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Abstract

With the success of the Internet comes the deployment of an increasing number of applications that do not use TCP as a transport
protocol. These applications can often improve their own performance by not being “TCP-friendly” and severely penalizing TCP
streams. Also, designing these new applications to be “TCP-friendly” is often a difficult task. For these reasons, we propose a new
paradigm for end-to-end congestion control (the FS paradigm) that relies on a Fair Scheduler network and assumes only selfish
and non-collaborative end users. The flow isolation property of the FS paradigm is commonly agreed by the network community,
however the lack of formalism of the FS paradigm hides fundamental properties.

We rigorously define the properties of an ideal congestion control protocol and show that the FS paradigm allows to devise
end-to-end congestion control protocols that meet almost all the properties of an ideal congestion control protocol. The FS paradigm
is fully compatible with the TCP flows. Moreover, we show that the incremental deployment of the FS paradigm is feasible per ISP
and leads to immediate benefits for the TCP flows since their mean bandwidth is increased by up to 25%.

Our main contribution is the formal statement of the congestion control problem as a whole that allows to rigorously prove the
validity of the FS paradigm.

Keywords: Congestion Control, Scheduling, Paradigm, Multicast, Unicast.

1 Introduction

Congestion Control has been a central research topic since the early days of computer networks. Nagle first identified the
problems of congestion in the Internet[1]. The first fundamental turning point in Internet congestion control took place at
the end of the eighties. Nagle proposed a strategy based on the round robin scheduling [2], whereas Jacobson proposed a
strategy based on Slow Start (SS) and Congestion Avoidance (CA) [3]. Each of these solutions has its drawbacks. Nagle’s
solution has a high computation complexity and requires modifications to the routers. Jacobson’s solution requires the
collaboration of all the end users1. The low performance of the routers and the small size of the Internet community
at that time led to the adoption of Jacobson’s proposal. SS and CA mechanisms were put in TCP. Ten years later, the
Internet still uses Jacobson’s mechanisms in a somewhat improved form [4].

We define the notion of Paradigm for Congestion Controlas a model used to devise congestion control protocols that
have the same set of properties. Practically, when one devises a congestion control protocol with a paradigm, one has
the guarantee that this protocol will be compatible2 with all the other congestion control protocols devised with the same

1The term end user refers to all the entities that control the end host. For instance when we assume the collaboration of the end user we assume
the collaboration of the protocol at the end host, and the collaboration of the persons who use the end host and can modify the protocol, etc.

2Compatible means that this protocol has a same set of properties than all the other congestion control protocols devised with this paradigm.



paradigm, at the expense of some constraints enforced by the paradigm. This notion of paradigm is not obvious in the
Internet. A TCP-friendly paradigm was implicitly defined. However this paradigm was introduced after TCP, when new
applications that can not use TCP had already appeared.

As TCP relies heavily on the collaboration of all the end users – collaboration is in the sense of the common mecha-
nism used to achieve congestion control – the TCP-friendly paradigm was introduced (see [5], [6]) to devise congestion
control protocols compatible to TCP. A TCP-friendly flow has to adapt its throughputT according to the equation 3 :

T =
C �MTU

RTT �
p
loss

(1)

where, C is a constant, MTU is the size of the packets used for the connection, RTT is the round trip time, and loss is
the loss rate experienced by the connection. To compute this T , one needs to measure the loss rate and the RTT .

The throughput T for a TCP-friendly flow heavily decreases with the loss rate loss. However, this behavior does
not fit to many applications’ requirements. For instance, audio and video applications are loss-tolerant and the degree of
loss tolerance can be managed with FEC [8]. These multimedia applications can tolerate a significant loss rate without
a significant decrease in the quality perceived by the end users. The multicast flows suffer from TCP-friendliness since
a source-based congestion control scheme for multicast flows has to adapt its sending rate to the worst receiver (in the
sense of the loss rate), to follow the TCP-friendly paradigm. A receiver-based multicast congestion control scheme can
be TCP-friendly but at the expense of a large granularity in the choice of the layer bandwidth [9] [10].

The TCP-friendly paradigm relies on the collaboration of all the users, which can not be longer assumed given
the current size of the Internet [6]. This paradigm requires that all the applications use the same congestion control
mechanism based on Eq. (1). This paradigm does not extend to the new applications being deployed across the Internet.
Companies start to use non-TCP-friendly congestion control schemes4, as they observe better performance for audio and
video applications than with TCP-friendly schemes. However the benefit due to non-TCP-friendly schemes is a transitory
effect and an increasing use of non-TCP-friendly schemes may lead to a congestion collapse in the Internet. Indeed, at
the present time, most of the users access the Internet at 56 Kbps or less. However, with the deployment of xDSL most
of the users will have, in a few years, an Internet access at more than 1Mbps. It is easy to imagine the disastrous effect of
hundred of thousands unresponsive flows at 1 Mbps crossing the Internet.

It is commonly agreed that router support can help congestion control. However there are several fears about router
support. The end-to-end argument [11] is one of the major theoretical foundations of the Internet, adding functionality
inside the routers must not violate this principle. As TCP is the main congestion control protocol used in the Internet,
router support must, at least, not penalize TCP flows (this can be related to the end-to-end argument, see[12]). Moreover
it is not clear which kind of router support is desirable; router support can range from simple buffer management to active
networking. One of the major reasons the research community distrusts network support is the lack of a clear statement
about the use of network support for congestion control.

One simple way to use network support for congestion control is to change the scheduling discipline inside the
routers. PGPS-like scheduling [13] is well known for its flow isolation property. This property sounds suitable for
congestion control. However, the research community does neither agree on the utility of this scheduling discipline for
congestion control (even if its flow isolation property is appreciated) nor on the way to use this scheduling discipline. We
strongly believe that the lack of consensus is due to a fuzzy understanding about which properties a congestion control
protocol should have and how a PGPS network (i.e. a network where each node implements a PGPS-like scheduler) can
enforce these properties. The aim of this paper is to shed some light onto these questions.

