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Abstract

Closed-form steady-state performance analysis of the signal-to-interference plus noise ratio

(SINR) at the output of well-known adaptive implementations of the linear minimum mean-square

error receiver for DS/CDMA show that non-data aided schemes may su�er from a considerable

performance degradation with respect to their data-aided counterparts. Motivated by this fact,

we propose a new two-stage non-data aided scheme where symbol-by-symbol pre-decisions at the

output of a �rst adaptive stage are used to train a second stage. We derive closed-form steady-

state performance analysis for both the two-stage and classical decision-directed schemes, taking

into account detection errors in decision-directed adaptation. Our analysis shows that the SINR

of the two-stage algorithm is close to optimal over a large range of values, while the SINR of the

decision-directed scheme is far from optimal when the optimal SINR is small. Finally, we consider

the case of time-varying fading channels. We derive modi�ed RLS and LMS adaptation schemes by

considering SINR maximization rather than mean-square error minimization (that is useless under

the assumption of zero-mean random channels). The resulting two-stage receiver shows good track-

ing properties in heavy near-far conditions (at least for moderate normalized Doppler bandwidth),

while the decision-directed receiver may easily loose tracking after deep fades.

Keywords: CDMA, adaptive algorithms, linear receivers.

1 Introduction

Multiuser detection has been a fruitful and rapidly growing research �eld for the last decade. Broadly

speaking, this is motivated by the fact that the techniques developed for single-user communications,
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mostly devoted to combat Gaussian white noise, fail to give near-optimal performance if used in the

presence of multiple-access interference (MAI). Under the common name of multiuser detection we �nd

a broad range of receivers di�ering in complexity and performance (see [1] for a complete survey and a

comprehensive list of references). We can distinguish between centralized and decentralized receivers.

Centralized receivers make use of side information about all interfering users (spreading sequences,

timing and propagation channels). They are suited for base-station processing (uplink), where all this

side information is either available or can be estimated consistently. Decentralized receivers exploit

the knowledge of the spreading sequence, of the timing and of the propagation channel of the user

of interest only. Remarkably, this is the same information necessary for a conventional single-user

matched �lter (SUMF) that ignores the presence of MAI. These receivers treat the superposition of

MAI and background Gaussian noise as a random process, the statistics of which must be learned from

the received signal, via some adaptive algorithm. In this paper, we are concerned with decentralized

adaptive linear receivers, i.e., receivers formed by the concatenation of an adaptive linear �lter with a

suitable (non-linear) detection operation acting on the �lter output.

In Section 2 we de�ne a general discrete-time signal model for DS/CDMA and we review back-

ground results on adaptive linear receivers. We consider only simple algorithms of the LMS or RLS

type [2] (recent algorithms based on subspace tracking [3] are not treated, even though they might

be good alternatives). We distinguish between data-aided (DA) and non-data aided (NDA) adaptive

algorithm, depending on whether the adaptation rule makes use of known data symbols (training

sequence) or does not. 1

In Section 3 we present closed form formulas for the steady-state signal-to-interference plus noise

ratio (SINR) at the output of the adaptive receivers of Section 2. Our formulas generalize the results

of [5]. Also, we derive a Gaussian approximation for the steady-state bit-error rate (BER) with 4PSK

and Gray mapping. As con�rmed by simulations (see Section 6), this approximation is very accurate

and o�ers a simple tool to predict the performance of adaptive receivers. DA algorithm su�er from a

SINR degradation of at most 3 dB with respect to optimum. On the contrary, NDA algorithms might

be very far from optimum, especially when the optimal SINR is large, i.e., just in the case where the

potential gain of linear multiuser receivers over the SUMF is large.

This observation motivates us to look for NDA algorithms that recover this performance loss,

1Algorithms that do not require a training sequence are referred to in the literature under di�erent names, such as

\blind" [4] or \code-aided" [5].
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without renouncing to the simplicity of LMS or RLS. In Section 4, we consider a modi�ed mean-square

error (MSE) cost function that allows us to develop in a uni�ed manner the steady-state analysis of

decision-driven (DD) adaptive algorithms and of a new family of NDA algorithms referred to as \two-

stage" algorithms. The proposed new algorithms have almost the same steady-state performance

of DD algorithms, without requiring initial training. Moreover, their steady-state SINR is close to

optimum over a range much wider than DD. Hence, it can be expected that two-stage schemes are

better suited than DD schemes to track time-varying channels in deep fades.

This fact is con�rmed by the results of Section 5, where we consider moderately time-varying

frequency-selective fading channels. In this case, the standard minimum MSE criterion may be use-

less [6, 7]. Hence, we formulate an optimal �lter design problem based on the maximization of the

output SINR and we derive modi�ed LMS and RLS algorithms approximating adaptively the SINR-

maximizing �lter. These algorithms can be seen as a non-trivial generalization of the scheme of [6],

developed for a frequency-
at channel, to the frequency-selective case. They require channel esti-

mation for the user of interest only, which is no more than what is required by a SUMF (usually

approximated by a coherent rake receiver [8, 9]) and by the pre-combining adaptive receiver (referred

to as \LMMSE-rake") of [10].

Numerical results show that the two-stage receiver with modi�ed LMS/RLS adaptation is able to

recover from deep fades even in heavy near-far conditions, while DD adaptation (also with modi�ed

LMS/RLS adaptation) is not. Also, our scheme requires only two adaptive algorithms to be run in

parallel, while the LMMSE-rake requires one adaptive �lter per path, and can be considerably more

complex [10]. Then, the proposed scheme represents a good option from both the performance and

the complexity point of views, at least for moderate (normalized) Doppler bandwidth of the channel.

2 Background

In this section we introduce a baseband equivalent signal model for DS/CDMA transmission over

frequency-selective moderately time-varying channels and we recall some well-known facts about linear

receivers and their adaptive implementation.
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2.1 Discrete-time �nite-memory signal model

Consider a system with K users. The k-th user signal is given by

uk(t) =
X
m

bk[m]sk(t�mT ) (1)

where sk(t) and bk[m] are the signature waveform and the m-th information symbol of user k, respec-

tively. Users transmit individually and mutually uncorrelated sequences of unit-variance zero-mean

complex symbols. In DS/CDMA, the signature waveforms are given by sk(t) =
PL�1

`=0 sk;` (t � `Tc),

where sk = (sk;0; : : : ; sk;L�1)
T is the k-th user spreading sequence, Tc = T=L is the chip interval, L is

the processing gain and  (t) is the chip pulse, common to all users, bandlimited in [�W=2;W=2] and

with normalized energy 1.

User k transmits with delay �k = qk=W+
k (qk integer and 0 � 
k < 1=W ) through a channel with

baseband equivalent time-varying impulse response ck(t; �) [9]. We assume that the channel Doppler

bandwidth Bd and the signal bandwidth W satisfy BdT � 1 � WT . Then, the signal bandwidth

expansion (Doppler spread) can be safely neglected and the channel output can be sampled at rate

W . From the sampling theorem, we can write the signal contribution of user k at the receiver in the

form

vk(t) =
X
i

24X
j

ck[i; j]uk((i� j � qk)=W )

35 sinc(Wt� i) (2)

where sinc(t) = sin(�t)=(�t) and where the coe�cients of the resulting time-varying discrete-time

channel impulse response are given by

ck[i; j] =

Z
ck(i=W ; j=W � 
k � �)sinc(W�)d� (3)

The overall received signal, given by the superposition of all users' signals plus background noise,

is given by y(t) =
PK

k=1 vk(t) + �(t), where �(t) is a white circularly-symmetric complex Gaussian

process with power spectral density N0.

