
values of Ak, i.e., the square roots of the strictly posi-
tive eigenvalues of AkA

†
k, namely, λ

1/2
k,1 > · · · > λ

1/2
k,m > 0

with m , min{r, t}). Defining ỹk[n] , U†
kyk[n], z̃k[n] ,

U†
kzk[n], and x̃k[n] ,V†

kxk[n], we obtain

ỹk[n] = Skx̃k[n] + z̃k[n] (2)

This model is equivalent to (1) since z̃k[n] ∼ Nc(0, I) and
E[|x̃k[n]|2] = E[|xk[n]|2, so that any constraint on x̃k[n]
is mapped to the same constraint on xk[n].
Ergodic capacity. We assume finite block length N
and M → ∞, {Ak}M

k=1 is an asymptotically ergodic pro-
cess and, with perfect CSIR, the capacity is independent
of N [4] and given by [6]:
Proposition 1. The capacity of a t× r BF-AWGN channel,
under the power constraint E[|xk[n]|2] ≤ Γ, is given by:

i) With perfect CSIR and no CSIT,

CCSIR(Γ) = mE [log(1 + Γλ1/t)] 1 (3)

ii) With perfect CSIR and CSIT,

CCSIR,CSIT(Γ) =
m∑

i=1

E[(log(ξλi))+] (4)

where λi is the i-th (decreasingly ordered) singular
value of A, (which is a random matrix distributed
as any Ak’s), γi = (ξ−1/λi)+, (x)+ , max{0, x},
and ξ is the solution to the nonlinear equation∑m

i=1 γi = Γ. �

Delay-limited performance. Here we assume a
fixed transmission rate R, finite M , and N → ∞, and
apply the coding theorem [1, Prop. 2] to the vector
channel (2). First, let us define λk , (λk,1, . . . , λk,m),
Λ , (λ1, . . . , λM ), γk as the row-vector of diagonal ele-
ments of E[x̃k[n]x̃k[n]†]2, and Γ , (γ1, . . . , γM ). Next,
we define the instantaneous mutual information IM (Λ,Γ)
as

IM (Λ,Γ) ,
1
M

M∑
k=1

m∑
i=1

log(1 + λk,iγk,i) (5)

1Hereafter, we consider base-2 logarithms.
2We skip the proof that the instantaneous mutual informa-

tion is maximum when k is independent of n.



With perfect CSIT, the transmitter can distribute the
available power in order to minimize the information out-
age probability [5]

Pout(R,Γ) , Pr(IM (Λ,Γ) < R) (6)

This is obtained under a constraint on the transmitted
power which may be a short-term or long-term constraint.
The former is the mean SNR over a frame of M blocks:

(short-term)
1
M

M∑
k=1

m∑
i=1

γk,i ≤ Γ (7)

The latter is given by

(long-term) E

[
1
M

M∑
k=1

m∑
i=1

γk,i

]
≤ Γ (8)

and allows the transmitter to allocate more or less power
to different code words to compensate channel fading
while keeping the mean value bounded in the long term
(with ergodic fading). Plainly, the long-term constraint
is weaker than the short-term constraint since (7) implies
(8).

The minimum outage probability is closely related to
the capacity of the BF-AWGN channel. This capacity,
under a delay constraint, has been called delay-limited
capacity in [7]. The delay-limited capacity of an M -block
t × r BF-AWGN channel is given by

Cdelay(Γ) , inf
Λ

sup
Γ=Γ(Λ)

IM (Λ,Γ) (9)

where the supremum is over all Γ(Λ) satisfying the power
constraint (7) or (8) and the infimum is over all non-
negative Λ. An equivalent definition is given by the fol-
lowing Proposition. This is a coding theorem deriving
from [1, Prop. 2] by observing that the equivalent vec-
tor channel (2) can be seen as a scalar channel with Mm
fading blocks.
Proposition 2. The maximum ε-achievable rate of a t × r
BF-AWGN channel subject to a short-term (resp., long-
term) power constraint is given by

Cε(Γ) = sup
Γ=Γ(Λ)

sup{R : Pout(R,Γ) ≤ ε} (10)

where the supremum is, again, over all Γ(Λ) satisfying
the power constraint (7) or (8). The delay-limited capac-
ity (9) is given by Cdelay(Γ) = limε↓0 Cε(Γ).

II. Minimum outage probability

Since the vector BF-AWGN channel is equivalent to a
scalar BF-AWGN channel as described by (2) with Mm
blocks and fading power gains λk,i, Propositions 3 and
4 of [1] apply almost unchanged and solve the problem
of minimizing the information outage probability with a
short-term (resp., long-term) power constraint. They are
given as follows.

