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Information Diffusion in Heterogeneous Networks: The
Configuration Model Approach

Pavlos Sermpezis and Thrasyvoulos Spyropoulos

Abstract

In technological or social networks, diffusion processes (e.g. informa-

tion dissemination, rumour/virus spreading) strongly depend on the structure

of the network. In this paper, we focus on epidemic processes over one such

class of networks, Opportunistic Networks, where mobile nodes within range

can communicate with each other directly. As the node degree distribution

is a salient property for process dynamics on complex networks, we use the

well known Configuration Model, that captures generic degree distributions,

for modeling and analysis. We also assume that information spreading be-

tween two neighboring nodes can only occur during random contact times.

Using this model, we proceed to derive closed-form approximative formulas

for the information spreading delay that only require the first and second mo-

ments of the node degree distribution. Despite the simplicity of our model,

simulations based on both synthetic and real traces suggest a considerable

accuracy for a large range of heterogeneous contact networks arising in this

context, validating its usefulness for performance prediction.

Index Terms

Network Modeling, Complex Networks, heterogeneous contact dynam-

ics, Opportunistic Networks, Configuration Model, epidemic spreading.
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1 Introduction

Large complex networks, whether technological (e.g. Internet, World-Wide-

Web, mobile P2P networks) or social (Facebook, Twitter, physical social net-

works), are an integral part of our lives and are becoming strongly interrelated.

With information, news, videos, spam, and malware constantly spreading over such

networks, it becomes increasingly interesting to understand the speed of informa-

tion dissemination and its relation to network characteristics.

One such type of networks that has recently drawn a lot of attention are Op-

portunistic Networks [1], where mobile devices exchange data directly only when

they are within wireless transmission range. As a result, messages are spread (im-

plicitly or explicitly) in an epidemic manner, and for most applications of interest

(e.g. to design and tune routing protocols, content dissemination techniques etc.),

it is of main interest to estimate the spreading delay of a message.

To this end, simple epidemic models are often used, for Opportunistic Net-

works, so as to derive handy closed form expressions that can be used for predic-

tion and optimization. These include, for example, simple Markovian models [2]

or fluid approximations based on the celebrated SIR model used in biology and

epidemiology [3]. Nevertheless, the above simple models, albeit providing useful

insights, make two unrealistic assumptions: (i) that direct (regular) contacts occur

between all pairs of nodes, and (ii) that the rate of contacts is uniform across all

pairs. Studies of most real networks and contact traces [4, 5] reveal that neither

assumption is usually true, which is consistent with our intuition (many pairs of

nodes never see each other, and the rate of contacts or communication is highly

heterogeneous and dependent on the mobility, social and online behavior of the

agents involved).

To try to capture, in a more detailed way, the properties of real-world networks,

numerous studies exist in the field of Complex Networks on epidemic processes

over various complex network models (e.g. [6–10]). However, the majority of

these studies focus mainly on deriving thresholds for the spreading of an epidemic

disease (e.g. [6–8]) or a computer virus (e.g. [9]). Additionally, it is not always

feasible to apply them in real scenarios for predicting the spreading delay, as they

require the complete knowledge of the underlying contact graph [9] or the exact

degree distribution [6–8]. Such information is usually very difficult, if not impos-

sible, to estimate in real-time when considering very large networks with (possibly)

time-varying topology and sparse, infrequent contacts, reducing their applicability

for Opportunistic Networks. Also, some more works that consider the delay of an

epidemic spreading in complex heterogeneous networks (configuration model or

scale-free networks) [10, 11], have limited applicability as they derive results that

can predict the message delay only for the spreading on a small, initial percentage

of the total nodes of the network.

These observations leave us with the following question: Can we still derive

useful closed-form expressions that are accurate enough, even when considering

more complex contact networks than usually considered for Opportunistic Net-
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works? Towards answering this question, in this paper, we remove the first as-

sumption, namely that all nodes can potentially “infect” uniformly all other nodes.

Specifically, we choose the Configuration Model [8, 12] to represent which nodes

ever contact which others (this model can generate random instances of graphs with

arbitrary degree distributions), while still assuming random contacts (with uniform

rate) between nodes that do meet. Under this model, we show that we can still de-

rive simple, closed form approximations for various quantities related to the delay

of epidemic spreading (Section 2). While space limitations do not permit us to ex-

plore the second assumption analytically as well (i.e. considering different contact

rates across existing links, in addition to different node degrees), we investigate its

effects on the accuracy of our analytical results using simulations (Section 3). We

also test our theory against real traces, capturing node mobility and respective con-

tacts, and find that useful levels of accuracy can still be achieved even for scenarios

that are known to entail considerable more complexity.

As a final remark, while our initial motivation and focus stems from the area of

Opportunistic Networks, we believe that our methodology and results could also

be applicable to other processes and complex networks [4], if the key metric of

interest is spreading delay. In such contexts, contacts between nodes might still be

subject to a random process, e.g. related to online communication (in online social

networks), email transmission, etc., superimposed over a complex network (e.g. an

Online Social Network friendship graph).

2 Analysis

2.1 Preliminaries

The usual way of modeling technological and social networks is through graph

representation, where a link implies some sort of affinity between two nodes (e.g.

online/offline friendship, actual communication link etc.). Additionally, in many

situations the nodes across a given link can “contact” each other (e.g. exchange

information) only at random times. For example, in Opportunistic Networks [1]

nodes exchange messages only when they are within transmission range, and thus

the contact times are subject to the (stochastic) mobility process of nodes. Simi-

larly, in the case of news or videos spreading over an Online Social Network, the

random contact times are dictated by the times one user would read or post some-

thing on a friends page, re-tweet, etc. [13]. To model such networks, we introduce

the concept of a Contact Network.

