
Distortion bounds and a Protocol for One-Shot
Transmission of Correlated Random Variables on a

Non-Coherent Multiple-Access Channel
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Abstract—Bounds on the distortion derived in [1] are adapted
to the case where two continuous random variables are sent over
a multiple access channel with phase shifts using the help of two
feedback channels. The first source is defined to be uniformly
distributed and the second source is defined as the sum of the first
source and an auxiliary random variable which is also uniform.
Additionally, using the same definition of the two sources, the
two-round protocol introduced in [2] is studied in detail and
a comparison is made in order to discuss the tightness of the
information-theoretic bounds.

I. INTRODUCTION

We consider simple transmission strategies for sensor net-
works that are able to measure a physical phenomenon from
different locations. Under the condition of energy-limited
sensors and considering also a wireless transmission medium,
a low-complexity one-shot coding method is needed. The
key issue is that digital transmission for small amounts of
(typically) analog data will induce overhead which is wasteful,
especially for massive networks of simple nodes. Joint source-
channel coding (JSCC), which combines the efforts of the
channel and source code, addresses such problems.In this pa-
per, we consider JSCC for transmission of multiple spatially-
distributed samples of a slowly time-varying random field.

A source is represented by a random variable U of zero
mean and variance σ2

u = 1. The sensor is in general a
tiny device with strict energy constraints. The communication
channel between the sender and the receiver is an additive
white Gaussian noise channel. The adressed problem is how
to efficiently encode the random source, and what to expect
in terms of performance. We focus our attention on the case
where unitary samples of the source are transmitted sporadi-
cally due to slow time-variation, and consequently we cannot
perform sequence coding. Each realization of the source is
mapped into X , (X1, . . . , XN ). Here, the dimension of
the channel input is denoted by N and can be assumed to
be large. X is then sent across the channel corrupted by a
white Gaussian noise sequence Z, and is received as the output
signal Y. The receiver constructs an estimate Û of U given Y.
The chosen criteria to measure the ’goodness’ of estimation
is the mean square error distortion D , E[(U − Û)2], which
is desired to be minimized under the mean energy constraint
E[||X||2] ≤ E. The linear encoder X =

√
EU achieves the

best performance under the mean energy constraint for the
special case N = 1, (see [3], [4], [5]). A lower bound on the

distortion over all possible encoders and decoders is easily
derived in [3] using classical information theory, and given by

D ≥ e−2E/N0 (1)

where N0/2 is the variance of the channel noise per di-
mension. This case can be extended to multi-user systems
again with continuous sources, where the distortion is caused
by the quantization applied to the sources and the channel
itself. Thus the derivation of a bound on the performance is
directly related to optimizing the number of the quantization
bits to reach to the minimum distortion as it was done in [6]
and [7]. Another classical example of a joint-source channel
mapping is the coherent PPM scheme with ML detection [8,
pp. 623], which gives a e−E/3N0 behaviour for distortion. A
simple scheme described in [9] combines a scalar quantizer
with an orthogonal modulation and MAP receiver or an
MMSE estimator. Such a scheme achieves the same e−E/3N0

behaviour, both for coherent or non-coherent detection, which
is significantly worse than the lower bound in (1).

In Section II, we provide lower bounds on the distortion
level, for both of the sources and their product when the phase
shifts are assumed to be perfectly known by the receiver. In
Section III, upper bounds are derived for the system defined
in II with non-coherent reception. Finally, in Section IV a
comparison of the obtained results is made.

II. BOUNDS ON DISTORTION FOR UNIFORMLY
CORRELATED SOURCES

Bounds for the distortion derived in [1] are observed for
arbitrarily correlated continuous sources sent over a Gaussian
multiple access channel with phase shifts in the presence of
feedback. Through a different approach, i.e. without splitting
the noise as done in [1], tighter bounds are achieved on
distortion level. The described system is as given in Figure
1. Source vectors U1,U2 have a dimension of K identically
independent distributed samples of the correlated sources
U1, U2.The correlational relationship between the sources
U1, U2 is defined as

