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Abstract—We propose a nonlinear channel estimation method
based on a subspace projection that is suitable for asymmetric
antenna array systems. We show that the so-called pilot contam-
ination problem reported in [1], is an artefact of (inappropriate)
linear channel estimation and does not occur in cellular systems
with power-controlled handoff when the channel estimation
method proposed in this paper is used. We intuitively explain our
result by establishing an isomorphism between a massive MIMO
system and a spread-spectrum system with unknown signature
sequences.
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I. INTRODUCTION

In [2], a multiple antenna system was proposed that mimics
the idea of spread-spectrum. Like a large processing gain can
be realized in a spread-spectrum system by massive use of
radio spectrum, a large array gain is realized by a massive
use of antennas elements. This system design has attracted
frequent attention recently, see e.g. [3], and it is commonly
referred to as massive MIMO. Its advantage over the old
spread-spectrum idea lies in the fact that antennas can be
manufactured in arbitrarily high numbers, while radio spectrum
is limited. Since the array gain grows unboundedly with the
number of antenna elements at the access point, multiuser
interference can be overcome regardless of the powers and
number of the interfering users.

In [1], however, a pessimistic conclusion about the per-
formance of massive MIMO in cellular systems was reached.
Based on the implicit assumption of linear channel estimation
in [1, Eq. (5)], it was concluded that the array gain can
be achieved only for data detection, but not for channel
estimation. As a result, pilot interference from interfering cells
would limit the ability to estimate the channel sufficiently
accurate regardless of the number of antenna elements at
the access point. This effect, commonly referred to as pilot
contamination, was believed by many researchers, e.g. [4]–[6]
to be a fundamental effect, despite the lack of a solid proof
that it cannot be overcome.

Using Bayesian channel estimation, [7] found that pilot
contamination can vanish under certain conditions of the chan-
nal covariance. In this paper, we show that pilot contamination
is, in fact, not a fundamental effect, but a shortcoming of linear
channel estimation. We show, that the array gain can easily be
utilized to also have the accuracy of channel estimation to
grow unboundedly with the number of antennas. Furthermore,
we show that this can be achieved with polynomial complexity
in the number of antenna elements.

In Section II, we introduce the system model. In Section III,
we propose an algorithm for nonlinear channel estimation
utilizing the array gain. In Sections IV and V, we investigate
the performance of this algorithm by analytic and simulative
means, respectively. Finally, Section VI concludes the paper.
Technical derivations are placed in the two appendices.

II. SYSTEM MODEL

Consider a wireless communication channel in the up-
link. In order to ease notation, let the channel bandwidth
be smaller than the coherence bandwidth. Channels whose
physical bandwidth is wider than the coherence bandwidth can
be decomposed into equivalent parallel narrowband channels
by means of orthogonal frequency division multiplexing or
related techniques.

Let the frequency-flat, block-fading, narrowband channel
from T transmit antennas to R > T receive antennas be
described by the matrix equation

Y = HX +Z, (1)

where X ∈ CT×C is the transmitted data (eventually multi-
plexed with pilot symbols), C ≥ R1 is the coherence time in
multiples of the symbol interval, H ∈ CR×T is the channel
matrix of unknown propagation coefficients, Y ∈ CR×C is the
received signal, and Z ∈ CR×C is additive noise. Furthermore,
we assume that channel, data, and noise have zero mean, i.e.
EX = EH = EZ = 0. The noise accounts for both thermal
noise and interference from other cells and is, in general,
neither white nor Gaussian.

Note that (1) can also be understood as a code-division
multiple-access (CDMA) system with the columns of H
denoting the spreading sequences and R denoting the process-
ing gain. It is well-known that CDMA can be demodulated
without knowledge of the spreading sequences by means of
blind algorithms, see e.g. [8]. Those algorithms can also be
applied in massive MIMO systems as proposed in [9]. In
the following section, we introduce an algorithm, which we
consider particularly suited for cellular massive MIMO.