Definition 1 (Contact Network). A contact network N is defined by (i) a (under-

yling) graph G = {V,E} whose vertices represent the network nodes and an edge

between two vertices implies that these two nodes can contact each other regu-

larly; (ii) each edge i − j ∈ E is associated with a random contact process with
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rate λij
1. These (random) contact times, define the times during which information

can be exchanged between nodes i,j.

Although the above definition is quite general, to ensure analytical tractability

it is commonly assumed, either implicitly or explicitly, that the underlying graph G
is fully meshed (i.e. a clique) or has uniform characteristics (i.e. Poisson or regular

graphs) [2, 3]. Yet, in most scenarios of interest, this is rather unrealistic, as some

pairs of nodes never meet and different nodes have different numbers of neighbors,

resulting in a sparse, and largely heterogeneous contact graph G.

Numerous models (e.g. [12,14,15]) have been proposed for representing a real

network and its contact graph. One of them is the Configuration Model [8, 12],

which creates random graphs that can have any generic degree distribution, and,

thus, it can capture the degree characteristics of real-world scenarios and networks.

Definition 2 (Configuration Model). Given a network size N and a degree distri-

bution pd (or a degree sequence di, i = 1, ..., N ), the Configuration Model draws

random instances among all the graphs G, with N vertices, for which the degree

distribution is pd. Connections between nodes are made randomly, and the proba-

bility of having a link between two nodes i and j is proportional only to the degrees

of i and j.

The main strengths of the Configuration Model are that: (i) It can describe net-

works in which the degrees2 of the vertices can follow any arbitrary distribution.

The degree distribution of the vertices3 is an important characteristic of contact net-

works and it can determine the evolution of processes on the network (e.g. whether

information, a virus, or a disease manages to spread.) [4]; (ii) It is based on random

graphs and thus the network can be studied using analytic methods, which is the

goal of our work.

Summarizing, in this paper we will consider a contact graph G generated by the

Configuration Model, with a degree distribution pd, and mean value and variance

µd and σ2
d, respectively. The coefficient of variation of the degree distribution is

defined as CVd = σd

µd
.

The above contact graph defines which nodes ever contact each other. For

nodes that do contact each other, we will assume throughout our analysis that con-

tact events are independent and identically Poisson distributed with the same rate λ
for all pairs. This is a common assumption in most related analytical works [2, 3].

While the Poisson assumption might or might not be a good approximation for

contact times, depending on the application scenario, it allows the use of a Markov

Chain to model the spreading process as in Fig. 1. Furthemore, extensive work

in the field of Opportunistic Networks [16, 17] suggest that inter-contact time in-

tervals often exhibit an exponential tail. In contrast, the assumption of identical

1For simplicity, we will assume that the duration of each contact is quite small compared to the

mean intercontact time, and thus the random contact process is a point process.
2The degree of a vertex is the number of edges connected to it.
3We will use the terms vertex and node interchangeably.

3



Figure 1: Epidemic spreading over a Configuration Model contact network with N

nodes. The rate of moving from state k to state k + 1 is λ(k).

contact rates λ for each node pair usually does not hold. While, we can already

state that the approximation we propose is good even for (large) networks with

heterogeneous contact rates (different λij for each pair i − j) as well, it is beyond

the scope of this paper to develop the necessary theory. Instead, we will test this

approximation with simulations (Section 3).

2.2 Epidemic Spreading Model

We will now assume that a message is spread “epidemically” over a contact

network N , defined earlier and consisting of N total nodes. The message can

be a data packet with useful content or a virus4. Specifically, we assume that a

randomly chosen node x1 generates a message and starts spreading it through the

network during contacts with peers. Every node that receives the message, can

further spread it to every other node that has not received it yet, when a contact

with the latter occurs. To compute the expected message delivery delay of different

dissemination mechanisms (e.g. routing protocols, content sharing schemes), we

need to split the spreading process in steps, compute the delay of each one of these

steps, and use them as the building blocks to calculate the total delay.

We say that the spreading process is at state k, k = 1, ..., N − 1 when k nodes

have the message, as shown in Fig. 1. We will refer to the transition from state k to

state k+1 as step k. We are interested in deriving the mean delay of each such step

k, starting at the time when the kth node just received the message (i.e. any k nodes

are infected) until the (k + 1)th node receives it (i.e. any k + 1 nodes are infected).

We denote the set of the “infected” nodes as C(k). Due to the memoryless property

of the Poisson contact events, the duration of step k only depends on the sum of

contact rates between nodes with the message (∈ C(k)) and nodes that have not

received it yet (/∈ C(k)). In Fig. 1, the sum of these rates is denoted as λ(k).

In our model, the contact rates have the same value λ for all node pairs. Hence,

λ(k) is given by

λ(k) = λ · Dout(k) = λ ·
∑

i∈C(k)

∑

j /∈C(k) Iij (1)

4In other kind of networks, it can also be a rumour or news in an Online Social Network [13], a

virus in a computer network [9], a disease in the plysical world [6] etc.
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Figure 2: Sets of nodes with (left) and without (right) the message at state k. Nodes

are represented by circles and edges by the straight lines.

where Iij = 1 iff there exists an edge between nodes i− j (i.e. i and j contact each

other). Dout(k) =
∑

i∈C(k)

∑

j /∈C(k) Iij is defined as the out degree of step k. In

other words, the out degree is the number of all the possible ways that the message

can infect one additional node, when at state k.

