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How Much CSIT Feedback is Necessary for the Multiuser
MISO Broadcast Channels?

Jinyuan Chen, Sheng Yang, and Petros Elia

Abstract

This work considers the multiuser multiple-input singletfmut (MISO)
broadcast channel (BC), where a transmitter wifhantennas transmits in-
formation to K single-antenna users, and where - as expected - the qual-
ity and timeliness of channel state information at the tnaitter (CSIT) is
imperfect. Motivated by the fundamental question of how mteedback
is necessary to achieve a certain performance, this wotksdeeestablish
bounds on the tradeoff between degrees-of-freedom (Daf)rpeance and
CSIT feedback quality. Specifically, this work provides agldoF region
outer bound for the generdl-userM x 1 MISO BC with partial current
CSIT, which naturally bridges the gap between the case ahbawo cur-
rent CSIT (only delayed CSIT, or no CSIT) and the case withG4@IT. The
work then characterizes the minimum CSIT feedback that cessary for
any point of the sum DoF, which is optimal for the case with> K, and
the case with\/ = 2, K = 3.

Index Terms

Broadcast channels, multiple-input single-output (MIS®@yltiuser, lim-
ited feedback, channel state information at the transn{@8IT), alternating
CSIT, degrees-of-freedom (DoF).
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Figure 1: System model df’-user MISO BC with CSIT feedback.

1 Introduction

We consider the multiuser multiple-input single-output (MISO) broadcasich
nel (BC), where a transmitter with/ antennas, transmits information & single-
antenna users. In this setting, the received signal attjiseof the form

yk,t - h-ll;txt + zk,tu k= 17 e 7K (l)

wherehy,, denotes thel/ x 1 channel vector for usek, z;; denotes the unit
power AWGN noise, and whete; denotes the transmitted signal vector adhering
to a power constraink|[||z||?] < P, for P taking the role of the signal-to-noise
ratio (snr). We here consider that the fading coefficiénts, £ = 1,--- , K, are
independent and identically distributed (i.i.d.) complex Gaussian randonblesia
with zero mean and unit variance, and are i.i.d. over time.

Itis well known that the performance of the BC is greatly affected by the timeli-
ness and quality of feedback; having full CSIT allows for the optimal{ M/, K }
sum degrees-of-freedom (DoF) (cf. [1]while the absence of any CSIT reduces
this to justl sum DoF (cf. [2, 3]). This gap has spurred a plethora of works that
seek to analyze and optimize BC communications in the presence of delayed and
imperfect feedback. One of the works that stands out is the work byditadli
and Tse [4] which recently revealed the benefits of employing delayed G&ir
the BC, even if this CSIT is completely obsolete. Several interesting gerseraliz
tions followed, including the work in [5] which showed that in the BC setting with
K = M + 1, combining delayed CSIT with perfect (current) CSIT (over the last
% fraction of communication period) allows for the optimal sum DiFcor-
responding to full CSIT. A similar approach was exploited in [6] which ebed
that, to achieve the maximum sum Dakn{M, K}, each user has to symmetri-

cally feed back perfect CSIT over®*-X1 fraction of the communication time,

'We remind the reader that for an achievable rate t(Blg Rz, - - RK) WhereRi is for useri,
the corresponding DoF tuplel:, ds, - - - ,dx) is given byd; = hmpﬂoc 10 s, i =1,2,--- | K.
The corresponding DoF regidn is then the set of all achievable DoF tupf @s,ds, - ,di).



and that this fraction is optimal. Other interesting works in the context of utiliz-
ing delayed and current CSIT, can be found in [7—10] which exploredétting
of combining perfect delayed CSIT with immediately available imperfect CSIT,
the work in [11, 12] which additionally considered the effects of the quality o
delayed CSIT, the work in [13] which considered alternating CSIT faekibthe
work in [14] which considered delayed and progressively evolvimgdressively
improving) current CSIT, and the works in [15—-21] and many other patitios.

Our work here generalizes many of the above settings, and seeks tlisbstab
fundamental tradeoff between DoF performance and CSIT feedhakyg over
the general{-userM x 1 MISO BC.

