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Abstract

We derive the performance limits of a radio system consisting of a transmitter with t antennas
and a receiver with r antennas, a block-fading channel with additive white Gaussian noise, delay
and transmit-power constraints, and perfect channel-state information available at both transmitter
and receiver. Because of a delay constraint, the transmission of a code word is assumed to span
a finite (and typically small) number M of independent channel realizations; therefore, the relevant
performance limits are the information outage probability and the “delay-limited” (or “non-ergodic”)
capacity [11, 16, 35].

We derive the coding scheme that minimizes the information outage probability. This scheme
can be interpreted as the concatenation of an optimal code for the AWGN channel without fading
to an optimal beamformer. For this optimal scheme we evaluate minimum-outage-probability and
delay-limited capacity. Among other results, we prove that, for the fairly general class of regular
fading channels, the asymptotic delay-limited capacity slope, expressed in bit/s/Hz per dB of transmit
SNR, is proportional to min(t; r) and independent of the number of fading blocks M . Since M is a
measure of the time diversity (induced by interleaving) or of the frequency diversity of the system,
this result shows that, if channel-state information is available also to the transmitter, very high rates
with asymptotically small error probabilities are achievable without need of deep interleaving or high
frequency diversity. Moreover, for a large number of antennas the delay-limited capacity approaches
the ergodic capacity.
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1 Introduction

Recent work (see, e.g., [10, 11, 35]) has explored the ultimate performance limits of multiple-

antenna systems in a fading environment. It has been shown that, in a system with t transmit

and r receive antennas and a slow fading channel modeled by an t�r matrix with random i.i.d.

complex Gaussian entries (the “independent Rayleigh fading” assumption), the average chan-

nel capacity with perfect channel-state information (CSI) at the receiver is about m , minft; rg
times larger than that of a single-antenna system for the same transmitted power and band-

width. The capacity increases by about m bit/s/Hz for every 3-dB increase in signal-to-noise

ratio (SNR).

In this paper we extend the previous work to a block-fading additive white Gaussian noise

(BF-AWGN) channel with transmit-power constraint and perfect CSI available at the transmit-

ter and at the receiver1 (see [1] for a comprehensive review of information-theoretic issues on

fading channels and a rich list of references).

The block-fading model applies to a channel in which several adjacent symbols (referred

to in the sequel as a block) are affected by the same fading value. For example, this model is

applicable to an indoor wireless data network or a personal communication system with mobile

terminals moving at walking speed, so that the channel gain, albeit random, varies so slowly

with time that it can be assumed as constant along a block (see also [7, 10, 11, 26, 33, 35]). More

generally, fading blocks can be thought of as separated in time (e.g., in a time-division system

[25]), as separated in frequency (e.g., in a multicarrier system), or as separated both in time and

in frequency (e.g., with slow time-frequency hopping [4, 18, 19]). With this model, even though

very long code words are transmitted, perfect interleaving cannot be achieved because of delay

limitations. In particular, following [5, 6, 25], we assume that a code word spans a number M

of fading blocks. As explained in [25], M can be regarded as a measure of the interleaving

delay of the system, so that systems subject to a strict delay constraint are characterized by a

fixed (and usually small) value of M . On the other hand, a large number N of channel symbols

can be transmitted simultaneously from each of the t transmitting antennas during each fading

block, so that the assumption N !1 is justified.2

1Hereafter we write CSIT and CSIR to denote the availability of perfect channel-state information at the trans-

mitter and at the receiver, respectively.
2M = 2 in the IS-54 standard. M = 4 in the half-rate GSM standard, and M = 8 in its full-rate version. In all
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Throughout the paper, we assume that fading blocks are statistically independent unless oth-

erwise explicitly stated.

With block fading, the average mutual information over the ensemble of channel realiza-

tions cannot characterize the achievable transmission rates: in fact, a BF-AWGN channel span-

ning a finite number of fading blocks is not information stable, and achievable rates should be

characterized through the exceedingly general non-ergodic approach of Verdú and Han [38].

Since the instantaneous mutual information of the M -block channel is a random variable, we de-

fine the information outage probability as the probability that this mutual information is lower

than the rate of the code used for transmission [25]. This outage probability is closely related

to the code word error probability, as averaged over the random coding ensemble and over all

channel realizations; hence, it provides useful insight on the performance of a delay-limited

coded system [4, 18, 19, 20, 21]. An additional important definition related to outage proba-

bility is that of delay-limited capacity, sometimes also referred to as zero-outage capacity. This is

the maximum rate for which the minimum outage probability is zero for a given power con-

straint [5, 6, 16].3

The capacity of block-fading channels is best explained in the framework of capacity versus

outage presented in [1], where the block-fading channel is modeled as a compound channel [8],

whose transition probability depends on a random parameter � 2 �, with given probability

distribution. Every rate R is associated to the largest set �R � � such that, for all � 2 �R, the

capacity C� of the channel for given � satisfies C� � R. Accordingly, the outage probability

corresponding to R is

Pout(R) = P(� =2 �R) = P(C� < R)

and the supremum of the rates, corresponding to zero outage probability, is the delay-limited

capacity. In our setting, the role of the channel parameter � is played by a sequence of M

random r � t matrices, describing the fading gains of the multiple antenna channel during the

systems the number of channel symbols in each block exceeds 100 [27].
3One should observe that both outage probability and delay-limited capacity are defined forN !1. Seemingly,

this invalidates our assumption of delay-constrained transmission. However, these quantities should be regarded

as useful mathematical abstractions (as well as other classical assumptions like infinite interleaving), as they predict

accurately the behavior of practical codes for moderately large number of symbols per fading block. For example,

for N � 100 the outage probability predicts surprisingly well the word error probability of good practical codes

[18, 19].
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M transmission blocks.

As mentioned before, one basic assumption in this paper is that the transmitter knows, be-

fore transmitting a code word, the channel gains over all M blocks in which the code word is

split. To assure causality, this assumption is valid when the block-fading model is applied to a

multicarrier transmission scheme in which the available frequency band (over which the fad-

ing is selective) is split into M subbands, as with orthogonal frequency-division multiplexing

(OFDM). The subbands are so narrow that fading is frequency-flat in each of them, and they

are transmitted simultaneously, via orthogonal subcarriers.4 When causality prevents to obtain

the exact CSIT our results represent an upper bound to achievable performance.

We have already commented upon the attention that multiple-antenna transmission/recep-

tion has received of late. Several information-theoretic analyses have been produced: for exam-

ple, [23] contains an analysis of several practical transmission schemes with multiple antennas,

while [35] determines the ergodic capacity of a multiple-antenna channel with CSIR only and

independent Rayleigh fading by using the distribution of the eigenvalues of a Wishart matrix

[9]. Refs. [10, 11, 12, 35] investigate the outage probability of a single-block BF-AWGN chan-

nel with CSIR. Papers [7] and [26] study the performance of a single-block BF-AWGN channel

with deterministic frequency-selective fading and when the number of transmit/receive an-

tennas approaches infinity (with and without CSIT), respectively. Both [7] and [26] resort to

parallel channel decomposition and standard water-filling in order to maximize the mutual

information. Code designs have also been proposed for multiple-antenna transmission (see,

e.g., [15, 30, 31, 32, 33, 34]). The effect of correlation among antennas is studied in [2, 28].

Finally, in [24], the ergodic capacity of a block-fading channel with multiple antennas in the ab-

sence of CSIT and CSIR is investigated: upper and lower bounds to the capacity are obtained

as well as the general form of the capacity achieving signal set.