Knowing Dout(k) is enough to derive the total delay of each step. In a network

where all the nodes contact each other (as in the usual epidemic models), it is easy

to see that there are Dout(k) = k(N − k) such i − j node pairs and that the

mean delay of step k in this simple case is 1
λ(k) = 1

k(N−k)λ [2]. However, in a

Configuration Model network, the number of i − j node pairs that could further

spread the message at step k is at most k(N − k), and thus the delay per step

is larger. In fact, Dout(k) is a random variable which depends on the degrees of

the k nodes that happen to get infected first, as shown in Fig. 2. What is more,

unlike uniform degree models, not all nodes here have the same probability of

being infected first: nodes with higher degrees clearly have a bigger chance than

nodes with low degrees. These observations complicate the derivation of step-wise

delay considerably, for our more general model.

Consequently, in order to be able to derive the rate λ(k) and the mean delay of

step k, it does not suffice to only know k, the number of infected nodes. We also

need to keep track of the (expected) degrees that the infected nodes have at state k.

Specifically, as we will show in the next sections, we need to derive the following

quantities related to spreading over a configuration contact graph: (i) the expected

degree of the next node to receive the message at state k, µnew
d (k); and (ii) the out

degree at step k, Dout(k).

2.3 Mean Degree

Assume we are at state k. Let us denote as pd(k) the degree distribution of

the N − k nodes that do not have the packet at state k and µd(k) and CVd(k) its

expectation and coefficient of variation respectively5 . As we mentioned, not all

5The values of these quantities before the beginning of the spreading, are equal to the values of

the initial distribution, i.e. pd(0) = pd, µd(0) = µd and CVd(0) = CVd.
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(uninfected) nodes are equally likely to be the next one infected. As a result, the

expected degree of the next infected node is neither equal to µd (the original mean

degree) nor µd(k).

Result 1. The expected degree of the next node that will receive the message at

step k, is approximately given by

µnew
d (k) = µd ·

(

N − k − 1

N − 1

)CV 2
d

· (1 + CV 2
d ) (2)

Proof. To derive the above result, we need to define and solve an appropriate recur-

sion. Observe that there are Dout(k) links across which the infection may proceed

from state k to k +1 (see Fig. 2) and each of these occurs with equal probability. It

is a standard result in complex network analysis [4] that the degree distribution of

the node reached from that link (i.e. the next node which will receive the message)

is:

pnew
d (k) =

d · pd(k)
∑

d d · pd(k)
=

d

µd(k)
· pd(k) (3)

Eq. (3) implies that the higher degree d a node has, the more probable is that this

node will be the next node to receive the message: the probability the new node to

have degree d is proportional to d · pd(k). Now, we can easily derive µnew
d (k):

µnew
d (k) =

∑

d d · pnew
d (k) = µd(k) ·

[

1 + CV 2
d (k)

]

(4)

We can see that the expected degree of the next node infected is higher than the

mean degree of all uninfected nodes: µnew
d (k) ≥ µd(k).

To proceed further, we thus need to know µd(k) and CV 2
d (k) first. To this end,

we can set up a recursion for the degree distribution pd(k) of the nodes that do not

have the message in the next state. Notice that the set of the nodes without the

message in state k +1 is the same set as in the previous state k, except for the node

that just received the message. Hence, we can write for the number of nodes with

degree d in states k and k + 1:

[N − (k + 1)] · pd(k + 1) = (N − k) · pd(k) − pnew
d (k) (5)

Substituting in Eq. (5) the value of pnew
d (k) from Eq. (3), we find:

pd(k + 1) =
N − k

N − (k + 1)
pd(k) −

1

N − (k + 1)

d

µd(k)
pd(k) (6)

In Eq. (6), we have expressed pd(k + 1) as a function of pd(k). Now, it is

straightforward to do the same for the expected value, µd(k + 1), and the recursive

relation for it, is:

µd(k + 1) = µd(k) ·

(

1 −
CV 2

d (k)

N − (k + 1)

)

(7)
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To calculate µd(k + 1), the value of CV 2
d (k) is also needed. While we could also

set up a recursion to derive the latter, it is proved in Appendix 5.1 that it requires

knowledge of all higher moments of the degree distribution. To keep things simple

and avoid requiring such knowledge (beyond the second moment), we will assume

that CVd(k) = CVd ∀k. The conditions for this assumption and its accuracy

are discussed in Appendix 5.1 and, here, we will only mention the main points

which are: (i) the approximation can be accurate for steps k for which it holds

N − k ≫ CVd, and (ii) it becomes more accurate as the CVd decreases.

Thus, using CVd(k) = CVd, and µd(0) = µd, Eq. (7) gives

µd(k) = µd ·
k−1
∏

m=0

(

1 −
CV 2

d

N − m − 1

)

(8)

To find an equivalent closed-form expression for Eq. (8), we can use the Tay-

lor series approximation for the function f(x) = e−x, about x = 0, which is

T (e−x) ≈ 1 − x and is quite accurate for values 0 < x < 0.5 (with increasing

accuracy as x decreases). Then, setting x =
CV 2

d

N−m−1 (the accuracy condition is

satisfied for the states k for which N − k > 2 · CV 2
d and thus more accuracy can

be achieved for lower values of CVd), we can write for Eq. (8)

µd(k) ≈ µd ·
k−1
∏

m=0

e−
CV 2

d
N−m−1

= µd · exp{−CV 2
d ·

k−1
∑

m=0

1

N − m − 1
}

= µd · exp{−CV 2
d ·

N−1
∑

ℓ=N−k

1

ℓ
}

≈ µd · exp{−CV 2
d · [ln(N − 1) − ln(N − k − 1)]}

= µd · exp{ln

[

(

N − k − 1

N − 1

)CV 2
d

]

}

= µd ·

(

N − k − 1

N − 1

)CV 2
d

(9)

where we have used the harmonic series approximation6 , which holds for N−k ≫
1 and whose accuracy increases for larger values of N − k.