U2 = ρU1 +
√

1− ρ2U ′2 (2)

based on U1 and U ′2 which is also uniform on (−
√

3,
√

3).
The first source U1 is defined to be uniformly distributed over
(−
√

3,
√

3) and the second source U2 is defined to have a



Fig. 1. Correlated sources over GMAC with feedback.

contaminated uniform distribution, so we have one uniform
and one almost uniform source having covariance equal to the
correlation coefficient ρ between them. The received signal
Y = {Yi; i = 1, ..., N} and the power constraints are given as

Yi = X1,ie
jΦ1,i +X2,ie

jΦ2,i + Z1,i + Z2,i, (3)

1

K

N∑
i=1

E[|Xm,i|2] ≤ Em, (4)

for m = 1, 2 denoting the sources and i = 1, ..., N , re-
spectively. The criteria to satisfy is chosen as the squared-
error distortion measure, which is d(ui, ûi) = (ui − ûi)2 for
i = 1, 2. Φm = {Φm,i; i = 1, ..., N} denotes the random
phases which are assumed to be unknown to the transmitter
but known to the receiver. After a detailed description of the
model, in the following we derive a relatively simple mutual
information between the mth source Um and the output signal
Y through two different expansions considering the case where
the sources are highly correlated, i.e. the correlation coefficient
ρ has a value close to 1. We will use the notation m to denote
one of the sources and m′ will be used to indicate the other
source, explicitly m and m′ cannot be equal to 1 or 2 at the
same time, when m equals 1 then m′ has to be equal to 2 or
vice versa. To obtain a lower bound on the distortion level,
we will use two different expansions of I(Um; Y,Φm,Φm′)
considering the extreme case when the sources are highly
correlated. First expansion of the desired mutual information
based on the output signal is given by

I(Um; Y,Φm,Φm′) ≤ N log

(
1 +

K(Em + Em′)

NN0

)
. (5)

Same mutual information was derived through a different
expansion and given by

I(Um; Y,Φm,Φm′) ≥ h(Um)− h(Um − Ûm) (6)

Its derivation can be found in Appendix V-A together with the
required entropies for m = 1 and m = 2. Substituting (43)
and (45) with m = 1 into (42), provides the second expansion
of the desired mutual information for the first source. In the
same way, (43) and (45) with m = 2 is substituted into (42).
Equating the outcomes to (5) provides the below given bound
on distortion level for the mth source.

Dm ≥ Cm
(

1 +
K(Em + Em′)

NN0

)− 2N
K

(7)

where Cm is a constant defined as

Cm =

{
6
πe if m = 1,
6ρ2+6(1−ρ2)+6ρ

√
1−ρ2

πe if m = 2.

The asymptotic of (7) is obtained as

Dm ≥ Cme−
2(Em+E

m′ )
N0 . (8)

Note that, both bounds given above have the same asymptotic
behaviour and bring out the correlation benefit by using
the sum energy of the two sources. Next, we will observe
the change on this behaviour based on the decrease in the
correlation coefficient by deriving the mutual information
I(Um; Y|Um′ ,Φm,Φm′) through two different expansions of
it. We have the following expansions and the derivations are
given in the Appendix V-B.

I(Um; Y|Um′ ,Φm,Φm′) ≤ N log

(
1 +

KEm
NN0

)
, (9)

I(Um; Y|Um′ ,Φm,Φm′) ≥ h(Um|Um′)− h(Um − Ûm).
(10)

Using the above derived expressions for the adequate source,
the mutual information (47) and through equating to the first
expansion of it given by (51), we obtain the general expression
for the distortion bound Dm ≥ Cm

(
1 + KEm

NN0

)
and its

asymptotic is as follows

Dm ≥ Cme−
2Em
N0 , (11)

where Cm is a constant varying based on m given by

Cm =

{
36(1−ρ2)
π2e2 if m = 1,

6(1−ρ2)
πe if m = 2.