1.1 CSIT quantification and feedback model

We proceed to describe the quality and timeliness measure of CSIT feedback
and how this measure relates to existing work. We herehygeto denote the
current channel estimate (for chanigl;) at the transmitter at timeslotand use

hip;=hi—hg,

to denote the estimate error assumed to be mutually independémj[tdnd as-
sumed to have i.i.d. Gaussian entries with power

E[Hﬁk,tHQ] KN P*ak,tj

for some CSI quality exponent ; € [0, 1] describing the quality of this estimate.
We note thaty, ; = 0 implies very little current CSIT knowledge, and that, = 1
implies perfect CSIT in terms of the DoF performafice

The approach extends over non-alternating CSIT settings in [4] arkD[,/—
as well as over an alternating CSIT setting (cf. [6, 13]) where CSITwkeage
alternates between perfect CSH(;, = 1), and delayed or no CSITy, ; = 0).

In a setting where communication takes place ovesuch coherence periods
(t = 1,2,---,n), this approach offers a natural measure of a per-user average
feedback cost, in the form of

1 n
~ L _ e
ak_nzak,b k 1727 7Ka
t=1
as well as a measure of current CSIT feedback cost
K
Cec £ Z Qf, (2)
k=1

accumulated over all users.

2This can be readily derived, using for example the work in [22].



1.1.1 Alternating CSIT setting

In a setting where delayed CSIT is always available, the above modetesaptu
the alternating CSIT setting where the exponents are binary € 0, 1), in which
case

Qi = Op
simply describes the fraction of time during which usdeeds back perfect CSIT,
with

K
Cc=Cp2 Z 0Pk

k=1
describing theotal perfect CSIT feedback cost

1.1.2 Symmetric and asymmetric CSIT feedback

Motivated by the fact that different users might have different feelltcapa-
bilities due to the feedback channels with different capacities and diffekabil-
ities, symmetric CSIT feedback( = - - - = ag) and asymmetric CSIT feedback
(o # ayy Yk # k') are considered in this work.

1.2 Structure of the paper and Summary of Contributions

Section 2 provides the main results of this work:

¢ In Theorem 1 we first provide a novel outer bound on the DoF regarhé
K-userM x 1 MISO BC with partial current CSIT quantized wiffay, ; }1. ¢,
which bridges the case with no current CSIT (only delayed CSIT, or no
CSIT) and the case with full CSIT. This result manages to generalize the re
sults by Maddah-Aliand Tsey, ; = 0, Vt, k), Yang et al. and Gou and Jafar
(K =2,ap; =, Vt, k), Malekietal. K =2, a1; = 1,00 = 0, V),
Chen and Eliak = 2, a1 # agy, Vt), Lee and HeathN/ = K + 1,
ai € {0,1}, Vt, k), and Tandon et ala,; € {0,1}, Vi, k).

e From Theorem 1, we then provide the upper bound on the sum DoF, which
is tight for the case withi/ > K (cf. Theorem 2) and the case wifll =
2, K = 3 (cf. Theorem 3, Corollary 3a).

e Furthermore, Theorem 4 characterizes the minimum total current CSIT fee
back costC to achieve the maximum sum DoF, where the total feedback
cost Cy can be distributed among all the users with any (asymmetric and
symmetric) combination$dp  } 1.

¢ In addition, the work considers some other general settings of BC and pro
vides the DoF inner bound as a function of the CSIT feedback cost.

The main converse proof, that is for Theorem 1, is shown in the Sectiod 3 a
appendix. Most of the achievability proofs are shown in the Section 4.llI¥fina
Section 5 concludes the paper.



1.3 Notation and conventions

Throughout this paper, we will consider communication aveoherence pe-
riods where, for clarity of notation, we will focus on the case where weleynp
a single channel use per such coherence period (unit coherenaod)péurther-
more, unless stated otherwise, we assume perfect delayed CSIT, as adhere
to the common convention (see [4, 6, 8,9, 13, 23]), and assume panf@global
knowledge of channel state information at the receivers.