III. PROPOSED ALGORITHM

Before going into the details of the proposed algorithm, we
start with the idea behind the proposed procedure. Consider
the channel model (1) for a single active transmit antenna,
i.e. T = 1 and look for the matched filter m† such that the

1The assumption C ≥ R is made to simplify the exposition. In fact, all the
formulas presented in the following hold for C < R, as well, although their
derivations might require modifications.



signal-to-noise ratio (SNR) at its output is maximum. In white
noise, maximizing the SNR is equivalent to maximizing the
total received power normalized to the power gain of the filter.
Thus, the optimum filter is given by

m∗ = argmax
m

m†Y Y †m

m†m
. (2)

It is a well-known result of linear algebra that the vector
m∗ maximizing the right hand side of (2) is that eigenvector
of Y Y † that corresponds to the largest eigenvalue of Y Y †.
Having found the optimum algorithm for a single transmitter
and white noise, we now apply this idea to multiple transmit
antennas and analyze its performance in colored noise.

Consider the singular value decomposition

Y = UΣV † (3)

with unitary matrices U ∈ CR×R and V ∈ CC×C and the
R × C diagonal matrix Σ with diagonal entries σ1 ≥ σ2 ≥
· · · ≥ σR sorted in non-increasing order. Now, decompose the
matrix of left singular vectors

U = [S|N ] (4)

into the signal space basis S ∈ CR×T and the null space basis
N ∈ CR×(R−T ). Now, we project the received signal onto the
signal subspace and get

Ỹ = S†Y . (5)

As will become clear in the following, there is no need to
explicitly calculate the full singular value decomposition (3).
Only the basis of the signal subspace S is needed and there
are efficient algorithms available to exclusively calculate S.

Consider now the massive MIMO case, i.e. R � T : That
means that the T -dimensional signal subspace is much smaller
than the R-dimensional full space, which the noise lives in.
White noise is evenly distributed in all dimensions of the
full space. Thus, the influence of white noise onto the signal
subspace becomes negligible as R→∞. Using the algorithm
above, we can achieve an array gain even without the need for
estimating the channel coefficients. In fact, the channel can
be estimated solely after projection onto the signal subspace
when the dominant part of the white noise has already been
suppressed.

In practice, it might be even a good idea not to estimate the
channel matrix H , at all. Instead, one might directly consider
the subspace channel

Ỹ = H̃X + Z̃ (6)

and estimate the much smaller subspace channel matrix H̃ ∈
CT×T . Although the data dependent projection (5) implies that
the noise Z̃ ∈ CT×C is not independent from the data X ,
neglecting this dependence is an admissible approximation that
becomes exact as the number of receive antennas R grows
large.

In addition to white noise, there is co-channel interference
from L neighboring cells. This interference is typically not
white. In fact, it is the more colored, the smaller the ratio

α =
T

R
(7)

which will be called load in the following. In the limit of
zero load, i.e. α → 0, the subspace spanned by co-channel
interference is orthogonal to the signal subspace. Moreover,
any R-dimensional channel vector from any transmitter, be it
in the cell of interest or in a neighboring cell, to the receive
array in the cell of interest is orthogonal to any other channel
vector. That means that in the limit R → ∞, the (L + 1)T
largest singular values of the received signal matrix Y become
identical to the Euclidean norms of the (L + 1)T channel
vectors.

If we could identify which singular values correspond to
channel vectors from inside the cell as opposed to channel vec-
tors from transmitters in neighboring cells, we could remove
the interference from neighboring cells by subspace projection.
Note that for R→∞, the system has infinite diversity, thus the
effect of short-term fading (Rayleigh fading) vanishes. Thus,
the norm of a channel vector is solely determined by path loss
and long-term fading (shadowing). In a cellular system with
power-controlled handoff strategy, the norm of channel vectors
from neighboring cells can never be greater than the norm of
channel vectors from the cell of interest. We conclude that
the identification of singular values belonging to transmitters
within the cell of interest is possible by means of ordering them
by magnitude. Admittedly, such orderings might be inaccurate
for a small fraction of transmitters that happen to experience
similar channel conditions to more than a single access point.
In practice, this ambiguity can be overcome by a smart choice
of frequency re-use patterns that ensure a certain margin of
power separation between users within the cell of interest and
users from neighboring cells.