The baseband receiver front-end is formed by an ideal lowpass �lter with bandwidth [�W=2;W=2]

and gain 1=
p
W followed by sampling at rate W with arbitrary sampling epoch. For simplicity, we

assume an integer number of samples per chip Nc = WTc and, without loss of generality, we restrict

the integer part of the delays to satisfy qk 2 [�LNc=2; LNc=2). In order to obtain an approximated

�nite-memory signal model, we assume that ck[i; j] and  (j=W ) are negligible for j =2 [0; P �1] (for all

i) and for j =2 [�Q;Q], respectively, where P and Q are suitable integers. Moreover, we constrain the
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receiver to have a �nite-length processing window, i.e., for each symbol time n it processes a window

of samples with indexes i 2 [nLNc �M1; nLNc +M2] centered around the n-th symbol interval. The

processing window size M = M1 +M2 + 1 is left as a design parameter and it may span more than

one symbol interval. We let y[i] denote the sample of y(t) at instant i=W after lowpass �ltering and

form the n-th channel output vector y[n] as the content of the receiver processing window at symbol

time n, i.e.,

y[n] = (y[nLNc +M2]; y[nLNc +M2 � 1]; : : : ; y[nLNc �M1])
T

Under the condition BdT � 1, it is realistic to assume that the ck[i; j]'s remain almost constant over

the time interval spanned by the receiver processing window. Hence, we can consider ck[nLNc+ i; j] �

ck[nLNc; j] for all i = �M1; : : : ;M2 and represent the k-th channel impulse response during the n-th

symbol interval by the vector

ck[n] = (ck[nLNc; 0]; : : : ; ck[nLNc;P � 1])T (4)

From (1),(2) and (4), after some straightforward algebra, we can write the n-th channel output vector

as

y[n] =

KX
k=1

B2X
m=�B1

Sk[m]ck[n]bk[n�m] + �[n] (5)

where �[n] � NC(0; N0I) is the corresponding vector of noise samples 2 and where the matrices

fSk[m] : m = �B1; : : : ; B2g, of size M � P , are uniquely de�ned by qk and sk(t), and have (i; j)-th

element given by

[Sk[m]]i;j =
1

p
W
sk((mLNc � qk +M2 � i� j)=W ) (6)

for i = 0; : : : ;M � 1 and j = 0; : : : ; P � 1. The summation limits B1 and B2 are obtained by noticing

that Sk[m] is not identically zero if and only if �B1 � m � B2, where

B1 = b(M2 +Q+ LNc=2)=(LNc)c

B2 = b(M1 +Q+ P + 3LNc=2�Nc � 1)=(LNc)c (7)

Clearly, depending on the particular value of qk, Sk[m] might be zero for some m 2 [�B1; B2]. Then,

each user contributes with at most B = B1 +B2 + 1 symbols to the vector y[n].

2NC(�;R) denotes the circularly-symmetric complex multivariate Gaussian distribution with mean vector � and

covariance matrix R.
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It is useful to renumber the user symbols as bk[n � m] ! bu[n] where u = (k � 1)B � m + 1

for m = �B1; : : : ; 0 and u = (k � 1)B +m + B1 + 1 for m = 1; : : : ; B2, and to de�ne the modi�ed

normalized spreading sequences pu[n] = Sk[m]ck[n]=
p
Eu[n] where Eu[n] = jSk[m]ck[n]j2 is the energy

contribution of symbol bu[n] to the total signal energy in the receiver processing window (if Eu[n] = 0,

we let
p
Eu[n]pu[n] = 0 even though, strictly speaking, pu[n] is not de�ned). Finally, we can rewrite

(5) as

y[n] =

UX
u=1

p
Eu[n]pu[n]bu[n] + �[n] (8)

where U = BK. Notice that, for the sake of symbol-by-symbol detection, (8) is equivalent to a

synchronous system with U users.

2.2 Linear decentralized receivers

We focus on the decentralized linear detection of user 1. The receiver is formed by a linear (time-

varying) FIR �lter h[n] with output z[n] = h[n]Hy[n] followed by a suitable (non-linear) processing

of the �lter output sequence fz[n]g. Receiver options are distinguished by di�erent choices of the

�lter vector h[n] and of the non-linear processing. In the case of uncoded transmission, non-linear

processing reduces to the simple symbol-by-symbol detection bb1[n] = dec(z[n]), where dec(�) denotes

a decision rule based on the single �lter output z[n].

In the following, we consider the user channels as possibly unknown constant deterministic vectors

and we drop the time index n for the sake of notation simplicity. The case of time-varying random

channels will be examined in Section 5. Without loss of generality, we assume that E1 � Eu for all

u = 1; : : : ; B (if this is not the case, it is su�cient to renumber user 1 symbols), and we identify b1 as

the desired symbol. Thus, we can rewrite (8) by putting in evidence the useful signal component, as

y =
p
E1p1b1 +w (9)

where w collects noise+ISI+MAI. A relevant measure of performance for the �lter h is its output

SINR. In our setting, this is de�ned by

SINR
�
=
E[jhH(y �w)j2]

E[jhHwj2]
(10)

In the following, we review some well-known results on linear receivers.

Single-user matched �lter (SUMF). The baseline linear receiver is the SUMF h = p1, matched

to the useful signal component as if w was a white noise vector. The SUMF requires the knowledge of
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user 1 signature waveform s1(t), coarse timing q1 and channel vector c1. Remarkably, all decentralized

receivers considered in this paper require no more side information than the SUMF (actually, some

require less).

The output SINR achieved by the SUMF is given by SINRsumf = E1=(pH1 Rwp1) where Rw =

E[wwH ]. In the absence of ISI and MAI, Rw = N0I and SINRsumf = E1=N0
�
= SNR1.

3

Linear minimum MSE receiver (LMMSER). A classical criterion for the design of the �lter

h is the minimization of the MSE [11]

J
�
= E[jb1 � hHyj2] (11)

The minimum MSE (MMSE) �lter vector is the Wiener �lter

hopt =
p
E1R�1

y p1 (12)

where Ry = E[yyH ]. The resulting output SINR is given by

SINRopt = E1pH1 R
�1
w p1 (13)

and it is the maximum SINR over all possible �lters h [11] (this motivate the subscript \opt"). Notice

that any two �lter vectors h0 and h00 which di�er by a scalar (non-zero) multiplicative term provide

the same SINR (we shall write h0 / h00). Then, any �lter h / hopt is also optimal in terms of output

SINR.

Adaptive implementations of the LMMSER are obtained from standard DA LMS and RLS algo-

rithms [2]. Let h[n] be the �lter vector at time n. The DA-LMS algorithm is given by:

h[n] = h[n� 1] + �e[n]�y[n] (14)

where e[n] = b1[n]� h[n� 1]Hy[n] and � > 0 is the step-size. The DA-RLS algorithm 4 updates the

estimate of the inverse covariance matrix by

k[n] =
�
�+ y[n]HM[n� 1]y[n]

��1
M[n� 1]y[n]

M[n] =
1

�
(I� k[n]y[n]H)M[n� 1] (15)

3In general, we de�ne SNRk (the SNR of user k) as the maximum SINR achieved by the SUMF matched to user k in

the absence of ISI and MAI, over all choices of the delay qk, and for given N0 channel vectors and spreading sequences.
4Here we consider only the straightforward transversal-�lter RLS. See [2] for a more complete survey of RLS-type

algorithms.
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and the �lter vector by

h[h] = h[n� 1] + e[n]�k[n] (16)

where 0 < � < 1 is the exponential forgetting factor and M[0] = 
I for some 
 > 0.

