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ABSTRACT

Local Image Descriptors (LID) aggregation models such as
Bag of Words and Fisher Vectors represent an image based
on the distribution of its LIDs given a global model, e.g. a
visual codebook or a Gaussian Mixture.

Inspired by Copula theory, in this paper we propose a
LID-based feature that represents directly the behavior of
the image LID distribution, without requiring to compute a
global model. Following the definition of Copula, we repre-
sent the distribution of the image LIDs by describing, on one
side, its marginals, and on the other side, a Copula function.
The Copula defines the dependencies between the marginals
and their mapping to a multivariate probability distribution
function. We test the resulting feature for scene recogni-
tion and video retrieval (Trecvid data), showing that our
approach outperforms, in both tasks, the Bag of Words and
the Fisher Vectors Model.

Categories and Subject Descriptors

I.4.7 [Image Processing and Computer Vision]: Fea-
ture Extraction

Keywords

Scene Recognition, Feature Extraction, CBIR, Gaussian Cop-
ulae

1. INTRODUCTION
Content-based image recognition and retrieval (CBIR) tech-

niques are of crucial importance for the management of large
collections of multimedia data. CBIR systems build models
of the image space by learning image signatures with kernel
machines. One of the key elements for the development of
effective CBIR systems is the discriminative power of the
image signature.

Due to their high discriminative power, signatures based
on the aggregation of local image descriptors (LIDs) received
a lot of attention in the recent years. Among those, the Bag
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Figure 1: The shape, for different classes, of Gaussian

Copula PDF (big plot), CDF and marginals (small plot)

arising from the first two dimensions, , i.e. the most

informative, of the set of image PCA-SIFT [9].

of Words (BoW) model [1] is probably the most widely used
method for LID-based analysis. According to this model, k-
dimensional LIDs are first extracted from the surrounding of
interest [5] or dense [4] points in a set of training images, and
then clustered into a visual codebook. Such codebook is then
used to map each new image into a fixed length signature,
approximating the multivariate probability density function
(PDF) of the image LIDs given the global codebook. Simi-
larly, Fisher Vectors [8] approximate the distribution of the
image LIDs by analyzing, with Fisher Kernels, the similarity
between the PDF of the image LIDs and the global PDF of
all the LIDs in a training set. Both approaches represent the
joint probability of the image LIDs indirectly : they describe
the behavior of the LIDs in an image given a model of the
global LIDs space, obtained through operations (generally
very expensive) in the k-dimensional space, such as cluster-
ing or mixture modeling. Despite its proved accuracy, this
type of representation leads to a lack of discriminative power
for complex classification tasks, and to high computational
complexity in the training phase.

The MEDA [18] signature is an alternative algorithm for
LIDs aggregation that partially addresses these problems. In
MEDA, each dimension of the LID is quantized into n uni-
dimensional bins. The MEDA feature vector is then built to
represent the collection of the k approximated monovariate
marginal functions. Despite its efficiency, one of the major
issues regarding MEDA is that the one-dimensional quanti-



zation breaks the correlation between the LIDs components,
losing a lot of precious information arising from the intra-
dimension relations and the multivariate LID modeling.

Our idea is to build a LID-based feature vector that can
compensate this loss of information. Copula theory [22] tells
us that marginals can actually play an important role in mul-
tivariate modeling. According to this theory, the PDF of a
k-dimensional vector X can be decomposed into k marginal
distributions and one Copula function. While the marginals
describe the probability of each variable of the random vec-
tor, the Copula function represents the dependencies be-
tween the marginals, and defines the probability of the vec-
tor by mapping the marginal PDF of the variables to their
joint PDF. Such mapping is either pre-defined or calculated
based on the marginal values, without therefore involving
computationally expensive multidimensional searches. For
this reason, Copulae are employed as efficient tools for multi-
variate modeling, and widely adopted in financial and med-
ical data analysis. Here, we apply Copulae to CBIR and
LID-based analysis. The main intuition is that, for an im-
age I, we can fit a Copula with the marginals of the LIDs
in I, and then describe I according to the resulting PDF
shape. Following Copula Theory, in order to build such rep-
resentation, we should study separately the LIDs marginals
and their dependencies.

Given these observations, in this paper we present COMS
(COpula and Marginals Signature): a Copula-inspired ex-
tension of MEDA that, by using Copulae, allows for efficient
multivariate analysis of image LIDs using pure marginal in-
formation. COMS combines the MEDA vector with its com-
plementary feature, that we name CoMEDA - Copula over
MEDA. While MEDA models the pure monovariate infor-
mation of the marginal distributions, CoMEDA represents
the Copula structure: the marginal dependencies, namely
the mapping between the LIDs marginal values and the
LIDs joint density. The resulting COMS feature (MEDA +
CoMEDA) reflects directly the PDF of the LIDs in an image,
without involving the estimation of a global LID model such
as visual codebooks. COMS is therefore much more discrim-
inative and much faster in the training phase compared to
both Fisher Vectors and BoW.