1.1 In this paper . . .

In this paper we solve the problem of minimizing the outage probability at a given fixed code

rate. Given an M -block BF-AWGN channel with t transmit and r receive antennas (hereafter
4From a practical point of view, the transmitter can obtain the CSI either by a dedicated feedback channel (some

existing systems already implement a fast power-control feedback channel [27]) or by time-division duplex [40],

where the uplink and the downlink time-share the same M subchannels and the fading gains can be estimated

from the incoming signal.
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referred to as the M -block t�r BF-AWGN channel), our goal is to find the transmission scheme

that minimizes the outage probability under the constraint that the average transmitted power

(to be defined properly) shall not exceed a given threshold. The optimal transmission scheme

consists of a standard (“Gaussian”) code for the AWGN channel, followed by a suitable beam-

former (described by a t� t matrix) which may vary from block to block. These beamforming

matrices can be explicitly evaluated once the fading-gain matrices are known. With this ap-

proach, the problems of coding and beamforming are decoupled, and no special space-coding

design is needed to minimize the outage probability: this stands in contrast to the case of no

CSIT, where specific space-code constructions prove to be useful [33]. We prove that, for a

fairly general class of fading channels, the asymptotic (in the m) delay-limited capacity grows

linearly with m for a fixed transmit SNR independently of the number of fading blocks M .

Since M is a measure of the interleaving delay of the system, this result shows that, when CSI

is made available to the transmitter, very high rates with asymptotically small error probability

are achievable without the need of deep interleaving or of large frequency diversity.

The results presented here complement our previous work [5, 6], where we examined the

case of optimal power allocation for a single transmit/receive antenna system.

This paper is organized as follows. Section 2 describes the channel model. Section 3 is a

quick tour d’horizon on channel-capacity results when there are no delay constraints. Delay

constraints are introduced in Section 4. The minimum outage probability is derived in Section

5. Finally, numerical results elucidating the theory are shown and discussed in Section 6, while

Section 7 concludes the paper by summarizing our findings.

2 Channel model

We consider the M -block t�r BF-AWGN channel. We assume a coding scheme whereby every

code word contains MNt complex symbols, and is transmitted by dividing it into M blocks

of Nt symbols each. The Nt symbols in each block are further grouped into t sub-blocks of

N symbols each (see Fig. 1). Finally, the t sub-blocks are simultaneously transmitted by the t

different antenna: under the assumption of an ideal Nyquist bandlimited modulation scheme,

the spectral efficiency achieved is t symbol/s/Hz. This coding scheme is called a space-time

code in [33]. Each one of the r receiving antennas observes the superposition of the t symbols
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Figure 1: One code word in an M -block fading channel.

transmitted, corrupted by the background noise, the fading (in the form of complex channel

gains), and the linear distortion introduced by the propagation channel. The outputs of these r

antennas are processed jointly.

Under this BF-AWGN model, the discrete-time baseband equivalent channel can be mod-

eled by

yk[n] = Akxk[n] + zk[n] (1)

for k = 1; : : : ;M (block index) and n = 1; : : : ; N (symbol index along a block). Ak 2 C
r�t

are the i.i.d. matrices of complex channel gains (constant along each block under our block-

fading assumption).5 yk[n] 2 C
r , xk[n] 2 C

t , zk[n] 2 C
r are the received, transmitted, and

noise vectors, respectively. The noise is circularly-symmetric complex Gaussian with variance

1 in all of its components: we write Nc(0; I) to indicate this, and we observe that, with this

normalization of the noise variance, signal power and signal-to-noise ratio coincide. 6

Input constraints. We supplement the channel model above with input constraints. For the

sake of clarity, we illustrate them with reference to an M -subcarrier OFDM system. Here the

total transmit power is (1=M)
PM

k=1 Ek, where Ek is the average transmit energy per s/Hz on

the kth subcarrier, and the available system bandwidth is normalized to 1. Under our assump-

tion that the noise has unit power spectral density, the SNR in the kth subcarrier is Ek, and

the average SNR is (1=M)
PM

k=1 Ek. This is proportional to the total transmit power. There-

fore, we can consider input constraints in terms of SNR per subcarrier (or, within the most
5We assume that the joint cdf of the real and imaginary parts of their components is a continuous function. Thus,

the matrixAkA
y

k has rank m and hence exactly m positive eigenvalues with probability 1.
6We denote the distribution of a jointly Gaussian complex random column vector z by Nc(�;�) with � , E[z]

and � , E[(z ��)(z� �)
y
] where y denotes Hermitian conjugation.
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general channel model, per block). In particular, the total transmit energy per s/Hz in the

kth subcarrier is obtained as the sum of the energies output by the t transmit antennas, i.e.,

Ek = E [x
y

k [n]xk[n]] = Tr(E [xk [n]x
y

k[n]). Thus, thanks to our normalization of the noise power

spectral density, transmit-energy constraints translate immediately into SNR constraints. In

summary, we express our constraints in terms of the average trace of the input covariance ma-

trices, (1=M)
PM

k=1 Tr(E [xk [n]x
y

k[n]).

An equivalent channel model. Following a standard approach, we generate an equivalent,

more convenient model for (1) by using the singular-value decomposition [17]

Ak = UkSkV
y

k

where Uk 2 C
r�r and Vk 2 C

t�t are unitary, and Sk 2 C
r�t is a diagonal matrix whose

main-diagonal elements are the “singular values” �
1=2

k;1 � : : : � �
1=2

k;m, with �k;i the i-th largest

eigenvalue of the non-negative definite Hermitian matrix AkA
y

k. By defining ey[n] , Uy

kyk[n],ezk[n] , Uy

kzk[n], and exk[n] , Vy

kxk[n], we can rewrite the channel input-output relation (1) in

the form eyk[n] = Skexk[n] + ezk[n] (2)

This is equivalent to (1): in fact, ezk[n] � Nc(0; I) and Tr(E [exk [n]exyk[n]]) = Tr(E [xk [n]x
y

k[n]])
7.

Thus, any input constraint on exk[n] directly translates into a constraint on the original channel

input xk[n].

3 No delay constraints: Ergodic capacity

We examine first the situation in which there are no delay constraints, so that M is allowed to

increase without bound. The channel here is BF-AWGN with block length N < 1. Since the

matrix process fAkgMk=1 describing the multiple antenna channel is (blockwise) i.i.d., the chan-

nel is information stable [38] as M ! 1 and capacity concides with the maximum average

mutual information. Actually, the assumption of i.i.d. matrices is not necessary for informa-

tion stability, and the results of Proposition 1 below holds also for more general ergodic but

correlated matrix processes. With CSIR, the capacity of this channel does not depend on the

value of N [22], and the following result holds [35]:
7Tr(A) ,

P
iAii denotes the trace of the matrix A
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Proposition 1. Under the input-power constraint Tr(E [x[n]xy [n]]) � 
, the capacity of the t � r

BF-AWGN channel is given by:

1. With CSIR and no CSIT,

CCSIR(
) =

mX
i=1

E [log2(1 + 
�i=t)] (3)

2. With CSIR and CSIT,

CCSIR;CSIT(
) =

mX
i=1

E [[log2(��i)]+] (4)

where � = �(
) is the solution to

E

"
mX
i=1

(� � 1=�i)+

#
= 
; (5)

m , minfr; tg, [a]+ , maxf0; ag, �1; : : : ; �m are the nonzero eigenvalues of AAy, and A is a

random matrix distributed as any one of the Ak’s.

�

Remark 1. For all block lengths N = 1; 2; : : :, capacities (3) and (4) are achieved by sequences

of codes with length MNt with M ! 1. Capacity (3) can be achieved by random codes

whose symbols are independent and have a circularly-symmetric complex Gaussian distribu-

tion Nc(0; 
=t). This implies that all antennas transmit the same average energy per symbol.

Capacity (4) can be achieved by generating random codes with i.i.d. components � Nc(0; 1)

and having each code word split into M blocks of N vectors exk[n] with t components each. For

block k, the optimal linear transformation

Wk = Vkdiag(
p

k;1; : : : ;

p

k;m; 0; : : : ; 0| {z }

t�m

) (6)

is computed, where 
k;i , [� � 1=�k;i]+. Finally, the vectors xk[n] = Wkexk[n] are transmit-

ted from the t antennas. This optimal scheme can be seen as the concatenation of an optimal

encoder for the unfaded AWGN channel, followed by an optimal beamformer with weighting

matrix Wk varying from block to block. This is a rather attractive scheme for coding, because

capacity can be approached by constructing a single “Gaussian” code book, which depends

on both the fading statistics and on the number of transmit/receive antennas only through its

coding rate. In this sense, we may say that optimal beamforming “achieves capacity.” �
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4 Performance under delay constraints

We now assume a finite value for M , which translates into a delay constraint, and perfect CSI.