Constrained minimum MOE receiver (CMMOER). In [4], the receiver �lter h is designed

in order to minimize the mean output energy (MOE)

�
�
= E[jzj2] = hHRyh (17)

subject to the constraint hHp1 = 1. The solution of this constrained minimization problem is readily

obtained as

hmoe = �minR
�1
y p1 (18)

where

�min =
�
pH1 R

�1
y p

��1
= E1

�
1 +

1

SINRopt

�
(19)

is the constrained minimum MOE. Since hmoe / hopt, also the CMMOER attains SINRopt.

Adaptive implementations of the CMMOER are obtained by using the NDA LMS and RLS al-

gorithms described in [4, 5]. The NDA-LMS algorithm is based on the canonical decomposition

h[n] = p1 + v[n], where v[n] is constrained to be orthogonal to p1. In this way, the constraint

h[n]Hp1 = 1 is automatically satis�ed. Then, v[n] is adapted according to [4]:

v[n] = v[n� 1]� �z[n]�
�
I� p1p

H
1

�
y[n] (20)

where z[n] = h[n� 1]Hy[n].

The NDA-RLS algorithm is given by [5]:

�[n] =
�
pH1 M[n]p1

��1
h[n] = �[n]M[n]p1 (21)

where M[n] is obtained by (15).

Generalized constrained minimum MOE receiver (GCMOER). An elegant generalization

of the CMMOER which avoids explicit knowledge of p1 has been proposed in [12, 13]. This receiver,

referred here as the GCMOER, is the result of the min-max problem: choose (h;g) such that the

MOE (17) is minimized with respect to h subject to the constraint S1[0]
Hh = g and maximized with

respect to g subject to the constraint jgj2 = 1. The resulting �lter vector is given by [12]

hgmoe = �1R
�1
y S1[0]u1 (22)
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where 1=�1 is the minimum eigenvalue of the matrix S1[0]
HR�1

y S1[0] and u1 is a corresponding unit-

norm eigenvector. By using (22) into (17), it is easy to show that the resulting MOE is given by

� = �1. The GCMOER is well-de�ned if the minimum eigenvalue of S1[0]
HR�1

y S1[0] has multiplicity

1. This holds under the unique identi�ability condition of [13, Prop. 1]. In the following we assume

that this is always the case. The GCMOER needs only the prior knowledge of q1 and s1(t) in order

to calculate S1[0]. Therefore, it requires less side information than the SUMF.

The output SINR achieved by the GCMOER is easily obtained as

SINRgmoe =
1

�1=(E1juH1 c1j2)� 1
(23)

In [13] it is shown that, if the GCMOER is well-de�ned, SINRgmoe is close to SINRopt in most cases

of interest, so that the GCMOER is only slightly suboptimal.

In this paper we consider the following straightforward NDA adaptive implementation of the

GCMOER [14]: 5

u1[n] = arg min
g

gHS1[0]
HM[n]S1[0]g

gHg

�1[n] =
�
u1[n]

HS1[0]
HM[n]S1[0]u1[n]

��1
h[n] = �1[n]M[n]S1[0]u1[n] (24)

whereM[n] is obtained by (15). Because of the similarity between (24) and (21), the above algorithm

will be referred to as \generalized" NDA-RLS (GNDA-RLS).

3 Steady-state performance analysis

For i.i.d. symbols and time-invariant channels y[n] is a wide-sense stationary (WSS) vector process.

6 We assume that, with WSS inputs, the adaptive algorithms described before satisfy the following

convergence conditions [2]:

1. Convergence of the mean �lter vector: limn!1E[h[n]] = h.

2. Convergence of the MSE: limn!1 J [n] = J (where J [n] = E[jb1[n]� h[n� 1]Hy[n]j2]).
5See [14, 15] for computationally-e�cient stochastic-gradient adaptive GCMOER implementations.
6Strictly speaking, fy[i] : i = 1; : : : ; ng cannot be WSS since it starts at time 1. However, we assume that as n!1

the transient e�ect due to pre-windowing can be neglected.
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The constants h and J depend on the speci�c algorithm and on the channel parameters (user channels,

spreading sequences etc...).

Since we deal with steady-state, all the following expressions should be interpreted as limits for

n ! 1. Subject to the above assumptions, we can write h = h + �, where � is an asymptotically

zero-mean WSS error vector [16], commonly assumed independent of b1 and y. With this independence

assumption [2], the steady-state MSE can be written as J = J0 + Jex where J0 = E[jb1 � h
H
yj2] is

the MSE achieved by the non-adaptive �lter h and Jex = trace(RyR�) is the steady-state excess MSE

(R� = E[��H ]). Closed-form expressions for Jex are known for several adaptive algorithms [2, 17, 4, 5].

3.1 SINR analysis

We derive a general expression of the steady-state output SINR in terms of h, J0 and Jex. Then, we

evaluate it for the DA-LMS, DA-RLS, NDA-LMS, NDA-RLS and GNDA-RLS algorithms presented

in Section 2. In order to account for the random component of the �lter vector h, we modify the

de�nition of the SINR given in (10) as

SINR =
E[jhH(y �w)j2]

E[jhHw+ �
Hyj2]

(25)

where the �lter error vector contributes to the noise energy. By using the independence assumption

and expanding the above expression we can write

SINR =
E1jh

H
p1j2

E[�HyyH�] + h
H
Rwh

=
E1jh

H
p1j2

trace(RyR�) +E[jb1 � h
H
yj2]� j1�

p
E1(h

H
p1)j2

=
E1jh

H
p1j2

J0 + Jex � j1�
p
E1(h

H
p1)j2

(26)

DA algorithms. Both the DA-LMS and the DA-RLS have the property that h = hopt and that

Jex = �J0, where � is referred to as MSE misadjustment [2]. By using this into (26), after some algebra

we get

SINRDA =
SINRopt

1 + � + �=SINRopt
(27)
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The MSE misadjustment is explicitly given by [2, 17]

� =

8>>>><>>>>:

PM
`=1

��`
2���`

1�
PM

`=1

��`
2���`

DA-LMS

1��
1+�

M DA-RLS

(28)

where f�` : ` = 1; : : : ;Mg are the eigenvalues of Ry.

NDA algorithms. Both the NDA-LMS and the NDA-RLS have the property that h = hmoe and

that Jex = ��min [4, 5], where, in analogy with the terminology of DA algorithms, we refer to � as the

MOE misadjustment. By using this into (26), after some algebra we get

SINRNDA =
SINRopt

1 + � + �SINRopt
(29)

Approximated expressions of � are obtained in [5, 4],

� =

8>>>><>>>>:

PM
`=1

�p`�`
2��p`�`

1�
PM

`=1

�p`�`
2��p`�`

NDA-LMS

1��
2� (M � 1) NDA-RLS

(30)

where fp` : ` = 1; : : : ;Mg are the diagonal elements of the matrix QH(I � p1p
H
1 )Q, and where Q is

the unitary matrix such that Ry = Qdiag(�1; : : : ; �M )QH .