How do we model such feature? In our approach, we fo-
cus on a particular type of Copula, the Gaussian Copula.
This function describes the CDF (Cumulative Distribution
Function1) of a random vector through the shape of a mul-
tivariate normal CDF with the following properties: (1) its
variables are the normal inverse of the marginals of the vec-
tor, (2) its covariance matrix is the correlation matrix be-
tween the marginal inverses and (3) its mean is zero. The
Gaussian Copula function depends on one parameter only,
namely its covariance/correlation matrix, corresponding to
the dependencies between the marginals. We therefore store
in the CoMEDA vector the values of the correlation coeffi-
cients of the marginal inverses. By doing so, we represent in
a single feature the marginal dependencies determining the
Copula structure. We then match the CoMEDA features
using traditional kernel machines such as Support Vector
Machines.

Despite the accuracy of CoMEDA as a stand-alone de-
scriptor for CBIR, we know from Copula Theory that we
can achieve a complete representation of the image PDF

1As we will see later, the Copula-based PDF is easily infer-
able from the equation of a Copula CDF

only when we combine marginals and Copula together. We
therefore concatenate MEDA and CoMEDA in a single, very
discriminative, Copula-inspired image descriptor, COMS,
which we then use as input for the learning system.

We test the effectiveness of our approach by comparing
it with existing methods in two challenging tasks, namely
scene recognition (for small-scale indoor/outdoor scenes [17,
16], and large scale scene recognition on sun database [25]),
and video retrieval (TRECVID data [23]). We show that
the Copula-based model outperforms traditional BoW-based
and Fisher Vectors-based classification.

The remainder of this paper is organized as follows: in
Sec.2 we outline the related work in the field. We then
explain the statistical differences between our proposed ap-
proach and the existing methods in Sec.3, and in Sec.4 we
give some highlights on Copula Theory. Sec.5 explains in
details our approach and finally Sec.6 validates our theory
with experimental results.

2. RELATED WORK
In this section we outline the research works that directly

link with our approach. Since the CoMEDA feature is based
on local image descriptor aggregation, and inspired by Cop-
ulae, we will here first summarize the relevant work concern-
ing LID-based image representation, and then highlight the
related work from Copula Theory.

Features based on LID aggregation can be divided into
two groups, based on the type of LID probability distri-
bution they are trying to approximate: multivariate and
monovariate approaches.

Multivariate LIDs Aggregators. As mentioned in the pre-
vious section, the BoW model is probably the most pop-
ular framework for image representation based on locally
extracted descriptors. It aims at describing the image based
on the LIDs global density, by vector quantizing the LIDs
space into a set of visual codewords. The BoW was first in-
troduced by Csurka et al. in [1], applying k-means clustering
on a training set of LIDs and then using the centroids of the
resulting clusters as visual words. Various techniques have
been proposed later on to vector quantize the LID space
and improve the construction of the visual codebooks. For
example, in [11] mean-shift clustering is used, [15] hierar-
chically quantizes LIDs in a vocabulary tree and [13] uses
Extremely Randomized Clustering Forests to build efficient
visual codebooks. Another way to define visual codebooks
is proposed in [24], where the codebook is composed of the
hypercubes resulting from the quantization of each dimen-
sion of the LID into a fixed lattice. While generally the
visual word assignment is performed by counting the num-
ber of occurrences of each visual word in a given image,
Jegou et al in [7] improve this approach by computing, for
each point, the element-by-element distance with the clos-
est visual word, and store in the VLAD vector the resulting
values. Similar to this approach, Perronnin et al. in [8] first
estimate the global LIDs density using Gaussian Mixtures
over a LID training set, and then use Fisher Kernels over im-
age keypoints to generate the Fisher Vector signatures, that
reflects the way in which the parameters of the image LIDs
distribution should be changed to fit the global Gaussian
Mixture. Fisher Vectors are proved to be one of the most
effective solutions for LID-based image analysis. Despite its
computational cost, the multivariate analysis performed by



the mentioned approaches leads to quite accurate features
for CBIR.

Monovariate LIDs Aggregators. In order to overcome
some of the computational issues, and to highlight the dis-
criminative power of the LIDs marginals, a 1-dimensional
search approach was proposed in [18]. The MEDA descriptor
in [18] concatenates the marginal approximation by count-
ing the occurrences of the LIDs component on a predefined
set of one-dimensional bins. This approach is very efficient,
and it provides a new source of information in the LID anal-
ysis, because it exploits the marginal information. However,
such monovariate analysis breaks the relations between the
LID components, losing precious information for image dis-
crimination. The MultiMEDA kernel presented in [19] is
a first attempt to improve the MEDA analysis by adding
some multivariate information: assuming component inde-
pendence, MultiMEDA multiplies the LID marginal values,
generating a multidimensional probability out of the MEDA
marginal approximations.

