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How Much CSIT Feedback is Necessary for the Multiuser
MISO Broadcast Channels?

Jinyuan Chen, Sheng Yang, and Petros Elia

Abstract

This work considers the multiuser multiple-input single-output (MISO)
broadcast channel (BC), where a transmitter withM antennas transmits in-
formation toK single-antenna users, and where - as expected - the qual-
ity and timeliness of channel state information at the transmitter (CSIT) is
imperfect. Motivated by the fundamental question of how much feedback
is necessary to achieve a certain performance, this work seeks to establish
bounds on the tradeoff between degrees-of-freedom (DoF) performance and
CSIT feedback quality. Specifically, this work provides a novel DoF region
outer bound for the generalK-userM × 1 MISO BC with partial current
CSIT, which naturally bridges the gap between the case of having no cur-
rent CSIT (only delayed CSIT, or no CSIT) and the case with full CSIT. The
work then characterizes the minimum CSIT feedback that is necessary for
any point of the sum DoF, which is optimal for the case withM ≥ K, and
the case withM = 2, K = 3.

Index Terms

Broadcast channels, multiple-input single-output (MISO), multiuser, lim-
ited feedback, channel state information at the transmitter (CSIT), alternating
CSIT, degrees-of-freedom (DoF).
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Figure 1: System model ofK-user MISO BC with CSIT feedback.

1 Introduction

We consider the multiuser multiple-input single-output (MISO) broadcast chan-
nel (BC), where a transmitter withM antennas, transmits information toK single-
antenna users. In this setting, the received signal at timet, is of the form

yk,t = hT

k,txt + zk,t, k = 1, · · · ,K (1)

wherehk,t denotes theM × 1 channel vector for userk, zk,t denotes the unit
power AWGN noise, and wherext denotes the transmitted signal vector adhering
to a power constraintE[||xt||2] ≤ P , for P taking the role of the signal-to-noise
ratio (snr). We here consider that the fading coefficientshk,t, k = 1, · · · ,K, are
independent and identically distributed (i.i.d.) complex Gaussian random variables
with zero mean and unit variance, and are i.i.d. over time.

It is well known that the performance of the BC is greatly affected by the timeli-
ness and quality of feedback; having full CSIT allows for the optimalmin{M,K}
sum degrees-of-freedom (DoF) (cf. [1])1, while the absence of any CSIT reduces
this to just1 sum DoF (cf. [2, 3]). This gap has spurred a plethora of works that
seek to analyze and optimize BC communications in the presence of delayed and
imperfect feedback. One of the works that stands out is the work by Maddah-Ali
and Tse [4] which recently revealed the benefits of employing delayed CSIT over
the BC, even if this CSIT is completely obsolete. Several interesting generaliza-
tions followed, including the work in [5] which showed that in the BC setting with
K = M + 1, combining delayed CSIT with perfect (current) CSIT (over the last
K−1
K

fraction of communication period) allows for the optimal sum DoFM cor-
responding to full CSIT. A similar approach was exploited in [6] which revealed
that, to achieve the maximum sum DoFmin{M,K}, each user has to symmetri-
cally feed back perfect CSIT over amin{M,K}

K
fraction of the communication time,

1We remind the reader that for an achievable rate tuple(R1, R2, · · · , RK), whereRi is for useri,
the corresponding DoF tuple(d1, d2, · · · , dK) is given bydi = limP→∞

Ri

logP
, i = 1, 2, · · · ,K.

The corresponding DoF regionD is then the set of all achievable DoF tuples(d1, d2, · · · , dK).
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and that this fraction is optimal. Other interesting works in the context of utiliz-
ing delayed and current CSIT, can be found in [7–10] which explored the setting
of combining perfect delayed CSIT with immediately available imperfect CSIT,
the work in [11, 12] which additionally considered the effects of the quality of
delayed CSIT, the work in [13] which considered alternating CSIT feedback, the
work in [14] which considered delayed and progressively evolving (progressively
improving) current CSIT, and the works in [15–21] and many other publications.

Our work here generalizes many of the above settings, and seeks to establish
fundamental tradeoff between DoF performance and CSIT feedback quality, over
the generalK-userM × 1 MISO BC.

1.1 CSIT quantification and feedback model

We proceed to describe the quality and timeliness measure of CSIT feedback,
and how this measure relates to existing work. We here useĥk,t to denote the
current channel estimate (for channelhk,t) at the transmitter at timeslott, and use

h̃k,t = hk,t − ĥk,t

to denote the estimate error assumed to be mutually independent ofĥk,t and as-
sumed to have i.i.d. Gaussian entries with power

E
[
‖h̃k,t‖

2
] .
= P−αk,t ,

for some CSI quality exponentαk,t ∈ [0, 1] describing the quality of this estimate.
We note thatαk,t = 0 implies very little current CSIT knowledge, and thatαk,t = 1
implies perfect CSIT in terms of the DoF performance2.

The approach extends over non-alternating CSIT settings in [4] and [7–10],
as well as over an alternating CSIT setting (cf. [6, 13]) where CSIT knowledge
alternates between perfect CSIT (αk,t = 1), and delayed or no CSIT (αk,t = 0).

In a setting where communication takes place overn such coherence periods
(t = 1, 2, · · · , n), this approach offers a natural measure of a per-user average
feedback cost, in the form of

ᾱk,
1

n

n∑

t=1

αk,t, k = 1, 2, · · · ,K,

as well as a measure of current CSIT feedback cost

CC,

K∑

k=1

ᾱk, (2)

accumulated over all users.
2This can be readily derived, using for example the work in [22].
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1.1.1 Alternating CSIT setting

In a setting where delayed CSIT is always available, the above model captures
the alternating CSIT setting where the exponents are binary (αk,t = 0, 1), in which
case

ᾱk = δP,k

simply describes the fraction of time during which userk feeds back perfect CSIT,
with

CC = CP,

K∑

k=1

δP,k

describing thetotal perfect CSIT feedback cost.

1.1.2 Symmetric and asymmetric CSIT feedback

Motivated by the fact that different users might have different feedback capa-
bilities due to the feedback channels with different capacities and different reliabil-
ities, symmetric CSIT feedback (ᾱ1 = · · · = ᾱK) and asymmetric CSIT feedback
(ᾱk 6= ᾱk′ ∀ k 6= k

′
) are considered in this work.

1.2 Structure of the paper and Summary of Contributions

Section 2 provides the main results of this work:

• In Theorem 1 we first provide a novel outer bound on the DoF region, for the
K-userM×1 MISO BC with partial current CSIT quantized with{αk,t}k,t,
which bridges the case with no current CSIT (only delayed CSIT, or no
CSIT) and the case with full CSIT. This result manages to generalize the re-
sults by Maddah-Ali and Tse (αk,t = 0, ∀t, k), Yang et al. and Gou and Jafar
(K = 2, αk,t = α, ∀t, k), Maleki et al. (K = 2, α1,t = 1, α2,t = 0, ∀t),
Chen and Elia (K = 2, α1,t 6= α2,t, ∀t), Lee and Heath (M = K + 1,
αk,t ∈ {0, 1}, ∀t, k), and Tandon et al. (αk,t ∈ {0, 1}, ∀t, k).

• From Theorem 1, we then provide the upper bound on the sum DoF, which
is tight for the case withM ≥ K (cf. Theorem 2) and the case withM =
2,K = 3 (cf. Theorem 3, Corollary 3a).