In terms of notation(e)", (e)", tr(e) and|| e || » denote the transpose, conju-
gate transpose, trace and Frobenius norm of a matrix respectively, dviges)
denotes a diagonal matriXe || denotes the Euclidean norm, ajd denotes either
the magnitude of a scalar or the cardinality of a 8é&) andO(e) come from the
standard Landau notation, whefér) = o(g(z)) implieslim,_,~ f(z)/g(z) =
0. with f(z) = O(g(x)) implying thatlimsup, ... |f(z)/g(z)] < co. We
also use= to denoteexponential equalityi.e., we write f(P) = P” to denote

1 P - - - _—_ .
m m = B. Similarly > and < denote exponential inequalities. We use
P—oco  log P

A > 0 to denote thatA is positive semidefinite, and usé < B to mean that
B — A » 0. Logarithms are of basg
2 Main results

2.1 Outer bounds

We first present the DoF region outer bound for the gen&ralser M x 1
MISO BC.

Theorem 1 (DoF region outer bound) The DoF region of theX-user M x 1
MISO BC, is outer bounded as

id’r(“ < 1+KZ_1 ( ! - ! ) a (3)
f=min{k, M}~ &= \min{k, M} min{K, M} (k)

dp, <1, k=12,--- K (4)
wherer denotes a permutation of the ordered §&t2, - - - | K'}, and~ (k) denotes

the k th element of set.

Proof: The proof is shown in Section 8]

Remark 1 Itis noted that the bound captures the results in [d].¢ = 0, V¢, k),
iN[8,9] (K =2,at = a, Vt,k),in[23] (M = K =2, 014 = 1,004 = 0, V1),
in[10] (K =2, oan s # oy, V1),in[6,13] (ax, € {0,1}, Vt, k).



Summing up the< different bounds from the above, we directly have the fol-
lowing upper bound on the sum Dak; £ Zszl dj, which is presented using the
following notation

K
dviar = T il T )
L+ min{2, M} + min{3,M} ot min{K,M}
M
r (6)

S R (M (D g §)

Corollary 1a (Sum DoF outer bound) For the K-userM x 1 MISO BC, the sum
DoF is outer bounded as

dmaT
< 1— § 7
ds < duat + ( min{X, M}> V- (7)

The above then readily translates onto a lower bound on the minimum possible
total current CSIT feedback coSt = > 5, @, needed to achieve the maximum
sum DoPF dy, = min{K, M}.

Corollary 1b (Bound on CSIT cost for maximum DoF) The minimun€c required
to achieve the maximum sum Dafn{ K, M} of the K-userM x 1 MISO BC, is
lower bounded as

C¢ > min{ K, M }. (8)

Transitioning to the alternating CSIT setting whetg, < {0,1}, we have
the following sum-DoF outer bound as a function of the perfect-CSIT taura
ay = dopy, = op, V k. We note that the bound holds irrespective of whether, in the
remaining fraction of the tim& — ép, the CSIT is delayed or non existent.

Corollary 1c (Outer bound, alternating CSIT) For the K-user M x 1 MISO
BC, the sum DoF is outer bounded as

Kdmat . min{ K, M}
< K- avAT mim s, Myt
ds, < dyat + ( min (K, M}) min {5p, I (9)

2.2 Optimal cases of DoF characterizations

We now provide the optimal cases of DoF characterizations. The case with
M > K is first considered in the following.

Naturally the result is limited to the case whenén{ K, M} > 1.
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Figure 2: Optimal sum DoEs vs. op for the MISO BC withM > K .

Theorem 2 (Optimal case M > K) For the K-userM x 1 MISO BC withAM >
K, the optimal sum DoF is characterized as

dy, = (K — dwat) min{dp, 1} + dmar. (10)

Proof: The converse and achievability proofs are derived from Corollargrict
Proposition 2 (shown in the next subsection), respectively.

Remark 2 It is noted that, for the special case witf = K = 2, the above
characterization captures the result in [13].

Moving to the case wherg@/ < K, we have the following optimal sum DoF
characterizations for the case willi = 2, K = 3. The first interest is placed
on the minimumCs(dy;) to achieve a sum Doy, recalling thatC = S| dp.
describes the total perfect CSIT feedback cost.