IV. PERFORMANCE ANALYSIS

We have demonstrated above, that the proposed algorithm
works in principle in massive MIMO systems as the number
of receive antennas grows much larger than the product of
transmit antennas and neighboring cells. In this section, we will
focus on the question, how large is large enough in practice.

A. Approximate Analysis

We start with a performance analysis for L finite, R, T →
∞, and 0 6= α � 1. This regime is the classical massive
MIMO setting and we will see that it leads to explicit and
intutitive design guidelines.

We decompose the impairment process

Z = W +HIXI (8)

into white noise W and interference from L neighboring cells
where data XI ∈ CLT×R is transmitted and received in the
cell of interest through the channel HI ∈ CR×LT . We define
the normalized coherence time

κ =
C

R
. (9)

Furthermore, we assume that the elements of W are inde-
pendent and identically distributed (iid) with zero-mean and
variance W .



In the large antenna limit R → ∞, the singular values of
W /
√
CW follow the Marchenko-Pastur law, i.e.

pσ(x) =

√
4
κ − (x− 1− 1

κ )
2

πx
(10)

for 1/
√
κ−1 < x < 1/

√
κ+1. In the worst case, the T largest

singular values of the noise affect the signal of interest. The
power of white noise being present in Ỹ is thus at most

TCW

(
1 +

1√
κ

)2

. (11)

Let the entries of the data signal X be iid with zero mean and
variance P . Furthermore, let the entries of the channel matrix
H be also iid with zero mean, but have unit variance. The total
power of the signal of interest at the receiver is thus TRCP
and the signal-to-noise ratio in Ỹ is lower bounded by

SNR ≥ P

W

R(
1 + 1√

κ

)2 . (12)

The signal-to-noise ratio scales linearly with the number of
receive antennas R and can be made as large as desired by
adding more and more receive antennas. The influence of the
coherence time C ≥ R onto the signal-to-noise ratio is at most
a factor of 4 and plays only a minor role.

In addition to white noise, there is co-channel interference
from neighboring cells. The co-channel interference is not
white, but highly concentrated in certain subspaces. In might
look hopeless to try to suppress this co-channel interference
without explicit knowledge of a basis spanning the interference
subspace. However, a phase-transition of spectra of large
random matrices comes to our aid. The empirical distribution
of the squared singular values of the normalized signal of
interest, i.e. HX/

√
TR, is shown in Appendix A to converge,

as R → ∞, to a limit distribution which for α � 1 is
supported in the interval

P =

[
κP

α
− 2P

√
κ2 + κ

α
;
κP

α
+ 2P

√
κ2 + κ

α

]
. (13)

Let the entries of the matrix of interfering signals be iid
with zero mean and variance P and let the entries of the
matrix of interfering channels be iid with zero mean and
variance I/P such that the ratio I/P accounts for the relative
attenuation between intercell users and out-of-cell users. Then,
the empirical distribution of the squared singular values of
the normalized co-channel interference, i.e. HIXI/

√
TR, also

converges to a limit distribution. For α� 1, it is supported in
the interval

I =

[
κI

α
− 2I

√
L
κ2 + κ

α
;
κI

α
+ 2I

√
L
κ2 + κ

α

]
(14)

If the two supporting intervals do not overlap, i.e.

P ∩ I = ∅ (15)

or equivalently

P

I
>

1 + 2
√
αL
(
1 + 1

κ

)
1− 2

√
α
(
1 + 1

κ

) (16)

α�1
≈ 1 + 2

(
1 +
√
L
)√

α

(
1 +

1

κ

)
, (17)

the singular value distribution of the sum of the signal of
interest and the interference converges, as R→∞, to a limit
distribution that is composed of two separate non-overlapping
bulks [10]. Note that in the limit α→ 0, the signal bulk always
separates from the interference bulk as long as P/I > 1.
Therefore, the signal subspace and the interference subspace
can be identified blindly. The interference can be nulled out
and pilot contamination does not happen. We note that the bulk
separation was calculated in the absence of white noise. In the
presence of strong white noise, the actual bulk separation is
slightly smaller.