• Furthermore, Theorem 4 characterizes the minimum total current CSIT feed-
back costC⋆P to achieve the maximum sum DoF, where the total feedback
costC⋆P can be distributed among all the users with any (asymmetric and
symmetric) combinations{δP,k}k.

• In addition, the work considers some other general settings of BC and pro-
vides the DoF inner bound as a function of the CSIT feedback cost.

The main converse proof, that is for Theorem 1, is shown in the Section 3 and
appendix. Most of the achievability proofs are shown in the Section 4. Finally
Section 5 concludes the paper.
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1.3 Notation and conventions

Throughout this paper, we will consider communication overn coherence pe-
riods where, for clarity of notation, we will focus on the case where we employ
a single channel use per such coherence period (unit coherence period). Further-
more, unless stated otherwise, we assume perfect delayed CSIT, as wellas adhere
to the common convention (see [4, 6, 8, 9, 13, 23]), and assume perfectand global
knowledge of channel state information at the receivers.

In terms of notation,(•)T, (•)H, tr(•) and|| • ||F denote the transpose, conju-
gate transpose, trace and Frobenius norm of a matrix respectively, whilediag(•)
denotes a diagonal matrix,||•|| denotes the Euclidean norm, and|•| denotes either
the magnitude of a scalar or the cardinality of a set.o(•) andO(•) come from the
standard Landau notation, wheref(x) = o(g(x)) implies limx→∞ f(x)/g(x) =
0. with f(x) = O(g(x)) implying that lim supx→∞ |f(x)/g(x)| < ∞. We
also use

.
= to denoteexponential equality, i.e., we writef(P )

.
= PB to denote

lim
P→∞

log f(P )

logP
= B. Similarly

.

≥ and
.

≤ denote exponential inequalities. We use

A � 0 to denote thatA is positive semidefinite, and useA � B to mean that
B −A � 0. Logarithms are of base2.

2 Main results

2.1 Outer bounds

We first present the DoF region outer bound for the generalK-userM × 1
MISO BC.

Theorem 1 (DoF region outer bound) The DoF region of theK-userM × 1
MISO BC, is outer bounded as

K∑

k=1

dπ(k)

min{k,M}
≤1+

K−1∑

k=1

(
1

min{k,M}
−

1

min{K,M}

)

ᾱπ(k) (3)

dk ≤ 1, k = 1, 2, · · · ,K (4)

whereπ denotes a permutation of the ordered set{1, 2, · · · ,K}, andπ(k) denotes
thek th element of setπ.

Proof: The proof is shown in Section 3.�

Remark 1 It is noted that the bound captures the results in [4] (αk,t = 0, ∀t, k),
in [8,9] (K = 2, αk,t = α, ∀t, k), in [23] (M = K = 2, α1,t = 1, α2,t = 0, ∀ t),
in [10] (K = 2, α1,t 6= α2,t, ∀ t), in [6,13] (αk,t ∈ {0, 1}, ∀t, k).
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Summing up theK different bounds from the above, we directly have the fol-
lowing upper bound on the sum DoFdΣ,

∑K
k=1 dk, which is presented using the

following notation

dMAT ,
K

1 + 1
min{2,M} + 1

min{3,M} + · · ·+ 1
min{K,M}

(5)

Γ,
M

∑K−M
i=1

1
i
(M−1
M

)i−1 + (M−1
M

)K−M (
∑K

i=K−M+1
1
i
)
. (6)

Corollary 1a (Sum DoF outer bound) For theK-userM ×1 MISO BC, the sum
DoF is outer bounded as

dΣ ≤ dMAT +

(

1−
dMAT

min{K,M}

) K∑

k=1

ᾱk. (7)

The above then readily translates onto a lower bound on the minimum possible
total current CSIT feedback costCC =

∑K
k=1 ᾱk needed to achieve the maximum

sum DoF3 dΣ = min{K,M}.

Corollary 1b (Bound on CSIT cost for maximum DoF) The minimumCC required
to achieve the maximum sum DoFmin{K,M} of theK-userM × 1 MISO BC, is
lower bounded as

C
⋆
C ≥ min{K,M}. (8)

Transitioning to the alternating CSIT setting whereαk,t ∈ {0, 1}, we have
the following sum-DoF outer bound as a function of the perfect-CSIT duration
ᾱk = δP,k = δP, ∀ k. We note that the bound holds irrespective of whether, in the
remaining fraction of the time1− δP, the CSIT is delayed or non existent.

Corollary 1c (Outer bound, alternating CSIT) For the K-userM × 1 MISO
BC, the sum DoF is outer bounded as

dΣ ≤ dMAT +

(

K −
KdMAT

min{K,M}

)

min

{

δP,
min{K,M}

K

}

. (9)

2.2 Optimal cases of DoF characterizations

We now provide the optimal cases of DoF characterizations. The case with
M ≥ K is first considered in the following.

3Naturally the result is limited to the case wheremin{K,M} > 1.
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Figure 2: Optimal sum DoFdΣ vs. δP for the MISO BC withM ≥ K .

Theorem 2 (Optimal case,M ≥ K) For theK-userM × 1 MISO BC withM ≥
K, the optimal sum DoF is characterized as

dΣ = (K − dMAT)min{δP, 1}+ dMAT. (10)

Proof: The converse and achievability proofs are derived from Corollary 1cand
Proposition 2 (shown in the next subsection), respectively.�

Remark 2 It is noted that, for the special case withM = K = 2, the above
characterization captures the result in [13].

Moving to the case whereM < K, we have the following optimal sum DoF
characterizations for the case withM = 2, K = 3. The first interest is placed
on the minimumC⋆P(dΣ) to achieve a sum DoFdΣ, recalling thatC⋆P =

∑K
k=1 δP,k

describes the total perfect CSIT feedback cost.

Theorem 3 (Optimal case,M = 2,K = 3) For the three-user2 × 1 MISO BC,
the minimum total perfect CSIT feedback cost is given as

C
⋆
P(dΣ) = (4dΣ − 6)+, ∀ dΣ ∈ [0, 2] (11)

where the total feedback costC⋆P(dΣ) can be distributed among all the users with
some combinations{δP,k}k such thatδP,k ≤ C

⋆
P(dΣ)/2 for anyk.

Proof: The converse proof is directly from Corollary 1a, while the achievability
proof is shown in Section 4.2.�

Theorem 3 reveals the fundamental tradeoff between sum DoF and total perfect
CSIT feedback cost (see Fig 3). The following examples are provided tooffer some
insights corresponding to Theorem 3.

6
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Figure 3: Optimal sum DoF (dΣ) vs. total perfect CSIT feedback cost (CP) for
three-user2× 1 MISO BC.

Example 1 For the target sum DoFdΣ = 3/2, 7/4, 2, the minimum total perfect
CSIT feedback cost isC⋆P = 0, 1, 2, respectively.

Example 2 The targetdΣ = 7/4 is achievable with asymmetric feedbackδP =
[1/6 1/3 1/2], and symmetric feedbackδP = [1/3 1/3 1/3], and some
other feedback such thatC⋆P(7/4) = 1.

Example 3 The targetdΣ = 2 is achievable with asymmetric feedbackδP =
[1/3 2/3 1], and symmetric feedbackδP = [2/3 2/3 2/3], and some other
feedback such thatC⋆P(2) = 2.

Transitioning to the symmetric setting whereδP,k = δP ∀ k, from Theorem 3
we have the fundamental tradeoff between optimal sum DoF and CSIT feedback
costδP.