Theorem 3 (Optimal case, M = 2, K = 3) For the three-useg x 1 MISO BC,
the minimum total perfect CSIT feedback cost is given as

Ch(ds) = (4ds — 6)*, Vdx € [0,2] (11)

where the total feedback coSg(ds;) can be distributed among all the users with
some combination§dp  } such thap , < C5(dx)/2 for anyk.

Proof: The converse proof is directly from Corollary 1a, while the achievability
proof is shown in Section 4.Z]

Theorem 3 reveals the fundamental tradeoff between sum DoF andedtdip
CSIT feedback cost (see Fig 3). The following examples are provideffitiosome
insights corresponding to Theorem 3.
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Figure 3: Optimal sum DoFdf) vs. total perfect CSIT feedback cosig) for
three-uselk x 1 MISO BC.

Example 1 For the target sum Doldy, = 3/2, 7/4, 2, the minimum total perfect
CSIT feedback cost {55 = 0, 1, 2, respectively.

Example 2 The targetds; = 7/4 is achievable with asymmetric feedbaik =
[1/6 1/3 1/2], and symmetric feedback = [1/3 1/3 1/3], and some
other feedback such tha(7/4) = 1.

Example 3 The targetds; = 2 is achievable with asymmetric feedbadk =
[1/3 2/3 1], and symmetric feedbade = [2/3 2/3 2/3], and some other
feedback such thdis(2) = 2

Transitioning to the symmetric setting whefig, = dp V k, from Theorem 3
we have the fundamental tradeoff between optimal sum DoF and CSlbdeked
CoStdp.

Corollary 3a (Optimal case, M = 2, K = 3, dp) For the three-use2 x 1 MISO
BC with symmetrically alternating CSIT feedback, the optimal sum DoF is given
as

dg:min{?)(zjl-ép)ﬂ}. (12)

Now we address the questions of what is the minin{igto achieve the max-
imum sum DoFRnin{M, K} for the general BC, and how to distribut€g among
all the users, recalling again th@} is the total perfect CSIT feedback cost.

Theorem 4 (Minimum cost for maximum DoF) For the K-user M x 1 MISO
BC, the minimum total perfect CSIT feedback cost to achieve the maximiaiis Do



given by

* . o 07 if min{M? K} =1

where the total feedback coSf can be distributed among all the users with any
combinationsdp i } -

Proof: For the case witmin{M, K} = 1, simple TDMA is optimal in terms of
the DoF performance. For the case wittin{}/, K} > 1, the converse proof
is directly derived from Corollary 1b, while the achievability proof is shown
Section 4.1

It is noted that Theorem 4 is a generalization of the result in [6] where only
symmetric feedback was considered. The following examples are pragiadier
some insights corresponding to Theorem 4.

Example 4 For the case wherd/ = 2, K = 4, the optimal 2 sum DoF per-
formance is achievable, with asymmetric feedb&ek= [1/5 2/5 3/5 4/5],
and symmetric feedbade = [1/2 1/2 1/2 1/2], and any other feedback
such thatC = 2.

Example 5 For the case wherd/ = 3, K = 5, the optimal 3 sum DoF perfor-
mance is achievable, with asymmetric feedbgek= [1/5 2/5 3/5 4/5 1],
and symmetric feedbade = [3/5 3/5 3/5 3/5 3/5], and any other feed-
back such tha€} = 3.

The following corollary is derived from Theorem 4, where the caseaofriy
min{M, K} > 1is considered.

Corollary 4a (Minimum cost for maximum DoF) For the K-userM x 1 MISO

BC, whereJ users instantaneously feed back perfect (current) CSIT, with the other
users feeding back delayed CSIT, then the minimum nurhiEemin{M, K}, in
order to achieve the maximum sum Dofn{ M, K}.

2.3 Inner bounds

In this subsection, we provide the following inner bounds on the sum DaF as
function of the CSIT cost, which are tight for many cases as stated.