B. Exact Large System Analysis

In this section, we still consider a larger system where
the number of transmit antennas T and the number of receive
antennas R is infinite, but their ratio α is not very small. The
obtained results will be more accurate, but implicit and less
intuitive than those of the previous section.

Combining (1) and (8), we get

Y = HX +HIXI +W . (18)

Let us denote the asymptotic eigenvalue distribution of Y Y †

as PY Y †(x). In Appendix B, we show that this asymptotic
eigenvalue distribution obeys

sGY Y †(s) + 1 =

− PTCα (sGY Y †(s) + 1− κ)GY Y †(s)

ακ− PTC (sGY Y †(s) + 1− κ)GY Y †(s)

− ILTCα (sGY Y †(s) + 1− κ)GY Y †(s)

ακ− ITC (sGY Y †(s) + 1− κ)GY Y †(s)

− WC (sGY Y †(s) + 1− κ)GY Y †(s)

κ
(19)

with

GY Y †(s) =

∫
dPY Y †(x)

x− s
(20)

denoting its Stieltjes transform.

V. NUMERICAL RESULTS

In this section, we provide Monte-Carlo simulation results
for the uncoded bit error rate (BER) of quaternary phase-
shift keying (QPSK) in flat Rayleigh fading and compare the
proposed algorithm to the linear channel and data estimation
considered in [1]. First, we consider the case of high SNR
in Fig. 1. Although, this case is not relevant in practice, it
shows that the BER drops to arbitrarily low values if the
co-channel interference is below the threshold provided by
random matrix theory (RMT) in (16). Thus, it confirms that
the pilot contamination problem is overcome, in principle.
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Fig. 1. BER for 1 pilot symbol per transmit antenna and cell, R = 400
receive antennas, T = 4 transmit antennas, L = 2 neighboring cells,
coherence time of C = 1000 symbols, and signal-to-noise ratio P/W = 100
(20 dB). Single-user matched filtering for data detection.
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Fig. 2. BER for R = 200 receive antennas, T = 2 transmit antennas, L = 2
neighboring cells, coherence time of C = 400 symbols, and signal-to-noise
ratio P/W = 0.1 (−10 dB). Single-user matched filtering for data detection.
The solid and dashed lines refer to 1 and 10 pilot symbols per transmit antenna
and cell, respectively.

The practically relevant case of low SNR is depicted in
Fig. 2. Again, the proposed algorithm achieves significant
performance gains below the RMT threshold when compared
to linear channel estimation. While the RMT threshold is an
exact threshold for the asymptotic case T →∞ and R � T ,
the figure also show the largest ratio I/P which did not lead
to separation of the singular values in the simulations. As
expected, the singular values spread out somewhat wider for
a finite number of antennas as compared to the asymptotically
large case.

The asymptotic eigenvalue distribution is compared to a
simulated histogram in Fig. 3. The histogram matches well
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Fig. 3. Eigenvalue distribution of Y Y †/R for R = 300 receive antennas,
T = 10 transmit antennas, coherence time C = 1000, L = 2 neighboring
cells, unit noise power (W = 1), P/W = 0.1 (−10 dB), and P/I = 4. The
red line shows the asymptotic result of (19).

with the asymptotic result. However, the bulk separation is
less pronounced in the finite case.

VI. SUMMARY AND CONCLUSIONS

We proposed a practical algorithm with polynomial com-
plexity to avoid pilot contamination in cellular systems with
power controlled handoff and appropriate frequency-reuse pat-
terns. The dominant complexity of this algorithm is a singular
value decomposition of received signal block. We conclude,
that pilot contamination is not a fundamental effect, but an
artefact of linear channel estimation.