Corollary 3a (Optimal case,M = 2,K = 3, δP) For the three-user2 × 1 MISO
BC with symmetrically alternating CSIT feedback, the optimal sum DoF is given
as

dΣ = min

{
3(2 + δP)

4
, 2

}

. (12)

Now we address the questions of what is the minimumC
⋆
P to achieve the max-

imum sum DoFmin{M,K} for the general BC, and how to distributedC⋆P among
all the users, recalling again thatC

⋆
P is the total perfect CSIT feedback cost.

Theorem 4 (Minimum cost for maximum DoF) For theK-userM × 1 MISO
BC, the minimum total perfect CSIT feedback cost to achieve the maximum DoF is

7



given by

C
⋆
P(min{M,K}) =

{
0, if min{M,K} = 1
min{M,K}, if min{M,K} > 1

where the total feedback costC⋆P can be distributed among all the users with any
combinations{δP,k}k.

Proof: For the case withmin{M,K} = 1, simple TDMA is optimal in terms of
the DoF performance. For the case withmin{M,K} > 1, the converse proof
is directly derived from Corollary 1b, while the achievability proof is shownin
Section 4.1.�

It is noted that Theorem 4 is a generalization of the result in [6] where only
symmetric feedback was considered. The following examples are providedto offer
some insights corresponding to Theorem 4.

Example 4 For the case whereM = 2, K = 4, the optimal 2 sum DoF per-
formance is achievable, with asymmetric feedbackδP = [1/5 2/5 3/5 4/5],
and symmetric feedbackδP = [1/2 1/2 1/2 1/2], and any other feedback
such thatC⋆P = 2.

Example 5 For the case whereM = 3, K = 5, the optimal 3 sum DoF perfor-
mance is achievable, with asymmetric feedbackδP = [1/5 2/5 3/5 4/5 1],
and symmetric feedbackδP = [3/5 3/5 3/5 3/5 3/5], and any other feed-
back such thatC⋆P = 3.

The following corollary is derived from Theorem 4, where the case of having
min{M,K} > 1 is considered.

Corollary 4a (Minimum cost for maximum DoF) For theK-userM × 1 MISO
BC, whereJ users instantaneously feed back perfect (current) CSIT, with the other
users feeding back delayed CSIT, then the minimum numberJ is min{M,K}, in
order to achieve the maximum sum DoFmin{M,K}.

2.3 Inner bounds

In this subsection, we provide the following inner bounds on the sum DoF asa
function of the CSIT cost, which are tight for many cases as stated.

Proposition 1 (Inner bound,M = 2,K ≥ 3) For theK(≥ 3)-user2 × 1 MISO
BC, the sum DoF is bounded as

dΣ ≥
3

2
+
K

4
min{δP,

2

K
}. (13)

Proof: The proof is shown in Section 4.3.�
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Figure 5: Achievable sum DoFdΣ vs. δP for the MISO BC withM < K.

Proposition 2 (Inner bound,M ≥ K andM < K) For theK-userM×1MISO
BC, the sum DoF for the case withM ≥ K is bounded as

dΣ ≥ (K − dMAT)min{δP, 1}+ dMAT, (14)

while for the case withM < K, the sum DoF is bounded as

dΣ ≥ (K −
KΓ

M
)min{δP,

M

K
}+ Γ. (15)

Proof: The proof is shown in Section 4.4.�

Finally, we consider a case of BC with delayed CSIT feedback only, where
δP = 0. In this case, we useδD,k to denote the fraction of time during which CSIT
fed back from userk is delayed, and focus on the case withδD,k = δD, ∀k.
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Figure 6: Achievable sum DoFdΣ vs. δD for the MISO BC withK ≥ 3,M = 2,
whereδP = 0.

Proposition 3 (Inner bound on DoF with delayed CSIT) For theK(≥ 3)-user
(2× 1) MISO BC, and for the case ofδP = 0, the sum DoF is bounded as

dΣ ≥ min

{

1 +
K

2
δD,

12

11
+

4K

11
δD,

3

2

}

. (16)

Proof: The proof is shown in Section 4.5.�

Remark 3 For theK-user MISO BC with current and delayed CSIT feedback, by
increasing the number of users, the same DoF performance can be achievable with
decreasing feedback cost per user. For example, for theK-user MISO BC with
M = 2, by increasingK we can achieve any fixed DoF within the range of(1, 2],
with decreasingδP ≤ 2

K
, andδD ≤ 9

8K , both of which approach to0 asK is large.

3 Converse proof of Theorem 1

In this proof we will use Proposition 4 shown in the appendix, and use the
following notations:

St,
[
h1,t · · · hK,t

]
T

Ŝt,
[

ĥ1,t · · · ĥK,t
]T

Ωn, {St, Ŝt}
n
t=1

ynk , {yk,t}
n
t=1.

10



Giving the observations and messages of users1, . . . , k − 1 to userk, we es-
tablish the following genie-aided upper bounds on the achievable rates

nR1 ≤ I(W1; y
n
1 |Ωn) + nǫ (17)

nR2 ≤ I(W2; y
n
1 , y

n
2 |W1,Ω

n) + nǫ (18)
...

nRK ≤ I(WK ; y
n
1 , y

n
2 , . . . , y

n
K |W1, . . . ,WK−1,Ω

n) + nǫ (19)

where we apply Fano’s inequality and some basic chain rules of mutual information
using the fact that messages from different users are independent. Alternatively, we
have

nR1 ≤ h(yn1 |Ωn)− h(yn1 |W1,Ω
n) + nǫ (20)

nR2 ≤ h(yn1 , y
n
2 |W1,Ω

n)− h(yn1 , y
n
2 |W1,W2,Ω

n) + nǫ (21)
...

nRK ≤ h(yn1 , . . . , y
n
K |W1, . . . ,WK−1,Ω

n)− h(yn1 , . . . , y
n
K |W1, . . . ,WK ,Ω

n)

+ nǫ. (22)

Therefore, it follows that

K∑

k=1

n

k′
(Rk − ǫ)

≤
K−1∑

k=1

(
1

(k + 1)′
h(yn1 , . . . , y

n
k+1|W1,. . . ,Wk,Ω

n)−
1

k′
h(yn1 ,. . ., y

n
k |W1,. . .,Wk,Ω

n)

)

+ h(yn1 |Ωn)−
1

K ′h(y
n
1 , . . . , y

n
K |W1, . . . ,WK ,Ω

n) (23)

≤
K−1∑

k=1

n∑

t=1

(
1

(k + 1)′
h(y1,t, . . . , yk+1,t | y

t−1
1 , . . . , yt−1

k ,W1, . . . ,Wk,Ω
n)

−
1

k′
h(y1,t, . . . , yk,t | y

t−1
1 , . . . , yt−1

k ,W1, . . . ,Wk,Ω
n)

)

+n logP+n o(logP )

(24)

≤ logP
K−1∑

k=1

n∑

t=1

(k + 1)′ − k′

k′(k + 1)′

k∑

i=1

αi,t + n logP + n o(logP ) (25)

= n logP
K−1∑

k=1

(k + 1)′ − k′

k′(k + 1)′

k∑

i=1

ᾱi + n logP + n o(logP ) (26)

= n logP

K−1∑

k=1

( 1

k′
−

1

K ′

)

ᾱk + n logP + n o(logP ) (27)
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where we define

k′ , min {k,M} ; (28)

the inequality (24) is due to 1) the chain rule of differential entropy, 2) the fact
that removing condition does not decrease differential entropy, 3)h(y1,t |Ω

n) ≤
logP + o(logP ), i.e., Gaussian distribution maximizes differential entropy under
covariance constraint, and 4)h(yn1 , . . . , y

n
K |W1, . . . ,WK ,Ω

n) = h(zn1 , . . . , z
n
K) >

0; (25) is from Proposition 4 by settingU = {yt−1
1 , . . . , yt−1

k ,W1, . . . ,Wk,Ω
n} \

{St, Ŝt},H = St, andĤ = Ŝt; the last equality is obtained after putting the sum-
mation overk inside the summation overi and some basic manipulations. Simi-
larly, we can interchange the roles of the users and obtain the same genie-aided
bounds. Finally, the single antenna constraint gives thatdi ≤ 1, i = 1, · · · ,K.
With this, we complete the proof.