Even if MultiMEDA improves the MEDA discriminative
power, it is still based on the assumption that the LIDs
components are independent and that their marginals are
uncorrelated. However, LID vectors arise from the analy-
sis of an entire image region, and each element in a LID
is crucial to define the surroundings of an interest point.
It is therefore important to analyze the real multivariate
information that characterizes those vectors. Given these
observations, our idea is to use Copulae to build a complete
multivariate analysis of the LID space and generate a fea-
ture vector out of such analysis. Why Copulae? Copulae are
statistical tools for linking the marginals of the variables in
a random vector with their multivariate joint distribution,
modeling separately marginal distributions and their depen-
dence structure. We can therefore use them to analyze the
LIDs multivariate density by using marginal distributions
only, in an efficient and statistically meaningful way.

Copulae first appeared in [22] in the field of probabilistic
metric spaces, and they were then widely adopted in finance
and actuarial sciences. In particular, Gaussian Copulae are
very popular in civil engineering and medical computations,
due to their efficiency for multivariate modeling. They allow
estimating the joint probability of a vector in a quadratic
time, overcoming many computational problems of multi-
variate modeling. Copulae have indeed been employed in
literature for clustering on simulated data [3], and on scien-
tific data [2]. In the image processing domain, Copulae have
been used for vector quantization in image coding [6] and
for dual polarization synthetic aperture radar image anal-
ysis [10]. The only work that applies Copulae to CBIR is,
to our knowledge, the work in [20] for the construction of
efficient visual codebooks . COMS is, as far as we know, one
of the first attempts to build a LID-based feature vector for
CBIR using Copulae over the image LIDs.

Overall, our approach is different from all the mentioned
approaches because we are not analyzing the independent
marginal behavior (such as [18] and [19]), but we are instead
trying to estimate the multivariate density of the image LIDs
through Copulae. However, we do not compute any global
model through clustering [1, 15, 11], Gaussian mixture mod-
eling [8], or other operation in the k-dimensional space [24].
We directly estimate the PDF of the image LIDs and then
store in COMS the parameters of such distribution. COMS
is therefore statistically different from the space determined
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Figure 2: Comparison between the existing LID aggre-

gators and our Copula-Based approach, based on the

probabilistic analysis they perform on the image LIDs.

by BoW, MEDA and Fisher Vectors. We will see in the next
section a detailed analysis of those differences.

3. WHAT ARE WE MODELING?
In this section, we will show the novelty introduced by

the COMS with respect to existing approaches, and show
that it represents a new source of information about the
LIDs space. Assume for an image I we have a set of m

k-dimensional LIDs x(I) = {xi
j}

i=1,...,m
j=1,...,k : in the following,

we will outline the type of probabilistic analysis performed
on the LIDs x by the most popular methods for LID-based
image analysis.

Multivariate modeling approaches. In theBoW-like mod-

els [1, 15, 11] a codebook c of Nbow k-dimensional vectors
is obtained through the clustering of the LID of a training
set. An approximation of the joint probability of the LIDs
pbow(x

(I)) = p(x(I)|c) is then obtained by counting the oc-
currences of the visual words in an image, see Fig. 2 (e).
Similarly (Fig. 2 (d)) Lattice- based BoW models like
[24], build a vocabulary of hypercubes generated through
the quantization of each dimension of the LID in a fixed
number of Nlat bins, and then reduce such vocabulary clat
according to the informativeness of the resulting codewords.
Fisher Vectors [8] approximate the LIDs joint distribu-
tion by first estimating a universal Gaussian Mixture Model
(GMM) on a training set, as shown in Fig. 2 (f). They
then compute the log likelihood of the image LIDs with re-
spect to the parameters λ of the GMM. Finally, they store
in a feature vector the concatenation of the resulting partial
derivatives, namely pfv(x

(I)) = ▽λ log p(x(I)|λ).
Monovariate modeling approaches. Opposite to the other

approaches, the MEDA [18] model generates a codebook
c
j

meda of 1 − d letters through one-dimensional marginal
quantization, see Fig. 2 (a). The resulting MEDA vector

represents the approximation of the marginals: pmeda(x
(I)) =

∪k
j=1pj(x

(I)
j |cjmeda). An extension of MEDA that allows for

multidimensional probability estimation given marginals is
Multi-MEDA [19] (Fig. 2 (b)), that performs a kernel-
ized Cartesian product of the marginal approximations in
MEDA, assuming independence between LIDs components,

giving pMmeda(x
(I)) =

∏k

j=1 pj(x
(I)
j |cjmeda).



Our Approach.Our approach, COMS, depicted in Fig. 2
(c), is different from all the other approaches, and lies in
an intermediate point between the marginal and the multi-
variate analysis. We estimate the joint distribution of the
image through a Gaussian Copula CΣ(p1, . . . , pk) over the
MEDA-based approximated marginal distributions. This
leads to a reliable representation of the multivariate LIDs
distribution given the image monovariate marginal approxi-
mations. The peculiarity of the Copula-based distribution is
that it depends on one parameter only, namely the correla-
tion Σ between the inverse of the image marginals. We there-
fore first store in CoMEDA the values of Σ directly, giving

pCoMeda(x
(I)) = corr(p−1

1 (x
(I)
1 |c1meda), . . . , p

−1
k (x

(I)
k |ckmeda)).