Substituting Eq. (9) in Eq. (4) gives us Result 1.

2.4 Out Degree

Result 2. The mean value of the out degree at step k, Dout(k), is approximately

given by the relation

6
Pk

n=1
1
n
≈ ln(k) + γ, where γ is the Euler-Mascheroni constant.

7



Dout(k) =

(N − k)µd

[

(

N − k

N − 1

)CV 2
d

−

(

N − 2

N − 1

)(

N − k

N − 1

)2CV 2
d

+1
]

(10)

To derive Result 2 we have followed a similar method as before to form a

recursion:

D
out

(k + 1) = D
out

(k) + [µnew
d (k) − 2]

−2
[

D
out

(k) − 1
] µnew

d (k) − 1

(N − k) · µd(k) − 1
(11)

Due to space limitations, the details about the setup and solution of Eq.(11) are

omitted and can be found in Appendix 5.2. We will only provide here an intuitive

sketch of proof based on a simple example.

In Fig. 2, the set of nodes with the message is C(k) = {x1, ..., xk} and the out

degree of step k is given by the number of edges that connect the nodes ∈ C(k)
with the nodes /∈ C(k) (blue+green edges). If we denote as xk+1 the next node

to receive the message and assume that the node x2 disseminates the message to

xk+1, the out degree of the next step, Dout(k + 1), is calculated as following:

From the value of Dout(k) we have to subtract the number of edges that connect

the nodes ∈ C(k) with the node xk+1 (green edges). Let us denote this number

as N1. Then we have to add the number of the edges of the new node xk+1 that

connect it with the nodes /∈ C(k) (red edges) and we denote this number as N2. It

is evident that N2 = dnew − N1, where dnew is the degree of the node xk+1. So

we can write:

Dout(k + 1) = Dout(k) − N1 + N2

= Dout(k) + dnew − 2 · N1 (12)

To estimate the number of the edges that connect the nodes ∈ C(k) with the

node xk+1 (green edges), i.e. N1, we should consider that each of the edges of

Dout(k), except for the one that connected to xk+1, is connected with another

edge of xk+1 with probability
dnew(k)−1

(N−k)·µd(k)−1 , where dnew(k) − 1 is the number of

the unoccupied edges of xk+1 and (N − k) ·µd(k)− 1 is the total number of edges

of the nodes /∈ C(k). We do not take into account the probability of double edges

or self-loops, because this probability for large networks is almost zero [4]. So the

expectation of N1 will be

E[N1] = 1 + (Dout(k) − 1) ·
dnew(k) − 1

(N − k) · µd(k) − 1
(13)

Now, from equations Eq. (12) and Eq. (13), we can prove Eq. (11). Furthermore,

using Result 1 and assuming that the minimum degree, dmin, of the network is

8



much larger than 1, which also implies that µnew
d (k),Dout(k) ≥ dmin ≫ 1, we

can write for Eq. (11):

D
out

(k + 1) = D
out

(k) ·

[

1 − 2
1 + CV 2

d

N − k

]

+ (1 + CV 2
d ) · µd(k) (14)

The solution of Eq. (14), for Dout(1) = µd, is the Result 2.

Piecewise Formula: The above result provides us with a closed form expres-

sion for the mean value of the out degree Dout(k), at step k, which allows us to cal-

culate the necessary transition rates λ(k) in Eq.(1). However, it is based on Eq. (9)

that was derived using some assumptions (N − k ≫ 1 and CVd(k) = CVd), un-

der which we tend to underestimate µd(k). Specifically, for some distributions pd,

Eq. (9) might produce, in the last steps of the recursion, unacceptably small values

for µd(k). We can easily correct this by explicitly forcing µd(k) ≥ dmin (which

always holds). Then, it can be proved (Appendix 5.3) that a better approximation

for Dout(k) is given by the following piecewise result:

Result 3. The mean value of the out degree is calculated by Eq. (10) for k ≤ kstop,

and by

D
out

(k) = (N − k)2 ·

[

Dstop − dmin · (N − kstop)

(N − kstop)2
+

dmin

N − k

]

(15)

for k > kstop, where kstop =

[

1 −
(

dmin

µd

)
1

CV 2
d

]

· (N − 1) and Dstop is com-

puted by setting k = kstop in Eq. (10).

2.5 Spreading Delay

To conclude our derivation, let us look back at our initial equation for the rates

of Fig.1, λ(k) = λ ·Dout(k). Note that we have derived thus far the expected value

for Dout(k). Yet, Dout(k) is a random variable depending on C(k), the actual set

of the k nodes that have the message at state k. Given C(k), the delay of step k,

Tk,k+1, is an exponential random variable with rate λ(k) = λ · Dout(k). Thus,

E [Tk,k+1|C(k)] = 1
λ·Dout(k) , (16)

and using the properties of conditional expectation, we get the expected delay of

step k:

E [Tk,k+1] =
∑

C(k)

1

λ · Dout(k)
· P{C(k)} =

1

λ
· E

[

1

Dout(k)

]

(17)

9



We cannot, in general, replace E
[

1
Dout(k)

]

above, which is hard to calculate,

with 1

D
out

(k)
, which follows directly from Eq.(10) and (15). In fact, Jensen’s in-

equality suggests that 1

D
out

(k)
≤ E

[

1
Dout(k)

]

.

To proceed with our approximation, we resort to the Delta method [18]. This

is a method for approximating the expectation of functions of random variables.