Due to the channel construction, the sum channel does not
give the exponential behaviour for two extreme cases of high
and low correlation through one single bound on distortion.
For that reason, we will give the bound on the distortion level
of the second source as

D2 ≥ max(D2,low(E2), D2,high(E1 + E2)) (12)

where we denote (11) for m = 2 by D2,low(E2) and (8) by
D2,high(E1 + E2). In the same way with the second source,
the general bound on D1 will be given as a maximum function
of the two bounds (11) and (8) when m = 1

D1 ≥ max(D1,low(E1), D1,high(E1 + E2)) (13)

where we denote (11) by D1,low(E1) and (8) by D1,high(E1+
E2).
The asymptotic of the bound on product distortion D1D2 is
obtained as

D1D2 ≥
36
(
1− ρ2

)
π2

exp

(
−2(E1 + E2)

N0
− 2

)
(14)

which is not a useful bound, since it goes to zero for a very
high correlation between the sources. The derivation of the
bound (14) is given in Appendix V-C.



A. Discussion

In order to discuss the tightness of the bounds (13) and (12),
we will consider another case with a single source U, whose
message is sent by being split into two branches through two
different codebooks. Let us call the encoded parts of U as
X1 and X2. The estimate Û is received after X1 and X2

is merged before being decoded. In the following, I(U; Û) is
derived using two different ways and the distortion D is lower
bounded.

I(U; Û) ≤ I(X1,X2; Y|Φ)

= h(Y|Φ)− h(Y|X1,X2,Φ)

≤
N∑
i=1

h(Yi|Φ)− h(Z)

≤ N

(
N∑
i=1

log(E[Y 2
i ])− log(NN0)

)

= N log

(
1 +

KE

NN0

)
(15)

and also

I(U; Û) = h(U)− h(U|Û)

≥ h(U)− h(U− Û)

≥ K log(2
√

3)−
K∑
i=1

h(Ui − Ûi)

≥ K

2
log(

6

πeD
) (16)

Combining (16) and (15), we get the distortion bound as given
by

D ≥ 6

πe(1 + KE
NN0

)2N/K
(17)

and letting N go to infinity we get D ≥ 6
πee
− 2E
N0 .

III. ASYMPTOTIC OPTIMALITY OF TWO-WAY PROTOCOL
WITH DUAL UNIFORM SOURCES

This section includes a more detailed version of the achiev-
able scheme introduced in [2] in order to make a better com-
parison with the distortion-bounds derived in Section II. As in
[10] and its non-coherent version analyzed in[2, Section II] the
protocol consists of two phases which composes one round.
First phase is called the data phase, in which the messages
of both sources are transmitted and in return feedback of the
messages are received from the decoder. Protocol uses fixed
total energy which is denoted by ED,i,j in the data phase
and EC,i,j in the control phase on the ith round by the jth

source, where i, j = 1, 2. The quantized source samples of
the sources are encoded into 2B messages per source with
dimension N . Basically after quantization the first source
sends its message m1(U1) to the receiver with energy ED,1,1.
After detection and feedback of the first message, the second
source sends m2(m̂1, U2) with energy ED,1,2. Data phase on
the first round ends after m2(m̂1, U2) is fed back by the
receiver. Second phase is the control phase and in this phase
the sources send ACK/NACK regarding their own messages

Fig. 2. Two-round protocol

to the decoder using the energy EC,i,j . If the decoder receives
ACK from both, then the protocol halts at the end of the first
round. Otherwise the encoders enter the data phase of the
second round for retransmission. Proceeding of the protocol is
illustrated in Figure(2). The correlational relationship between
the two sources together with their statistics are kept in the
same way as given by (2). We denote the error events by E1,j

for the first round and the jthsource and by E2 for the second
round. e1,j and c1,j denote erroneous and correct decoding on
Uj , respectively. Accordingly Ec→e,1 denotes a misdetected
acknowledged error and its probability is considered as the
sum of the two sources on one round as

Pr(Ec→e,1) = Pr(Ec→e,1,1) + Pr(Ec→e,1,2). (18)

Ee→c,1 denotes an uncorrectable error, which means it is an
irreversible error since it acknowledges an error as correct
decoding. Its probability is taken as the sum of both sources
in the same way as

Pr(Ee→c,1) = Pr(Ee→c,1,1) + Pr(Ee→c,1,2). (19)

The probability of the error is bounded in [2], eq:15, by

Pe ≤ Pr(E1,1 ∪ E1,2) Pr(Ee→c,1) + Pr(E2). (20)