CoMEDA represents the multivariate complement of the
monovariate MEDA vector, since it represents the depen-
dencies between the marginal distributions. Therefore in
COMS, MEDA+CoMEDA, namely the union of the two
fundamental element of the LIDs density according to Cop-
ula theory, we model a complete Copula-based distribution,

pCOMS(x
(I)) = CΣ(p1(x

(I)
1 |c1meda), . . . , pk(x

(I)
k |ckmeda)).

The Copula modeling that we perform is therefore differ-
ent (pCOMS 6= pmeda, pMmeda) from the marginal modeling
approaches, because, despite the underlying marginal analy-
sis, it does not assume independence between the LID com-
ponents, but it models instead a real joint PDF based on the
marginal dependencies. On the other hand, we can also say
that pCOMS 6= pbow, pfv because, first of all, the shape of
Copula-Based joint probability described by COMS is dif-
ferent from the shape of the Mixture Model estimated by
BoW and Fisher Vectors. This suggests that, by introduc-
ing COMS in the LIDs-based analysis, we add some new,
complementary information regarding the LIDs distribution.
Moreover, due to the simplicity of the Copula algorithm, we
can build one Copula per image representing its joint PDF:
we can then discriminate between different images using the
distribution information given by the specific shape of the
image Copula. While BoW approximates the joint LIDs dis-
tribution through Vector Quantization given a global code-
book, and while Fisher Vectors store the results of parame-
ter adaptation for GMM fitting, COMS directly stores the
parameter of the image joint PDF, leading to a more in-
formative image feature. Since both MEDA and CoMEDA
arise from the analysis of the image LIDs marginals, COMS
does not require an unsupervised search on a training set in
the k-dimensional space such as GMM, k-means or hyper-
cube exploration to define the global LID density, saving a
lot of computational time on training.

4. COPULA THEORY
Copulae [22] are structures that allow linking the marginal

distributions of the variables in a random vector with their
joint density function. While traditional multivariate anal-
ysis combines the study of marginal and joint densities,
Copula Theory provides statistical models to study sepa-
rately the marginal distributions and their dependencies.
The main idea is that the joint distribution of the variables
in a random vector X of length k can be decomposed into
k marginal distributions and a Copula function C. C rep-
resents the link between the marginals: their dependency
structure, their mapping to a multivariate cumulative dis-
tribution function (CDF).

Such mapping is either given explicitly or, as in our case,

inferred through the analysis of the marginal behavior, with-
out recurring to complex multivariate modeling. The advan-
tage of using Copulae for multivariate modeling is therefore
that they can estimate the multidimensional distribution of
a random vector very efficiently, given just the values of its
marginals. In this section, we give some highlights on the
Copula theory, and in particular on Gaussian Copulae, that
we will then apply for CBIR purposes. It is outside of the
scope of this paper to cover all the aspects of Copulae, there-
fore we will introduce only the basic tools to understand our
COMS feature. For ease of understanding, we will outline
the theory through the bivariate case analysis (k = 2), that
is easily extendable to the multivariate scenario.

4.1 Copulae: Linking Marginals with Joint Dis-
tributions

Given a 2-dimensional random vector x = {x1, x2}, we de-
fine u =F1(x1)= [P (x1 ≤ X1)], v =F2(x2)= [P (x2 ≤ X2)]
as the marginal cumulative distribution functions (CDFs) of
X1 and X2 respectively, and F (x1, x2) = P [x1 ≤ X1, x2 ≤
X2] as the vector cumulative joint distribution.

As said, a Copula C, is defined as a unique mapping2 that
assigns the joint CDF of X given each ordered pair of values
of its marginals, namely:

F (x1, x2) = C(F1(x1), F2(x2)) = C(u, v),

and, following Sklar’s theorem and assuming that F1, F2 are
continuous:

C(u, v) = F (x1, x2) = F (F−1
1 (u), F−1

2 (v)), (1)

which allows to construct a Copula from a given multivariate
distribution function F .

The Copula function by itself describes the vector CDF.
However, we might want to represent the vector in terms of
probability density function (PDF), i.e. f(x1, x2) = P [x1 =
X1, x2 = X2]. In order to obtain f(x1, x2) we have to com-
pute copula density, namely the CDF derivative, i.e., follow-
ing Eq. (1) :

f(x1, x2) =
δ2C(u, v)

δu, δv
=

f(F−1(u), F−1(v))

f(F−1(u)), f(F−1(v))
,

where f is the PDF corresponding to F .
The copula describes therefore the dependence between

the components of a random vector, no matter the function
describing their marginal distributions: if we know the map-
ping C, the joint distribution f(x1, x2) can be inferred from
the marginal CDFs u and v.