Here, the random variable is X = Dout(k) and we need to compute (Eq. (17)) the

expectation of the function f(X) = 1
X . We can approximate f(X) with a Taylor

series expansion about the mean value E[X] = D
out

(k). Finally, by keeping only

the first few terms of this series and taking their expectation, we can more easily

express E[Tk,k+1] as a function of moments of Dout(k). Specifically, considering

the first two terms of the expansion, we get

E [Tk,k+1] =
1

λ
· E

[

1

Dout(k)

]

≈
1

λ · D
out

(k)
(18)

Now, in Eq. (18), we can calculate the expected step delay by substituting the value

of Eq. (10) or Eq. (15).

The accuracy of the Delta method and the above approximation is higher, if

the mass of the random variable X = Dout(k) is concentrated around its mean

D
out

(k) [18]. It is known that, in a configuration model network, the network

structural properties and the properties of processes on the network becoming con-

centrated more and more narrowly around their mean value [4], as the network size

increases. Therefore, the larger the network size N , the higher the accuracy of the

approximation. Furthermore, if increased accuracy is desired, more terms in the

Taylor series above could be used (by deriving a few higher moments of Dout(k)).

3 Model Validation

In order to validate our model, we compare the theoretical results we derived,

against a sample of simulations for both synthetic and real-world networks.

Synthetic Simulations: At first, we created various synthetic scenarios conform-

ing to our model (Section 2.1). For each scenario, the procedure we follow, is:

1. We choose an initial degree distribution pd.

2. With the configuration model we create 50 different networks (contact graphs)

and for each pair of nodes in a network we create a sequence of contact

events with inter-contact times drawn from an exponential distribution with

rate λ = 1.

3. For each network, we generate 1000 messages at random times and at ran-

dom source nodes and start the speading.

10



4. We calculate the average values, over all networks and spreading processes

of the specific scenario, of the out degree, D
out

(k), and step delay, E[Tk,k+1],
of each step.

To choose realistic parameters for the degree distributions in our scenarios, we

analysed contact graphs of real-world networks7 and found that the degrees fol-

low either a uniform or right-skewed distribution with CVd in the range [0.6, 0.85]
(details for the scenarios in Table 3).

Table 1: Parameters of the contact graphs of four real-world scenarios.

TRACE network size N µd CVd

Sigcomm 2009 76 25.5 0.6

SocioPatterns 111 7.6 0.85

Cabspotting 536 120 0.74

Infocom 2006 98 32 0.61

In Fig. 3 we present the out degree for each step in two scenarios with 1000
nodes. We compare the simulation values with the theoretical (Results 2 and 3).

We can see that the achieved accuracy is significant. As expected, in the scenario

with higher CVd the accuracy is lower, especially for the last steps, because the

approximations we did in the derivation of the theoretical results are less accurate

as the CVd increases. Also, in Fig. 8(a) there was not need to use the piecewise

formula (Result 3) and in the second case, Fig. 8(b), it should be used only for the

last 25% of the steps. The corresponding values for Dout(k) that a fully-meshed

network model would predict are very far from the simulated values (e.g. for the

500th step it gives a value 15 times larger). We therefore also compare our results to

a baseline model: a regular graph with the same number of edges as our network,

but where every node has the same degree. Fig. 3 confirms that our model performs

significantly better.

In Table 2 we present the average relative errors for Dout(k), defined as

E

[

|Dout(k)sim − Dout(k)th|

Dout(k)sim

]

, for four networks (of which the two correspond to the results presented in Fig. 3)

of 1000 nodes and similar µd values. We show the average relative error for the

first 250, 500 and 750 steps and the total (over all steps). The more steps we

consider, the higher the error is. This comes of the fact that our theoretical results

are less accurate for the last steps of the spreading (Section 2). It can be seen that

7The traces are available at:

1) SocioPatterns: http://www.sociopatterns.org/

2) Sigcomm 2009: http://crawdad.cs.dartmouth.edu/thlab/sigcomm2009

3) Cabspotting: http://crawdad.cs.dartmouth.edu/epfl/mobility

4) Infocom 2006: http://crawdad.cs.dartmouth.edu/cambridge/haggle
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Figure 3: Dout(k) of each step in two scenarios with 1000 nodes.

for networks with lower CVd the error is lower. For example, for CVd = 0.31,

the error is insignificant, even for the last steps. For the extreme case of CVd =
1.29 8 the error is not negligible. However, our prediction is still acceptable, if we

consider the heterogeneity this scenario has.

Table 2: Relative step error of Dout(k) on different network scenarios.

250 steps 500 steps 750 steps over all steps

CVd = 0.31 1% 2% 2% 2%

CVd = 0.65 1% 1% 2% 6%

CVd = 0.92 4% 4% 11% 15%

CVd = 1.29 14% 18% 27% 29%

Fig. 4 shows the aggregate step delay (i.e. the time the message needs to

be spread in k nodes) for two synthetic scenarios: (a) network with with 100
nodes, µd = 23 and CVd = 0.71; and (b) network with 500 nodes, µd = 30
and CVd = 1.16 9. Similarly to the results for Dout(k), it can be seen also here

that the theoretical aggregate step delay is close to the simulated value for almost

every step.

Synthetic Simulations - Heterogeneous Rates: Further, we investigate the per-

formance of our model in networks with heterogeneous contact rates (different λij

for each pair). We create synthetic scenarios and run simulations as before. The

only difference is the generation of the contact events, where, now, the inter-contact

times are exponentially distributed but with a different rate for each pair. We chose

λij to follow a log-normal distribution with µλ = 1 and σ2
λ = 3.