A user acts selfishly if he only tries to maximize its own satisfaction without taking into account the other users
(Shenker gives a good discussion about the selfishness hypothesis in [14]). The TCP-friendly paradigm is based on
cooperative and selfish users. We base our new paradigm called Fair Scheduler (FS) paradigm on non-cooperative and

3The TCP-friendly equation is based on TCP long-term behavior, there are more accurate definitions of the TCP-friendly equation (see [7]) but
they are always based on a function of the RTT and the

p
loss.

4Here congestion control may be a misleading expression, since the flows are often constant bit rate.
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selfish users. We formally define the properties of an ideal congestion control protocol (see section 2.2) and show that
almost all these properties are verified with the FS paradigm when we assume a network support that simply consist in
having a Fair Scheduler in the routers (see section 2.3). We define a Fair Scheduler to be a Packet Generalized Processor
Sharing scheduler with longest queue drop buffer management(see [13], [15], [16], and [17] for some examples). In
particular, a Fair Scheduler must guarantee max-min fairness and delay bounds. Our study shows that simply changing
the scheduling allows to use the FS paradigm for congestion control while outperforming the TCP-friendly paradigm.
Indeed, the FS paradigm provides a basis for devising congestion control protocols tailored to the application needs.
We do not introduce a new congestion control protocol, but a model(a paradigm) to devise efficient congestion control
protocols. We do not want to replace or modify TCP. Instead, we propose an alternative to the TCP-friendly paradigm to
devise newcongestion control protocols compatible with TCP. Important to us is that the FS paradigm does not violate
the end to end argument, due to the network support. The weak network support that consists in changing the scheduling
is of broad utility–we show that the FS scheduling significantly improves the performances of the TCP connections–
and consequently does not violate the end-to-end argument [12]. We can note that one part of our results are implicitly
addressed in previous work (in particular [18] and [14]), we are making the step from an implicitdefinition of the problems
and an explicitstatement of the problem introducing a formalism that constitutes an indisputable contribution. We expect
this study will stimulate new interest for this FS paradigm, fully compatible with TCP congestion control, that allows to
devise end-to-end congestion control protocols that meet almost all the properties of an ideal congestion control protocol.

In section 2 we define the FS paradigm for end-to-end congestion control. In section 3, we study the practical
aspects of the deployment of the FS paradigm in the Internet. Section 4 compares the FS paradigm and the TCP-friendly
paradigm. Section 5 addresses the related work, while section 6 summarizes our findings and concludes the paper.

2 The FS Paradigm

We formally define the FS paradigm in three steps. First, we define the notion of congestion. This definition is a slight
modification of the Keshav’s definition[18]. Second, we formulate six properties that an ideal congestion control protocol
must meet. These properties are abstractly defined, i.e. independent of any mechanism (for instance we talk about fairness
but not about scheduling and buffer management, which are two mechanisms that influence fairness). Third, we define
the FS paradigm for congestion control. We show that almost all the properties of an ideal congestion control protocols
are met by a congestion control protocol based on the FS paradigm.

We note that all the aspects of congestion control – from the definition of congestion to the definition of a paradigm
to devise new congestion control protocols – are addressed with the same formalism. This formalism allows us to have a
consistent study of the congestion control problem.

2.1 Definition of Congestion

The first point to clarify when we talk about congestion control is the definition of congestion. Congestion is a notion
related to both user’s satisfaction and network load. If we only take into account the user’s satisfaction, we can imagine
a scenario, where the user’s satisfaction decreases due to jealousy (for instance) and not due to any modifications in the
quality of the service a user receives (for instance, user A learns that user B has a better service, and is no more satisfied
with his own service). This can not be considered as congestion. If we only take into account the network load, congestion
is only related to network performance, which can be a definition of congestion (for instance it is the definition in TCP),
but we claim that we must take into account the user’s satisfaction. We always have to keep in mind that a network exists
to satisfy users. Our definition of congestion is:

Definition 1 A network is said to be congested from the perspective of user i, if the satisfaction of i decreases due to a
modification of the characteristics of his network connection5.

5The “characteristics of a connection” are defined by the performances characteristics observed by a user on his session.
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Figure 1: Example for the definition of congestion

A similar definition was first introduced by Keshav (for a discussion of this definition see [18]). Keshav’s initial
definition is : “A network is said to be congested from the perspective of user i if the satisfaction of i decreases due to
an increasein network load”. Our only one point of disagreement with Keshav is about the influence of network load.
He says that only an increasein network load that results in a loss of satisfaction is a signal of congestion, whereas we
claim that a modification(increase or decrease) in network load with a decrease of satisfaction is a signal of congestion.
We give an example to illustrate our view.

Let the scheduling be WFQ [13], let the link capacity be 1 for all the links, and let the receiver’s satisfaction depend
linearly on the bandwidth received. The flow F1 (sender S1 and receiver R1) has a weight of 1, the flow F2 (sender S2
and receiver R2) has a weight of 2, the flow F3 (sender S3 and receiver R3) has a weight of 1. In a first time the three
sources have data to send, the satisfaction of R1 is 1

3
, the satisfaction of R2 is 2

3
and satisfaction of R3 is 2

3
. Then S2

stops sending data, the satisfaction of R1 becomes 1

2
and the satisfaction of R3 becomes 1

2
. So when S2 stops to send

data, the network load decreases, but the satisfaction of R3 decreases too. We consider this case as a congestion for R3

in our definition, while Keshav’s definition does not consider this case as congestion.
In the next section we will address the properties of an ideal congestion control protocol. We want this congestion

control protocol to avoid congestion! This is not trivial, in fact we want the congestion control protocol to avoid conges-
tion in the sense of the congestion previously defined. This link is fundamental as it contributes to the consistency of our
study.