4.2 Gaussian Copulae
A particular type of Copulae is the Gaussian Copula,

which belongs to the class of Elliptical Copulae (i.e. Cop-
ulae following Elliptical distributions such as Laplacian, T-
Student, etc..). The Gaussian Copula structure is a multi-
variate normal distribution: in this model, F corresponds to
the multivariate Gaussian CDF, while F−1 corresponds to
the inverse of the univariate normal CDF.

2In order to be defined as a two-dimensional Copula, C
needs to fulfill the following requirements (see [14]):

• It is defined over the interval [0, 1]

• ∀t ∈ [0, 1], then C(t, 0) = C(0, t) = 0 and C(t, 1)=C(1, t) = 1

• ∀u1, u2, v1, v2 ∈ [0, 1], with u1 ≤ u2 and v1 ≤ v2, C(u2, v2) −
C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0



AGaussian Copula CΣ is then defined for the 2-dimensional
random vector x as (following Eq. (1)):

CΣ(u, v) = φΣ(Φ
−1(u),Φ−1(v)), (2)

being Φ−1(·) the inverse of the univariate normal CDF, and
φΣ the bivariate (or multivariate, when k > 2) standard
with mean zero and covariance Σ, , giving

CΣ =
1

√

det(Σ)
exp

(

−
1

2
·

(

Φ−1(u)

Φ−1(v)

)T

Σ−1
I

(

Φ−1(u)

Φ−1(v)

))

,

(3)
How to find the covariance matrix Σ? When dealing with
normal distributions, the correlation values between two vari-
ables fully define their dependencies. In Gaussian Copulae,
Σ corresponds therefore to the correlation matrix between
the inverse standard univariate normal CDF

Σ(Φ−1(u),Φ−1(v)) =
cov(Φ−1(u),Φ−1(v))

σ(Φ−1(u))σ(Φ−1(v))
(4)

4.3 Why Gaussian Copulae?
As said, the Gaussian Copula function arises from pure

marginal analysis: both the variables (inverse normal of
marginal CDFs) and the parameter (correlation between the
inverse marginal CDFs in Eq. (4) are constructed by ma-
nipulating the marginal distributions with simple operations
(O(k) for Φ−1(·) , and O(k2) for Σ). Gaussian Copulae rep-
resent therefore an efficient way to estimate the joint PDF
of vectors that (I) have a small dimensionality, namely a low
value of k and (II) have marginals that can be easily mod-
eled. In fact, local image descriptors satisfy conditions (I)
and (II). The dimensionality of LIDs is generally k ≤ 128.
Moreover, it exists a descriptor for LID marginal approxi-
mation, MEDA, which have been proved to effectively model
the univariate distributions of the LID components. Gaus-
sian Copulae can be therefore very efficient tools to estimate
the joint PDF of LIDs.

Moreover, a Gaussian Copula CΣ depends on one parame-
ter only, namely the covariance-correlation matrix Σ, whose
computational time that is quadratic with k, making it easy
to characterize an image through its Copula shape. Fur-
thermore, various fast implementations are available to eas-
ily and fastly treat with multivariate normal densities, due
to their popularity, making the computation of this Copula
very easy. This motivates us to use Gaussian Copulae to ef-
ficiently and effectively approximate the distributions of the
LIDs in an image and generate an image signature out of it.

5. COMS: MULTIVARIATE LID ANALYSIS

FROM MARGINAL VALUES
In this section, we show how to exploit Copulae Theory

to aggregate LIDs and build effective and efficient compact
image signatures based on local descriptors.

In order to perform LID-based analysis, for each image
I, we first extract m salient points and describe them us-
ing a k-dimensional normalized SIFT [12] descriptor x(I) =

(xi
1, . . . , x

i
k), i = 1, . . . ,m. For an image I, we define pj(x

(I)
j )

and Pj(x
(I)
j ) j = 1, . . . , k, as the marginal probability dis-

tribution and cumulative distribution of the jth component
of the image LIDs, and p(x(I)) as their joint density.

The main idea is that, similar to Copula Theory, we can
approximate p(x(I)) for an image I by extracting (A) its

set of marginals pj(x
(I)
j ) and (B) a Gaussian Copula Func-

tion, and use it as a discriminative image signature for CBIR
purposes. While (A) it already exists a feature (i.e. MEDA)
approximating the marginals, we are missing (B) a feature to
represent the Copula structure. We therefore design CoMEDA
for this purpose (See Fig. 3 for a visual explanation of our
approach).

Therefore, we first (A) extract from image I the MEDA

vector v(I) containing the LIDs marginals approximations.
We then (B) use them, as shown in Sec.5.2, to estimate the
marginal CDFs and fit an image-specific Gaussian Copula

C
(I)
Σ , that defines an approximation of the joint distribution

of the image LIDs. We characterize the image I with the
Copula structure of its LIDs by storing in the CoMEDA
feature the values of the image-specific covariance matrix
Σ(I), namely the unique parameter of the resulting Copula-
based PDF. Finally, we achieve a complete model of the LID
density by combining the CoMEDA feature of an image I

with its marginal counterpart, i.e. the MEDA vector for
image I, into a final image signature, namely COMS.