8We characterise it as an extreme case, as the min and max degrees in this network are 22 and

968, respectively, in order to have a CVd value as high as possible.
9It is the higher variance we could achieve among all the scenarios of 100 and 500 nodes, re-

spectively. The degree distribution was highly skewed and the maximum degree in the network was

almost equal to the network size, dmax = 100 and dmax = 500 for the two cases.
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Figure 4: Aggregate step delay. Synthetic simulations in scenarios with: (a) 100
nodes, µd = 23 and CVd = 0.71; and (b) network with 500 nodes, µd = 30 and

CVd = 1.16.

The results for the aggregate step delay are presented in Fig. 5. The scenar-

ios presented are the corresponding to the homogeneous-rates scenarios of Fiq. 4.

As can be seen in Fig. 5, simulation and theoretical results diverge more for the

heterogeneous contact rate scenario.

This divergence is more clearly seen in Fig. 6, which shows the relative error

of the average aggregate step delay over all the steps, i.e. E
[

|Dsim−Dth|
Dsim

]

where

D denotes the aggregate step delay. We present six scenarios of different network

sizes. For each scenario we chose a bounded pareto degree distribution with min-

imum value dmin = 0.1 · N (N is the network size), dmax = N and shape factor

the one that resulted in the higher CVd. These represent the worst case parameters

(among the ones we observed in real traces) that most hurt the accuracy of our

model. Nevertheless, in the homogeneous scenarios, the error is very low (below

10% for almost all the networks) and, in the heterogeneous scenarios, it is always

higher, but decreases for larger network sizes. For a network with 300 nodes, it

becomes approximately 20%, which is rather satisfying, given the high variability

in both the degrees and rates in this scenarios.

Real-world Networks: After evaluating the accuracy of our model in a range of

different (regarding the network size, degree distribution, contact rates) synthetic

scenarios, we present here the results of simulations on real-world traces. It is of

interest to see to what extent our model can capture the quantities of interest in a

real-world scenario, where the assumptions do not hold exactly, as we have noted

community structure (i.e. the clustering coefficient [4] is 27 − 50% more than in

the corresponding configuration model network), heterogeneous contact rates and

non-Poisson contact events (e.g. less contacts during night hours).

Fig. 7 shows the results of 1000 simulation runs on the mobility trace from

the 4 days iMotes experiment during Infocom 2006 [19], which contains traces of
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Figure 5: Aggregate step delay. Synthetic simulations in scenarios with heteroge-

neous contact rates: (a) 100 nodes, µd = 23 and CVd = 0.71; and (b) network

with 500 nodes, µd = 30 and CVd = 1.16.
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Figure 6: Relative errors of the delay averaged over all the steps in scenarios with

Homogeneous and Heterogeneous contact rates for 6 different network sizes.
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Figure 7: Simulations on Infocom 2006 trace: 96 nodes, µd = 33, CVd = 0.6

Bluetooth sightings of 78 mobile and 20 static nodes. In Fig. 7(a) it can be seen

that the theoretically predicted out degree only differ slightly, except for some last

steps, from the simulation’s average. Thus we can infer, that despite the commu-

nity structure of this network, our model can still capture the way the spreading

proceeds among nodes with different degree. Fig. 7(b) shows the aggregate step

delay. We can see that the accuracy is good for more than half of the steps. How-

ever, in the following steps our theoretical results are far from the observed delay.

An explanation for this, is the correlation between the contact events of different

pairs which affects the spreading process (e.g. in conference events there are much

more contact events than during night hours).

We have observed similar good accuracy for the first 70-75% steps and diver-

gence subsequently, in other traces as well. In Fig. 8 we present the results of

1000 simulation runs on the mobility trace Cabspotting [20], which contains GPS

coordinates from 536 taxi cabs collected over 30 days in San Francisco.

4 Conclusions

In this paper, we have derived closed form approximations for the step-wise

and total delay of epidemic spreading on graphs with arbitrary degree distribu-

tions, where neighbors contact randomly. Despite the assumptions made, and the

use of only partial knowledge of the degree distribution, we conclude that our re-

sults offer useful accuracy in networks with reasonable heterogeneity (CVd), which

is the case for many Opportunistic Networks. Even for some real contact network

examples, known to exhibit considerably more structure, our result provides very

good accuracy for over 70% of the spreading process. However, some social net-

works exhibit much higher values of heterogeneity (CVd). This means that, for

such networks, such closed form approximations might not be feasible. Coarser

bounds (e.g. based on conductance and spectral analysis) might offer an alterna-
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Figure 8: Simulations on Cabspotting trace: 536 nodes, µd = 120, CVd = 0.74

tive, but they come at the cost of potentially large errors and prohibitive complexity

for online and distributed estimation, especially in a low contact rate context. We

intend to consider such tradeoffs further as a part of future work.

5 Appendix

5.1 Conditions for Assuming a Constant Coefficient of Variation

From Eq. (6), we can easily result to the recurrence relation for the second

moment of the degree distribution:

d2(k + 1) =
N − k

N − (k + 1)
d2(k) −

1

N − (k + 1)

d3(k)

µd(k)
(19)

where dn(k) is the nth moment of the degree distribution.

As we have computed the expectation and the second moment of the degree

distribution in step k + 1, Eq. (7) and Eq. (19) respectively, we can find the recur-

rence relation for the coefficient of variation, which is:

CV 2
d (k + 1) =

CV 2
d (k) ·

(

1 − γd(k)·CVd(k)+2
N−k−1

)

+ 1
(

1 −
CV 2

d
(k)

N−k−1

)2 − 1 (20)

where we denote as γd(k) the skewness of the degree distribution. In Eq. (20), if we

do not know the value ofγd(k), we cannot solve the recurrence relation for CVd(k)
and we cannot evaluate it. Thus, as we can see, the expression for the value of

CV 2
d (k) (which is equivalent to the second moment E[d2(k)]) includes the value of

the third moment of the degree distribution at state k. So, recursively, it follows that

the exact solution of Eq. (7) requires the knowledge of all the higher moments of
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the degree distribution. However, this requirement both increases complexity and

decreases applicability as it is not always efficient or possible to know or estimate

all the higher moments of the degree distribution. Therefore, in order to find a

closed form solution for µd(k), we assume CVd(k) = CVd ∀k.