2.2 Properties of an Ideal Congestion Control Protocol

We use through this section terminology from the game theory and microeconomics; we define informally6 the terms
used. A network reaches a Nash equilibriumif, when every user acts selfishly, nobody can increase its own satisfaction.
The bandwidth allocation A in a network is Pareto optimalif it does not exist another bandwidth allocation B such that
all the users have a satisfaction with B higher or equal than the satisfaction with A, and at least one user has a satisfaction
with B strictly higher than the satisfaction with A.

We discuss in the following a set of six abstract properties that an ideal congestion control protocol must verify.
Whereas at the first sight these properties seem similar to Keshav ones, they are fundamentally different. Indeed, most
of our properties are expressed in mathematical terms that allow to rigorously prove that a congestion control protocol
verifies these properties. Here, the only one assumption we make is the selfish behavior of the users. So these properties
remain very general. The six properties are:

Stability Given each user is acting selfishly, we want the scheme to converge to a Nash equilibrium. At Nash equilibrium,
nobody can increase its own satisfaction. So this equilibrium makes sense from the point of congestion control
stability. Since more than one Nash equilibrium can lead to oscillation among these equilibria, the existence and
the uniqueness of a Nash equilibrium are the conditions of stability.

Efficiency Nash equilibrium does not mean efficiency. A desired property for the Nash equilibrium is to be Pareto opti-
mal. In this case, nobody can have a higher satisfaction with another distribution of the network resources without

6The interested reader can refer to [14] for formal definitions.

4



decreasing the satisfaction of another user. The convergence time of the scheme towards the Nash equilibrium is
another important parameter for efficiency. The faster convergence is, the more efficient it is. A fast convergence
towards a Nash equilibrium that leads to a Pareto optimal distribution of the network resources is the condition of
efficiency.

Fairness It is perhaps the most delicate part of congestion control. Many criteria for fairness exist, but there is no criterion
agreed on by the whole networking community. We use max-min fairness (see [19])7. We make a fundamental
remark on this fairness property. If we consider for all the users a utility function that is linearly dependent on the
bandwidth received, max-min fairness is equivalent to pareto optimality. If a user does not have a utility function
that depends linearly on the bandwidth received he will not be able to achieve its fair share (in the sense of max-
min fairness). Therefore max-min fairness defines/imposes an upper bound on the distribution of the bandwidth:
If every user wants as much bandwidth as he can have, nobody will have more than its max-min share. But if
some users are willing to collaborate8 they can achieve another kind of fairness and in particular proportional
fairness[20].

Robustness against misbehaving users. We suppose that all the users act selfishly, and as there is no restriction on the
utility functions, the behavior of the users can be very aggressive. Such a user must not decrease the satisfaction of
the other users. Moreover, he should not significantly modify the convergence speed of the scheme towards a Nash
equilibrium (see the efficiency property). Globally, the scheme must be robust against malicious, misbehaving, and
greedy users.

Scalability The Internet evolves rapidly with respect to bandwidth and size. Moreover inter-LAN, trans-MAN, and
trans-WAN connections coexist. A congestion scheme must scale on many axes: from an inter-LAN connection to
a trans-WAN connection, from a 28.8Kbyte/s modem to a 155Mbit/s line.

Feasibility This property contains all the technical requirements. We restrict ourself to the Internet architecture. The
Internet connects a wide range of hardware and software systems, thus a congestion control protocol must cope
with this heterogeneity. On the other hand, a congestion control protocol has to be simple enough to be efficiently
implemented. To be accepted as an international standard, a protocol needs to be extensively studied, the simplicity
of the protocol will favor this process.

We believe that these properties are necessary and sufficient properties of an ideal congestion control protocol. Indeed
these properties cover all the aspects of a congestion control protocol, from the theoretical notion of efficiency to the
practical aspect of feasibility. However, it is not clear how we can devise a congestion control protocol that meets all
these properties. In the next section we establish the FS paradigm that allows to devise congestion control protocols that
assure almost all of congestion control properties.

2.3 Definition and Validity of the FS Paradigm

A paradigm for congestion control is a model used to devise new congestion control protocols. A paradigm makes
assumptions and under these assumptions we can devise compatible congestion control protocols; compatible means that
the protocols have a same set of properties. Therefore, to define a new paradigm, we must clearly express the assumption
made and the propertiesenforced by the paradigm. To be viable in the Internet the paradigm must be compliant with the
end-to-end argument [11]. Mainly the congestion control protocols devised with the paradigm have to be end-to-end and
should not have to rely on specific network support. These issues are addressed in this section.

7Fairness is a tricky property. By definition, fairness means fairness among many flows. We do not make any assumption about the congestion
control scheme of the other flows, however we want that a flow Fr regulated by a congestion control scheme that follows the properties of this
section achieves max-min fairness with the other flows. In particular, Fr crossing TCP flows has to achieve max-min fairness with the TCP flows.

8In the FS paradigm we assume selfish and non-collaborative end users, however we do not exclude collaborative protocols. We just do not need
this collaborative assumption to achieve good properties.
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For simplicity things we make a distinction between the assumption that involves the network support – we call that
the Network Part of the paradigm (NP) – and the assumptions that involve the end systems – we call that the End System
Part of the paradigm (ESP).

The assumptions required for our new paradigm are:

� For the NP of the paradigm we assume a Fair Schedulernetwork, i.e. a network where every router implements a
Fair Scheduler;

� For the ESP, the end users are assumed to be selfish and non-collaborative.

We call this paradigm the Fair Scheduler (FS) paradigm9. We can note that the FS paradigm, unlike the TCP-friendly
paradigm, does not make any assumptions on the mechanism used at the end systems. The FS paradigm guarantees full
freedom when devising a congestion control protocol. This property of the paradigm is appealing but may lead to a high
heterogeneity of the congestion control mechanisms used. Therefore, one can have a legitimate fear about the set of
properties enforced by the FS paradigm. If the FS paradigm enforces less properties than the TCP-friendly paradigm, the
FS paradigm does not make sense. In fact we show, in the following, that our simple FS paradigm enforces almost all the
properties of an ideal congestion control protocol and consequently outperforms the TCP-friendly paradigm.