Next, we consider the more complicated GNDA-RLS algorithm. In [14] it is shown that, as long

as the GCMOER is well-de�ned, the GNDA-RLS has the property that h = hgmoe. The evaluation

of Jex for the GNDA-RLS algorithm is complicated by the presence of the eigenvector computation

step in the recursion (24). Then, we approximate Jex by the asymptotic excess MSE of the modi�ed

recursion obtained from (24) by eliminating the eigenvector computation step and by letting u1[n] = u1

for all n (recall that u1 is the unit-norm eigenvector corresponding to the minimal eigenvalue of the

matrix S1[0]
HR�1

y S1[0]). This is motivated by the fact that, for large n, the inverse covariance matrix

M[n] behaves like a quasi-deterministic quantity when M(1��)� 1 (see [5] and references therein).

Therefore, limn!1M[n] ' E[M[n]] = (1� �)R�1
y , which implies that, for large n, u1[n] ' u1.

The resulting modi�ed recursion is formally equivalent to the NDA-RLS algorithm (21), provided

that p1 is replaced by ep1 = S1[0]u1. Then, it is straightforward to duplicate the derivation of [5] with

the change p1 ! ep1 and obtain Jex ' ��1, where the MOE misadjustment � is the same of NDA-RLS.

By using this into (26), after some algebra we can prove the following:
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Proposition 1. Under the convergence assumption, the steady-state SINR of the adaptive imple-

mentation of the GCMOER based on GNDA-RLS is given by

SINRGNDA =
SINRgmoe

1 + � + �SINRgmoe

(31)

where � = 1��
2�

(M � 1). �

Remark 1. Results (27) and (29) are proved in [5] directly for RLS. The general steady-state

SINR formula (26) allows their immediate extension to LMS. Result (31) is new, up to the author's

knowledge.

Remark 2. For SINRopt � 1, we have that SINRDA ' SINRopt=(1 + �). In normal working

conditions it is reasonable to expect that the excess MSE due to adaptation does not exceed the

MMSE, therefore 0 < � < 1 and DA algorithms at the steady-state are suboptimal by at most 3 dB.

On the contrary, SINRNDA � 1=�, and might be much less than SINRopt. Notice that the use of

LMMSER-type receivers makes sense precisely in the condition of large SINRopt, since if SINRopt is

small, then the simpler SUMF would provide about the same performance. Thus, NDA algorithms

prove to be poor just in the case where the potential gain of linear multiuser receivers is largest. This

negative fact about NDA adaptive algorithms has been noticed in [5] in the case of RLS. The fact

that similar expressions holds also for NDA-LMS and for GNDA-RLS induces us to conjecture that

the poor steady-state performance of the adaptive CMMOER and GCMOER does not depend on

the particular algorithm, but it is a consequence of the constrained MOE cost function de�ning the

receivers.

3.2 Symbol-by-symbol error probability

It is well-known that blind equalization schemes based on second-order statistics are able to equalize

the channel up to a phase rotation [18]. This means that, with CMMOER and GCMOER and their

adaptive NDA implementations, the �lter h is determined up to a factor ej�. While this has no impact

on the output SINR, it does have an impact on error probability, depending on the detector function

dec(�).

By using (9) and h = h+ �, we can write the �lter output in the form

z =
p
E1(h

H
p1)b1 + � (32)

where � is the residual interference plus noise at the �lter output, and takes into account also the

e�ect of the random �lter error �. For simplicity, we assume that the phase of the deterministic useful
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signal component is perfectly known to the receiver and, without loss of generality, we let �
�
= h

H
p1

be real and positive. In this paper, we assume that the symbols bu belong to a 4PSK signal set with

Gray mapping [9], i.e., bu = (dIu + jd
Q
u )=

p
2, where dIu and d

Q
u are i.i.d. antipodal random variables

taking on values in f�1g with equal probability (the superscripts I and Q denote the in-phase and

the quadrature rails), and we consider the following simple suboptimal symbol-by-symbol threshold

detection rule:

bdI1 = sign(Refzg)c
d
Q
1 = sign(Imfzg) (33)

We focus on the detection of the in-phase data symbol dI1 (an analogous derivation applies to the

quadrature symbols). Because of symmetry, we can assume dI1 = 1. The decision variable in (33) can

be written as

Refzg = �

r
E1
2

 
1 + �0 +

2U�1X
i=1

�idi + e�
!

(34)

where the di's are i.i.d., uniformly distributed over f�1g, e� � N (0; N0jhj2=(E1�2)), �0 = Re
�
�
Hp1p

H
1 h
	
=�2,

�1 = Im
�
�
Hp1p

H
1 h
	
=�2 and

�i =

8<:
p
Eu=E1Re

�
hHpup

H
1 h
	
=�2 i = 2u� 2p

Eu=E1Im
�
hHpup

H
1 h
	
=�2 i = 2u� 1

(35)

for u = 2; : : : ; U . The �i's are random variables, since they are functions of �. The BER conditioned

on � is immediately obtained as [19]

P (ej�) =
1

22U�1

X
d1;:::;d2U�1

Q

 s
E1�2

N0jhj2

 
1 + �0 +

2U�1X
i=1

�idi

!!
(36)

where Q(x) =
R1
x

1p
2�
e�y

2=2dy is the Gaussian distribution tail function.

Methods for the evaluation of (36) have been extensively studied in the framework of ISI chan-

nels, for which the channel output samples is formally analogous to (34) for �xed (i.e., non-random)

coe�cients �i. Straightforward direct averaging with respect to the di has exponential complexity in

U . A family of loose upper bounds are provided in [20] and a very e�cient and numerically accurate

method based on Discrete-Cosine Transform (DCT) is provided in [21].

In order to compute the steady-state P (e) we should average (36) with respect to the steady-

state distribution of the �lter error vector �. This appears to be prohibitively complex, since this
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distribution is not known exactly. The desired steady-state error probability can be evaluated by the

semi-analytic Monte Carlo (MC) method:

P (e) �
1

N

NX
r=1

P (ej�(r)) (37)

where �(r) is the error vector resulting from the adaptive algorithm after a su�ciently large number

of iterations and where the index r runs over N independent simulations of the algorithm. Each

simulation run has the same channel parameters (SNRs, delays, spreading sequences and channel

responses) but independently generated user data and noise sequences. The above approach is clearly

very expensive in terms of computation.

As an e�cient alternative to the MC method, we propose a steady-state Gaussian approximation

(SSGA) consisting of modeling the residual noise variable � in (32) as a Gaussian zero-mean random

variable. It is easy to check that �2E1=E[j�j2] is equal to the steady-state SINR of the adaptive �lter.

Therefore we can write

P (e) � Q(
p
SINR) (38)

where SINR is provided by (27), (29) and (31), for the algorithms considered here.

4 Decision-driven and two-stage NDA adaptive schemes

In this section we generalize of the classical minimum MSE problem by substituting to the desired

symbol sequence fb1[n]g an auxiliary symbol sequence feb1[n]g such that, for all n, E[eb1[n]] = 0,

E[jeb1[n]j2] = 1 and E[b1[n]eb1[n]�] = �, where � is a given (complex) correlation coe�cient. This allows

us to derive and study decision-driven (DD) and a new class of improved NDA adaptive algorithms,

referred to as two-stage NDA, in a uni�ed manner.

We consider the minimization with respect to h of the modi�ed MSE

eJ = E[jeb1 � hHyj2] (39)

The resulting �lter vector is given by

eh = �
p
E1R�1

y p1 = �hopt (40)

For all � 6= 0, we have that eh / hopt. Then, eh achieves the same optimal output SINR of the

LMMSER. LMS-type and RLS-type adaptive algorithms approximating eh are immediately obtained
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by using eb1[n] instead of b1[n] as training symbol in the standard DA LMS and RLS recursions (14)

and (16). The resulting algorithms will be referred to as the modi�ed LMS and RLS, respectively. By

choosing appropriately the auxiliary sequence feb1[n]g, we can derive several adaptive schemes.