5.1 MEDA: Modeling Marginal Distributions
of Local Features

In order to build a complete Copula-based representation
of the Image I, we first perform marginal analysis through
the MEDA descriptor. The MEDA descriptors [18] were
designed to highlight the discriminative power of the LIDs
marginals. The MEDA signature represents the concatena-
tions of the approximations of the k marginals of the image
LIDs.

First, it quantizes each component j of the LIDs in an
image I, in a set of n discrete bins βj,b, b = 1, . . . , n. The
MEDA vector is then produced by collecting the frequencies
of such bins over the set of xi extracted from an image I.
By doing so, MEDA describes the univariate behavior of the
image LIDs, and stores in a single descriptors the set of k

approximated marginals distributions p̃j(x
(I)
j ) . As a matter

of fact, the final image signature v(I) is a k × n histogram,
obtained by counting how many LIDs at a given dimension
j fall into a given bin b

v
(I)(j, b) = p(xj |βj,b) = #{xi : xi

j ∈ βj,b}.

5.2 Fitting a Copula with the Image LIDs
Once we have extracted the marginal information from the

Image LIDs, we should calculate the corresponding Gaussian
Copula. This will allow us to characterize each image with
the distribution of its LIDs (using the parameters of the
Copula-based density as signature).

First, for each dimension of the LID, for each of the k

marginals p̃j(x
(I)
j ) that we obtain with the MEDA histogram-

ming3, we compute the corresponding k univariate CDFs

u(I)(1) = P1(x
(I)
1 ), . . . , u(I)(k) = Pk(x

(I)
k ), normalized in the

interval [0, 1]. According to the Gaussian Copula theory, we
then compute normal inverse CDF over the resulting LIDs
Cumulative Distribution Functions, namely

Φ−1(u(I)(1)), . . . ,Φ−1(u(I)(k)). (5)

3In practice, we will use for our experiments a more refined
way to estimate the marginal distribution shape, namely a
kernel density estimator [21]
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Figure 3: Our Copula-based LID aggregator.

If we now want to define a Gaussian Copula C
(I)
Σ represent-

ing the CDF of the LIDs for image I, we should extend the
multivariate Gaussian in Eq. (2), for SIFT vector analysis
with k ≫ 2, giving, for image I,

C
(I)
Σ (u(I)(1), . . . , u(I)(k)) = φ

(I)
Σ (Φ−1(u(I)(1)), . . . ,Φ−1(u(I)(k))).

(6)

and from the Copula theory, we know that Σ(I) can be com-
puted as the correlation matrix between the inverse of the
LID marginals, namely:

Σ(I)(a, b) =
cov(Φ−1(u(I)(a)),Φ−1(u(I)(b)))

σ(Φ−1(u(I)(a)))σ(Φ−1(u(I)(b)))
(7)

where a, b = 1, . . . , j, cov(·, ∗) corresponds to the covariance
between (·) and (∗), and σ(·) is the standard deviation of
variable (·).

5.3 The CoMEDA vector
How can we capture the behavior of the Copula structure

we just described, and store it into a single effective feature?
As we can observe, Eq. (6), has only one parameter, the

covariance matrix Σ(I). Such covariance matrix describes
the dependencies structure between the LIDs marginals and
determines the equation of the multivariate distribution.

We therefore fill the CoMEDA vector µ(I) for an Image
I with the values corresponding to Σ(I), namely the cor-
relation coefficients of the inverse marginal approximations
of the LIDs in the image. The complexity of CoMEDA is
quadratic with the number of dimensions of the LIDs, and its
dimensionality is k×k

2
, being Σ(I) typically a symmetric ma-

trix. CoMEDA does not imply therefore exponential com-
putation or multidimensional vector quantization for mul-
tivariate LID representation. This low dimensional feature
(we will select k = 36) can be easily then used as input for
discriminative classifiers, that will learn a model of the LIDs
space based on the CoMEDA feature representation.

5.4 COMS: MEDA + CoMEDA
CoMEDA gathers the main element of the Copula struc-

ture: it stores the LIDs multidimensional information arising
from the dependencies between marginal distributions.

However, we can observe that the shape of Eq. (2) is

determined both by Σ(I) and by the behavior of the LIDs
marginal distributions, specific of the image I. Recall that,
as a matter of fact, Copula theory states that the joint distri-
bution of a random vector can be represented by its marginal
distributions and a multivariate Copula structure. This sug-
gests us that, in order to have a complete representation of

the LID space, we should combine the CoMEDA feature of
image I with a descriptor approximating the marginal be-
havior of I, e.g. MEDA. Therefore, for each image, we con-
catenate these two types of information regarding the LID
distribution, MEDA and CoMEDA, both very discrimina-
tive features, into a single image descriptor COMS h(I) =
{v(I), µ(I)}. By doing so, we enrich the representation of
the LID space, and determine a good approximation of the
complete LID joint distribution.