Proposition 1 (Inner bound, M = 2, K > 3) For the K(> 3)-user2 x 1 MISO
BC, the sum DoF is bounded as

3 K 2
dy, > — + — min{dp,

>+ =t (13)

Proof: The proof is shown in Section 4(3.



3/2

Figure 4: Achievable sum Doffs; vs. dp for the K (> 3)-user2 x 1 MISO BC.
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Figure 5: Achievable sum Do#; vs. dp for the MISO BC withM < K.

Proposition 2 (Inner bound, M > K and M < K) Forthe K-userM x1 MISO
BC, the sum DoF for the case wifli > K is bounded as

dy, > (K — dmat) min{dp, 1} + duar, (14)

while for the case witll/ < K, the sum DoF is bounded as

KT . M
Proof: The proof is shown in Section 4(4.
Finally, we consider a case of BC with delayed CSIT feedback only, evher
dp = 0. In this case, we us& ;, to denote the fraction of time during which CSIT
fed back from usek is delayed, and focus on the case Wiy, = dp, VEk.
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32
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dy =1+K8, /2

| | 5D
0 2/(3K) 9/(8K)

Figure 6: Achievable sum Do#:; vs. dp for the MISO BC withK > 3, M = 2,
wheredp = 0.

Proposition 3 (Inner bound on DoF with delayed CSIT) For the K (> 3)-user
(2 x 1) MISO BC, and for the case 6f = 0, the sum DoF is bounded as

12 4K 3} (16)

TR

K
dy, > min{l + 55[), 1

Proof: The proof is shown in Section 4(5.

Remark 3 For the K-user MISO BC with current and delayed CSIT feedback, by
increasing the number of users, the same DoF performance can vable with
decreasing feedback cost per user. For example, forkkheser MISO BC with

M = 2, by increasingk’ we can achieve any fixed DoF within the range bf2],

with decreasingp < % anddp < SiK both of which approach td as K is large.

3 Converse proof of Theorem 1

In this proof we will use Proposition 4 shown in the appendix, and use the
following notations:

S 2 [hiy - hK,t]T
S¢2 [hiy - hiy)'
0" 2 {8, 8},

i = {Yritior

10



Giving the observations and messages of users., k — 1 to userk, we es-
tablish the following genie-aided upper bounds on the achievable rates

nRy < I(Wi;yf | Q") + ne a7
nRy < I(Wasyi', yy | W1, Q") + ne (18)
nRy < I(WK;Z/?,QS, s 7y?{ ‘ Wi,... 7WK—179H) +ne (19)

where we apply Fano’s inequality and some basic chain rules of mutuatiafimm
using the fact that messages from different users are independtarhaiively, we
have

nRy < h(y! | Q") — h(yy | W1, Q") 4+ ne (20)
nRy < h(yl',ys | Wi, Q") — h(yl, vy | Wi, Wa, Q") + ne (21)

HRK < h(y?,...,y?{‘Wl,...,WK_l,Qn) —h(y?,...,y?{‘Wl,...,WK,Qn)
+ ne. (22)

Therefore, it follows that

K—-1
1 n n n 1 n n w
< <(k: h(yy, - Y W o W, Q )—k/h(yl,...,yk\Wl,...,Wk,Q)>

+ h(y? | Q") — —=h(yl, . Yk | Wi, .., Wk, Q") (23)

K-1 n
1
< ————h R T (AP | (A oL
> Z 1<(k+1)/ (yl,ta 7yk+1,t‘y1 ) Y WV, s VW, )

1 - — n
- ?h(yl,ta e 7yk,t|yi 13 O 7y]tc 17W17 .. '7WkaQ )> —|—nlogP—|—n0(logP)
(24)
K—-1 n k
(k+1) -k
<log P WZO‘” + nlog P + no(log P) (25)
k=1 t=1 i=1
K-1 k
(k+ 1)/ L/ B
= nlog P 2 W ;ai + nlog P 4+ no(log P) (26)
K—1
1 1N
=nlog P (E — ?)ak + nlog P + no(log P) 27)
k=1