4 Details of achievability proofs

In this section, we provide the details of the achievability proofs. Specifically,
the achievability proof of Theorem 4 is first described in Section 4.1, whichcan be
applied in parts for the achievability proof of Theorem 4.2 shown in Section 4.2,
with the proposition proofs shown in the rest of this section.

4.1 Achievability proof of Theorem 4

We will prove that, the optimal sum DoFdΣ = min{M,K} is achievable
with any CSIT feedback costδP,[δP,1 δP,2 · · · δP,K ] ∈ R

K such thatCP =
∑K

k=1 δP,k = min{M,K}. First of all, we note that there exists a minimum num-
bern such that

δ′P,[δ′P,1 δ′P,2 · · · δ′P,K ],nδP = [nδP,1 nδP,2 · · · nδP,K ] ∈ Z
K

is an integer vector. The explicit communication withn channel uses is given as
follows:

• Step 1: Initially set time indext = 1.

• Step 2: Permute user indices orderly into a setU such thatδ′P,U(1) ≤ δ′P,U(2) ≤

· · · ≤ δ′P,U(K), whereU(k) denotes thek th element of theU set, and where
U(k) ∈ {1, 2, · · · ,K}.

• Step 3: Selectmin{M,K} users to communicate: usersU(K−min{M,K}+
1), · · · ,U(K − 1),U(K).

• Step 4: Let selected users feed back perfect CSIT at timet, keeping the rest
users silent.

12



Table 1: Summary of the scheme for achievingd∗∑ = 2 with C
⋆
P = 2, where

M = 2, K = 3, δP,1 = 1/3, δP,2 = 2/3, δP,3 = 1.

time t 1 2 3
U {1, 2, 3} {1, 2, 3} {2, 1, 3}

{δ′P,U(1), δ
′
P,U(2), δ

′
P,U(3)} {1, 2, 3} {1, 1, 2} {0, 1, 1}

Active users user 2, 3 user 2, 3 user 1, 3
Perfect CSIT feedback user 3: yes user 3: yes user 3: yes

user 2: yes user 2: yes user 2: no
user 1: no user 1: no user 1: yes

No. of transmitted symbols 2 2 2

• Step 5: The transmitter sendsmin{M,K} independent symbols to those
selected users respectively, which can be done with simple zero-forcing.

• Step 6: Setδ′P,U(k) = δ′P,U(k)−1, k = K−min{M,K}+1, · · · ,K−1,K.

• Step 7: Sett = t + 1. If renewedt > n then terminate, else go back to
step 2.

In the above communication withn channel uses, the algorithm guarantees that
useri is selected byδ′P,k = nδP,k times totally, and thatmin{M,K} different
users are selected in each channel use. As a result, the optimal sum DoFdΣ =
min{M,K} is achievable.

Now we consider an example withM = 2, K = 3, andδP = [1/3 2/3 1],
and show that the optimal sum DoFdΣ = 2 is achievable with the following com-
munication:

• Let n = 3. Initially δ′P,1 = nδP,1 = 1, δ′P,2 = nδP,2 = 2, δ′P,3 = nδP,3 = 3.

• For t = 1, we haveU = {1, 2, 3}, andδ′P,U(1) = 1, δ′P,U(2) = 2, δ′P,U(3) = 3.
Users 3 and 2 are selected to communicate.

• For t = 2, we update the parameters asU = {1, 2, 3}, andδ′P,U(1) = 1,
δ′P,U(2) = 1, δ′P,U(3) = 2. At this time, again user 3 and user 2 are selected to
communicate.

• For t = 3, we update the parameters asU = {2, 1, 3}, andδ′P,U(1) = 0,
δ′P,U(2) = 1, δ′P,U(3) = 1. At this time, user 3 and user 1 are selected to
communicate. After that the communication terminates.

In the above communication with three channel uses, the transmitter sends two
symbols in each channel use, which allows for the optimal sum DoFdΣ = 2 (see
Table 1).

13



4.2 Achievability proof of Theorem 3

We proceed to show that, any sum DoFdΣ ∈ [3/2, 2] is achievable with the
feedback

δP,k ≤
CP

2
, k = 1, 2, 3, such that CP =

3∑

k=1

δP,k = 4dΣ − 6.

First of all, we note that there exists a minimum numbern such that

[2nδP,1/CP 2nδP,2/CP n2δP,3/CP] ∈ Z
3, and 2n/CP ∈ Z.

The scheme has two blocks, with the first block consisting ofn channel uses, and
the second block consisting of

n
′
= 2n/CP − n

channel uses. In the first block, we use the algorithm shown in the Section4.1 to
achieve the full sum DoF in thosen channel uses, during which userk feeds back
perfect CSIT in2nδP,3/CP channel uses, fork = 1, 2, 3. In the second block, we
use the Maddah-Ali and Tse scheme in [4] to achieve 3/2 sum DoF in thosen

′

channel uses, during which each user feeds back delayed CSIT only.
The communication withn channel uses for the first block is given as follows:

• Step 1: Letδ′P,k = 2nδP,k/CP for all k. Initially, sett = 1.

• The steps 2, 3, 4, 5, 6 are the same as those in the algorithm shown in Sec-
tion 4.1, forM = 2,K = 3.

• Step 7: Sett = t + 1. If renewedt > n then terminate, else go back to
step 2.

In the above communication withn channel uses, the algorithm guarantees that
userk, k = 1, 2, 3, is selected byδ′P,k = 2nδP,k/CP times. We note thatδ′P,k ≤ n

under the constraintδP,k ≤ CP/2 for anyk, and that
∑K

k=1 δ
′
P,k = 2n, to suggest

that in each timeslot two different users are selected, which allows for the optimal
2 sum DoF in this block.

As stated, in the second block, we use the MAT scheme to achieve the 3/2 sum
DoF in thosen

′
channel uses, during which each user feeds back delayed CSIT

only. As a result, in the totaln+ n
′
channel uses communication, userk = 1, 2, 3

feeds back perfect CSIT in2nδP,k/(CP(n+n
′
)) = δP,k fraction of communication

period, with achievable sum DoF given as

dΣ =
2n

(n+ n′)
+

3n
′

2(n+ n′)
=

3

2
+

1

4
CP.

We note that the achievability scheme applies to the case of having some
δP,1, δP,2, δP,3 ≤ CP/2 such thatCP = 4dΣ − 6, and allows to achieve any sum
DoF dΣ ∈ [3/2, 2]. Apparently,CP = 0 allows for any sum DoFdΣ ∈ [0, 3/2],
which completes the proof.