We also assume transmission at a constant rate R. For any given M , we generate a sequence

of BF-AWGN channels, indexed by their block length N , N = 1; 2; : : :, and we study their

limiting performance as N !1. The coding theorem proved by the authors in [6, Proposition

2] applies verbatim to this vector channel.

Define the row vector �k , (�k;1; : : : ; �k;m) and the m � M matrix � , (�T
1 ; : : : ;�

T
M ).

Further, let 
k , (
k;1; : : : ; 
k;m) be the row vector of the elements along the main diagonal of

E [exk [n]exyk[n]], assumed to be independent of n,8 and define the t�M matrix � , (
T
1 ; : : : ;


T
M )

of individual transmit SNRs for the t antennas over the M blocks. We introduce the following:

Definition 1 (Instantaneous mutual information). The maximum instantaneous mutual infor-

mation IM (�;�) of the M -block BF-AWGN vector channel with eigenvalues � and transmit SNRs �

is defined as

IM (�;�) ,
1

M

MX
k=1

mX
i=1

log2(1 + �k;i
k;i) (7)

�

The mutual information (7) is achieved by independent Gaussian-distributed input sym-

bols xk[n] � Nc(0;WkW
y

k), with Wk given by (6). Observe also that with CSIT the instanta-

neous SNRs � depend on � (to stress this, occasionally we shall write �(�)).

We introduce a short-term input constraint by requiring the “instantaneous” SNR per block

not to exceed a threshold 
. This is expressed by

PM (�) ,
1

M

MX
k=1

mX
i=1


k;i � 
 (8)

When we transmit a long sequence of code words, the transmitter may choose to allocate more

power to the code words sent when the channel is bad, and less power to the codewords sent
8This does not entail any loss of generality. In fact, if the SNR depends on n, and hence we write 
k;i[n], we have,

from Jensen’s inequality,

1

MN

MX
k=1

mX
i=1

NX
n=1

log2(1 + �k;i
k;i[n]) �
1

M

MX
k=1

mX
i=1

log2

 
1 + �k;i

1

N

NX
n=1


k;i[n]

!

which shows that the optimum SNR distribution is uniform over the code word position within the same block and

transmit-antenna signal.
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when the channel is good. If this is the case, it makes sense to consider a long-term input con-

straint, as a constraint on the average SNR per block over a long sequence of code words. As-

suming ergodicity, we can express the long-term input constraint as [6]

E [PM (�)] � 
 (9)

(For later use, notice that the long-term constraint is weaker than its short-term counterpart: in

fact, (8) implies (9).)

For a given function �(�) satisfying (8) or (9), IM(�;�) is a random variable. We have the

following (see [1, 6, 16, 25] and references therein):

Definition 2 (Information outage probability). Let � satisfy (8) or (9). The information out-

age probability when the code rate is R is defined as:

Pout(R; 
) , P(IM (�;�) < R) (10)

�

In the following, we are especially concerned with the minimization of Pout(R; 
) with re-

spect to the choice of the SNR allocation function�with CSIR and CSIT9. This minimum outage

probability is intimately related to the capacity of the M -block BF-AWGN vector channel: in

order to distinguish the channel capacity without delay constraints from the capacity of the

M -block channel, the latter is referred to as the “delay-limited” capacity [16]. We have:

Definition 3 (Delay-limited capacity). The delay-limited capacity of the M -block BF-AWGN vec-

tor channel, subject to a short-term (resp., long-term) input constraint, is given by

Cdelay(
) , sup
�(�)

inf
�

IM (�;�) (11)

where the supremum is over all �(�) satisfying (8) (resp., (9)), and the infimum is over all the non-

negative �. �

The next proposition, which follows immediately from [6, Proposition 2], shows a definition

of delay-limited capacity equivalent to the above. Its proof (that we skip for brevity’s sake) is

based on the observation that the equivalent vector channel (2) can be seen as a scalar channel

with Mm blocks.
9A conjecture on the outage probability minimization for perfect CSIR and no CSIT is made in [35].
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Proposition 2. Define the maximum �-achievable rate of the M -block BF-AWGN vector channel sub-

ject to a short-term (resp., long-term) input constraint as

C�(
) , sup
�(�)

supfR : Pout(R; 
) � �g (12)

where the supremum is over all �(�) satisfying (8) (resp., (9)). Then the delay-limited capacity (11) is

given by

Cdelay(
) = lim
�#0

C�(
)

�

Remark 2. As in the ergodic capacity case, minimum outage probability and delay-limited

capacity can be achieved by concatenating “Gaussian” codes independent of the fading statis-

tics with an optimal beamformer varying from block to block. We hasten to observe that the

optimal beamforming matricesWk are generally not the same for the ergodic and for the delay-

limited case, since they correspond to different SNRs 
k;i. �

5 Minimum outage probability

Since the vector channel (2) is equivalent to a scalar channel with Mm blocks and fading power

gains �k;i, Propositions 3 and 4 of [6] apply almost verbatim. For the sake of completeness, we

restate them without proof in the notation pertaining to the vector BF-AWGN channel.

Short-term problem. The short-term constrained minimization problem can be formulated

as 8<: Minimize P(IM (�;�) < R)

Subject to PM (�) � 

(13)

It should be rather intuitive that the solution to the above problem must maximize IM (�;�)

for each � (or at least, for each � in a certain subset of RMm
+ ), so that (13) can be reduced to a

mutual-information maximization problem, whose solution is well-known [13]. Formally, we

have the following:
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Proposition 3. Problem (13) is solved by

b�(�) =
8<: �

st(�; 
) if � 2 Ron(R; 
)

G(�) if � 2 Ro�(R; 
)
(14)

where

1. The (k; i)-th component of �st(�; 
) is given by


stk;i =

�
�st(�; 
) � 1

�k;i

�
+

(15)

where

�st(�; 
) =
1

jM(
)j
X

(k;i)2M(
)

1

�k;i
+

M

jM(
)j
 (16)

and M(
) is the unique set of indexes (k; i) such that 1=�k;i � �st(�; 
) for all (k; i) 2 M(
)

and 1=�k;i > �st(�; 
) for all (k; i) =2M(
).

2. The outage or power-off region Ro�(R; 
) is given by

Ro�(R; 
) ,
�
� : IM (�;�st(�; 
)) < R

	
(17)

and the power-on region Ron is the complement of Ro� in R
Mm
+ .

3. G(�) is an arbitrary function R
Mm
+ ! R

Mt
+ satisfying the short-term constraint PM (G) � 
.

�

Remark 3. �
st(�; 
) is the solution to the maximization problem8<: Maximize IM (�;�)

Subject to PM (�) � 

(18)

Its solution is readily found by using Lagrange multipliers and the Kuhn-Tucker theorem [13].

Note that, since G(�) is arbitrary, the solution to (13) is in general not unique. However, since

whenever� 2 Ro�(R; 
) transmission gives rise to an outage event, it is wise to setG(�) = 0.

Note that the definitions of �st(�; 
) and M(
) depend on each other. An algorithm for

findingM(
) is provided in [6]. �
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Long-term problem. The long-term constrained minimization problem can be stated as8<: Minimize P(IM (�;�) < R)

Subject to E [PM (�)] � 

(19)

The above problem is less standard because of the presence of the expectation in the constraint

equation. The solution in the most general case for the joint probability distribution of � is

given in [6] in terms of a random function, where randomization is required if the distribution

of � has point masses. For simplicity, here we restrict our treatment to the case of continuous

joint cumulative distribution functions F (�). In this case we have:

Proposition 4. Problem (19) is solved by

b�(�) =
8<: �

lt(�; R) if � 2 R�on(R; 
�)
0 if � 2 R�o�(R; 
�)

(20)

where

1. The (k; i)-th component of �lt(�; R) is given by


ltk;i =

�
�lt(�; R) � 1

�k;i

�
+

(21)

where

�lt(�; R) =

 
2MRQ

(k;i)2M�(R) �k;i

!1=jM�(R)j

(22)

and M�(R) is the unique set of indexes (k; i) such that 1=�k;i � �lt(�; R) for all (k; i) 2M�(R)

and 1=�k;i > �lt(�; R) for all (k; i) =2M�(R).