Stability Under the NP and ESP hypothesis, the existence and uniqueness of a Nash equilibrium is assured (see [14]).
The congestion control protocols devised with the FS paradigm therefore meet the condition of stability.

Efficiency Under the NP and ESP hypothesis, even a simple optimization algorithm (like a hill climbing algorithm)
converges fast to the Nash equilibrium. However, the Nash equilibrium is not Pareto optimal in the general case.
If all the users have the same utility function, the Nash equilibrium is Pareto optimal. One can point out that
ideal efficiency can be achieved with full collaboration of the users (see [14]). However, it is contrary to the
ESP assumptions. The congestion control scheme devised with our new paradigm does not have necessarily ideal
efficiency.

Fairness Every fair scheduler achieves max-min fairness. Moreover, as a Fair Scheduler is implemented in every network
node, every flow achieves its max-min fairness rate on the long term average (see [21]). Our NP assumption
enforces fairness.

Robustness Using a Fair Scheduler enforces that the network is protected against malicious, misbehaving, and greedy
users (see [16]). We can note that one user opening multiple connections can increase its share of the bottleneck,
however in practice, the number of connections that a single user can open is limited. Therefore, we do not expect
this multiple connections effect to be a significant weakness of the robustness property.

Scalability According to the ESP assumption, the only one constraint of the end-to-end protocol designer must consider
are selfish and non-collaborative end users. Unlike the TCP-friendly paradigm the designer has a great flexibility
to devise scalable end-to-end congestion control protocols with the FS paradigm.

Feasibility A fair scheduler (HPFQ [17]) can be implemented today in Gigabit routers (see [22]). So the practical
application of the NP assumption is no longer an issue (see section 3.2 for a discussion on the practical deployment
of Fair Schedulers in the Internet).

We see that the FS paradigm does not allow to devise an ideal efficient congestion control protocol, because the
Nash equilibrium can not be guaranteed to be Pareto optimal. The simple case that consists in considering the user
satisfaction of everyone as the same linear function of the bandwidth received leads to ideal efficiency (as every user has
the same utility function). However, in the general case ideal efficiency is not achieved. According to the NP assumption,

9Like the TCP-friendly paradigm, we compose the name of our new paradigm using the name of the fundamental mechanism involved in the
paradigm, namely the Fair Scheduler.
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every network node implements a Fair Scheduler, so we can manage the tradeoff among the three main performance
parameters: bandwidth, delay, and loss (see [13]). This tradeoff can not be made with the TCP-friendly paradigm,
therefore our paradigm leads to a significantly higher efficiency (in the sense of the satisfaction of end users) than the
TCP-friendly paradigm.

We have given the assumptions made and the properties enforced by the FS paradigm. The NP contains only the
Fair Scheduler assumption. As this mechanism is of broad utility – we will show in section 3.1 that a Fair Scheduler
has a great impact on TCP flows – it does not violate the end-to-end argument [12]. The issue related to the practical
introduction of the paradigm are studied in section 3.

The FS paradigm, like the TCP-friendly paradigm, applies for both unicast and multicast since the paradigm does
not make any assumption on the transmission mode. Moreover, the FS paradigm enforces properties of great benefits for
multicast flows. For instance, the efficiency property leads, with the FS paradigm, to a tradeoff between the performance
parameters bandwidth, delay, and loss. Whereas the FS paradigm guarantees that this tradeoff can be made end-to-end, it
is not the purpose of this paper to address the end-to-end protocol design to achieve this tradeoff.

In conclusion, we have defined a simple paradigm for end-to-end congestion control, called FS paradigm, that relies
on a Fair Scheduler network and only makes the assumption that the end users are selfish and non-collaborative. We can
note that the FS paradigm is less restrictive than the TCP-friendly paradigm, as it does not make any assumptions on the
mechanism used at the end users. Whereas the benefits of the FS paradigm with respect to flow isolation are commonly
agreed on by the research community, its benefits for congestion control has been less clear since the congestion control
properties are often not clearly defined. We showed that the FS paradigm allows to devise end-to-end congestion control
protocols that meets almost all the properties of an ideal congestion control protocol. The remarkable point is that simply
using Fair Schedulers allows to devise end-to-end congestion control protocols that are tailored to the application needs
(due to the great flexibility when devising the congestion control protocol and due to the tradeoff among the performance
parameters) while being a nearly ideal congestion control protocol.

We applied with success the FS paradigm to devise a new multicast congestion control protocol (see [23]). This
protocol is based on cumulative layers and outperforms all the other protocols based on cumulative layers. In summary
our protocol converges to the optimal link utilization in the order of one RTT and follows this optimal rate with no loss
induced. Moreover, and as theoretically guaranteed by the FS paradigm, our protocol is fair with the TCP flows.

3 Practical Aspects of the FS Paradigm

In the previous sections we defined the FS paradigm. Now we investigate the practical issues that come with the intro-
duction of such a paradigm in the Internet.

3.1 Behavior of TCP with the FS Paradigm

In this section, we evaluate the impact of the NP assumption of the FS paradigm on the today’s Internet. A central
question if we want to deploy the FS paradigm in the today’s Internet is: As the NP assumption requires modifications
in the network nodes, how will the use of a Fair Scheduler affect the TCP behavior and performance? Suter shows the
benefits of a fair scheduler on TCP flows [24]. While his results are very promising, they are based on simulations for
a very simple topology. We decided to explore the influence of the NP hypothesis on TCP with simulations on a large
topology.

The generation of realistic network topologies is a subject of active research [25, 26, 27, 28]. It is commonly agreed
that hierarchical topologies better represent a real Internetwork than do flat topologies. We use tiers ([26]) to create
hierarchical topologies consisting of three levels: WAN, MAN, and LAN that aim to model the structure of the Inter-
net topology [26] and call this Random Topology RT. For details about the network generation with tiers and the
parameters used the reader is referred to Appendix A.