6. EXPERIMENTS
In this section we will show the performances of our Copula-

based approach, comparing it with the most effective LID
aggregators available in literature. We test the effectiveness
of our approach for two, challenging tasks, namely video
retrieval and scene recognition.

Since all the descriptors work over the same input, namely
local image descriptors, the first step of our experiments is to
compute the image LIDs. Since we want to keep the dimen-
sionality low, from all the images/keyframes in our datasets
we compute PCA-Sift [9] (k = 36) around interest points ex-
tracted with the Hessian detector. We then aggregate them
using the following approaches for comparison:
(1) Bow, the Bag of Words Model computed, as in [1],
through a codebook built with k-means clustering
(2) Meda, the marginal-based descriptor in [18]
(3) Fisher, the Fisher Vectors approach, computed using and
adapting the implementation in [8]
(4) CoMeda, our Copula-based descriptor, i.e. the values of
the correlation coefficients of the inverse of the marginals
(5) COMS, the early combination of MEDA and CoMEDA

Moreover, in order to prove the reasonableness of our
Copulae-based LID processing, we compute another feature,
that we call MVN (Multivariate Normal), that stores the val-
ues of the mean and covariance matrix of the image LIDs
vectors (different from CoMEDA, that treats LIDs marginals).
The difference of effectiveness between COMS (or other mul-
tivariate approaches) and MVN will show the discriminative
value added by treating the LIDs with models more complex
than a simple multivariate Gaussian PDF.

Then, we use the computed descriptors as input to Sup-
port Vector Machines (SVM) with chi-square or Radial Basis
Function kernels to build models able to predict the image
category, or the presence of a given concept (in the case of
Video Retrieval). Finally, in order to further prove the ef-
fectiveness of the combination of MEDA and CoMEDA, we
combine and weigh the predictions coming from the MEDA-
only model and the CoMEDA-only model, and we name this
class of experiments Posterior.

We show that our approach outperforms the other meth-
ods in all the databases considered for scene recognition and
for video retrieval. Overall, we can say that posterior fu-
sion of MEDA and CoMEDA is slightly more effective than
COMS, because we add one parameter to weigh the contri-
bution of the two descriptors. We can also observe that the
simple MVN descriptor has a weaker discriminative power
compared to all the other descriptors, suggesting that adding
complexity in the LID modeling actually is useful for CBIR
performances improvement. Regarding computational costs,
as we can see from Fig. 4 (c), the time to compute CoMEDA,
for the training set, has the same order of magnitude as the
MEDA feature, because it does not require to estimate a
universal model such as the BoW codebook.



Training Set Processing Time (seconds)Accuracy on the Test Set, Scene Recognition

Average Precision on the Test Set, Video Retrieval
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Bow 0,0448 0,0047 0,0034 0,1936 0,0061 0,0328 0,0044 0,0497 0,0720 0,0004 0,0412

MEDA_36 0,0288 0,0050 0,1341 0,2024 0,0029 0,0425 0,0079 0,0658 0,0530 0,0059 0,0548

Co-Meda 0,0595 0,0206 0,0065 0,1975 0,0124 0,0355 0,0061 0,1455 0,0862 0,0034 0,0573

COMS 0,0672 0,0185 0,0428 0,2108 0,0079 0,0461 0,0063 0,1479 0,0813 0,0030 0,0632

Posterior 0,0617 0,0225 0,1341 0,2129 0,0124 0,0457 0,0089 0,1455 0,0906 0,0044 0,0739

Fisher 0,0632 0,0272 0,0058 0,2194 0,0070 0,0255 0,0087 0,0890 0,0649 0,0012 0,0512

MVN 0,0679 0,0192 0,0062 0,1493 0,0038 0,0112 0,0064 0,0335 0,0202 0,0028 0,0321
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Figure 4: Experimental Results for Scene Recognition and Video Retrieval.

6.1 Scene Recognition
In this section we present the results of our experiments

for small scale (indoor/outdoor) and large scale scene recog-
nition. The goal for this task is to build a model able to
classify test images with the correct class, selected out of a
set of pre-defined mutually exclusive categories. We achieve
this goal by learning our features with a one-vs.-all multi-
class SVM, and assigning the image category according to
the classifier that outputs the highest score. The typical
evaluation measure for this task is the average accuracy on
the test set. In the following we will see the experimental
setup and results for the various datasets considered. A vi-
sual representation of the results can be found in Fig. 4(b).