2. The outage region R�o�(R; 

�) is given by

R
�

o�(R; 

�) ,

n
� : PM (�lt(�; R)) > 
�

o
(23)

The power-on region R�on(R; 

�) is its complement in R

Mm
+ .

3. The threshold 
� > 0 is set in order to satisfy the long-term contraint (9) with equality, i.e., it is

the solution of

E [PM (�lt(�; R)) 1f� 2 Ron(R; 

�)g] = 


where 1fAg , 1 if A is true and 0 otherwise.

�
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Remark 4. Let us fix an ordering of �, specified by the index set (k[`]; i[`])Mm
`=1 such that

(�k[`];i[`])
Mm
`=1 is a nonincreasing sequence. Then, the index sets M(
) and M�(R) are deter-

mined by their own cardinality because their definition is based on a threshold. If jM(
)j = �

(or jM�(R)j = �) for some � = 0; : : : ;Mm, then M = f(k[`]; i[`])g�`=1 satisfies the definition of

Proposition 3. �

Remark 5. �
lt(�; R) is the solution to the minimization problem, dual of (18)8<: Minimize PM (�)

Subject to IM (�;�) � R
(24)

Again, �lt(�; R) is obtained by using Lagrange multipliers and the Kuhn-Tucker theorem [13].

Note that the definitions of � lt(�; R) and M�(R) depend on each other. An algorithm for

findingM�(R) is provided in [6]. �

Remark 6. The optimum SNR allocation b�(�) obtained from Proposition 4 corresponds to

setting a threshold 
� such that, if the SNR per block necessary to prevent outage exceeds


�, transmission is turned off, while if it is below 
� transmission is turned on and the SNR

is allocated according to �lt. This is the allocation requiring the minimum SNR per block in

order to avoid an outage event (see (24)). The threshold 
 � is chosen so that the long-term

SNR per block is actually equal to 
. A remarkable fact is that the optimal power allocation

rule of Proposition 4 depends on the fading statistics only through this threshold value 
 �. For

unknown fading statistics, a given constraint 
 and a given target rate R, 
� can be estimated

adaptively [6]. �

Remark 7. Although apparently different, the outage regions Ro�(R; 
) and R�o�(R; 

�) de-

fined in Propositions 3 and 4 are equivalent for the same values of the arguments, i.e.,R�

o�(R; s) =

Ro�(R; s) (as shown in Appendix A) so that the notation R� is hereafter replaced by R. Obvi-

ously, 
� � 
, since, as observed before, the short-term constraint implies the long-term con-

straint. This leads to the important observation that choosing a long-term input constraint is

tantamount to requiring a larger 
� in lieu of 
, while turning off the transmission when an

outage cannot be avoided. For both long-term and short-term constraints we have, formally,

Pout(R; 
) = P(� 2 Ro�(R; s)) (25)
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for s = 
 (short-term) of s = 
� (long-term). In the capacity versus outage setting described in

[1] based on the notion of compound channel of [8], � plays the role of the channel parameter

� and Ron(R; s) of the set �R for which the rate R is below the conditional mutual information

for given �. �

Remark 8. It is not difficult to see [6, App. B.2] thatRo�(R; s) � R
Mm
+ is a connected (although

not necessarily convex) region containing the origin, and that it shrinks as s increases, so that

lim
s!1

Pout(R; s) = lim
s!1

P(� 2 Ro�(R; s)) = 0

for all random � with continuous cdf. �

See Appendix A for an example of outage region corresponding to m = 1 and M = 2.

5.1 Delay-limited capacities: Their calculation

Most physical-channel models have a continuous joint distribution F (�) whose support is the

whole orthant RMm
+ . If this is true, under a short-term constraint Pout(R; 
) is positive for all

finite 
. This implies that under a short-term constraint Cdelay(
) is identically zero. On the

contrary, depending on the fading statistics, it may occur that under a long-term constraint

Pout(R; 
) = 0 for all 
 � 
(R), the minimum average SNR per block given by


(R) = E

h
PM (�lt(�; R))

i
(26)

In this case, R = Cdelay(
) is obtained by inverting the relation 
 = 
(R).

As for the calculation of delay-limited capacities, it is convenient to confine ourselves to the

consideration of a “well-behaved” class of fading channels that we call regular according to the

following definition:

Definition 4 (Regular fading). An M -block vector BF-AWGN channel is said to be regular if the

fading distribution is continuous, and

E [1=��M ] <1 (27)

where ��M is the geometric mean of the �k;i, i.e., ��M ,
Q

k;i �
1=(Mm)

k;i . �

Based on the above definition, we have the following result.
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Proposition 5. The minimum SNR per block function 
(R) of a regular BF-AWGN channel subject

to a long-term constraint has the following properties:

1. 
(0) = 0;

2. 
(R) is continuous and monotonically increasing;

3. 
(R) satisfies the inequality


(R) � m2R=mE [1=��M ] <1

�

Proof. Deferred to Appendix B.

The following Corollary derives from the above Proposition.

Corollary 1. The delay-limited capacity of a regular BF-AWGN channel subject to a long-term con-

straint is positive for every 
 > 0. �

Proof. The delay-limited capacity is the solution of the equation 
(R) = 
. Therefore, from

Proposition 5, this equation has a single positive solution whenever 
 > 0. �

Remark 9. The Rayleigh fading channel with m = M = 1 is not regular and its delay-limited

capacity is null. In fact, in this case, E [1=��1 ] =
R
1

0
(e�x=x)dx diverges. �

Remark 10. The t�r independent RayleighM -BF-AWGN channel is regular and, from Propo-

sition 5, it has nonzero delay-limited capacity whenever Mm > 1 since E [1=��M ] < 1 in all

cases. In fact:

� If M > 1 and m = 1, we have

E [1=��M ] =

n
E

h
�
�1=M
1

ioM
= �(1� 1=M)M <1

where �(x) ,
R
1

0
ux�1e�udu.
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� If M � 1 and m > 1, from [35], we have

E [1=��M ] =

�Z
1

0

d�1

Z �1

0

d�2 � � �
Z �m�1

0

d�m

�
Km;n

mY
i=1

e��i�
n�m�1=(Mm)
i

Y
i<j

(�i��j)2
�
d�

�M

where n , maxfr; tg and Km;n are constant defined in [35]. The above expectation is

finite because the order of infinity of the integrand is 1=(Mm)�(n�m) � 1=(Mm) � 1=2

in the �i’s when �i # 0.

�

5.2 Delay-limited capacities: Asymptotics

In this subsection we study the asymptotic behavior of the delay-limited capacity in the case of

regular channel and large SNR or large number of antennas.

5.2.1 Large SNR

Proposition 6. Under a long-term power constraint and with optimal power control (Proposition 4),

the delay-limited capacity of a t� r BF-AWGN regular channel is given by

Cdelay(
) � m log2[
=(m E [1=��M ])] (28)

asymptotically as 
 !1. �

Proof. Deferred to Appendix C.

Remark 11. Considering the case of regular fading, there is a simple (albeit suboptimal)

power allocation scheme (with a long-term constraint) �� that will be referred to as channel

inversion. It is defined by

�
k;i =
2R=m

��M
for k = 1 : : : ;M; i = 1; : : : ;m

According to this rule, the same power is allocated to all the Mm channel degrees of freedom,

without doing waterfilling. The resulting mutual information is not constant for all � but is
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always larger than R. In fact,

IM (�;�) =
1

M

MX
k=1

mX
i=1

log2

�
1 + �k;i2

R=m=��M

�

� 1

M

MX
k=1

mX
i=1

log2

�
�k;i2

R=m=��M

�
= R

Obviously, as shown in the proof of Proposition 5, the long-term average transmitted power

�
(R) = m2R=mE [1=��M ] resulting from �� is larger than 
(R), resulting from the optimal power

allocation that keeps the instantaneous mutual information fixed to R. However, for regular

fading, �
(R) is finite and, given the simplicity of the scheme, that allocates the same power to

all coding dimensions, it makes sense to consider it as a suboptimal solution. A coding scheme

with rate R and power allocation �� still achieves zero outage probability. Interestingly, from

Proposition 6 we get that this suboptimal scheme is asymptotically optimal. In fact, �
(R) �

(R) for large R. �

5.2.2 Large number of antennas

We now assume that the entries of the channel matrices Ak are i.i.d. with mean zero and vari-

ance 1. We study the behavior of the normalized delay-limited capacity (expressed in bit per

antenna degree of freedom), c(
) = Cdelay(
)=m, as m ! 1 and maxft; rg=m ! � > 0.