The Network Simulator ns [29] is commonly agreed to be the best simulator for the study of Internet protocols. We
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use ns with the topology generated by tiers. All the parameters of the topology are defined in Appendix A. The queue
length is 50 packets for both FIFO and FQ scheduling (the shared buffer is 50 packets large). The buffer management
used with FIFO scheduling is drop tail, and the buffer management used with FQ is longest queue drop with tail drop.
The TCP flows are simulated using the ns implementation of TCP Reno, with packets of 1000 bytes size and a maximum
window of 5000 packets (large enough not to bias the simulations). The TCP sources have always a packet to send. The
unresponsive flows are simulated with UDP connections and CBR sources with a 10Mbit/s throughput.

We study two different scenarios:

TCP flows only. We add from k = 50 to k = 1600 TCP flows randomly distributed on the topology RT (i.e. the source
and the receiver of a flow are randomly distributed among the LANs of RT). We do for each configuration of unicast
flows an experiment with FIFO scheduling and an experiment with FQ scheduling. These experiments show the
impact of the NP assumption on unicast flows. All the simulations are repeated five times and the average is taken
over the five repetitions. All the plots are with 95% confidence intervals.

TCP and unresponsive flows. For this simulation we consider a unicast environment consisting of k = 1000 TCP flows
randomly distributed on the topology RT. We add from kc = 1 to kc = 150 CBR flows randomly distributed on the
topology RT. This simulation shows the impact of fully unresponsive flows(the CBR flows send at 10Mbit/s, the
bandwidth of the LANs) with FIFO scheduling (as used in today’s Internet), and with FQ scheduling (as suggested
by the FS paradigm). All the simulations are repeated five times and the average is taken over the five repetitions.
All the plots are with 95% confidence intervals.

We choose a simulated time of 50 seconds, large enough to obtain significant results. All the TCP flows start randomly
within the first simulated second. All the unresponsive flows start randomly between the forth and the fifth simulated
second. We compute the mean bandwidth �Fi for all TCP and all unresponsive flows i, i = 1; :::; k+ kc. In section 3.1.1,
we do additional simulations with a simulated time of 200 seconds to study the behavior of a TCP flow throughout the
time (see figure 3).

We consider three measures to evaluate the results: i) the mean bandwidth �B = 1

k+kc

P
i=k+kc

i=1
�Fi. �B shows the

efficiency of the scheduling discipline in the sense of the satisfaction of the users if we consider a utility function that is
linearly dependent of the bandwidth received for each receiver. Indeed for each experiment only the scheduling discipline
changes. ii) the minimum bandwidth mini=1;:::;k+kc

Fi shows the worst case performance for any receiver. We say that
an allocation is max-min fair if: the smallest assigned bandwidth seen by a user is as large as possible and, subject to
that constraint, the second-smallest assigned bandwidth is as large as possible, etc (see [21]). So the minimum bandwidth
shows which scheduling discipline leads to the bandwidth allocation closest to the max-min fair allocation. iii) the stan-

dard deviation � =

q
1

k+kc�1

P
i=k+kc

i=1
( �Fi � �B)2 gives an indication about the uniformity of the bandwidth distribution

among the users.

3.1.1 TCP Flows Only

Figure 2(a) shows the mean bandwidth for all the receivers as the number of TCP flows increases. The performance of
the scenario with FQ scheduling surpasses the scenario with FIFO scheduling. For instance, the bandwidth �B obtained
with FQ is around 25% higher than the bandwidth achieved with FIFO for k = 1000. This is a very significant result: For
the same topology and the same scenario, just changing the scheduling discipline results in a gain of 25% of bandwidth
for TCP connection.

The reason of this result is due to the bursty nature of TCP traffic. FIFO scheduling can not smooth TCP traffic and
preserves the bursty nature of TCP flows resulting in bursts of data packets and in Ack compression [30]. When a queue
overflows due to a burst of data packets, every flow that shares this queue can experience losses. In our case a flow can
be a flow of data packets but also a flow of Acks (the TCP back channel). Loss slows down each flow that experiences
losses. In figure 3(a) we see a trans-WAN TCP flow in a scenario with FIFO scheduling. Our measurements indicate 270
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Figure 2: FIFO versus FQ, increasing the number of unicast flows k = 50; :::; 1600.
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Figure 3: A trans-WAN TCP flow, throughput at the receiver and number of packets loss with FIFO scheduling and with
FQ scheduling in the random topology RT.

lost data packets and 214 lost Acks for this flow. There is a total of 182222 packets lost for all the flows and 149984 Acks
lost for all the flows during 200 simulated seconds.

FQ scheduling smoothes the TCP traffic, reduces the Ack compression, and reduces the bursts of data packets [24]. As
the buffer management is longest queue drop, when a queue overflows, only the flows with the longest queue experience
losses. This will result in flow isolation and in a very low probability to loose Acks. In figure 3(b) we see a trans-WAN
TCP flow in a scenario with FQ scheduling. Our measurements show 92 lost data packets and 0 lost Acks for this flow.
There is a total of 126298 packets lost for all the flows and 0 Acks lost for all the flows during 200 simulated seconds.

The comparison in figure 3 of the sameconnection in the samenetwork but with a differentscheduling discipline
shows that FQ reduces the number of data packets lost and even prevents Ack loss. With FIFO scheduling the TCP flows
experience frequent losses, which leads to a high instability in the throughput of the TCP flows. With the FQ scheduling,
the TCP flow experiences sparse losses, the TCP throughput is clocked by regular slow start phases. The flow is isolated,
the losses are only due to its own queue overflow.