11



where we define
k' & min {k, M} ; (28)

the inequality (24) is due to 1) the chain rule of differential entropy, 2) #ut f
that removing condition does not decrease differential entropg®): | ") <
log P + o(log P), i.e., Gaussian distribution maximizes differential entropy under
covariance constraint, and#)yy, ...,y | Wh,..., Wi, Q") = h(z], ..., 2}) >

0; (25) is from Proposition 4 by setting = {y{™",...,yi ", Wi, ..., Wi, Q"} \
{S,,S,}, H = 8,,andH = S,; the last equality is obtained after putting the sum-
mation overk inside the summation ovérand some basic manipulations. Simi-
larly, we can interchange the roles of the users and obtain the same grde-a
bounds. Finally, the single antenna constraint givesdhat 1, i = 1,--- | K.
With this, we complete the proof.

4 Detalls of achievability proofs

In this section, we provide the details of the achievability proofs. Specifjcally
the achievability proof of Theorem 4 is first described in Section 4.1, wtachbe
applied in parts for the achievability proof of Theorem 4.2 shown in Sectidn 4
with the proposition proofs shown in the rest of this section.

4.1 Achievability proof of Theorem 4

We will prove that, the optimal sum Doy, = min{M, K} is achievable
with any CSIT feedback co$p=[0p1 dp2 -+ dpx) € RE such thaCp =
S, dpx = min{M, K'}. First of all, we note that there exists a minimum num-
bern such that

3p20p1 Opy - Opx)2ndp = [ndp1 ndpy - nopx] € ZF

is an integer vector. The explicit communication witrchannel uses is given as
follows:

e Step 1: Initially set time index = 1.

e Step 2: Permute user indices orderly into @sstich thaﬁ;u(l) < 5;,1/,(2) <
e < 51/%1(1()’ wherel{(k) denotes thé th element of thé/ set, and where

Uk) e {1,2,--- K}

e Step 3: Seleanin{ M, K} users to communicate: usé/sK —min{M, K }+

e Step 4: Let selected users feed back perfect CSIT at#jkeeping the rest
users silent.

12



Table 1: Summary of the scheme for achievi

= 2 with C5 = 2, where

M: 2, K:3, 5P71 — 1/3, 6P72 :2/3’ 6P,3 = 1

timet 1 2 3
u {1,2,3} | {1,2,3} | {2,1,3}
{5;,711(1), 5,’3“(2), 5;,70,(3)} {1,2,3} {1,1,2} {0,1,1}
Active users user2,3 | user2,3 | userl,3
Perfect CSIT feedback | user 3: yes| user 3: yes| user 3. yes
user 2: yes user 2: yes| user2:no
user1:no| userl1:no| userl:yes
No. of transmitted symbols 2 2 2

e Step 5: The transmitter sendsin{ )/, K'} independent symbols to those
selected users respectively, which can be done with simple zero-forcing

e Step 6: Seab‘;,,u(k) = 5;,714(,6)—1, k=K-mn{M,K}+1,--- / K—1,K.

e Step 7: Set = t + 1. If renewedt > n then terminate, else go back to
step 2.

In the above communication with channel uses, the algorithm guarantees that
useri is selected by, = ndpy times totally, and thamin{}M, K} different
users are selected in each channel use. As a result, the optimal sumy-DeF
min{M, K} is achievable.

Now we consider an example witf = 2, K = 3, anddp = [1/3 2/3 1],
and show that the optimal sum Dal; = 2 is achievable with the following com-
munication:

e Letn = 3. InitiaIIy (5{371 = nép,l =1, (5,’;,72 = n5p72 = 2, 5{373 = n5p73 = 3.

e Fort =1, we havel/ = {1,2,3}, anddp;, () = 1, 0p5) = 2, Opyy(s) = 3-
Users 3 and 2 are selected to communicate.

e Fort = 2, we update the parametersids= {1, 2,3}, andé,gu(l) =1,
5,’%{(2) :_1, 6,’%[(3) = 2. At this time, again user 3 and user 2 are selected to
communicate.

e Fort = 3, we update the parametersids= {2,1,3}, anddp,, ;) = 0,
Opu(z) = L Opy(s = 1. Atthis time, user 3 and user 1 are selected to
communicate. After that the communication terminates.
In the above communication with three channel uses, the transmitter sends two
symbols in each channel use, which allows for the optimal sum @oE 2 (see
Table 1).