APPENDIX A

It is shown in [11, Eq. (31)], that the asymptotic eigenvalue
distribution of X†H†HX/TR has a Stieltjes transform G(s)
fulfilling

s2κ2G3(s) + sκ(α+ 1− 2κ)G2(s)+

(sα+ (κ− 1)(κ− α))G(s)− α = 0. (21)

The support of the distribution is given by the interval [x1;x2]
where x1 and x2 are the two largest nonnegative solutions to
the equation [11, Eq. (37)]

4x3 −
(
10κ+ 10 +

10κ

α
− α− κ2

α
− 1

α

)
x2+

2

(
4κ2 + 4 +

4κ2

α2
− 2κ− 2κ2

α
− 2κ

α

− κ3

α
− κ3

α2
− κα− κ

α2
− α− 1

α

)
x+

α(κ− 1)2
(κ
α
− 1
)2(

1− 1

α

)2

= 0. (22)



For α� 1, this can be approximated by

4x3 −
(
10κ− κ2 − 1

) x2
α

+ 2
(
4κ2 − κ3 − κ− 8κα

−8κ2α
) x
α2

+
(κ− 1)2

α3

(
κ2 − 4κα− 4κ2α

)
= 0. (23)

It can easily be verified that (23) has the following three roots:

x1 =
κ

α
− 2

√
κ2 + κ

α
(24)

x2 =
κ

α
+ 2

√
κ2 + κ

α
(25)

x3 = − (κ− 1)2

4α
< 0. (26)

This completes the derivation.

APPENDIX B

Consider the random matrix

D =

K∑
k=1

akBkCk (27)

with ak ∈ R, Bk ∈ Cn×mk and Ck ∈ Cmk×n being random
matrices with iid. zero-mean entries with variance 1/mk and
1/n, respectively. First, we will derive the asymptotic eigen-
value distribution of DD† in terms of its Stieltjes transform
GDD†(s). Let Dk = BkCk. From [11, Eq. (31)], we have

−s2G3
DkD

†
k

(s)− s(ρk − 1)G2
DkD

†
k

(s)+ sρkGDkD
†
k
(s) = ρk.

(28)
with

ρk =
mk

n
(29)

With [10, Lemma 1], we get

−sG̃3
Dk

(s)− (ρk − 1)G̃2
Dk

(s) + sρkG̃Dk
(s) = ρk (30)

with G̃Dk
(s) denoting the Stieltjes transform of the sym-

metrized singular value distribution of Dk. The definition of
the R-transform [12] gives

R̃Dk
(w) =

ρkw

ρk − w2
(31)

and additive free convolution implies

R̃D(w) =

K∑
k=1

a2kρkw

ρk − a2kw2
. (32)

It follows straightforwardly from the definition of the R-
transform that

1

G̃D(s)
= −s+ R̃D

(
−G̃D(s)

)
(33)

and with [10, Lemma 1] that

1

GDD†(s)
= −s+

√
s R̃D

(
−
√
sGDD†(s)

)
(34)

= −s−
K∑
k=1

a2kρksGDD†(s)

ρk − a2ksG2
DD†(s)

. (35)

Next we consider the decomposition

D =

[
E
F

]
(36)

with E ∈ Cβn×n. From [13, Theorem 14.10], we have

REE†(w) = RDD†(βw). (37)

In the Stieltjes domain, this R-transform relation translates into

βGEE†(s) = GDD†

(
s+

β − 1

βGEE†(s)

)
. (38)

Thus, we find with (35)
1

βGEE†(s)
=− s− β − 1

βGEE†(s)
(39)

−
K∑
k=1

a2kρk

(
s+ β−1

βG
EE† (s)

)
βGEE†(s)

ρk − a2k
(
s+ β−1

βG
EE† (s)

)
β2G2

EE†(s)

and

sGEE†(s) = −1−
K∑
k=1

a2kρk

(
s+ β−1

βG
EE† (s)

)
βG2

EE†(s)

ρk − a2k
(
s+ β−1

βG
EE† (s)

)
β2G2

EE†(s)
.

(40)

Now, we consider the matrix Y in (18) as a special case of
E. This implies

K = 3 (41)

β =
R

C
=

1

κ
(42)

ρ1 =
T

C
=
α

κ
(43)

a21 = PTC (44)

ρ2 =
LT

C
=
αL

κ
(45)

a22 = ILTC (46)
ρ3 →∞ (47)
a23 =WC (48)

and (19) is obtained. Note that the entries of B3C3 become
iid. as ρ3 →∞.
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