14



4.3 Proof of Proposition 1

The achievability scheme is based on time sharing between two strategies of
CSIT feedback, i.e., delayed CSIT feedback withδ′P = 0 and alternating CSIT
feedback withδ′′P = 2

K
, where the first strategy achievesd′Σ = 3/2 by applying

Maddah-Ali and Tse (MAT) scheme (see in [4]), with the second strategyachieving
d′′Σ = 2 by using alternating CSIT feedback manner (see in [6]).

Let ∆ ∈ [0, 1] (res.1 −∆) be the fraction of time during which the first (res.
second) CSIT feedback strategy is used in the communication. As a result, the final
feedback cost (per user) is given as

δP = δ′P∆+ δ′′P(1−∆), (29)

implying that

∆ =
δ′′P − δP

δ′′P − δ′P
, (30)

with final sum DoF given as

dΣ = d′Σ∆+ d′′Σ(1−∆)

= d′′Σ +∆(d′Σ − d′′Σ)

= d′′Σ + (d′Σ − d′′Σ)
δ′′P − δP

δ′′P − δ′P

=
3

2
+
K

4
δP (31)

which completes the proof.

4.4 Proof of Proposition 2

For the case withM ≥ K, the proposed scheme is based on time sharing
between delayed CSIT feedback withδ′P = 0 and full CSIT feedback withδ′′P = 1,
where the first feedback strategy achievesd

′
∑ = dMAT by applying MAT scheme,

with the second one achievingd
′′
∑ = K. As a result, following the steps in (29),

(30), (31), the final sum DoF is calculated as

dΣ = d′′Σ + (d′Σ − d′′Σ)
δ′′P − δP

δ′′P − δ′P
= (K − dMAT )δP + dMAT

whereδP ∈ [0, 1] is the final feedback cost (per user) for this case.
Similar approach is exploited for the case withM < K. In this case, we

apply time sharing between delayed CSIT feedback withδ′P = 0 and alternating
CSIT feedback withδ′′P = M/K. In this case, the first feedback strategy achieves
d′Σ = Γ by applying MAT scheme, with the second strategy achievingd′′Σ = M

15



Table 2: Summary of the achievability scheme for achievingdΣ = 4
3 with δD =

2
3K .

block index 1 2 3 · · · K

No. of channel uses 3 3 3 · · · 3
Active users user 1, 2 user 2, 3 user 3, 4 · · · userK, 1

Delayed CSIT feedback user 1:1/3 user 2:1/3 user 3:1/3 · · · userK: 1/3
fraction in a block user 2:1/3 user 3:1/3 user 4:1/3 user 1:1/3

the rest: 0 the rest: 0 the rest: 0 the rest: 0
Sum DoF 4/3 4/3 4/3 · · · 4/3
in a block

by using alternating CSIT feedback manner. As a result, forδP ∈ [0, M
K
] being the

final feedback cost for this case, the final sum DoF is calculated as

dΣ = d′′Σ + (d′Σ − d′′Σ)
δ′′P − δP

δ′′P − δ′P

= (K −
KΓ

M
)δP + Γ

which completes the proof.

4.5 Proof of Proposition 3

As shown in the Fig 6, the sum DoF performance has three regions:

dΣ =







1 + K
2 δD, δD ∈ [0, 2

3K ]
12
11 + 4K

11 δD, δD ∈ [ 2
3K ,

9
8K ]

3/2, δD ∈ [ 9
8K , 1].

In the following, we will prove that the sum DoFdΣ = 1, 4
3 ,

3
2 are achievable

with δD = 0, 2
3K ,

9
8K , respectively. At the end, the whole DoF performance

declared can be achievable by time sharing between those performance points.
The proposed scheme achievingdΣ = 4

3 with δD = 2
3K , is a modified version

of the MAT scheme in [4]. The new scheme hasK blocks, with each block con-
sisting of three channel uses. In each block, four independent symbols are sent to
two orderly selected users, which can be done with MAT scheme with each oftwo
chosen user feeding back delayed CSIT in one channel use. As a result, dΣ = 4

3 is
achievable withδD = 2

3K , using the fact that each ofK users needs to feed back
delayed CSIT twice only in the whole communication (see Table 2).

Similarly, the proposed scheme achievingdΣ = 3
2 with δD = 9

8K hasK blocks,
with each block consisting of 8 channel uses. In each block, 3 out ofK users are
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Table 3: Summary of the achievability scheme for achievingdΣ = 3
2 with δD =

9
8K .

block index 1 2 3 · · · K

No. of channel uses 8 8 8 · · · 8
Active users user 1, 2, 3 user 2, 3, 4 user 3, 4, 5 · · · userK, 1, 2

Delayed CSIT feedback user 1:3/8 user 2:3/8 user 3:3/8 · · · userK: 3/8
fraction in a block user 2:3/8 user 3:3/8 user 4:3/8 user 1:3/8

user 3:3/8 user 4:3/8 user 5:3/8 user 2:3/8
the rest: 0 the rest: 0 the rest: 0 the rest: 0

Sum DoF 3/2 3/2 3/2 · · · 3/2
in a block

selected to communicate. In this case,12 independent symbols are sent to the
chosen users during each block, which can be done with another MAT scheme
with each of chosen users feeding back delayed CSIT in 3 channel uses. As a
result,dΣ = 3

2 is achievable withδD = 9
8K , using the fact that each ofK users

needs to feed back delayed CSIT 9 times only in the whole communication (see
Table 3).

Finally, dΣ = 1 is achievable without any CSIT. By now, we complete the
proof.

5 Conclusions

This work considered the general multiuser MISO BC, and established inner
and outer bounds on the tradeoff between DoF performance and CSIT feedback
quality, which are optimal for many cases. Those bounds, as well as some analysis,
were provided with the aim of giving insights on how much CSIT feedback to
achieve a certain DoF performance.

6 Appendix

In this section, we will provide Proposition 4 used for the converse proof, as
well as three lemmas to be used, together with corresponding proofs. For simplicity
we drop the time index.
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Proposition 4 Let

yk = hT

kx+ zk, (32)

yk , [y1 y2 · · · yk]
T (33)

zk , [z1 z2 · · · zk]
T (34)

Hk , [h1 h2 · · · hk]
T (35)

H , [h1 h2 · · · hK ]
T (36)

H = Ĥ + H̃ (37)

whereh̃i ∈ C
M×1 has i.i.d.NC(0, σ

2
i ) entries. Then, for anyU such thatp

X|UĤH̃ =
p
X|UĤ andK ≥ m ≥ l, we have

l′ h(ym|U, Ĥ, H̃)−m′ h(yl|U, Ĥ, H̃) ≤ −(m′− l′)
l∑

i=1

log σ2i +o(log snr) (38)

where we definel′ , min {l,M} andm′ , min {m,M}.

Lemma 1 4 LetG = Ĝ+ G̃ ∈ C
m×m whereG̃ has i.i.d.Nc(0, 1) entries, andG̃

is independent of̂G. Then, we have

EG̃

[
log det (GHG)

]
=

τ∑

i=1

log
(
λi(Ĝ

H

Ĝ)
)
+ o(log snr) (39)

whereλi(Ĝ
H

Ĝ) denotes thei th largest eigenvalue of̂G
H

Ĝ; τ is the number of

eigenvalues of̂G
H

Ĝ that do not vanish withsnr, i.e.,λi(Ĝ
H

Ĝ) = o(1) whensnr is
large,∀ i > τ .