Decision-driven (DD) algorithms. DD adaptation can be interpreted in the general framework

of modi�ed LMS and RLS with the choice of the auxiliary sequence

eb1[n] =
8<: b1[n] for n = 1; : : : ; Trbb1[n] for n > Tr

(41)

where Tr is the length of an initial training sequence and where bb1[n] = dec(z[n]) is the n-th symbol-

by-symbol decision.

In order to improve the poor steady-state performance of NDA algorithms, several papers suggest

dual-mode adaptive receivers starting with NDA adaptation and switching to DD adaptation as soon as

the output SINR is su�ciently good for making reliable symbol-by-symbol decisions. Under standard

convergence assumptions, the steady-state performance of the dual-mode receiver is the same of the

DD receiver with initial training. Hence, we shall not distinguish between these two cases (the only

di�erence being that the dual-mode receiver does not require the transmission of an initial training

sequence).

Two-stage NDA algorithms. We propose a new class of NDA adaptive receivers formed by the

serial concatenation of two adaptive stages. The �rst stage is based on any NDA adaptive algorithm

(e.g., the NDA-LMS, NDA-RLS or GNDA-RLS described in Section 2). The second stage is based on

modi�ed LMS or RLS with auxiliary sequence

eb1[n] = dec(z1[n]) (42)

where z1[n] is the output of the �rst stage. As for dual-mode receivers, no initial training sequence is

required.

4.1 Steady-state SINR analysis

Subject to the convergence assumptions of Section 3, we let h; J0 and Jex denote the asymptotic (for

large n) �lter mean vector, the corresponding MSE and excess MSE of the modi�ed LMS and RLS

algorithms, respectively. The steady-state output SINR has the general form (26). In Appendix A,
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we show that for the modi�ed LMS and RLS algorithms we have

h = eh
J0 = 1� (1� j1� �j2)�

Jex = �
�
1� j�j2�

�
(43)

where eh is given in (40), where � is the MSE misadjustment of conventional DA LMS and RLS

algorithms and where we let �
�
= SINRopt=(1 + SINRopt). By using (43) into (26), after some algebra

we are able to write the steady-state SINR of the modi�ed LMS and RLS algorithms as

SINR =
j�j2�2

j�j2�(1� �) + �(1 � j�j2�)
�
= F (�; �; �) (44)

The function F (�; �; �) is increasing in 0 < j�j � 1, and strictly decreasing in � � 0, for all 0 < � � 1.

Its maximum is attained for � = 0 and any � 6= 0, and it is given by F (0; �; �) = SINRopt. This

corresponds to the fact that, as noticed previously, eh / hopt for any auxiliary variables eb1[n] having
non-zero correlation with the true desired data variables b1[n], so that the deterministic (i.e., non-

adaptive) �lter eh achieves the optimal SINR. For � = 1 we have F (�; 1; �) = SINRDA, given in (27). In

fact, for � = 1 (that implies eb1[n] = b1[n] in the mean-square sense), the modi�ed and the conventional

DA algorithms coincide.

Steady-state SINR of DD algorithms. We assume that users' symbols belong to a 4PSK signal

set with Gray mapping and we consider the threshold detector (33) with ideal phase compensation.

Then, we can use the SSGA and approximate the steady-state BER by P (e) � Q(
p
SINR). Implicitly,

errors in the detection of the in-phase and quadrature bits are assumed to be statistically independent,

since the SSGA treats the residual interference plus noise at the �lter output as circularly-symmetric

complex Gaussian noise. The resulting correlation coe�cient is given by

� � 1� 2Q(
p
SINR) (45)

(45) and (44) form a system of two equations in the unknowns � and SINR. By eliminating �, we

obtain the steady-state SINR of DD algorithms as the positive solution of the equation

x = F (�; 1 � 2Q(
p
x); �) (46)
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It is immediate to see that (46) is always veri�ed for x = 0. Moreover, if

d

dx
F (�; 1 � 2Q(

p
x); �)

����
x=0

> 1

there exists a unique positive solution in the interval (0;SINRDA].

Steady-state SINR of two-stage algorithms. We make the same assumption of 4PSK with

Gray mapping, and we consider the threshold detector (33) with ideal phase compensation at the

output of the �rst stage. Then, we use the SSGA to approximate the steady-state BER of the �rst

stage and we obtain � as

� � 1� 2Q(
p
SINR1st)

where SINR1st is the steady-state SINR of the NDA algorithm of stage 1. The steady-state SINR of

the second stage is obtained from (44) as

SINR2nd = F (�; 1 � 2Q(
p
SINR1st); �) (47)

For NDA-LMS, NDA-RLS and GNDA-RLS, we can use explicit expressions of SINR1st given in (29)

and (31).

Remark 3. The e�ect of detection errors in the DD loop and at the output of the �rst stage

of the two-stage scheme is taken into account by the correlation coe�cient �. For BER equal to

0:5 the desired sequence b1[n] and the auxiliary sequence eb1[n] are uncorrelated (� = 0) and the

modi�ed adaptive algorithms become useless. This e�ect is quite di�erent from \error propagation"

of multistage and decision-feedback multiuser detection [1]. In fact, errors in the sequence eb1[n] a�ect
the detection of the data symbols only through a mismatch of the �lter vector h[n]. Simulations (see

Section 6) show that the asymptotic BER of DD and two-stage algorithms can be accurately predicted

by using the SSGA with the steady-state SINR expressions provided by (46) and by (47), respectively.

Thus, the e�ect of errors in the auxiliary sequence is fully accounted for by our analysis.

Remark 4. The main advantage of the two-stage receiver is that the outputs of both stages

are always available. Therefore, it is very easy to measure their SINR and select the best. This is

not the case with a dual-mode receiver with a single adaptive �lter switching between NDA and DD

adaptation modes. In this case, the output SINR must be compared with an empirical threshold in

order to determine which adaptation mode is to be used. In time-varying conditions, a bad choice

of this threshold could make the dual-mode receiver to work in the wrong adaptation mode most of

the time. Clearly, the advantage of the two-stage receiver is obtained at the cost of an increased
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computational complexity, since two adaptive algorithms must be run in parallel. The example below

shows that a receiver selecting the best of the �rst and second stage SINRs is very close to the optimal

LMMSER over a wide range of values of SINRopt.

Example. Consider a two-stage NDA receiver where NDA-RLS and modi�ed RLS are used in

the �rst and second stage, respectively. By using (29) into (47) we obtain SINR2nd as a function of

SINRopt; � and �1, where �1 is the MOE misadjustment of the NDA-RLS at the �rst stage. Fig. 1

shows SINR1st and SINR2nd vs. SINRopt for � = �1 = 0:1. Both SINR1st and SINR2nd converge to

�nite values as SINRopt !1. These are given by 1=�1 and by

(1 + 2Q(
p
1=�1))

2

4�Q(
p
1=�1)(1�Q(

p
1=�1))

respectively. For large SINRopt, the second stage o�ers better steady-state performance. On the

contrary, if SINRopt is low, the second stage su�ers from SINR degradation due to the large BER at

the output of the �rst stage, and the �rst stage yields better performance. As anticipated in Remark 4,

maxfSINR1st;SINR2ndg is close to optimum over a wide range of SINRopt values (from �15 to 15 dB).