6.1.1 Small Scale Scene Recognition

Outdoor Scenes: The Outdoor Scenes Dataset [16] con-
tains 2600 color images from 8 categories of natural out-
door scenes. As in [16], we retain 100 images per class
for training and the rest for testing. The LID aggrega-
tors that we compare are the following: bow with 720 vi-
sual words; Meda with percentile quantization, as proposed
in [18], with 10 bins per dimension (it is therefore 360-
dimensional), Fisher with 64 Gaussians in the mixture (fi-
nal dimension is 2304), then CoMeda (dimensionality 1296),
and COMS, with 1656 components, and finally MVN with
36*36(covariance)+36(mean)=1332 dimensions.
Our results show that, even if CoMeda by itself does not
outperform Meda, when they are combined together with
early (COMS) and Posterior fusion, namely when we follow
the Copula Theory approach, the resulting model is much
more efficient than both Bag of Words and Fisher Vectors.

Indoor Scenes: The Indoor Scenes Dataset [16] contains
around 15000 color images from 67 categories of diverse in-
door scenes. Following the approach in [17], we retain 20
images per class for testing and we train our models with
the remaining images. The details of the features that we
compare follow: bow with 1300 visual words; Meda with
percentile quantization, as proposed in [18], with 10 bins
per dimension (resulting in a feature with 288 components),
Fisher with 32 Gaussians in the mixture (final dimension
is 1152), then CoMeda (dimensionality 1296), and COMS,

with 1656 components, and finally MVN with 36*36(covari-
ance)+36(mean)=1332 dimensions.

Results for indoor scenes show a similar trend as the ex-
periments on the outdoor scenes datasets. The CoMEDA
feature used as a stand-alone descriptor is actually more
performing (+6%) than BoW, and it is improved by its com-
bination with the MEDA descriptor (+ 16% of COMS and
+20% of Posterior over bow), with a great improvement,
6% over the Fisher Vectors-based classification.

6.1.2 Large Scale Scene Recognition

The sun database [25] contains around 899 categories for
more than 130, 000 images. As in [25], we select a subset
of images spanning 397 scenes consisting in 10 folds that
contains, for each category, 50 images for test and 50 for
training. The LIDs aggregators that we compute for this
database are as follows: bow with 500 visual words; Meda
with uniform quantization, as proposed in [18], with 10 bins
per dimension (resulting in a feature with 360 components),
Fisher with 32 Gaussians in the mixture (final dimension
is 1152), then CoMeda (dimensionality 1296), and COMS,
with 1584 components, and finally MVN with 36*36(covari-
ance)+36(mean)=1332 dimensions.

In the results for this dataset, we can see a homogeneous
accuracy score obtained the COMS/Posterior/Fisher de-
scriptor, all outperforming by around 40% the simpler ap-
proaches such as MEDA and BoW.

6.2 Video Retrieval
For this task, we focus on the challenging TRECVID 2010

[23] light Semantic Indexing Task, where 10 concepts have
to be detected in a video corpus of around 400 hours. We
use around 60000 shots for training and an equal number for
testing. Once we have created the model using SVMs, the
test videos are ranked according to their prediction concept
score, and results are compared in terms of Mean Average
Precision (MAP). Here, we compute MEDA with fixed quan-
tization (with a number of bins tuned, as in [18], for each
concept), bow with 500 visual words, Fisher with 32 Gaus-
sians in the mixture (final dimension is 2304), then CoMeda
(dimensionality 1296), and COMS, with 1584 components,



and finally MVN with 36*36(covariance)+36(mean)=1332
dimensions.

As shown in Fig. 4 (a), the effectiveness of our method
is even more clear for this challenging task: while COMS
outperforms bow by more than 50% and Fisher by 23%,
the posterior fusion of MEDA and CoMEDA is further im-
proving the performances of our proposed method for video
retrieval, with an increase of around 78 % over BoW and
44% over the Fisher Vector-based retrieval.

7. CONCLUSIONS
We presented a new method for LIDs aggregation. We

are inspired from the Copula theory: we exploit the MEDA
marginal approximations to feed a Gaussian Copula and
build an image signature representing the multivariate PDF
of the image LIDs that we name COMS. The resulting im-
age representation is shown to be more discriminative than
BoW and Fisher Vectors for image and video retrieval.

The work in this paper can be extended by finding more
effective kernels for Copula-based signature matching, such
as kernels based on Bhattacharyya distance or Kullback-
Leibler divergence. Moreover, we could use different Copula
structures, such as Clayton or T-student Copulae and build
more discriminative features out of them.
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leurs marges. Publ. Inst. Statist. Univ. Paris, 8(1):11,
1959.

[23] A. F. Smeaton, P. Over, and W. Kraaij. Evaluation
campaigns and trecvid. In MIR ’06, New York, NY,
USA, 2006. ACM Press.

[24] T. Tuytelaars and C. Schmid. Vector quantizing
feature space with a regular lattice. In 11th IEEE
International Conference on Computer Vision (ICCV
’07), pages 1–8, Rio de Janeiro, Brazil, 2007. IEEE
Computer Society.

[25] J. Xiao, J. Hays, K. Ehinger, A. Oliva, and
A. Torralba. Sun database: Large-scale scene
recognition from abbey to zoo. In Computer vision
and pattern recognition (CVPR), 2010 IEEE
conference on, pages 3485–3492, 2010.