We show that the limiting c(
) does not depend on the number of blocks M and coincides

with the limiting normalized ergodic capacity. This should not come as a surprise, because as

m ! 1 and t=r ! �, the empirical distribution of the elements of � converges almost surely

to a deterministic distribution with known density. Therefore, transmitting over many blocks

(subcarriers) has no effect on capacity.

We make use of the following result (see, e.g., [39, 3] and references therein):

Proposition 7. [3] Let A 2 C
r�t be a random matrix with i.i.d. elements with zero mean and unit

variance. Consider the following empirical cdf

Fm(�) =
1

m

mX
i=1

1f�i � �g
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where �1; : : : ; �m are the non-zero eigenvalues of 1
mAA

y. Then, as m ! 1 and maxft; rg=m ! �,

Fm(�)! F (�) almost surely, where F (�) has probability density function

f(�) =
1

2��

p
[� � a(�)]+[b(�) � �]+ (29)

with a(�) , (
p
�� 1)2 and b(�) , (

p
�+ 1)2. �

We define � = �=m so that �k;i = �k;i=m. Since �k;i
ltk;i(�) = �k;i

lt
k;i(�), we can consider

an equivalent channel with eigenvalues �k;i, SNR assignment 
 ltk;i(�), and input constraint

E

"
1

Mm

MX
k=1

mX
i=1


k;i(�)

#
= 


Then, we have the following:

Proposition 8. Under the above assumptions, c(
) ! CCSIR;CSIT(
)=m as m ! 1, irrespectively

of M , where CCSIR;CSIT(
) is defined in (4). �

Proof. Deferred to Appendix D.

Remark 12. Reference [7] shows that, for 
 !1, c(
) � log2 
 as confirmed by our numerical

results (Figures 5 and 6). �

6 Numerical results

In this section we illustrate the theory outlined above through some numerical examples. In all

cases we consider a BF-AWGN channel where the entries of the channel gain matrices Ak are

statistically independent from each other.

6.1 One transmit antenna

With a single transmit antenna and r receive antennas, the matricesAk are length-r column vec-

tors, so that jAkj2 is the only non-zero eigenvalue of AkA
y

k, Vk = 1 (a scalar), and the optimal

beamforming matrices Wk reduce to the scalars p
1;k. The instantaneous mutual information

is

IM (�;�) =
1

M

MX
k=1

log2(1 + jAkj2
1;k) (30)
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If the fading has a Rayleigh distribution, jAkj2 is chi-square distributed with 2r degrees of

freedom.

6.2 One receive antenna

With t transmit antennas and a single receive antenna, the matricesAk are length-t row vectors,

so that jAkj2 is the only non-zero eigenvalue of Ay

kAk and Vk is a unitary matrix whose first

column is equal to Ay

k=jAkj. The instantaneous mutual information is given again by (30),

and for an independent Rayleigh BF-AWGN channel jAkj2 is chi-square distributed with 2t

degrees of freedom. As we can see, we have full reciprocity between transmit-only and receive-

only diversity. As observed in the Introduction, this reciprocity, which holds for the AWGN

channel, does not hold with the fading channel without CSIT [35]: reciprocity here is due to the

availability of such CSIT.

For M = 1, the delay-limited capacity with optimal power allocation under a long-term

constraint (corresponding to 
1;1 = (2R � 1)=jA1j2) is

Cdelay = log2

�
1 +




E [jA1 j�2]

�
(31)

On an independent Rayleigh BF-AWGN channel, E [jA1 j�2] = 1=(t� 1), and hence:

Cdelay = log2[1 + (t� 1)
] (32)

6.3 More than one transmit/receive antennas

Generalizing the results above to the case of more than one transmit/receive antennas, we con-

sider the independent Rayleigh BF-AWGN channel (i.e., we assume that al the entries of each

Ak are statistically independent and distributed as Nc(0; I)) with M = 1 (i.e., every code word

is affected by a constant fading value — no interleaving). Although in principle it is possible

to calculate the delay-limited capacity with the optimal power-allocation scheme, analytical

complexity suggests to resort to Monte-Carlo integration. Figs. 2 and 3 show the delay-limited

capacity versus SNR (
) for the t� t (t = 2; 4; 8, and 16) and the t� 2 (or 2 � t for reciprocity),

t = 2 to 8 BF-AWGN channel. Moreover, Fig. 2 shows, for comparison, the achievable rate

with channel inversion (see Remark 11). We note that the delay-limited capacity with optimal

power allocation exceeds the capacity of the t � t AWGN channel (CAWGN = log2(1 + t2
),
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Figure 2: Delay-limited capacity (bit/s/Hz) for the independent Rayleigh t � t BF-AWGN for

M = 1 and t = 2; 4; 8, and 16 obtained by Monte-Carlo integration. The achievable rate with

channel inversion is also shown for comparison.
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Figure 3: Delay-limited capacity (bit/s/Hz) for the independent Rayleigh t � 2 or 2 � t BF-

AWGN for M = 1 and t = 2 to 8 obtained by Monte-Carlo integration.
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Figure 4: Outage probability for the independent Rayleigh t � t BF-AWGN for M = 1 and

t = 2; 3; 4; 8 obtained by Monte-Carlo integration.

see [35]) for sufficiently high SNR 
. This is a consequence of the fact that delay-limited ca-

pacity with optimal power allocation behaves asymptotically as m log2 
, while for the AWGN

channel it behaves as log2 
.

6.4 Outage Probability

Fig. 4 shows the outage probability corresponding to the t � t Rayleigh BF-AWGN channel

with t = 2; 3; 4, and 8 and M = 1 versus the SNR 
. The required transmission rate is R = 5

bit/s/Hz. It can be noticed that an outage probability level of 10�2 requires an SNR very close

to that corresponding to a delay-limited capacity equal to 5 bit/s/Hz.
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Figure 5: Delay-limited capacity (bit/s/Hz) versus number of antennas (t) for the independent

Rayleigh t� t BF-AWGN for M = 1 (results obtained by Monte-Carlo integration).

6.5 Delay-limited capacity versus number of antennas

Figs. 5 and 6 show the delay-limited capacity versus the number t of antennas for the inde-

pendent Rayleigh t � t BF-AWGN channel for M = 1 and 4 (results obtained by Monte-Carlo

integration). Besides the very high values of capacity achievable, it is interesting to note the

linear growth rate of the capacity with t, experienced even for small t.

Moreover, comparing Figs. 5 and 6 we note that they are almost independent of M . Since

M reflects the amount of interleaving allowed, this fact suggests that antenna diversity can

be traded for interleaving (and hence interleaving delay), as observed in a different context

in [37]. If the M blocks are transmitted in parallel over separate carriers, as suggested in the

Introduction, then antenna diversity is traded off for frequency diversity.

The results obtained for the independent Rayleigh t� 2 (or 2� t, by reciprocity) BF-AWGN

channel with M = 1 are shown in Fig. 7. Again, increasing M yields little improvement in the
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Figure 6: Delay-limited capacity (bit/s/Hz) versus number of antennas (t) for the independent

Rayleigh t� t BF-AWGN for M = 4 (results obtained by Monte-Carlo integration).
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Figure 7: Delay-limited capacity (bit/s/Hz) versus number of antennas (t) for the independent

Rayleigh t� 2 (or 2� t) BF-AWGN for M = 1 (results obtained by Monte-Carlo integration).

delay-limited capacity.