One can note a corollary result in figure 3. There are many packets lost during the first simulated second with FQ
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Figure 4: FIFO versus FQ, standard deviation of bandwidth for an increasing the number of unicast flows k =

50; :::; 1600.

but not with FIFO. This result seems at first glance favorable to FIFO scheduling whereas it is very unfavorable. Indeed
during the first TCP cycle, the congestion windows only increase with the Slow Start phase until the flow experiences
losses. With FQ scheduling and due to the flow isolation, every flow experiences a loss due to its own slow start phase.
Since during the slow start phase, the window size increases exponentially, the number of packets lost can be, in the worst
case, up to half of the window size. As every TCP flow starts during the first simulated second there is a high loss peak,
however each flow converges fast to its fair share. With FIFO scheduling there is no flow isolation, so when the first
flow causes a buffer overflow, all the flows that share the same bottleneck potentially experience losses. As these flows
do not experience losses due to their own slow start phase, they experience a lower number of losses, which explains the
low loss with FIFO scheduling. Whereas the flows experience more losses with FQ than with FIFO scheduling in the
first simulated seconds, the flows converge faster and to a higher equilibrium bandwidth than with FIFO scheduling. We
see from figure 3 that the absolute throughput with FQ compared to FIFO is already significantly higher since the first
seconds of the experiment. Thus FQ benefits short TCP connections.

The bandwidth benefit and the reduction of the losses due to FQ are very interesting results. However we need to
verify that these benefits are not at the expense of a decrease in fairness. The FQ scheduling increases significantly the
minimum bandwidth compared to the FIFO scheduling (see figure 2(b)). For 1000 TCP flows, the minimum bandwidth
with FIFO scheduling is around 185Kbit/s, while the minimum bandwidth with FQ scheduling is around 650Kbit/s. The
minimum bandwidth with FQ scheduling is more than 250% higher than the minimum bandwidth with FIFO scheduling,
for 1000 TCP flows. Thus the FQ scheduling leads to a bandwidth allocation closer to the max-min fair allocation than
the FIFO scheduling.

The FQ scheduling leads to a lower standard deviation of bandwidth � than the FIFO scheduling (see figure 4) and
therefore to a higher uniformity in the bandwidth allocation than FIFO scheduling.

In conclusion, whereas the NP assumption requires changes in the network, which is a hard task, our simulations show
that already the increase in TCP performances justifies the NP assumption. We now study the question, how introducing
the NP assumption in the Internet will affect TCP performance in the presence of flows that are notTCP-friendly.

3.1.2 TCP and Unresponsive Flows

To have meaningful measurements we must choose enough TCP flows to create our TCP environment. Figure 4 shows
little change in the standard deviation for more than k = 1000 flows . The bias due to the random locations of the users
is negligible for k � 1000.

We therefore choose a TCP environment of k = 1000 flows and add unresponsive flows. This simulation aims
to model the behavior of the Internet and to evaluate the robustness of our paradigm in the presence of worst case
unresponsive flows, which send at the maximum LAN throughput of 10Mbit/s.
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Figure 5: Increasing the number of CBR flows kc = 1; :::; 150, k = 1000 unicast flows.
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Figure 6: Increasing the number of CBR flows kc = 1; :::; 150, k = 1000 unicast flows.

To evaluate the impact of the unresponsive flows we compare the curves for kc = 1; :::; 150 with the curves of
section 3.1.1 for k = 1000; :::; 1150.

With FQ scheduling, the TCP flows do not suffer at all from the unresponsive CBR flows . The mean bandwidth
decreases (with kc) with the same slope (see figure 5(a)) than the mean bandwidth of the experiment with only TCP flows
(see figure 2(a) for k = 1000; :::; 1150). We see the same behavior for the minimum bandwidth (compare figure 2(b)
and figure 6(a)) and for the standard deviation (compare figure 7(a) and figure 4). The results for the unresponsive CBR
flows with FQ scheduling are roughly the same than for the TCP flows. This is due to the equal share enforced by the fair
scheduler. No flow can receive more than its equal share. However, as the CBR flows are unresponsive, the equal share
is achieved at the expense of a high loss rate for the unresponsive CBR flows.

With FIFO scheduling, the TCP flows experience a significant drop in performance. The mean bandwidth heavily
decreases when the number of unresponsive flows increases (compare figure 5(a) and figure 2(a) for k = 1000; :::; 1150).
Figure 6(a) shows the disastrous effect of the unresponsive flows on the worst case receiver. The standard deviation
increases with the number of unresponsive flows (compare figure 7(a) and figure 4).

The mean bandwidth for the unresponsive flows is higher with FIFO scheduling than with FQ scheduling (figure 5(b))
but the mean bandwidth of the unresponsive flows for FIFO scheduling decreases heavily with kc. We would expect that
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Figure 7: Increasing the number of CBR flows kc = 1; :::; 150, k = 1000 unicast flows.

the unresponsive flows benefit from FIFO scheduling at the expense of TCP flows. While this is true for the mean band-
width, we surprisingly observe the opposite for the minimum bandwidth and the standard deviation for the unresponsive
flows (see figure 6(b) and figure 7(b)). Only one unresponsive CBR flow can get all the bandwidth, but if two or more
unresponsive CBR flows cross, their highly aggressive behavior leads to a high loss rate among all the crossing unrespon-
sive flows. Moreover, we can observe synchronization among the unresponsive CBR flows that leads to high unfairness,
a flow can lose all the packets whereas another flow on the same path can experience no loss.

In conclusion, the FIFO scheduling leads to low bandwidth performance and unfairness for both TCP flows and
unresponsive CBR flows. The NP assumption fully protects the TCP flows against unresponsive ones, moreover the high
unfairness among unresponsive flows with FIFO scheduling disappears with the NP assumption. This result shows that
the FS paradigm gives a great flexibility in devising the end-to-end protocols, since even highly unresponsive flows can
coexist with TCP flows without penalty for the TCP flows.

In the next section we discuss the aspects of the incremental deployment of the FS paradigm.