This relation hold for the cases where
γd(k)·CVd(k)+2

N−k−1 ≪ 1 and
CV 2

d
(k)

N−k−1 ≪ 1,

where it is easy to see from Eq. 20 that

CV 2
d (k + 1) ≃ CV 2

d (k) (21)

Summarizing, it is relatively accurate to assume that the coefficient of variation

of the degree distribution remains the same for each state k, when

N − k ≫ max{1, CV 2
d , γd · CV 2

d } (22)

5.2 Proof of Result 2

5.2.1 Rigorous Proof of the recurrence relation, Eq. (11)

At first we will show, rigorously, how we derived the recurrence relation for

the mean out degree in each step, i.e. D
out

(k).

Proof. At step k, the average degree of the nodes that do not have the message is

µd(k) and is given by Eq. (9). Thus, it holds that the total number of edges, which

are not connected to C(k) is (N − k) ·µd(k). Let the out degree to be Dout(k) and

the degree of the next node to receive the message to be dnew(k) 10. According to

the reasoning of Section 2.4, the out degree of the next step will be

Dout(k + 1) = Dout(k) + (dnew(k) − 2) − 2 · H (M,m,n) (23)

where H (M,m,n) is a random variable drawn from a Hypergeometric distribution
11 with parameters

M = (N − k) · µd(k) − 1

m = dnew(k) − 1

n = Dout(k) − 1

Taking the expectation of both sides of Eq. (24) we get

D
out

(k + 1) = D
out

(k) + (µnew

d (k) − 2) − 2 · E [H (M, m, n)] (24)

The value of µnew
d (k) is given by Eq. (2). We cannot calculate directly the ex-

pectation of the Hypergeometric distribution, because its arguments are random

10Dout(k) and dnew(k), are not expectations as in Section 2, but they are random variables.
11The Hypergeometric distribution is a discrete probability distribution that describes the proba-

bility of l successes in n draws from a finite population of size M , containing m successes, without

replacement.
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variables too. Therefore, we need to compute first the conditional expectation,

conditioning on Dout(k) and dnew(k):

E [H (M, m, n)] =

=
X

Dout′

X

dnew′

E [H (M, m,n)|Dout′

, d
new′

] · P
“

D
out′

, d
new′

”

=
X

Dout′

X

dnew′

n · m

M
· P

“

D
out′

, d
new′

”

=
X

Dout′

X

dnew′

(dnew′

− 1) · (Dout′ − 1)

(N − k) · µd(k) − 1
· P

“

D
out′

, d
new′

”

(25)

and as Dout(k) and dnew(k) are independent random variables, then Eq. (25) be-

comes

E [H (M, m, n)] =
(µnew

d
(k) − 1) · (Dout(k) − 1)

(N − k) · µd(k) − 1
(26)

and Eq. (24) turns into Eq. (11).

5.2.2 Solution of Eq. (14)

Now, that we derived the recurrence relation Eq. (11), we solve its equivalent

expression which is given by Eq. (14).

Proof. For k = 1, Eq. (14) gives:

D
out

(2) = D
out

(1) ·

[

1 − 2
1 + CV 2

d

N − 1

]

+ (1 + CV 2

d ) · µd(1),

for k = 2, it gives:

D
out

(3) = D
out

(2) ·

[

1 − 2
1 + CV 2

d

N − 2

]

+ (1 + CV 2

d ) · µd(2)

= D
out

(1) ·

[

1 − 2
1 + CV 2

d

N − 1

]

·

[

1 − 2
1 + CV 2

d

N − 2

]

+ (1 + CV 2

d ) · µd(1) ·

[

1 − 2
1 + CV 2

d

N − 2

]

+ (1 + CV 2

d
) · µd(2)

and recursively, it can be expressed as

D
out

(k) =D
out

(1) ·

k−1
Y

m=1

»

1 − 2
1 + CV 2

d

N − m

–

+

k−1
X

m=1

(1 + CV
2

d ) · µd(k)

k−1
Y

ℓ=m+1

»

1 − 2
1 + CV 2

d

N − ℓ

–

(27)
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To find a closed-form expression (without sums and products of many terms)

for Eq. (27) we need first to calculate the sums and products separately. So, at first:

k−1
∏

m=1

[

1 − 2
1 + CV 2

d

N − m

]

≈
k−1
∏

m=1

e−2
1+CV 2

d
N−m

= exp{−2
(

1 + CV 2
d

)

·
k−1
∑

m=1

1

N − m
}

= exp{−2
(

1 + CV 2
d

)

·
N−1
∑

m=N−k+1

1

m
}

≈ exp{−2
(

1 + CV 2
d

)

· [ln(N − 1) − ln(N − k)]}

= exp{−2
(

1 + CV 2
d

)

· ln

(

N − 1

N − k

)

}

=

(

N − k

N − 1

)2(1+CV 2
d )

=

(

N − k

N − 1

)

·

(

N − k

N − 1

)1+2CV 2
d

(28)

where for the first approximation we used the Taylor series expansion (similarly to

the proof of Result 1), which is accurate for N − k > 4(1 + CV 2
d ), and for the

second approximation we used the harmonic series approximation, whose accuracy

increases for larger values of N − k.