7 Conclusions

To understand the ultimate performance limits of a radio system consisting of a transmitter

with t antennas and a receiver with r antennas, we have evaluated the minimum outage proba-

bility and the delay-limited capacity of a channel with transmit-power constraint, independent

flat fading between the transmit and receive antennas, Gaussian noise added independently

at each receiver antenna, and CSI available at the transmitter and at the receiver. Optimum

coding for this channel is achieved by concatenating a code that is optimum for the unfaded

AWGN channel with a suitable beamformer, which changes from block to block. Considering

the long-term power constraint, we have shown that:
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1. The delay-limited capacity is strictly positive for a wide family of fading channels (in

particular, for Rayleigh fading channels with Mm > 1).

2. The optimal power allocation scheme can be given an explicit form, and a suboptimal (but

asymptotically optimal) simpler power allocation scheme can be exhibited (see Remark

11).

3. The delay-limited capacity increases linearly with the signal-to-noise ratio in dB, and is

almost independent of M (so that antenna diversity can substitute for time diversity, as

generated by interleaving, or for frequency diversity). Thus, antenna diversity can be a

substitute for time diversity (as introduced by interleaving) or frequency diversity.

4. For large m, the delay-limited capacity is asymptotically equal to the ergodic capacity

(in a sense, by expanding the spatial dimension we get back the ergodicity that would

otherwise be lost due to the time or frequency constraints).

5. The availability of CSIT makes transmit-antenna diversity equivalent, in terms of capacity

improvement, to receive-antenna diversity.

These results are based on perfect CSIR and CSIT. The latter may be sometimes unavailable

exactly due to the system causality so that, in such case, the results obtained represent an upper

bound to the achievable performance.
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Appendices

A Equivalence of short-term and long-term outage regions

In this appendix we show the equivalence of the outage regions Ro�(R; 
) and R�o�(R; 

�) (and

of their complements) provided that 
 = 
�. First, we illustrate this result in a simple two-

dimensional case. Then, we proceed to show the general result.

A.1 Example

Consider the case of a single transmitting/receiving antenna (m = 1) and an M = 2 BF-AWGN

channel. We derive analytically the outage regions in order to show that they are equivalent in

the case of short-term and long-term power constraints. Assume that 
 = 
 � = s > 0 is a given

parameter. Since m = 1, for easier notation we drop in the following the index i of �k;i and so

on. We restrict our attention to the region S2 = f� : �1 � �2 � 0g. The results can be extended

to R
2
+ by a symmetric argument.

Short-term constraint. The outage or power-off region is determined by using the results of

Proposition 3. Given � = �st(�; 
), two instances may occur:

1. 1=�2 � � > 1=�1 and M(s) = f1g.

2. � > 1=�2 > 1=�1 and M(s) = f1; 2g.

In the first case, power is transmitted only over the “stronger” block 1 (
 st1 > 
st2 = 0). In the

second case, power is transmitted over both blocks (
 st1 > 
st2 > 0). Given � = (�1; �2) and

s, we define the regions R�(s) , f� 2 S2; jM(s)j = �g for � = 1; 2 and find their analytic

expression.

From Proposition 3, we have

� = �st(�; s) =

8><>:
2s+ 1=�1 jM(s)j = 1

s+ 1
2
(1=�1 + 1=�2) jM(s)j = 2

Hence, substituting these values of � in the inequalities defining the occurrence of jM(s)j = 1

or 2, we have:

R1(s) =

�
� : s � 1

2

�
1

�2
� 1

�1

�
; �1 � �2 > 0

�
(33)
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s = 1 dB. The boundaries of the regions of constant jM(s)j, corresponding to the short-term
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and

R2(s) =

�
� : s >

1

2

�
1

�2
� 1

�1

�
; �1 � �2 > 0

�
(34)

Note that R1(s) and R2(s) are disjoint and their union is S2.

Now, we define the conditioned outage regions Ro�;�(R; s) , Ro�(R; s) \ R�(s). We have:

Ro�;1(R; s) , f� : I2(�;�) < Rg \ R1(s)

=

�
� :

1

2
log2(1 + 2�1s) < R

�
\ R1(s)

= f� : �1 < (22R � 1)=(2s)g \ R1(s)

= �Ro�;1(R; s) \R1(s) (35)

with
�Ro�;1(R; s) ,

�
� : �1 < (22R � 1)=(2s)

�
and

Ro�;2(R; s) ,

�
� :

1

2
log2(��1) +

1

2
log2(��2) < R

�
\ R2(s)

=

�
� : log2

�
s+

1

2
(1=�1 + 1=�2)

�
+

1

2
log2(�1�2) < R

�
\ R2(s)

=

�
� :

1

2
log2

�
(�1 + �2 + 2�1�2s)

2

4�1�2

�
< R

�
\ R2(s)

=

�
� :

(�1 + �2 + 2�1�2s)
2

4�1�2
< 22R

�
\R2(s)

= �Ro�;2(R; s) \ R2(s) (36)

with
�Ro�;2(R; s) ,

�
� :

(�1 + �2 + 2�1�2s)
2

4�1�2
< 22R

�
The overall outage region is the union of the two disjoint (because obtained by intersection

with disjoint regions) conditioned outage regions:

Ro�(R; s) = Ro�;1(R; s) [ Ro�;2(R; s)

These regions are shown in Figure 8: both the inner outage region Ro�(R; s) and the outer

power-on region Ron(R; s) are partitioned in two sub-regions according to the value taken by

jM(s)j = 1 or 2. In the figure, the boundaries ofR1(s) andR2(s) are solid lines drawn according

to eqs. (33) and (34).
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Long-term constraint. The outage or power-off region is determined by using the results of

Proposition 4. Given � = �lt(�; 
), two instances may occur:

1. 1=�2 � � > 1=�1 and M�(R) = f1g.

2. � > 1=�2 > 1=�1 and M�(R) = f1; 2g.

Given � = (�1; �2) and R, we define the regions R��(R) , f� 2 S2; jM�(R)j = �g for � = 1; 2

and find their analytic expression.

From Proposition 4, we have

� = �lt(�; R) =

8><>:
22R=�1 jM�(R)j = 1

2R=
p
�1�2 jM�(R)j = 2

Hence:

R
�
1(R) = f� : �1 � 22R�2; �1 � �2 > 0g (37)

and

R
�
2(R) = f� : �1 < 22R�2; �1 � �2 > 0g (38)

Then, the conditioned outage regions R�

o�;�(R; s) , R
�

o�(R; s) \ R��(R) are:

R
�

o�;1(R; s) , f� : P2(�) > sg \ R�1(R)

=

�
� :

1

2
(22R=�1 � 1=�1) > s

�
\ R�1(R)

= f� : �1 < (22R � 1)=(2s)g \ R�1(R)

= �Ro�;1(R; s) \ R�1(R) (39)

and

R
�

o�;2(R; s) ,

�
� :

1

2
(2R=

p
�1�2 � 1=�1) +

1

2
(2R=

p
�1�2 � 1=�2) > s

�
\ R�2(R)

=

�
� :

2Rp
�1�2

� �1 + �2

2�1�2
> s

�
\R�2(R)

=

�
� :

(�1 + �2 + 2�1�2s)
2

4�1�2
< 22R

�
\ R�2(R)

= �Ro�;2(R; s) \R�2(R) (40)

Again, the overall outage region is the union of the two disjoint conditioned outage regions:

R
�

o�(R; s) = R
�
o�;1(R; s) [ R�o�;2(R; s)



E. Biglieri et al.: Limiting performance of block-fading channels . . . 32

Again, all regions are shown in Figure 8 where now the boundaries of R�1(s) and R�2(s) are the

dashed lines drawn according to eqs. (37) and (38).

Comparison. Comparing eqs. (35) and (36) to eqs. (39) and (40), we note that each conditioned

outage region is obtained by intersecting a common region �Ro�;�(R; s) with R�(s) (short-term

constraint) and R��(R) (long-term constraint). The results are different, as can be seen from

Figure 8 but the union of the conditioned outage regions (namely, the outage region itself) is

the same in both cases because the boundaries of Ro�;�(R; s) and R�o�;�(R; s) coincide. In fact,

the common boundary between Ro�;1(R; s) and Ron;1(R; s), R�o�;2(R; s) and R�on;2(R; s) in S2 is

the vertical segment �1 = (22R � 1)=(2s) from �2 = 0 to �2 = (1 � 2�2R)=(2s). The common

boundary betweenRo�;2(R; s) andRon;2(R; s), R�o�;2(R; s) andR�on;2(R; s) is the line of equation

(�1 + �2 + 2�1�2s)
2

4�1�2
= 22R

joining the points of coordinates ((22R � 1)=(2s); (1 � 2�2R)=(2s)) and ((2R � 1)=s; (2R � 1)=s).