We give the average energy used by the protocol with the
following equality

E = ED,1,1 + E(ED,1,2(m̂1, U2)) + EC,1,1 Pr(E1,1)

+ EC,1,2 Pr(E1,2) + ED,2[Pr(E1,1)(1− Pr(Ee→c,1,1))

+ Pr(E1,2)(1− Pr(Ee→c,1,2)) + (1− Pr(E1,1))

Pr(Ec→e,1,1) + (1− Pr(E1,2)) Pr(Ec→e,1,2)] (21)

and bound it by

E ≤ ED,1 + Pr(E1,1 ∪ E1,2)EC,1 + ED,2[Pr(E1,1 ∪ E1,2)

(1− Pr(Ee→c,1)) + (1− Pr(E1,1 ∪ E1,2)) Pr(Ec→e,1)]
(22)

where E(ED,1,2(m̂1, U2)) is the expected energy to be used in
the data phase of the first round by the second source. The total
energy for a certain phase and round is obtained by taking the
sum over the both sources, i.e. the energy in the control phase
of the ith round is defined as EC,i =

∑2
j EC,i,j and the total

energy in the data phase of the first round is ED,i =
∑2
j ED,1,j .

The output signal based on the N dimensional observation of
the jth source is

Yd =
√
ED,1,jejΦjSmj + Zj . (23)



We assume the random phases Φj to be distributed uniformly
on [0, 2π), the channel noise Zj to have zero mean and equal
autocorrelation N0IN×N for j = 1, 2 and Smj are the N -
dimensional messages, with m = 1, 2, · · · , 2B and j = 1, 2.
ej = I

(
|yc,j |2 > λEC,1,j

)
is the detector for the jth source

with yc,j = Yc,j
HSc,j . λ is a threshold value to be optimized

and included within the interval [0, 1).The probability of error
of an uncorrectable error Ee→c for Uj is given by

Pr(Ee→c,1,j) = Pr(|
√
EC,1,j + zc,j |2 ≤ λEC,1,j)

= 1−Q1(

√
EC,1,j
N0/2

,

√
λEC,1,j
N0/2

)

≤ 1/2 exp(− (
√
λ− 1)2EC,1,j

N0
). (24)

obtained through using the bound on the Q1(α, β) given in
[11, eq:4]. And the probability of a misdetected acknowledged
error Ec→efor Uj is

Pr(Ec→e,1,j) ≤ exp{−λEC,1,j
N0

}. (25)

The detection rule is defined by

Uk,l = | < Y1,Smk > |2 + | < Y2,Sml > |2 (26)

using [12, Chapter 12] considering the following 4 possible
decision variables in the first round under the assumption of
(k, l) is transmitted.

Uk,l = |
√
ED,1,1 +Nk|2 + |

√
ED,1,2 +Nl|2 (27)

Uk′,l = |Nk′ |2 + |
√
ED,1,2 +Nl|2 (28)

Uk,l′ = |
√
ED,1,1 +Nk|2 + |Nl′ |2 (29)

Uk′,l′ = |Nk′ |2 + |Nl′ |2 (30)

An error is committed if any of the Uk′,l, Uk,l′ and Uk′,l′ is
greater than Uk,l. The union bound on Pe(k, l) is defined as

Pe(k, l) ≤
∑

(k′,l′)6=(k,l)

Pr (uk,l < uk′,l′ |(k, l)) (31)

For the derivation of the union probability of E1,1, E1,2,
the decision variables given from (27) to (30) are used and
combined through the bound (31). In the following, we give
the expression for each conditional probability considering
each decision variable given (k, l) is transmitted.