Fig. 1 shows also the steady-state SINR vs. SINRopt of a DD algorithm (i.e., the non-negative solution

of (46)), for � = 0:1. For SINRopt � 0 dB, the DD algorithm yields almost optimal performance. If

SINRopt decreases below 0 dB, the SINR of the DD algorithm drops rapidly and goes to zero when

(46) has no positive solution.

5 Time-varying channels

In this section, we propose modi�ed LMS and RLS algorithms in order to cope with time-varying

channels. The proposed approach is based on exploiting the estimation of user 1 channel in order

to create an appropriate auxiliary sequence eb1[n] in the modi�ed adaptive algorithm. This is a non-

trivial extension to the case of general frequency-selective channels of the idea presented in [6], where

a data-directed phase estimator is coupled with DD-LMS in order to work in frequency-
at Rayleigh

channels. Our generalization applies both to DD and to two-stage receivers. However, as anticipated

in the Introduction, when coupled with the two-stage scheme it yields a particularly attractive solution

for tracking moderately time-varying channels, as it will be illustrated by the examples of Section 6.

Informally speaking, adaptive algorithms are based on the idea of exchanging ensemble averages

with time averages. In order to track time-varying statistics, time averages are performed over a
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\sliding-window" of a given size, referred to as the algorithm memory. The components of the input

signal y[n] that vary signi�cantly over the algorithm memory are averaged over the sliding window

and are to be treated as random [7]. In the steady-state analysis of Sections 3 and 4, the channel

vectors were considered as deterministic constants. The underlying assumption is that the normalized

Doppler bandwidth BdT is much smaller than the inverse algorithm memory. 7 In this section, we

consider the case where BdT is comparable or larger than the inverse algorithm memory and we

make the assumption that the ck[n]'s are WSS zero-mean vector processes, mutually independent and

independent on the user data symbols.

The benchmark linear receiver is a centralized LMMSER having ideal instantaneous knowledge of

all user channels. On the other hand, if the receiver has no knowledge of the channels, the standard

MSE (averaged also with respect to the channels) is useless. In fact, we obtain J = E[jb1 � hHyj2] =

1+hHRyh, whose minimization yields the trivial solution h = 0 [6, 7]. Since we are interested in the

decentralized detection of user 1, side information about users k = 2; : : : ;K cannot be exploited, but

we can assume that the receiver is provided with an estimate bc1[n] of c1[n] by some external channel

estimation device. From the general SINR formula (10), by averaging also with respect to the channel

vectors, we obtain

SINR =
hHS1[0]RcS1[0]

Hh

hHRwh
(48)

where Rc = E[c1[n]c1[n]
H ] is the covariance matrix of user 1 channel. 8 By using the maximization

of the output SINR given by (48) as design criterion for h, we obtained that the optimal �lter vec-

tor is the generalized eigenvector corresponding to the maximal eigenvalue of the matrix pencil [22]

fS1[0]RcS1[0]
H ;Rwg. In the following, this �lter will be denoted by hfast.

We look for simple modi�ed LMS and RLS algorithms approximating hfast. To this purpose,

we consider an auxiliary sequence in the form eb1[n] = a[n]b1[n], where a[n] is a random variable

uncorrelated with the user data symbols, such that E[c1[n]a[n]
�] = r, where r is a non-zero vector of

length P . Obviously, a[n] is derived from the channel estimate bc1[n] of c1[n], as we will see later. The
7For example, the memory of RLS with exponential forgetting factor � is about 1=(1��) symbols. Then, the channels

can be considered as constants if BdT � 1� �.
8The covariance matrix Rc is generally non-diagonal, even if the underlying continuous-time channel has uncorrelated

scattering [9]. In fact, after low-pass �ltering and sampling, the discrete-time channel coe�cients given by (3) are

correlated.
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minimizer of the modi�ed MSE cost function

eJ = E[jb1[n]a[n]� hHy[n]j2]

= 1� 2RefhHS1[0]rg + hHRyh (49)

is given by eh = R�1
y S1[0]r. In order to approximate eh by DD and two-stage adaptive algorithms, we

let eb1[n] = bb1[n]a[n], where bb1[n] are symbol-by-symbol decisions.
Now, we have to �nd a[n] as a function of bc1[n] in order to achieve eh = hfast. The SINR attained

by eh is given by

SINR =
rHS1[0]

HR�1
y S1[0]RcS1[0]

HR�1
y S1[0]r

rHS1[0]HR
�1
y RwR

�1
y S1[0]r

(50)

The following proposition, proved in Appendix B, provides the needed result:

Proposition 2. hfast maximizing (48) can be written as

hfast = R�1
y S1[0]rfast (51)

where rfast maximizes (50). Moreover, if the matrix A
�
= S1[0]

HR�1
y S1[0] is invertible, rfast is the

eigenvector corresponding to the maximal eigenvalue of the matrix RcA. �

The desired relation between a[n] and bc1[n] is given by:

Corollary. Assume that the channel estimator bc1[n] is uncorrelated with the user symbols and let

� = E[c1[n]bc1[n]�]. If det(�) 6= 0, the sequence a[n] achieving eh = hfast as the minimizer of (49) is

given by

a[n] = rHfast
�
��1

�H bc1[n] (52)

�

Remark 5. The condition det(�) 6= 0 is rather mild and should hold for any reasonably good

channel estimator. It is interesting to notice that perfect channel knowledge is actually not needed

for the deterministic (i.e., non-adaptive) �lter hfast. Nevertheless, it is intuitively clear that good

channel estimation can improve the performance of the corresponding adaptive receivers based on

modi�ed LMS or RLS. In practice, � is not known. However, for an unbiased channel estimator

bc1[n] = c1[n] + e[n], where e[n] is an error vector with mean zero, uncorrelated with c1[n], we have

that � = Rc. Moreover, Rc can be approximated by the exponentially weighted sample covariance

matrix of bc1[n], bRc[n] =
Pn

i=1 �
n�ibc1[i]bc1[i]H .

Remark 6. The approach proposed in this section for general frequency-selective time-varying

channels is particularly simple when the channel of user 1 is frequency-
at. When the receiver has
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perfect timing for user 1, the channel c1[n] reduces to the scalar c1[n]. Then, if the receiver is

provided with an estimator bc1[n], such that r = E[c1[n]bc1[n]�] 6= 0, the simple choice a[n] = bc1[n]
achieves eh / hfast.

With minor modi�cations, this approach is proposed in [6], where a classical DA-LMS working in

DD mode is coupled with a decision-directed channel estimator tracking the phase of the (frequency-


at) complex channel gain c1[n]. In [6], this approach is motivated from the observation that DD

adaptive algorithms get into troubles during deep fades, when decisions become unreliable and the

channel phase changes rapidly. Actually, we have shown that any channel estimator a[n] yielding

r 6= 0 provides an optimal �lter. In particular, perfect knowledge of the phase of c1[n] is su�cient in

the frequency-
at case. In fact, by letting a[n] = c1[n]=jc1[n]j we get r = E[jc1[n]j] > 0.

Remark 7. In [10] (see also references therein), the LMMSE-rake receiver is proposed to cope

with frequency-selective time-varying channels. In brief, this consists of a bank of P adaptive �lters

followed by a \maximal-ratio combiner". The p-th �lter is adapted by a modi�ed DD LMS or RLS

algorithm driven by the auxiliary sequence eb1;p[n] = ap[n]bb1[n], where ap[n] is an estimate of the p-th

channel coe�cient c1[n; p]. The p-th �lter output, zp[n], is an estimate of the product c1[n; p]b1[n] and

the overall receiver output is obtained as z[n] =
PP�1

p=0 ap[n]
�zp[n].