The boundary line between R1(s) and R2(s) is defined by equation:

1

�2
� 1

�1
= 2s

and the boundary line between R�1(R) and R�2(R) is defined by equation:

�1 = 22R�2

The curves intersect in (0; 0) and ((22R � 1)=(2s); (1 � 2�2R)=(2s)) (in Fig. 8: (1:192; 0:298)).

Hence, the boundaries of Ro�;�(R; s) and R�o�;�(R; s) coincide. In the following section we

extend this result to the general case.

A.2 General result

Proposition 9. The outage regions Ro�(R; s) andR�o�(R; s) defined in Propositions 3 and 4 are equiv-

alent. �

Proof. From the results of Propositions 3 and 4 we have the following expressions of the

outage regions:

Ro�(R; s) =
�
� : IM (�;�st(�; s)) < R;PM (�st(�; s)) = s
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for the short-term problem and

R
�

o�(R; s) =

n
� : IM (�;�lt(�; R)) = R;PM (�lt(�; R)) > s

o
for the long-term problem.

By definition, the orthant RMm
+ is divided into two sub-regions, namely, the outage and the

power-on region and this division is determined by the inner boundary. The boundaries are

given by

Bo�(R; s) =

n
� : IM (�;�st(�; s)) = R;PM (�st(�; s)) = s

o
B
�

o�(R; s) =

n
� : IM (�;�lt(�; R)) = R;PM (�lt(�; R)) = s

o
The assert is proven if we show that the boundary regions coincide, namely: Bo�(R; s) =

B�o�(R; s). To this purpose, we define the conditioned outage regions

Bo�;�(R; s) =

n
� : IM (�;�st(�; s)) = R;PM (�st(�; s)) = s; jM(s)j = �

o
= Bo�(R; s) \ R�(s)

B
�

o�;�(R; s) =

n
� : IM (�;�lt(�; R)) = R;PM (�lt(�; R)) = s; jM�(R)j = �

o
= Bo�(R; s) \ R�(R)

where R�(s) , f� : jM(s)j = �g and R��(R) , f� : jM�(R)j = �g. Now, we show that

Bo�;�(R; s) = B
�

o�;�(R; s). From the results of Propositions 3 and 4 (and from Remark 4, which

allows us to writeM for M(s) and M�(R) since jMj = � in both cases for a fixed �) we have:

B
�

o�;�(R; s) =

�
� :

1

M

X
(k;i)2M

�
�lt(�; R) � 1

�k;i

�
= s; jMj = �

�

=

�
� :

1

M

X
(k;i)2M

�
2MR=�Q

(k0;i0)2M �
1=�
k0;i0

� 1

�k;i

�
= s; jMj = �

�

=

�
� :

�

M

2MR=�

�0
� 1

M

X
(k;i)2M

1

�k;i
= s; jMj = �

�

=

�
� :

2MR=�

�0
=

1

�

X
(k;i)2M

1

�k;i
+
Ms

�
= �st(�; s); jMj = �

�

=

�
� :

MR

�
� 1

�

X
(k;i)2M

log2 �k;i = log2 �
st(�; s); jMj = �

�
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=

�
� :

1

�

X
(k;i)2M

log2(�k;i�
st(�; s)) = R; jMj = �

�
= Bo�(R; s)

where �0 ,
Q

(k;i)2M(s) �
1=jM(s)j

k;i .

Finally, since by definition Bo�(R; s) =
SMm

�=1 Bo�;�(R; s) and B�o�(R; s) =
SMm

�=1 B
�

o�;�(R; s),

the equality Bo�;�(R; s) = B
�

o�;�(R; s) proves the assert. �

B Proof of Proposition 5

Proof. Our proof is based on the following lemma:

Lemma 1. For every positive � and x1; : : : ; xM , the following inequality holds:

1

M

MX
i=1

log2[xi + (� � xi)+] � log2

�
1

M

MX
i=1

(� � xi)+

�
(41)

�

Proof. Assume, w.l.o.g., that x1 � : : : � x� � � � x�+1 � : : : � xM for 0 � � < M where

� = 0 corresponds to the case � � x1 � : : : � xM . Since xi � � for i = 1; : : : ; �, we have

1

M

�X
i=1

log2(xi=�) � 0 � log2

�
M � �

M

�
Adding log2 � to the first and last members, we obtain:

1

M

�X
i=1

log2 xi +
M � �

M
log2 � � log2

�
M � �

M
�

�
Finally, the assert follows from

1

M

�X
i=1

log2 xi +
M � �

M
log2 � =

1

M

MX
i=1

log2[xi + (� � xi)+]

and
1

M

MX
i=1

(� � xi)+ =
1

M

MX
i=�+1

(� � xi) �
M � �

M
�

�

The function 
(R) defined in equation (26) derives its properties from the properties of

PM (�lt(�; R)), when� is fixed, which are reviewed in Remark 5.
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1. 
(0) = 0 since setting R = 0 in (24) is equivalent to remove the lower bound constraint

on the mutual information. Hence, PM (�lt(�; 0)) can be minimized down to zero.

2. The continuity and increasing properties derive from the continuity and increasing prop-

erties of PM (�lt(�; R)). Continuity derives from the continuity of the fading distribution

and PM (�lt(�; R)) increases with R for a fixed � because increasing R in (24) is equiva-

lent to tightening the constraint and therefore increasing the minimum attained.

3. The inequality 
(R) � m2R=mE [1=��M ] < 1 derives from the following upper bound.

Letting 
 ltk;i be as defined in Proposition 4, we have

R =
1

M

MX
k=1

mX
i=1

log2(1 + 
ltk;i�k;i)

=
1

M

MX
k=1

mX
i=1

log2(1=�k;i + 
ltk;i) +m log2
��M

(a)

� m log2

 
1

Mm

MX
k=1

mX
i=1


ltk;i

!
+m log2

��M

= m log2(PM (�lt(�; R))=m) +m log2
��M (42)

where (a) derives from Lemma 1. Thus, (42) is equivalent to

PM (�lt(�; R)) � m2R=m=��M

By taking expectation of both sides and by using the assumption of regular fading, we

can prove the assertion.

�

C Proof of Proposition 6

Proof. Our proof is base on the following lemma:

Lemma 2. Let �1; : : : ; �n be a set of n positive random variables with continuous joint cdf. Denoting
�� ,

Qn
i=1 �

1=n
i their geometric mean and �min , minf�1; : : : ; �ng the minimum, we have

lim
"!0

" E [��1min j�min > " ��] = lim
"!0

" E [��1min1f�min > " ��g] = 0

provided that E [���1 ] <1 (even if E [��1min ] is not finite). �
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Proof. First, we note that, by continuity of the joint cdf, we have

lim
"!0

P(�min > " ��) = P(�min > 0) = 1

Thus, it is sufficient to show that

lim
"!0

" E [��1min1f�min > " ��g] = 0 (43)

If E [��1min ] < 1 the result is trivial, so that we assume throughout the proof that E [��1min ] is

unbounded. Let us upper bound the expectation in (43) as follows:

" E [��1min1f�min > " ��g] a
=

nX
i=1

" E [��1i 1f�i > " ��g1f�i < �j 6=ig]

b
�

nX
i=1

" E [��1i 1f�i > " ��g]

c
=

nX
i=1

" E [��1i 1f�i > "n=(n�1) ��ig]

d
�

nX
i=1

" E [��1i 1f�i > "n=(n�1) ��ig[1f�i < "�g+ 1f�i � "�g]]

e
�

nX
i=1

" E [��1i 1f�i > "n=(n�1) ��ig1f�i < "�g] +
nX
i=1

"1�� (44)

where (a) derives from the definition of the minimum; (b) by upper bounding 1f�i < �j 6=ig
(short-hand notation for