Pr(Uk,l < Uk′,l′ |(k, l))
= Pr(|

√
ED,1,1+Nk|2+|

√
ED,1,2+Nl|2 < |Nk′ |2+|Nl′ |2)

(32)

Pr(Uk,l < Uk′,l|(k, l)) = Pr(|
√
ED,1,1 +Nk|2 < |Nk′ |2)

(33)
Pr(Uk,l < Uk,l′ |(k, l)) = Pr(|

√
ED,1,2+Nl|2 < |Nl′ |2) (34)

In [12, p. 686], P2(L) is defined as the probability of error
in choosing between Uk,l and any other decision variable
Uk′,l, Uk,l′ or Uk′,l′ . Here to bound the union probability of

E1,1, E1,2, we set P2(2) for (32), and P2(1) for (33) and (34)
and give the probability of error by

Pr(E1,1 ∪ E1,2)

≤

⌈
2B
√

1− ρ2

3

⌉
2B−3 exp

{
−ED,1

2N0

}(
4 +
ED,1
N0

)

+

⌈
2B
√

1− ρ2

3

⌉
2−1

(
exp

{
−ED,1,1

2N0

}
+ exp

{
−ED,1,2

2N0

})
(35)

To obtain Pr(E2), decision variables from (27) to (30) will
have some additional terms for the second round since the
second round includes energy and/or noise terms of both
rounds cumulatively. The resulting expression (36) is given
on the top of the next page. At the end of the second round,
the protocol is terminated with distortion bounded as

D(E , N0, 2, λ) ≤ 2−2B(1 + ρ2) +

(
1− ρ2

3
Pe,1 + 4Pe,2

)
.

(37)
which is obtained through

D = Dq(1−Pe) +DePe ≤ Dq +De,1Pe,1 +De,2Pe,2 (38)

where Pe given by (20) is the total probability of error which
consists of Pe,1 and Pe,2 indicating the probability of error on
one of the sources and both sources, respectively. In (35) and
(36), the first terms with the sum energies brings out together
Pe,2, and the ones with individual energies shape Pe,1. Dq

represents the distortion caused by the quantization process
and De corresponds to the MSE distortion for the case where
an error was made. Splitting the distortion for error case, where
De,1 denotes the distortion for one source in error and in the
same way De,2 denotes the case when both in error.

Through combining (20), (24),(35), (36) and (37), we get
the following bound on distortion as

D(E , N0, 2, λ) ≤ K1e
−2B ln 2+ln(1+ρ2)

+

(
K2

√
1− ρ2

3
eB ln 2 +K3ε(ρ)

)
e(B−1) ln 2−

ED,1+EC,1(
√
λ−1)2

2N0

+

(
K4

√
1− ρ2

3
eB ln 2 +K5ε(ρ)

)
e

ln
(

1−ρ2
6

)
−
ED,1+2EC,1(

√
λ−1)2

4N0

+

(
K6

√
1− ρ2

3
eB ln 2 +K7ε(ρ)

)
e(B−5) ln 2−

ED,1+ED,2
2N0

+

(
K8

√
1− ρ2

3
eB ln 2 +K9ε(ρ)

)
e

ln
(

1−ρ2
12

)
−
ED,1+ED,2

4N0

(39)

where K1,K4,K5 are O(1), K2,K3 are O(ED,1),
K6,K7,K8,K9 are O((ED,1 + ED,2)3) with ε(ρ) ∈ [0, 1)
which arose from the ceiling functions in (35) and (36). For
a very weak correlation between U1 and U2 the terms with
ε(ρ) in (39) become insignificant. Equating the order of the
exponentials in the first case, we can set the relations of the
energies as EC,1 =

ED,2
2(
√
λ−1)2

and ED,2 = (2 − µ)ED,1 where



Pr(E2) ≤

⌈
2B
√

1− ρ2

3

⌉
2B−7 exp

{
−ED,1 + ED,2

2N0

}(
64 + 29

(
ED,1 + ED,2

N0

)
+ 8

(
ED,1 + ED,2

N0

)2

+

(
ED,1 + ED,2

N0

)3
)

+

⌈
2B
√

1− ρ2

3

⌉
2−3

(
4 +
ED,1 + ED,2

2N0

)(
exp

{
−ED,1,1 + ED,2,1

2N0

}
+ exp

{
−ED,1,2 + ED,2,2

2N0

})
(36)

µ is an arbitrary constant within the interval (0, 2). Thus the
bound on distortion for constant correlation level becomes

Dlow(E , N0, 2) ≤ Klow,1

√
2(1 + ρ2)e−

ED,1(1−µ/2)
2N0

+Klow,2(1 + ρ2)1/3

(
1− ρ2

6

)2/3

e−
ED,1(1−µ/3)