Lemma 2 For P ∈ C
m×m a permutation matrix andA ∈ C

m×m, letAP = QR

be the QR decomposition of the column permuted version ofA. Then, there exist
at least one permutation matrixP such that

r2ii ≥
1

m− i+ 1
λi(A

HA), i = 1, . . . ,m (40)

where as statedλi(AHA) is the i th largest eigenvalue ofAHA; rii is the i th
diagonal elements ofR.

Lemma 3 For any matrixA ∈ C
m×m, there exists a column permuted versionĀ,

such that

det(Ā
H

IĀI) ≥ m−|I|∏

i∈I
λi(A

HA), ∀ I ⊆ {1, . . . ,m} (41)

whereĀI = [Aji : j ∈ {1, . . . ,m} , i ∈ I] ∈ C
m×|I| is the submatrix ofA

formed by the columns with indices inI.
4We note that Lemma 1 is a slightly more general version of the result in [24,Lemma 6].
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6.1 Proof of Lemma 1

Let us perform a singular value decomposition (SVD) on the matrixĜ, i.e.,

Ĝ = U
[
D1

D2

]

V H whereU ,V ∈ C
m×m are unitary matrices andD1 andD2

areτ ′× τ ′ and(m− τ ′)× (m− τ ′) diagonal matrices of the singular values ofĜ.
Without loss of generality, we assume that thei th singluar value,i = 1, . . . ,m,
scales withsnr assnrbi , whensnr is large. Moreover, the singular values inD1 are
such thatbi > 0 and those inD2 verify bi ≤ 0. First, we have the following lower
bound

EG̃

[
log det (GHG)

]

= EM

[

log det
(([

D1

D2

]

+M
)

H
([

D1

D2

]

+M
))]

(42)

≥ EM

[

log det
(([

D1

0

]
+M

)
H
([

D1

0

]
+M

))
]

(43)

= EM

[

log
∣
∣det (D1 +M11) det

(
M22 −M21 (D1 +M11)

−1

︸ ︷︷ ︸

B

M12

)∣
∣2
]

(44)

= log
∣
∣det (D1)

∣
∣2 + EM11

[

log
∣
∣det

(
I +D−1

1 M11

)∣
∣2
]

+ EBE
M̃

[
log det(M̃

H
(I +BBH)M̃)

]
(45)

≥ log
∣
∣det (D1)

∣
∣2 + EM11

[

log
∣
∣det

(
I +D−1

1 M11

)∣
∣2
]

+ E
M̃

[
log det(M̃

H
M̃)

]

︸ ︷︷ ︸

(ln 2)−1
∑m−τ ′−1

l=0
ψ(m−τ ′−l)=O(1)

(46)

where we defineM , UHG̃V =
[
M11 M12

M21 M22

]

with M11 ∈ C
τ ′×τ ′ , and remind

that the entries ofM , thus ofM ij , i, j = 1, 2, are also i.i.d.Nc(0, 1); (43) is from
the fact that expectation of the log determinant of a non-central Wishart matrix is
non-decreasing with in the “line-of-sight” component [25]; (44) is due tothe iden-

tity det
([

N11 N12

N21 N22

])

= det(N11) det(N22 −N21N
−1
11 N12) wheneverN11 is

square and invertible; in (45), we notice that, given the matrixB,M21 (D1 +M11)
−1,

the columns ofM22−BM12 are i.i.d.Nc(0, I+BBH), from which|det(M22−

BM12)|2 is equivalent in distribution todet(M̃
H
(I + BBH)M̃) whereM̃ ∈

C
(m−τ ′)×(m−τ ′) has i.i.d.Nc(0, 1) entries; the last inequality is from̃M

H
(I +

BBH)M̃ � M̃
H
M̃ and thereforedet(M̃

H
(I + BBH)M̃) ≥ det(M̃

H
M̃),

∀B; the closed-form term in the last inequality is due to [26] withψ(·) being
Euler’s digamma function. In the following, we show that

E
[
log
∣
∣det

(
I +D−1

1 M11

)∣
∣2
]
≥ O(1)
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as well. To that end, we use the fact that the distribution ofM11 is invariant to
rotation, and so forD−1

1 M11. Specifically, introducingθ ∼ Unif(0, 2π] that is
independent of the rest of the random variables, we have

EM11

[

log
∣
∣det

(
I +D−1

1 M11

)∣
∣2
]

= EM11,θ

[

log
∣
∣det

(

I +D−1
1 M11e

jθ
)∣
∣2
]

(47)

= EM11,θ

[

log
∣
∣det

(

e−jθI +D−1
1 M11

)∣
∣2
]

(48)

=
τ ′∑

i=1

EJEθ

[
log|e−jθ + λi(D

−1M11)
︸ ︷︷ ︸

Ji

|2
]

(49)

=
τ ′∑

i=1

EJEθ[log(1 + |Ji|
2 + 2|Ji| cos(θ + φ(Ji)))] (50)

=
τ ′∑

i=1

EJEθ[log(1 + |Ji|
2 + 2|Ji| cos(θ))] (51)

≥
τ ′∑

i=1

[
EJ

(
log(1 + |Ji|

2)
)
− 1
]

(52)

≥ −τ ′ (53)

where the first equality is from the fact thatM11 is equivalent toM11e
jθ as long

as θ is independent ofM11 and thatM11 has independent circularly symmet-
ric Gaussian entries; (49) is due to the characteristic polynomial of the matrix
−D−1M11; in (50) we defineφ(Ji) the argument ofJi that is independent of
θ; (51) is from the fact thatmod(θ + φ)2π ∼ Unif(0, 2π] and is independent of
φ, as long asθ ∼ Unif(0, 2π] and is independent ofφ, also known as the Crypto

Lemma [27]; (52) is from the identity
∫ 1
0 log(a+b cos(2πt)) dt = log a+

√
a2−b2
2 ≥

log(a)− 1, ∀ a ≥ b > 0. Combining (46) and (53), we have the lower bound

EG̃

[
log det (GHG)

]
≥ log

∣
∣det (D1)

∣
∣2 +O(1) (54)

whensnr is large. In fact, it has been shown that theO(1) term here, sum of the
O(1) term in (46) and−τ ′ in (53), does not depend onsnr at all.

The next step is to derive an upper bound onE
[
log det (GHG)

]
. Following

Jensen’s inequality, we have

EG̃

[
log det(GHG)

]

≤ log det
(
EG̃[G

HG]
)

(55)

= log det
([

D2
1

D2
2

]

+ E[MHM ]
)

(56)

= log|det (D1)|
2 + log det

(
I +mD−2

1

)

︸ ︷︷ ︸

o(1)

+ log det
(
mI +D2

2

)

︸ ︷︷ ︸

o(log snr)

(57)
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= log|det (D1)|
2 + o(log snr) (58)

Putting the lower and upper bounds together, we have

E
[
log det (GHG)

]
= log|det (D1)|

2 + o(log snr).

Finally, note that, sinceλi(Ĝ
H

Ĝ)
.
= snr

0, i = τ ′ + 1, . . . , τ , we have

log
∣
∣det (D1)

∣
∣2 =

τ ′∑

i=1

log
(
λi(Ĝ

H

Ĝ)
)

(59)

=

τ∑

i=1

log
(
λi(Ĝ

H

Ĝ)
)
−

τ∑

i=τ ′+1

log
(
λi(Ĝ

H

Ĝ)
)

(60)

=
τ∑

i=1

log
(
λi(Ĝ

H

Ĝ)
)
+ o(log snr) (61)

from which the proof is complete.