3.2 Remarks on the Deployment of the New Paradigm

One practical question concerning the FS paradigm is its deployment in the Internet.
First one can note that the issues concerning the deployment of the paradigm are only related to the deployment of

the Fair Schedulercapability in the routers. The deployment of the end-to-end protocols is not an issue due to the NP
assumption, since the paradigm enforces no constraint on the end-to-end protocols, provided that the end users are selfish
and non-collaborative. For a new application, one can easily develop an end-to-end protocol for this new application
and distribute this protocol with this application. On the other hand, we can develop an end-to-end protocol for old
applications and incrementally distribute these protocols with no fear, indeed the ones who use the new protocol will
see a significant enhancement in the performance whereas the others, who do not upgrade yet, do not see a significant
modification in their performance. So the FS paradigm allows an easy deployment of the end-to-end protocol. We note
that this is not the case with the TCP-friendly paradigm, since it heavily relies on the collaboration of all the end users. If
one wants in the case of a collaborative paradigm to add a new CC scheme, this CC scheme has to implement the same
mechanism than the previous CC schemes. If one wants to change this mechanism, one has to change it in every end user,
which is practically infeasible.

Second, the deployment of the NP requires that every router implements a Fair Scheduler. If we deploy an end-to-end
protocol without the NP assumption, we can cause congestion collapse. Deploying the NP in the Internet seems unreal-
istic. However we have to take into account the administrative reality of the Internet. The Internet is an interconnection
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of ISPs. Each ISP has the full control of its network and offers specific services on its network, independent of the rest of
the Internet. For instance, some ISPs start providing the multicast functionality inside their network whereas Internet, as
a whole, is still not multicast capable10. ISPs are operating in a competitive environment that forces them to innovate and
improve their service offered to keep the customers. In the past, ISPs have continuously upgraded the capacity of their
links and installed, for instance, caches to improve their service. If an ISP has installed caches, his client will find with a
probabilityP (as P ranges between 0.5 and 0.7 according to [31]) the web documents they access in the ISP’s cache. Up-
grading all the routers within an ISP with a Fair Schedulerwill give a number of immediate benefits. Customers surfing
on the web will have a higher TCP performance (around 25% higher see section 3.1.1) and therefore shorter download
times (with a probabilityP ) whenever a document is in the cache or on a server directly connected to the same ISP. If the
ISP is also multicast capable, its clients can also use new end-to-end protocols that significantly improve the performance
of the multicast connection.

In conclusion, the deployment of the new paradigm can be incremental. For an ISP, upgrading all its routers with Fair
Schedulers is a substantial investment, but we believe that this investment will improve the quality of the service, which
can be a significant commercial argument. So the ISPs have a financial interest in the deployment of this paradigm.

4 The FS Paradigm versus the TCP-friendly Paradigm

TCP has been for many years the main Internet congestion control protocol with an indisputable achievement. However,
every new congestion control protocol deployed in the Internet must be TCP compatible i.e. this new protocol does not
have to significantly decrease the performance of the TCP flows.

Both the TCP-friendly and the FS paradigm allow to devise end-to-end congestion control protocols compatible with
TCP. A paradigm is only a formal way to define how to devise congestion control protocols. To compare two paradigms
we have to look at the properties of the protocols devised with these paradigms. We compare the congestion control
protocols according to the properties of an ideal congestion control protocol. The results are summarized in table 1 where
a + shows which paradigm outperforms the other one for a given property.

Properties FS paradigm TCP-friendly paradigm
Stability + �

Efficiency + �
Fairness + �

Robustness + �
Scalability + +

Feasibility � +

Table 1: The FS paradigm versus the TCP-friendly paradigm.

The TCP-friendly paradigm does not lead to ideal stability neither efficiency, due to the lack of assumption on the
scheduling discipline (with selfish users only a Fair Scheduling can leads to ideal stability and in some case to ideal
efficiency [14]). The FS paradigm does not lead to ideal efficiency in the general case either, however the FS paradigm
allows a tradeoff among the performance parameters bandwidth, delay, and loss which is impossible with the TCP friendly
paradigm. The TCP-friendly paradigm does not lead to ideal fairness, the fairness of this paradigm is biased by the RTT .
The weakest point of the TCP-friendly paradigm is its lack of robustness: As this paradigm relies on the collaboration of
the end users, it is easy to grab the bandwidth from the TCP-friendly flows. Both the TCP-friendly paradigm and the FS
paradigm are scalable.

10We can note similarities in the deployment of the multicast functionality per ISP and the deployment of the FS paradigm per ISP as both require
that all the routers support the respective capability.
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The weakest property of the FS paradigm is the feasibility. The TCP-friendly paradigm is the most feasible paradigm
because it does not require any modification in the current Internet. The FS paradigm requires modification of the
scheduling inside routers. We showed in section 3.2 that this deployment is feasible per ISP because ISPs have a financial
interest in this deployment. The question is: there is a paradigm the TCP-friendly paradigm that is immediately feasible,
but has many weakness (mainly the robustness and the efficiency for new applications, for instance multicast), on the
other hand we propose a new paradigm, the FS paradigm, that outperforms the TCP-friendly paradigm but requires some
effort to be deployed. We believe that the FS paradigm is an appealing solution and we hope this study will stimulate
interest in this new paradigm.

5 Related Work

There is surprisingly little literature on congestion control paradigms. Most of the studies are about how to devise TCP-
friendly end-to-end congestion control schemes. See [32] and [6] for unicast congestion control examples, and see [10],
[33], [34], [35], and [36] for multicast congestion control examples.

Keshav [18] presents a comprehensive study of congestion control. While we agree with him in many points, our
approach to the problem is fundamentally different. Keshav gives a new definition of congestion control, defines a set of
properties for a congestion control scheme, and introduces two mechanisms, FQ and packet-pair flow control protocol
that verify together his properties for the congestion control scheme. We agree with Keshav’s definition of congestion
and reuse it with a slight modification (see section 2.1). His congestion control properties influence the classification
of our congestion control properties and his concept of congestion control with one part in the network (with FQ) and
one part at the end host (with packet-pair) strongly influences our paradigm. However, Keshav’s aim was to study the
problems of congestion control and to present as a solution a new unicast congestion control scheme. Our aim is to define
a model (a new paradigm) to devise end-to-end congestion control schemes. To achieve this goal, we define a set of
properties for congestion control schemes. The definitions are abstract (they do not take into account any mechanism)
and use a mathematical foundation. This formalism allows to prove the feasibility of the FS paradigm (see section 2.3)
and to define a general background for the study of end-to-end congestion control.