Simulations and analysis show that the LMMSE-rake is e�ective even for fairly large BdT [10]. On

the other hand, its complexity is larger than the proposed two-stage NDA algorithm, if P > 2, since

P adaptive algorithms must be run in parallel. Further comparisons between the LMMSE-rake and

two-stage approaches are out of the scope of this paper and are left for future work.

6 Results

We consider a system with K = 10 users and processing gain L = 31. Each user is given a distinct

sequence from a Gold set [23]. For simplicity, we assume ideal Nyquist chip pulses  (t) = 1p
Tc
sinc(t=Tc)

and we let W = 1=Tc, yielding Nc = 1 sample per chip. Without loss of generality, we let q1 = 0 and

we generate independently the delays qk for k = 2; : : : ;K, uniformly distributed over the integers in

[�L=2; L=2), and 
k for k = 1; : : : ;K, uniformly distributed over [0; Tc).

The channel vectors ck[n] are obtained from (3), where the underlying continuous-time channels

have impulse responses

ck(t; �) =
X
p

gp(t)�(� � �p) (53)
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where gp(t) are zero-mean mutually uncorrelated complex Gaussian WSS random processes with

Jake's type Doppler spectrum �2p=(�
q
B2
d � f2) [24]. The delay-intensity pro�le [9], de�ned by the

pairs (�2p; �p), is given in Table 1. In our simulations, Bd and the delay-intensity pro�le are common

to all users, and the channel vectors ck[n] are independently generated for each user, with P = 7

discrete-time coe�cients.

The receiver processing window is chosen to span two symbol intervals (M = 62). We letM1 = �15

and M2 = 46, so that the useful symbol falls approximately in the middle of the processing window.

6.1 Time-invariant channels

In order to validate the steady-state analysis of Sections 3 and 4, we let BdT = 0 (time-invariant

channels). The channel vectors are randomly generated and scaled in order to achieve the desired

user SNRs. The assignment of the delays qk, of the channel vectors ck and of the spreading sequences

sk is �xed throughout the simulations. Therefore, we are not averaging over these parameters. We

considered two SNR assignments: (a) all users have the same SNR= 13 dB (corresponding to Eb=N0 =

10 for uncoded 4PSK); (b) users k = 1; : : : ; 5 have SNR= 13 dB and users k = 6; : : : ; 10 have SNR= 28

dB. These situations are representative of perfect power-control and of uncompensated near-far e�ect.

Fig. 2 and 3 show BER vs. the number of symbol intervals (i.e., algorithm iterations) for DA,

NDA, GNDA, DD and two-stage RLS algorithms in cases (a) and (b), respectively. The two-stage is

based on GNDA-RLS in the �rst stage. The curves are obtained by the semi-analytic MC method

(37) averaged over N = 50 independent simulation runs. At each iteration step, (36) is evaluated via

the DCT method of [21], for the current value of the �lter error vector. The horizontal lines indicate

the steady-state BER obtained via the SSGA. The BER of the ideal (non-adaptive) SUMF, LMMSER

and GCMOER are shown for comparison. Fig. 4 and 5 show analogous results for DA, NDA, DD and

two-stage LMS algorithms, where the two-stage is based on NDA-LMS in the �rst stage.

DA and DD algorithms yields almost identical performance (the DD starts with an initial train-

ing sequence of length Tr = 200). The second stage of the two-stage algorithm has slightly inferior

steady-state BER and slower convergence than DD and DA (this fact is less evident with LMS adap-

tation). The performance improvement of the second stage over NDA-GNDA adaptation (�rst stage)

is remarkable. In all cases, the SSGA yields very accurate steady-state results.

It is interesting to notice that, in heavy near-far situations like case (b), the convergence of LMS-

type algorithms is very slow. This can be intuitively explained by the fact that the convergence speed
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of LMS is a�ected by the eigenvalue spread [2] of Ry, which increases with the users power imbalance.

On the contrary, the convergence speed of RLS-type algorithms is insensitive to the eigenvalue spread

of Ry, and is almost independent of the near-far e�ect.

6.2 Time-varying channels

In order to demonstrate the superiority of the two-stage over the DD scheme in time-varying conditions,

we consider moderately time-varying channels with normalized Doppler bandwidth BdT = 10�3. 9

For simplicity, we assume perfect knowledge of user 1 channel, i.e., bc1[n] = c1[n], and that � = Rc

is perfectly known. Because of space limitations, we show here only results for the modi�ed DD-RLS

and for the two-stage NDA based on GNDA-RLS and modi�ed RLS. For all algorithms, the auxiliary

sequence is given by eb1[n] = bb1[n]a[n], where a[n] is given by (52).

Fig. 6 shows SINR vs. the number of symbols in SNR case (a). The curve labeled by \DD" shows

the output SINR of standard DD-RLS. As expected, after the �rst deep fade, occurring between

n = 1000 and n = 1500, the standard DD looses tracking. On the contrary, the modi�ed DD (\Mod.

DD") and the two-stage NDA keep on tracking and recover a good SINR after deep fades. Stage 2

of the two-stage receiver achieves about the same SINR of modi�ed DD. Curves for the SUMF and

for the ideal centralized LMMSER are shown for comparison. Fig. 7 shows analogous results for SNR

case (b). Here, even the modi�ed DD algorithm looses tracking after the �rst deep fade. This is

probably due to the heavy near-far e�ect, generating severe error propagation in the DD feedback

loop (as noticed in [6], in heavy near-far situations the DD may end up tracking another user during

a deep fade of the desired user). On the contrary, the two-stage receiver is still able to recover after

the deep fades. This shows that the proposed two-stage NDA is more robust than DD algorithms in

near-far conditions.

7 Concluding remarks

We have derived closed form expressions for the steady-state SINR of some DA and NDA adaptive

algorithms for linear decentralized multiuser detection. In order to �ll the performance gap between

DA and NDA algorithms, we considered DD and a new two-stage NDA algorithm, where the pre-

9This corresponds to a vehicle speed of 70 km/h, carrier frequency of 2 GHz, chip-rate of 4 Mchip/s and spreading

gain 31, which can be regarded as fairly representative numbers for UMTS data transmission [25].
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decisions obtained at the output of a NDA adaptive �lter (�rst stage) are used for training a second

stage. Closed-form steady-state SINR analysis, taking into account the e�ect of errors in the DD

loop and at the output of the �rst stage, shows that both the DD and the two-stage schemes are able

to recover the performance loss with respect to DA algorithms. In particular, a two-stage receiver

selecting the output of the stage which yields the best SINR is very close to the optimal SINR over

a wide range of values. We showed also that the steady-state BER at the output of adaptive �lters

(with 4PSK) can be accurately approximated by a straightforward Gaussian approximation based on

the steady-state SINR formulas.

In order to motivate the use of the newly proposed two-stage scheme, we considered time-varying

channels and we proposed a SINR-maximizing criterion for the �lter design. LMS and RLS adap-

tive schemes can be coupled with a channel estimator for the desired user, in order to approximate

adaptively the SINR-maximizing �lter. The resulting modi�ed LMS and RLS algorithms can work

either in DD or two-stage mode. Simulations show that the two-stage is more robust than the DD

scheme in heavy near-far conditions. Also, the two-stage scheme is simpler than the LMMSE-rake

receiver of [10]. Therefore, it represents an attractive alternative for moderate values of the Doppler

bandwidth.

Some issues for future research are: i) the characterization of the tracking performance of the

two-stage receiver with time-varying channels; ii) the impact of actual channel estimation and phase

recovery over the two-stage and DD receivers; iii) the comparison between the two-stage and the

LMMSE-rake receivers, for di�erent channel delay-spread and Doppler bandwidth.