Similarly to Eq. (28), we can find that

k−1
∏

ℓ=m+1

[

1 − 2
1 + CV 2

d

N − ℓ

]

≈

(

N − k

N − m − 1

)2(1+CV 2
d )

(29)

and now, using Eq. (29), we can write for the summation in Eq. (27)
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k−1
X

m=1

(1 + CV
2

d ) · µd(k)

k−1
Y

ℓ=m+1

»

1 − 2
1 + CV 2

d

N − ℓ

–

=

k−1
X

m=1

(1 + CV
2

d ) · µd(k) ·

„

N − k

N − m − 1

«2(1+CV 2

d )

= (1 + CV
2

d )

k−1
X

m=1

µd

„

N − m − 1

N − k

«CV 2

d

·

„

N − k

N − m − 1

«2(1+CV 2

d )

= (1 + CV
2

d ) · µd ·
(N − k)2(1+CV 2

d )

(N − 1)CV 2

d

·

k−1
X

m=1

„

1

N − m − 1

«2+CV 2

d

= (1 + CV
2

d ) · µd ·
(N − k)2(1+CV 2

d )

(N − 1)CV 2

d

·

N−2
X

m=N−k

1

m2+CV 2

d

(30)

We approximate the sum that appears in the right side of the last line in Eq. (30)

with the integral

N−2
X

m=N−k

1

m2+CV 2

d

≈

Z N−1

N−k

1

m2+CV 2

d

dm

=
(N − 1)(1−(2+CV 2

d
)) − (N − k)(1−(2+CV 2

d
))

1 − (2 + CV 2
d )

=
1

1 + CV 2
d

"

1

(N − k)1+CV 2

d

−
1

(N − 1)1+CV 2

d

#

(31)

and finally, combining Eq. (30) and Eq. (31), we get

k−1
X

m=1

(1 + CV
2

d ) · µd(k)
k−1
Y

ℓ=m+1

»

1 − 2
1 + CV 2

d

N − ℓ

–

= µd ·
(N − k)2(1+CV 2

d )

(N − 1)CV 2

d

·

"

1

(N − k)1+CV 2

d

−
1

(N − 1)1+CV 2

d

#

= µd · (N − k) ·

"

„

N − k

N − 1

«CV 2

d

−

„

N − k

N − 1

«1+2CV 2

d

#

(32)

Substituting in Eq.(27) the expressions from Eq.(28) and Eq.(32) and having in

mind that D
out

(1) = µd, we can write

D
out

(k)

= µd ·

„

N − k

N − 1

«

·

„

N − k

N − 1

«1+2CV 2

d

+ µd · (N − k) ·

"

„

N − k

N − 1

«CV 2

d

−

„

N − k

N − 1

«1+2CV 2

d

#

= µd · (N − k)

"

„

N − k

N − 1

«CV 2

d

−

„

1 −
1

N − 1

« „

N − k

N − 1

«1+2CV 2

d

#

(33)
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which is the Result 2.

5.3 Proof of Result 3

Applying the condition µd(k) ≥ dmin in Eq. (9), we can find that it is satisfied

for the steps k that

k ≤

[

1 −

(

dmin

µd

)
1

CV 2
d

]

· (N − 1) = kstop (34)

The previous equation means that after the kth
stop state 12, Eq. (9), gives values

µd(k) ≤ dmin. To overcome this problem, we will use Eq. (10) for calculating

D
out

(k) for k ≤ kstop till step kstop and then, as all the remaining nodes must have

degree dmin, use the recurrence relation:

D
out

(k + 1) = D
out

(k) + dmin −
2 · D

out
(k)

N − k
(35)

Solving, similarly as in Appendix 5.2, the Eq. (35), for initial condition D
out

(kstop) =
Dstop where the value of Dstop is taken from Eq. (10), we end up to the recurrence

relation

D
out

(k) =Dstop ·
k−1
∏

m=kstop

(

1 −
2

N − m

)

+ dmin ·
k−1
∑

m=kstop

k−1
∏

ℓ=m+1

(

1 −
2

N − m

)

(36)

for k > kstop. Using the Teylor series expansion and Harmonic series approxima-

tions we can show that

k−1
∏

m=kstop

(

1 −
2

N − m

)

=

(

N − k

N − kstop

)2

(37)

k−1
∏

ℓ=m+1

(

1 −
2

N − m

)

=

(

N − k

N − m − 1

)2

(38)

12In case kstop > N − 1 the following analysis is not needed and we can use the Result 2
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and then, by Eq. (38):

k−1
∑

m=kstop

k−1
∏

ℓ=m+1

(

1 −
2

N − m

)

=

k−1
∑

m=kstop

(

N − k

N − m − 1

)2

= (N − k)2 ·

N−kstop−1
∑

m=N−k

1

m2

≈ (N − k)2 ·

∫ N−kstop

m=N−k

1

m2
dm

= (N − k)2 ·

[

1

N − k
−

1

N − kstop

]

(39)

Now, Result 3 follows easily by substituting the expressions of Eq. (37) and Eq. (39)

in Eq. (35).

Remark: As we saw, in our analysis, we first consider Result 1 and for the

last steps we assume µnew
d (k) = dmin in order to derive Result 3. In addition to

the intuitive reasons, which we described, this assumption can also justified by a

similar work. In [10], the authors investigate, through analysis and simulations, the

average degree of the newly infected nodes, µnew
d (k). They conclude that in early

steps µnew
d (k) is given by d2

d
= µd · (1 + CV 2

d ), which is in agreement with our

result, and then it gradually decreases and in the last steps it becomes equal to the

minimun degree of the network, dmin.
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