Shenker applies game theory to study congestion control [14]. While his approach is rather different from ours, most
of his results provide the mathematical foundation for the FS paradigm. He shows that one can achieve, with the selfish
and non-collaborative behavior of the users, a congestion control that has a set of desired good properties. The only
requirement is to have switching with a fair share allocation function. Shenker shows the benefits of the fair share policy
for congestion control. However he does not clearly identify the properties of an ideal congestion control protocol and
does not define the paradigm for devising congestion control protocols. Shenker’s work is complementary to ours. We
formally define the problem of congestion control, and propose a paradigm for congestion control. Shenker presents
mathematical results that validate our work.

Lefelhocz et al. discuss a new paradigm for best effort congestion control [37]. They provide a good discussion of the
question:“Why do we need a new paradigm”? The solution proposed is a set of four mechanisms required for congestion
control: scheduling, buffer management, feedback, and end adjustment. These mechanisms meet the FS paradigm: the
scheduling and the buffer management are part of our NP; the feedback and the end adjustment are part of the end-to-end
protocol. Our study shows how to use these mechanisms and why these mechanisms are sufficient. Moreover we show
that selfish and non-collaborative end users can achieve nearly ideal congestion control. In their study, Lefelhocz et al.
explain why they believethe four mechanisms are necessary and sufficient, we develop the formalism needed to prove
why our paradigm is an appealing alternative to the TCP-friendly paradigm. Our results can be seen as a generalization
of their study.

Suter et al. show the benefits of FQ with appropriate buffer management for TCP flows. However, their study is
based on very simple scenarios. We extend their study to a large topology and point out the most important issue with FQ
and TCP flows: the suppression of the Ack loss and the significant reduction in data packets losses.

Another way to devise a new paradigm is the Diffserv or Intserv paradigm. There is active research on these topics,

14



but to the best of our knowledge, there is no similar study to ours with these paradigms. Moreover the Diffserv and
Intserv paradigms lead to much more complex mechanisms than the FS paradigm, for instance these paradigms are not
viable without pricing (see [38]).

6 Conclusion

We defined a new paradigm, called FS paradigm, for end-to-end congestion control. This paradigm relies on a Fair
Scheduler network and makes the assumption that the end users are selfish and non-collaborative. Whereas the FS
paradigm is commonly agreed to have interesting properties, the research community has no clear understanding of what
these properties precisely are. This lack of formalism leads to a mistrust toward this paradigm, which explains why
end-to-end congestion control protocols have not been studied with the FS paradigm.

We start the paper with a definition of the notion of congestion that is a slight modification of Keshav’s definition.
We formally define a set of six properties for an ideal congestion control protocol. These properties are based on notions
of game theory and microeconomics, thus allowing the use of the rigorous results previously established using these
theories. The rigorous definition of the properties is important since this definition is highly reusable (we only make the
assumption of selfishness for the definitions) and this definition allows to rigorously prove the validity of the FS paradigm.
Then, we define the FS paradigm. We show that this new paradigm allows to devise congestion control protocols that
have almost all the properties of an ideal congestion control protocol. What is remarkable is that the only assumption the
paradigm makes on the end users is their selfish and non-collaborative behavior. Under this assumption, to devise nearly
ideal congestion control protocols, we just need a network support that consists in a Fair Scheduler. To the best of our
knowledge we are the first that define the properties of an ideal congestion control protocol and a paradigm for the design
of end-to-end congestion control protocols with such a formalism, and prove the validity (in the sense of the properties
of an ideal congestion control protocol) of this paradigm.

The second part of our study is about the practical aspects that come with the introduction of the FS paradigm in the
Internet. Our simulations on a large topology show the great benefits due to the FS paradigm for TCP flows. The mean
bandwidth of the TCP flows is increased by 25% and the minimum bandwidth is increased by 250% with the FS paradigm
compared to a simulation of the current Internet. As indicated, the incremental deployment by a simple ISP will yield
immediate benefits to this ISP’s clients. In conclusion the FS paradigm applied in the today’s Internet leads immediately
to great benefits for the TCP flows and opens a new way in devising new very efficient unicast and multicast end-to-end
congestion control protocols. This new paradigm offers an appealing alternative to the TCP-friendly paradigm.

Our study raises new questions. The FS paradigm allows to devise nearly ideal end-to-end congestion control. Which
mechanisms should we use in the end-to-end protocol to reap full benefits of the paradigm? We address this question in
another study for the context of multicast congestion control for audio and video applications (see [23]). We devise a
new cumulative layered congestion control protocol that converges to the optimal rate in the order of one RTT with no
loss induced in the discovery of the available bandwidth. We consider this new congestion control protocol as a practical
proof of the great benefits of the FS paradigm.
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A Tiers Setup

We give a brief description of the topology used for all the simulations. The random topology RT is generated with
tiers v1.1 using the command line parameters tiers 1 20 9 5 2 1 3 1 1 1 1. A WAN consists of 5 nodes
and 6 links and connects 20 MANs, each consisting of 2 nodes and 2 links. To each MAN, 9 LANs are connected.
Therefore, the core topology consists of 5 + 40 + 20 � 9 = 225 nodes. The capacity of WAN links is 155Mbit/s, the
capacity of MAN links is 55Mbit/s, and the capacity of LAN links is 10Mbit/s.

Each LAN is represented as a single leaf node in the tiers topology. All the hosts connected to the same LAN are
connected to the same leaf node and send their data on the same 10Mbit/s link.
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