APPENDIX

A Convergence analysis of modi�ed LMS and RLS

From the de�nitions J0 = E[jb1 � h
H
yj2] and hopt =

p
E1R�1

y p1, it is immediate to show that

the second equality in (43) follows from the �rst. The �rst and the third equalities in (43) express

the convergence of the mean �lter vector and of the excess MSE. We shall consider separately the

convergence of the modi�ed LMS and RLS algorithms, which follows from rather standard approaches

whose details can be found in [2, 17].
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Convergence of the modi�ed LMS algorithm. We let h[n] = �hopt + �[n] in the modi�ed

LMS recursion and we obtain

�[n] = (I� �y[n]y[n]H)�[n� 1] + �ee0[n]�y[n] (54)

where ee0[n] = eb1[n] � ��hHopty[n]. By taking the expectation of both sides, from the independence

assumption [2] we obtain

E[�[n]] = (I� �Ry)E[�[n� 1]] (55)

where we used the fact that, because of the orthogonality principle, E[ee0[n]�y[n]] = 0. Then,

limn!1E[�[n]] = 0 if all the eigenvalues of I � �Ry have magnitude less than 1, implying that

h = �hopt.

In order to show convergence for the excess MSE, we let Ry = Qdiag(�1; : : : ; �M )QH , with Q

unitary, and we de�ne �[n] as the vector of the diagonal elements of the transformed �lter error

covariance matrix eR�[n] = QHE[�[n]�[n]H ]Q. Then, by following the same steps of [2], we obtain the

di�erence equation

�[n] = B�[n� 1] + �2 eJmin� (56)

where B = I�2��+�2�2+�2��H , where we de�ne the vector � = (�1; : : : ; �M )T of the eigenvalues

of Ry, and where

eJmin = E[jeb1[n]� �hHopty[n]j
2]

= 1� j�j2� (57)

Since B has all-positive elements, from the Perron-Frobenius theorem [22] we get the stability condi-

tion [2]
MX
`=1

��`

2� ��`
< 1 (58)

Under this condition, we have that

Jex
�
= lim

n!1
�
H
�[n]

= �2 eJmin�
H(I�B)�1� (59)

By applying the matrix inversion lemma to (I�B)�1, after some algebra, we obtain the �nal desired

result Jex = � eJmin, where � is given in (28).
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Convergence of the modi�ed RLS algorithm. The solution h[n] of the exponentially-weighted

least-squares problem

min
h

nX
i=1

�n�ijeb1[n]� hHy[n]j2

must satisfy eRy[n]h[n] = �eRy[n� 1]h[n� 1] + y[n]eb1[n]� (60)

where we de�ne the sample covariance matrix eRy[n] =
Pn

i=1 �
n�iy[i]y[i]H . By substituting h[n] =

�hopt + �[n] into (60) we obtain

eRy[n]�[n] = �eRy[n� 1]�[n� 1] + y[n]ee0[n]� (61)

where, again, ee0[n] = eb1[n]� ��hHopty[n]. For large n, we can multiply both sides by M[n] = eRy[n]
�1

and use the fact that the inverse covariance matrix M[n] behaves like a quasi-deterministic quantity

whenM(1��)� 1 (see [5] and references therein). Therefore, limn!1M[n] ' E[M[n]] = (1��)R�1
y .

We obtain

�[n] = �n(1� �)R�1
y
eRy[0]�[0] + (1� �)R�1

y

nX
i=1

�n�iy[i]ee0[i]� (62)

From the orthogonality principle, we get that
Pn

i=1 �
n�iy[i]ee0[i]� = 0. Then, by taking the expectation

of both sides of (62) we obtain that limn!1E[�[n]] = 0 for all 0 < � < 1, implying that h = �hopt.

In order to show convergence for the excess MSE, we let Jex[n] = E[�[n]HRy�[n]]. By using (61),

the quasi-deterministic and the independence assumptions, after some algebra we obtain the di�erence

equation

Jex[n] = �2Jex[n� 1] + (1� �)2M eJmin (63)

where eJmin is again given by (57). Since 0 < � < 1, we have that

Jex
�
= lim

n!1
Jex[n] = � eJmin (64)

where � is given in (28).

B Proof of Proposition 1.

The vector r maximizing (50) is the generalized eigenvector corresponding to the maximal eigenvalue

of the matrix pencil fARcA;S1[0]
HR�1

y RwR
�1
y S1[0]g, where A = S1[0]

HR�1
y S1[0]. From (9), we can

write

Ry = Rw + S1[0]RcS1[0]
H
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By using the above decomposition, we obtain that h and r maximizing (48) and (50), must satisfy

S1[0]RcS1[0]
Hh = �maxRyh

ARcAr = �maxAr (65)

where �max and �max are the maximum eigenvalues of the matrix pencils fS1[0]RcS1[0]
H ;Ryg and

fARcA;Ag, respectively. Since Ry is invertible, from the �rst equation in (65) we obtain h =

1
�max

R�1
y S1[0]RcS1[0]

Hh. Notice that RcS1[0]
Hh is a vector of length P . Then, we have shown that

the optimal h can always be written in the form

hfast =
1

�max
R�1
y S1[0]rfast (66)

where rfast is a suitable vector of length P . In order to show that rfast satis�es the second equality of

(65), we substitute (66) into the �rst equality of (65) and we obtain

S1[0]RcArfast = �maxS1[0]rfast (67)

Both the LHS and the RHS of the above equation belong to the range of S1[0]. Therefore, we can

multiply both sides from the left by S1[0]
HR�1

y without getting a trivial 0 = 0 equation. This yields

ARcArfast = �maxArfast (68)

Now, we compare (68) with the second line of (65) and we prove the statement by contradiction. If

�max > �max, then h = R�1
y S1[0]r with r being the eigenvector corresponding to �max would achieve

a better SINR than hfast (contradiction). Then, it must be �max = �max and rfast be the eigenvector

satisfying the second line of (65). Finally, if A is invertible, we can multiply both sides of (68) by A�1

and obtain the eigen-equation

RcArfast = �maxrfast (69)

This concludes the proof.
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Figure 1: Steady-state output SINR of a DD algorithm and of stage 1 and stage 2 of a two-stage NDA

algorithm as a function of SINRopt.

p �2p �p=Tc

0 1.0 0.0

1 0.5 1.2

2 0.2 3.4

3 0.1 5.6

Table 1: Delay-intensity pro�le of the Rayleigh channel used in the simulations.
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Figure 2: BER vs. number of symbols for the RLS algorithms in near-far case (a).

10-5

10-4

10-3

10-2

10-1

100

0 500 1000 1500 2000 2500 3000 3500 4000

B
E

R

Symbol intervals

Case b) RLS algorithms

DA
NDA
GNDA/1st Stage
2nd Stage
DD
SUMF
LMMSER
GCMOER

Figure 3: BER vs. number of symbols for the RLS algorithms in near-far case (b).
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Figure 4: BER vs. number of symbols for the LMS algorithms in near-far case (a).
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Figure 5: BER vs. number of symbols for the LMS algorithms in near-far case (b).
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Figure 6: SINR vs. number of symbols for the RLS algorithms in near-far case (a), for time-varying

channels with Doppler bandwidth BdT = 10�3.
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Figure 7: SINR vs. number of symbols for the RLS algorithms in near-far case (b), for time-varying

channels with Doppler bandwidth BdT = 10�3.