Q
j 6=i 1f�i < �jg) by 1; (c) by defining ��i ,

Q
j 6=i �

1=(n�1)
j ; (d) from the

equality 1 = 1f�i < "�g+ 1f�i � "�g; (e) from ��1i 1f�i � "�g � "��. Then, for every 0 < � < 1,

the second sum in (44) approaches 0 as "! 0 so that (43) is proved if we show that, for every i

such that 1 � i � n and for some 0 < � < 1,

lim
"!0

" E [��1i 1f�i > "n=(n�1) ��ig1f�i < "�g] = 0 (45)

We restrict to the case of unbounded E [��1i ] (otherwise, the result is trivially proved). Denoting

f(�i; ��i) the joint distribution function of the random variables �i and ��i, we can write the

above expression as follows:

" E [��1i 1f�i > "n=(n�1) ��ig1f�i < "�g] = "

Z "��n=(n�1)

0

Z "�

"n=(n�1)��i

��1i f(�i; ��i) d�i d��i

= "

Z "�

0

Z "�

"n=(n�1)��i

��1i f(�i; ��i) d�i d��i (46)

+ "

Z "��n=(n�1)

"�

Z "�

"n=(n�1)��i

��1i f(�i; ��i) d�i d��i (47)



E. Biglieri et al.: Limiting performance of block-fading channels . . . 37

Now, since

E [���1 ] = E [�
�1=n
i

��
�(n�1)=n
i ] <1

the asymptotic behavior of the joint distribution function f(�i; ��i) as �i; ��i ! 0 is given by

O(�
��0

i
��
��00

i ) for some 0 < �0 < 1 � 1=n and �00 < 1=n. Therefore, for sufficiently small " and a

suitable constant K0, we have the following inequality:

f(�i; ��i) < K0�
��0

i
��
��00

i

Applying this inequality to (46) we obtain:

"

Z "�

0

Z "�

"n=(n�1)��i

��1i f(�i; ��i) d�i d��i � K0"

Z "�

0

Z "�

"n=(n�1)��i

�
�1��0

i
��
��00

i d�i d��i

=
K0

�0

Z "�

0

��
��00

i

�
"1��

0n=(n�1)��
��0

i � "1���
0

�
d��i

� K0

�0

Z "�

0

��
��0��00

i "1��
0n=(n�1) d��i

=
K0

�0(1� �0 � �00)
"1��

0n=(n�1)+�(1��0��00) (48)

This terms approaches 0 as "! 0 since 1� �0n=(n� 1) + �(1� �0� �00) > 0 for every positive �.

Now we consider the asymptotic behavior of the joint distribution function f(�i; ��i) as �i !
0 and ��i ! 1 with the assumption E [���1 ] < 1. Again, for sufficiently small " and a suitable

constant K1, we have the following inequality:

f(�i; ��i) < K1�
��0

i
��
��00

i

where, in this case, we still have 0 < �0 < 1� 1=n but �00 > 2� 1=n. Applying this inequality to

(47) we obtain:

"

Z "��n=(n�1)

"�

Z "�

"n=(n�1)��i

��1i f(�i; ��i) d�i d��i � "

Z
1

"�

Z "�

"n=(n�1)��i

��1i f(�i; ��i) d�i d��i (49)

� K1"

Z
1

"�

Z "�

"n=(n�1)��i

�
�1��0

i
��
��00

i d�i d��i

=
K1

�0

Z
1

"�

��
��00

i

�
"1��

0n=(n�1)��
��0

i � "1���
0

�
d��i

� K1

�0

Z
1

"�

��
��0��00

i "1��
0n=(n�1) d��i

=
K1

�0(1� �0 � �00)
"1��

0n=(n�1)��(�0+�00�1) (50)
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This terms approaches 0 as "! 0 since 1��0n=(n�1)��(�0+�00�1) > 0 for � < (1��0n=(n�
1))=(�0 + �00 � 1) (note that 1� �0n=(n� 1) > 0 and �0 + �00 � 1 > 0). �

Now we turn to the proof of Proposition 6. The proof is divided in two steps:

1. Recalling that Cdelay(
) is the solution of the equation 
(R) = 
, we obtain from Proposi-

tion 5:


(R) �m2R=mE [1=��M ] =) Cdelay(
) � m log2



mE [1=��M ]

2. Setting �min , mink;if�k;ig, we consider the region f� : �min > ��M2�R=mg. In this region,

jM�(R)j = Mm and 
ltk;i > 0 for all k; i. Then,

PM (�lt(�; R)) � 1

M

MX
k=1

mX
i=1

�
2R=m

��M
� 1

�k;i

�
1f�min > ��M2�R=mg

� m2R=m
�

1

��M
� 2�R=m

�min

�
1f�min > ��M2�R=mg (51)

By taking expectation of both sides of (51), we obtain


(R) � m2R=mE

�
1

��M
1

n
�min > ��M2�R=m

o�
� 2�R=mE

�
1

�min
1

n
�min > ��M2�R=m

o�
Now, we apply Lemma 2 to show that 2�R=mE [1=�min1f�min > ��2R=m] ! 0 as R ! 1
and obtain the following asymptotic bound:


(R) �m2R=mE [1=��M ] =) Cdelay(
) � m log2



mE [1=��M ]

Combining the above results, we obtain the assertion. �

D Proof of Proposition 8

Proof. Let us assume M fixed. Since �k;i = �k;i=m, we have

M = f(k; i) : �lt(�) � 1

�k;i
g = f(k; i) : �k;i �

1

�lt(�)
g = f(k; i) : �k;i �

1

m�lt(�)
g

Let us define

�0 , max
(k;i)=2M

�k;i = maxf�k;i : �k;i <
1

m�lt(�)
g
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and

�00 , min
(k;i)2M

�k;i = minf�k;i : �k;i �
1

m�lt(�)
g

Since m�lt(�) = 2MR=jMj
Q

(k;i)2M �
�1=jMj

k;i , we have

log2 �k;i
�
<
� MR

jMj +
1

jMj
X

(k;i)2M

log2 �k;i () (k; i)
2
=2M

Therefore, we have

log2 �
0 < �MR

jMj +
1

jMj
X

(k;i)2M

log2 �k;i � log2 �
00

Moreover, defining the empirical cumulative distribution function

Fm(�) ,
1

Mm

MX
k=1

mX
i=1

1f�k;i � �g

we have Fm(�) = 1� jMj=(Mm) for all � 2 (�0; �00) and in particular for �0 such that

log2 �
0 < log2 �0 = �MR

jMj +
1

jMj
X

(k;i)2M

log2 �k;i = � log2(m�lt(�)) � log2 �
00 (52)

Substituting jMj = Mm(1� Fm(�0)) in (52), we obtain

log2 �0 = � R=m

1� Fm(�0)
+

1

jMj
X

(k;i)2M

log2 �k;i

with M = f(k; i) : �k;i � �0g. From Fact 1, Fm(�) ! F (�) as m ! 1, independently of M .

Therefore, letting m!1 removes dependency from M and yields the following equation:

log2 �0 = � lim
m!1

R=m

1� Fm(�0)
+

Z
1

�0

log2 �
dF (�)

1� F (�0)

where the second integral denotes the limiting expectation of log2 �k;i conditioned on f�k;i �
�0g. Thus, observing that R is the delay-limited capacity, we obtain

c(
) = lim
m!1

Cdelay(
)

m
=

Z
1

�0

log2(�=�0)dF (�) =

Z
1

0

(log2(�=�0))+dF (�) (53)

Finally, since

E

�
1

M

X
k;i2M

�
�lt(�)� 1

�k;i

��
= 


we have from the definition of �0, (52):

lim
m!1

E

�
1

Mm

X
k;i2M

�
1

�0
� 1

�k;i

��
=

Z
1

�0

�
1

�0
� 1

�

�
dF (�) =

Z
1

0

�
1

�0
� 1

�

�
+

dF (�) = 
 (54)

Comparing (53) and (54) to (4) and (5) as m!1, the proof follows. �
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