6.2 Proof of Lemma 2

The existence is proved by construction. Letaj , j = 1, . . . ,m, be thej th
column ofA. We definej∗1 as the index of the column that has the largest Euclidean
norm, i.e.,

j∗1 = arg max
j=1,...,m

‖aj‖. (62)

Swapping thej∗1 and the first column, and denotingA1 = A, we have

B1 , A1T 1,j∗1
(63)

whereT ij ∈ C
m×m denotes the permutation matrix that swaps thei th andj th

columns. Now, letU1 ∈ C
m×m be any unitary matrix such that the first column

is aligned with the first column ofB1, i.e., equal to
aj∗

1

‖aj∗
1
‖ . Then, we can construct

a block-upper-triangular matrixR1 = UH

1B1 = UH

1A1T 1,j∗1
with the following

form

R1 =

[
r11 ∗

0(m−1)×1 A2

]

(64)

where it is readily shown that

r211 = ‖aj∗1‖
2 (65)

≥
1

m
||A1||

2
F (66)

≥
1

m
λ1(A

H

1A1). (67)
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Repeating the same procedure onA2, we will haveR2 = UH

2B2 = UH

2A2T 2,j∗2
where all the involved matrices are similarly defined as above except for there-
duced dimension(m− 1)× (m− 1) and

R2 =

[
r22 ∗

0(m−2)×1 A3

]

(68)

where it is readily shown that

r222 ≥
1

m− 1
λ1(A

H

2A2) (69)

≥
1

m− 1
λ2(A

H

1A1). (70)

Here, the last inequality is from the fact that, for any matrixC and a submatrixCk

by removingk rows or columns, we have [28, Corollary 3.1.3]

λi(C
H

kCk) ≥ λi+k(C
HC) (71)

where we recall thatλi is thei th largest eigenvalue. Let us continue the procedure
onA3 and so on. At the end, we will have all the{U i} and

{
T i,j∗i

}
such that

[
Im−1

UH
m

]

· · ·
[
I2

UH

3

] [
1
UH

2

]

UH

1
︸ ︷︷ ︸

QH

AT 1,j∗1

[
1
T 2,j∗

2

] [
I2

T 3,j∗
3

]

· · ·
[
Im−1

Tm,j∗m

]

︸ ︷︷ ︸

P

=








r11 ∗ ∗ ∗
r22 ∗ ∗

.. .
...

rmm








︸ ︷︷ ︸

R

(72)

where it is obvious thatP is a permutation matrix andQ is unitary. The proof is
thus completed.

6.3 Proof of Lemma 3

Let Ā , AP = QR with P a permutation matrix such that (40) holds. Then,
we have

det(Ā
H

IĀI) = det(RH

IQ
HQRI) (73)

= det(RH

IRI) (74)

≥ det(RH

IIRII) (75)

=
∏

i∈I
r2ii (76)

≥ m−|I|∏

i∈I
λi(A

HA) (77)

where the first inequality results from the Cauchy-Binet formula, and the last in-
equality is due to Lemma 2.
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6.4 Proof of Proposition 4

The inequality (38) is trivial whenm ≥ l ≥ M , i.e., l′ = m′ = M . From
the chain ruleh(ym |U, Ĥ, H̃) = h(yl |U, Ĥ, H̃)+h(yl+1, . . . , ym |yl, Ĥ, H̃) =
h(yl |U, Ĥ, H̃)+ o(log snr), since withl ≥M , the observationsyl+1, . . . , ym can
be represented as a linear combination ofyl, up to the noise error. In the following,
we focus on the casel ≤M .

We are now ready to prove the proposition. First of all, let us write

h(ym|U, Ĥ, H̃)− µh(yl|U, Ĥ, H̃)

= E
Ĥ

[

EH̃ [h(Hmx+ zm |U, Ĥ = Ĥ, H̃ = H̃)]

− µEH̃ [h(H lx+ zl |U, Ĥ = Ĥ, H̃ = H̃)]
]

(78)

In the following, we focus on the term inside the expection overĤ in (78), i.e., for
a given realization of̂H. Sinceyl is a degraded version ofym, we can apply the
results in [29, Corollary 4] and obtain the optimality of Gaussian input, i.e.,

max
p
X|UĤ

:

E[tr(XXH)]≤snr

EH̃

[
h(ym|U, Ĥ = Ĥ, H̃ = H̃)

]
− µEH̃

[
h(yl|U, Ĥ = Ĥ, H̃ = H̃)

]

= max
ΨΨΨ�0:tr(ΨΨΨ)≤snr

EH̃

[
log det (I +HmΨΨΨHH

m)
]
− µEH̃

[
log det (I +H lΨΨΨHH

l )
]

(79)

for anyµ ≥ 1. The next step is to upper bound the right hand side (RHS) of (79).
Next, letΨΨΨ = V ΛΛΛV H be the eigenvalue decomposition of the covariance ma-

trix ΨΨΨ whereΛΛΛ is a diagonal matrix andV is unitary. Note that it is without
loss of generality to assume that all eigenvalues ofΨΨΨ are strictly positive, i.e.,
λi(ΨΨΨ) ≥ c > 0, ∀i, in the sense that

log det (I +HΨΨΨHH) ≤ log det (I +H(cI +ΨΨΨ)HH)

≤ log det (I +HΨΨΨHH) + log det (I + cHHH) . (80)

In other words, a constant lift of the eigenvalues ofΨΨΨ does not have any impact
on the high SNR behavior. This regularization will however simplify the analysis.
The following is an upper bound for the first term in the RHS of (79).

EH̃

[

log det
(
I +HmΨΨΨHH

m

)]

= EH̃

[
log det

(

IM +ΨΨΨ
1
2HH

mHmΨΨΨ
1
2

)]
(81)

≤ EH̃

[

log det
(

IM +ΨΨΨ
1
2UH

[
‖Hm‖2Im′

0

]

UΨΨΨ
1
2

)]

(82)

= EH̃

[

log det
(
Im′ + ‖Hm‖

2 Ψ̃ΨΨ
)]

(83)

= EH̃

[
log det

(
Ψ̃ΨΨ
)]

+ EH̃

[

log det
(
Ψ̃ΨΨ

−1
+ ‖Hm‖

2I
)]

(84)
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≤
m′
∑

i=1

log λi(ΨΨΨ) + log det
(
(c−1 +m+ ‖Ĥm‖

2)I
)

︸ ︷︷ ︸

o(log snr)

(85)

≤ log det(ΛΛΛ) + o(log snr) (86)

whereΨΨΨ
1
2 is such that

(
ΨΨΨ

1
2

)2
= ΨΨΨ; (82) is due to fact that

HH
mHm � UH

[
‖Hm‖2Im′

0

]

U

with U being the matrix of eigenvectors ofHH
mHm and‖Hm‖ being the Frobe-

nius norm ofHm; in (83), we definẽΨΨΨ as them′×m′ upper left block ofUΨΨΨUH;
the first term in (85) is due todet(Ψ̃ΨΨ) =

∏m′

i=1 λi(Ψ̃ΨΨ) ≤
∏m′

i=1 λi(UΨΨΨUH) =
∏m′

i=1 λi(ΨΨΨ); the second term in (85) is from Jensen’s inequality and using the
fact thatΨΨΨ−1 � c−1IM by assumption and thatEH̃(H