2N0

+Klow,3

√
2(1 + ρ2)e−

ED,1(3−µ)
4N0 (40)

where Klow,1 = K2 + K3, Klow,2 = K4 + K5 + K8 + K9

and Klow,3 = K6 +K7.
On the other hand, with highly correlated sources, i.e. when√
1−ρ2

3 < θ2−B , we set the relations of the energies as EC,1 =
ED,2

(1−
√
λ)2

and ED,2 = (2 − µ)ED,1 where µ is an arbitrary
constant satisfying µ ∈ (0, 2). And the bound in case of a
high correlation becomes

Dhigh(E , N0, 2) ≤ Khigh(1 + ρ2)2/3e−
ED,1(1−µ/3)

N0 (41)

where Khigh = K3 + K7. To simplify the calculations the
energy used by a source on a particular phase is assumed
to be half of the energy on the corresponding round, for
example ED,1 = 2ED,1,1 = 2ED,1,2. Note that the exponential
behaviour observed in (41), is the same with a single source
yields in [2]. Furthermore, there is a difference of factor 1/2 in
the exponentials of (41) and the information theoretic bounds
(8), (11) and (17).

IV. CONCLUSION

Lower bounds on the distortion level, which is caused by
quantization applied to the sources and by the channel itself,
are derived for correlated analog dual-sources in the presence
of causal feedback. An improvement respect to the perfor-
mance achieved in [1] is obtained in terms of the asymptotic
behaviour of the derived bounds on distortion with additional
feedback. The information theoretic bounds introduced in
Section II are provided when the random phases are assumed
to be perfectly known at the receiver, which is not a realistic
assumption for achievable schemes. On the other hand, the
bounds provided in Section III were derived through non-
coherent detection. Another point worths mentioning is the
discussion made in Section II-A regarding to the comparison
between the performance of a single source and two highly
correlated sources. It was shown that, highly correlated dual-
sources can achieve the performance of a single source in
terms of distortion level. Lastly, it is seen through a compar-
ison between the outer bounds and the bounds obtained for
the achievable scheme that the performance of the theoretic
bounds can be reached by the protocol repeating more than
two rounds.

V. APPENDIX

A. Appendix I
The mutual information I(Um; Y,Φm,Φm′) is derived

through two different expansion as given in the following
respectively.

I(Um; Y,Φm,Φm′) = I(Um; Y|Φm,Φm′) + I(Um; Φm,Φm′)

= h(Um)− h(Um − Ûm|Y)

≥ h(Um)− h(Um − Ûm). (42)

h(Um) differs based on m as given in the following.

h(U1) = K log 2
√

3, (43)

h(U2) = h(ρU1 +
√

1− ρ2U′2)

≥ K log

(
2

1
K

(K log |ρ|+h(U1) + 2
1
K
h(
√

1−ρ2U′2

)
= K log

(
2

1
K
K log |ρ|2

√
3 + 2

1
K
K log 2

√
3|1−ρ2|

)
= K log

(
|ρ|2
√

3 + 2
√

3|1− ρ2|
)
. (44)

The final term required to derive (42) is given by

h(Um − Ûm) ≤
K∑
j=1

h(Um,j − Ûm,j)

≤ K

2
log

(
2πe

1

K

K∑
j=1

E[(Um,j − Ûm,j)2]

)
≤ K log

(√
2πeDm

)
(45)

which is the same for both values of m. On the other hand,
we have

I(Um; Y,Φm,Φm′) = h(Y|Φm,Φm′)− h(Y|Um,Φm,Φm′)

=

N∑
i=1

h(Yi|Y i−1,Φm,Φm′)−
N∑
i=1

h(Yi|Y i−1,Um,Φm,Φm′)

≤
N∑
i=1

h(Yi|Y i−1,Φm,Φm′)

−
N∑
i=1

h(Yi|Y i−1,Um,Xme
jφm ,Xm′e

iφm′ ,Φm′ ,Φm)

=

N∑
i=1

h(Yi|Y i−1,Φm,Φm′)−
N∑
i=1

h(Zi)