Proposition 3. The outage probability (6) under the con-
straint (7) is minimized for

Γ = Γ̂(Λ) =
{

Γst(Λ) if Λ ∈ Ron(R,Γ)
G(Λ) if Λ /∈ Ron(R,Γ) (11)

i) G(Λ) can be any function from R
Mm
+ to R

Mt
+ sat-

isfying the constraint (7).

ii) Γst(Λ) maximizes IM (Λ,Γ) under the constraint
(7). The (k, i)-th component of Γst(Λ) is given by

γst
k,i =

(
ξst(Λ)− 1

λk,i

)
+

(12)

where ξst(Λ) satisfies (7) with equality.

iii) Ron(R,Γ) is the power-on region defined as

Ron(R,Γ) =
{
Λ : IM (Λ,Γst(Λ)) > R

}
(13)

�

Proposition 4. The outage probability (6) under the con-
straint (8) is minimized for

Γ = Γ̂(Λ) =
{

Γlt(Λ) if Λ ∈ Ron(R, s∗)
0 if Λ /∈ Ron(R, s∗) (14)

where

i) Γlt(Λ) minimizes 1
M

∑M
k=1

∑m
i=1 γk,i under the

constraint IM (Λ,Γ) ≥ R. The (k, i)-th component
of Γlt(Λ) is given by

γlt
k,i =

(
ξlt(Λ)− 1

λk,i

)
+

(15)

where ξlt(Λ) satisfies (8) with equality.

ii) Ron(R, s∗) is the power-on region defined as

Ron(R, s∗) = {Λ :
1
M

M∑
k=1

m∑
i=1

γlt
k,i < s∗} (16)

where s∗ > 0 is the value of Γ satisfying (8) with
equality. �

Remark. Proposition 4 aplies only when the fading dis-
tribution is continuous. Otherwise, the optimal Γ is a
random function of Λ (see [1] for further details). The
shape of the power-on region is illustrated in Figure 1 for
the case r = t = 1, M = 2, R = 2 bit/s/Hz, s∗ = 1, 3,
and 5 dB.

Optimal beamforming. The optimal transmission
scheme (based on the optimal power allocation scheme
Γ̂(Λ)) can be obtained as the concatenation of a stan-
dard Gaussian code of length MNt with i.i.d. compo-
nents distributed as Nc(0, 1) and an optimal time-varying
beamformer. Dividing each code word into MN segments
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Fig. 1: Power-on region (dashed) Ron for a system with t =
r = 1, M = 2, R = 2 bit/s/Hz, and s∗ = 1 dB. The fading
gains α1 and α2 are Rayleigh-distributed with unit second
moment.

x̃k[n], the optimal codeword is given by the segments
xk[n] = Wkx̃k[n] with

Wk = Vk diag(γ
1/2
k,1 , . . . , γ

1/2
k,m,

t−m︷ ︸︸ ︷
0, . . . , 0) (17)

where γk,i are the components of Γ̂(Λ).

III. Asymptotic results

The following asymptotic result is stated here without
proof for the sake of brevity.
Proposition 5. The delay-limited capacity of a t × r BF-
AWGN channel with optimal power control under a long-
term power constraint (Proposition 4) is given by

Cdelay(Γ) ≈ m log[Γ/(m E[1/λ̄])]

asymptotically as Γ → ∞, where λ̄ ,
∏

k,i λ
1/(Mm)
k,i �

Numerical results are reported in Figures 2 and 3.
These figures plot the delay-limited capacity versus SNR
(Γ) of the t × t independent Rayleigh BF-AWGN chan-
nel for t = 2, 4, 8, and 16 with M = 1 and 4, respec-
tively, optimal power control and a long-term constraint.
For comparison, the capacity of the t × t AWGN chan-
nel CAWGN = log2(1 + t2Γ) [6] is reported as well. It
can be noted that the capacity curves of the BF-AWGN
channel with optimal power control have a higher slope
(by a factor of t) than the curves corresponding to the
AWGN channel, confirming the statement in Proposition
5. Moreover, there is no noticeable difference between
the case M = 1 and M = 4 which confirms the expected
trade-off between spatial and time diversity.
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Fig. 2: Delay-limited capacity for the independent Rayleigh
t × t BF-AWGN for M = 1 and t = 2, 3, 4, 8, and 16.

0

5

10

15

20

-30 -20 -10 0 10 20 30 40

D
el

ay
-l

im
ite

d 
ca

pa
ci

ty

SNR (dB)

Delay-limited capacity of K x K Rayleigh channel, M=4

2x2 Rayleigh
4x4 Rayleigh
8x8 Rayleigh

16x16 Rayleigh
2x2 AWGN
4x4 AWGN
8x8 AWGN

16x16 AWGN

Fig. 3: Delay-limited capacity for the independent Rayleigh
t × t BF-AWGN for M = 4 and t = 2, 3, 4, 8.
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