H
mHm) =

∑m
k=1 σ

2
kIM +

Ĥ
H

mĤm � mI + Ĥ
H

mĤm; the last inequality is from the assumption that every
eigenvalue ofΨΨΨ is lower-bounded by some constantc > 0 independent ofsnr.
Now, we need to lower bound the second expectation in the RHS of (79). Tothis
end, let us write

det (Il +H lΨΨΨHH

l ) = det (Il +H lV ΛΛΛV HHH

l ) (87)

= det (IM +ΛΛΛV HHH

lH lV ) (88)

= det
(
IM +ΛΛΛΦΦΦHΣΣΣ2ΦΦΦ

)
(89)

= 1 +
∑

I⊆{1,...,M}
I6=∅

det(ΛΛΛII) det(ΦΦΦ
H

IΣΣΣ
2ΦΦΦI) (90)

≥ det(ΣΣΣ2)
M∑

j=1

det(ΛΛΛIjIj ) det(ΦΦΦ
H

IjΦΦΦIj ) (91)

≥M det(ΣΣΣ2)





M∏

j=1

(

det(ΛΛΛIjIj ) det(ΦΦΦ
H

IjΦΦΦIj )
)





1
M

(92)

=M det(ΣΣΣ2) det(ΛΛΛ)
l
M





M∏

j=1

det(ΦΦΦH

IjΦΦΦIj )





1
M

(93)

where (88) is an application of the identitydet(I+AB) = det(I+BA); in (89),
we define

ΣΣΣ , diag(σ1, . . . , σl), ΦΦΦ , ΣΣΣ−1H lV , andΦ̂ΦΦ , ΣΣΣ−1Ĥ lV ;

in (90), we defineΦΦΦI , [Φji : j = 1, . . . , l, i ∈ I] ∈ C
l×|I| as the submatrix

of ΦΦΦ with columns indexed inI andΛΛΛII = [Λji : i, j ∈ I] ∈ C
|I|×|I|, with I
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denoting a nonempty set; the equality (90) is an application of the identity [30]

det(I +A) = 1 +
∑

I⊆{1,...,M}
I6=∅

det(AII)

for anyA ∈ C
M×M ; in (91), we defineI1, . . . , IM as the so-called sliding window

of indices

I1 , {1, 2, · · · , l}, I2 , {2, 3, · · · , l, l + 1}, · · · , IM , {M, 1, 2, · · · , l − 1}
(94)

i.e., Ij , {mod(j + i− 1)M + 1 : i = 0, 1, · · · , l − 1} , j = 1, 2, · · · ,M
(95)

with mod(x)M being the modulo operator; (92) is from the fact that arithmetic
mean is not smaller than geometric mean; in (93), we use the fact that

M∏

j=1

det(ΛΛΛIjIj ) = det(ΛΛΛ)l.

Without loss of generality, we assume that theM columns ofH lV are ordered
in such a way that 1) the firstl columns are linearly independent, i.e.,Φ̂ΦΦI1 has full
rank, and 2)A = Φ̂ΦΦI1 satisfies Lemma 3. Note that the former condition can
almost always be satisfied sincerank(Φ̂ΦΦ) = l almost surely. Hence, we have

EH̃

[
log det(ΦΦΦH

IjΦΦΦIj )
]
=

rank(Φ̂ΦΦIj
)

∑

i=1

log
(
λi(Φ̂ΦΦ

H

IjΦ̂ΦΦIj )
)
+ o(log snr) (96)

≥

rank(Φ̂ΦΦIj
⋂

I1
)

∑

i=1

log
(
λi(Φ̂ΦΦ

H

IjΦ̂ΦΦIj )
)
+ o(log snr) (97)

≥

rank(Φ̂ΦΦIj
⋂

I1
)

∑

i=1

log
(
λi(Φ̂ΦΦ

H

Ij
⋂ I1Φ̂ΦΦIj

⋂ I1)
)
+ o(log snr)

(98)

= log det(Φ̂ΦΦ
H

Ij
⋂

I1Φ̂ΦΦIj
⋂ I1) + o(log snr) (99)

≥ log
∏

i∈Ij
⋂ I1
λi(Φ̂ΦΦ

H

Φ̂ΦΦ) + o(log snr) (100)

where (96) is from Lemma 1 by noticing thatΦΦΦIj = Φ̂ΦΦIj + Φ̃ΦΦIj with the entries

of Φ̃ΦΦIj , ΣΣΣ−1H̃ lV being i.i.d.Nc(0, 1); (97) is from the fact thatrank(Φ̂ΦΦIj ) ≥

rank(Φ̂ΦΦIj
⋂ I1); (98) is due toλi(Φ̂ΦΦ

H

IjΦ̂ΦΦIj ) ≥ λi(Φ̂ΦΦ
H

Ij
⋂ I1Φ̂ΦΦIj

⋂ I1) where we re-
call thatλi(AHA) is defined as thei th largest eigenvalue ofAHA; and the last
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inequality is due to Lemma 3. Summing over allj, we have

M∑

j=1

EH̃

[
log det(ΦΦΦH

IjΦΦΦIj )
]
≥ log

(
M∏

j=1

∏

i∈Ij
⋂ I1
λi(Φ̂ΦΦ

H

Φ̂ΦΦ)

)

+ o(log snr) (101)

= log

((
∏

i∈I1
λi(Φ̂ΦΦ

H

Φ̂ΦΦ)

)l)

+ o(log snr) (102)

≥ l log
∏

i∈I1
λi(Φ̂ΦΦ

H

I1Φ̂ΦΦI1) + o(log snr) (103)

= l log det
(

Φ̂ΦΦ
H

I1Φ̂ΦΦI1
)

+ o(log snr) (104)

= −l log det
(
ΣΣΣ2
)
+ o(log snr) (105)

where (103) is due toλi(Φ̂ΦΦ
H

Φ̂ΦΦ) ≥ λi(Φ̂ΦΦ
H

I1Φ̂ΦΦI1), ∀ i = 1, . . . , l; the last equality is

from the fact that̂ΦΦΦI1 = ΣΣΣ−1Ĥ lV I1 and thatĤ lV I1 has full rank by construc-
tion. From (93) and (105), we obtain

EH̃

[
log det (Il +H lΨΨΨHH

l )
]
≥

l

M
log det(ΛΛΛ) +

M − l

M
log det(ΣΣΣ2) + o(log snr)

(106)
and finally

EH̃

[
log det (Im +HmΨΨΨHH

m)
]
−
M

l
EH̃

[
log det (Il +H lΨΨΨHH

l )
]

≤ −
M − l

l
log det(ΣΣΣ2) + o(log snr). (107)

Whenm < M , the above bound (107) is not tight. However, we can show that, in
this case, (107) still holds when we replaceM with m. To see this, let us define
ΛΛΛ′ , diag(λ1, . . . , λm). First, note that whenm < M , (86) holds if we replaceΛΛΛ
withΛΛΛ′ on the RHS. Then, the RHS of (87) becomes a lower bound if we replaceΛΛΛ
with ΛΛΛ′ andV with V ′ ∈ C

M×m, the firstm columns ofV . From then on, every
step holds withM replaced bym. (107) thus follows withM replaced bym. By
taking the expectation on both sides of (107) overĤ and plugging it into (78), we
complete the proof of (38).
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