≤
N∑
i=1

log

(
1 +

Em,i + Em′,i
NN0

)

≤ N log

(
1 +

∑N
i=1(Em,i + Em′,i)

NN0

)

≤ N log

(∑N
i=1 V ar(Ai(φ))

NN0

)
(46)



where Ai(φ) is defined as Ai(φ) , Xm,ie
iφm+Xm′,ie

iφm′+

Zi and its variance is obtained as
∑N
i=1 V ar(Ai(φ)) =

K(Em+Em′)+NN0. Consequently, the desired mutual infor-
mation is obtained as given by (5). Equating two expansions
of I(Um; Y,Φm,Φm′), we obtain the bound (7).

B. Appendix II

The first expansion of I(Um; Y|Um′ ,Φm,Φm′) is as fol-
lows

I(Um; Y|Um′ ,Φm,Φm′) = h(Um|Um′ ,Φm,Φm′)

− h(Um|Um′ ,Y,Φm,Φm′)

= h(Um|Um′)− h(Um − Ûm|Um′ ,Y)

≥ h(Um|Um′)− h(Um − Ûm). (47)

The entropy h(Um|Um′) is obtained for m = 1 and m = 2
as

h(U1|U2) = −I(U1; U2) + h(U1)

= −h(U2) + h(U2|U1) + h(U1)

(a)

≥ −K
2

log 2πe+K log 2
√

3|1− ρ2|+K log 2
√

3

= K log

(
12
√
|1− ρ2|√
2πe

)
(48)

h(U2|U1) = h(ρU1 +
√

1− ρ2U2′ |U1)

= h(
√

1− ρ2U2′)

= K log 2
√

3|1− ρ2| (49)

,respectively. In step (a) of (48), the entropy of U2 is bounded
by the entropy of a standard gaussian random variable. And
we also have

I(Um; Y|Um′ ,Φm,Φm′) (50)
= h(Y|Um′ ,Φm,Φm′)− h(Y|Um,Um′ ,Φm,Φm′)

=

N∑
i=1

h(Yi|Y i−1,Um′ ,Φm,Φm′)−
N∑
i=1

h(Yi|Y i−1,Um,Um′ ,Φm,Φm′)

=

N∑
i=1

h(Yi|Y i−1,Um′ ,Xm′e
iφm′ ,Φm,Φm′)

−
N∑
i=1

h(Yi|Y i−1,Um,Um′ ,Xme
jφm ,Xm′e

iφm′ ,Φm,Φm′)

(a)
=

N∑
i=1

h(Xm,ie
jφm,i + Zi|Y i−1,Um′ ,Φm,Φm′)−

N∑
i=1

h(Zi)

≤
N∑
i=1

h(Xm,ie
jφm,i + Zi)−

N∑
i=1

h(Zi)

= N log

(
1 +

KEm
NN0

)
(51)

C. Appendix III
The mutual information I(U1,U2; Y|Φ) is obtained as

I(U1,U2; Y|Φ) = h(Y|Φ)− h(Y|U1,U2,Φ)

= h(Y|Φ)−
N∑
i=1

h(Yi|Y i−1,U1,U2,Φ)

≤
N∑
i=1

h(Yi|Φ)−
N∑
i=1

h(Yi|Y i−1,U1,X1,U2,X2,Φ)

=

N∑
i=1

h(Yi|Φ)−
N∑
i=1

h(Zi). (52)

The variance of the received signal Yi becomes∑N
i=1 V ar(Yi) = K(E1 + E2) + NN0 and the desired

mutual information is obtained as

I(U1,U2; Y|Φ) ≤ N log(1 +
K(E1 + E2)

NN0
). (53)

We also have

I(U1,U2; Y|Φ) = I(U1,U2; Y,Φ)

≥ I(U1,U2; Û1, Û2)

≥ h(U1,U2)− h(U1 − Û1)− h(U2 − Û2)

≥ K

2
log 144(1− ρ2)− K

2
log(2πe)2D1D2

=
K

2
log(

36(1− ρ2)

π2e2D1D2
). (54)

Two expressions ((53) and (54)) of the same mutual informa-
tion are equalized to obtain (14).
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