13



4.2 Achievability proof of Theorem 3

We proceed to show that, any sum Déf € [3/2, 2] is achievable with the
feedback
Cp 5
(5p7k < ?, k=1,2,3, suchthat Cp = kZl(SRk = 4dy, — 6.
First of all, we note that there exists a minimum numbeuch that

[2n5p71/Cp 2n5p72/Cp n26p73/Cp] € ZS, and 2n/Cp € Z.

The scheme has two blocks, with the first block consisting ohannel uses, and
the second block consisting of

n =2n/Cp—n

channel uses. In the first block, we use the algorithm shown in the Setfido
achieve the full sum DoF in thosechannel uses, during which usefeeds back
perfect CSIT in2ndp3/Cp channel uses, fok = 1,2, 3. In the second block, we
use the Maddah-Ali and Tse scheme in [4] to achieve 3/2 sum DoF in those
channel uses, during which each user feeds back delayed CSIT only

The communication with. channel uses for the first block is given as follows:

o Step 1: Letsp, = 2ndpy/Cp for all £. Initially, sett = 1.

e The steps 2, 3, 4, 5, 6 are the same as those in the algorithm shown in Sec-
tion4.1, forM =2, K = 3.

e Step 7: Set = t + 1. If renewedt > n then terminate, else go back to
step 2.

In the above communication with channel uses, the algorithm guarantees that
userk, k = 1,2, 3, is selected by, = 2ndp;/Cp times. We note thai,, < n

under the constrainip;, < Cp/2 for anyk, and thatZkK:1 dp, = 2n, to suggest
that in each timeslot two different users are selected, which allows forptimal
2 sum DoF in this block.

As stated, in the second block, we use the MAT scheme to achieve the 3/2 sum
DoF in thoser’ channel uses, during which each user feeds back delayed CSIT
only. As a result, in the totat + n’ channel uses communication, uget 1,2, 3
feeds back perfect CSIT imép s /(Cp(n+ n')) = 0p, fraction of communication
period, with achievable sum DoF given as

’

de — 2n 3n 3 1C
> (n+n) + 20n+n") 2 Ta-P
We note that the achievability scheme applies to the case of having some
dp1,0p2,0p3 < Cp/2 such thatCp = 4ds; — 6, and allows to achieve any sum
DoF ds, € [3/2,2]. Apparently,Cp = 0 allows for any sum DoFly, € [0,3/2],
which completes the proof.
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4.3 Proof of Proposition 1

The achievability scheme is based on time sharing between two strategies of
CSIT feedback, i.e., delayed CSIT feedback with= 0 and alternating CSIT
feedback withs, = 2, where the first strategy achievés = 3/2 by applying
Maddah-Ali and Tse (MAT) scheme (see in [4]), with the second straebieving
d¥, = 2 by using alternating CSIT feedback manner (see in [6]).

Let A € [0,1] (res.1 — A) be the fraction of time during which the first (res.
second) CSIT feedback strategy is used in the communication. As a restihgh
feedback cost (per user) is given as

op = 0pA + 5p(1 — A), (29)
implying that
s — 5P
A = P

with final sum DoF given as

ds, = ds A + d2%(1 — A)

= &+ A(dy — d¥)
s — Sp
=+ (dy — d%) S
P P
3 K
= 5 + Z(;P (31)

which completes the proof.

4.4 Proof of Proposition 2

For the case with\/ > K, the proposed scheme is based on time sharing
between delayed CSIT feedback with= 0 and full CSIT feedback witlg = 1,
where the first feedback strategy achied%s = dvar by applying MAT scheme,

with the second one achievin~ = K. As a result, following the steps in (29),
(30), (31), the final sum DoF is calculated as

5 — bp

58— oh

= (K — dwar)op + dwvar

ds, = ds; + (dy, — dy,)

wheredp € [0, 1] is the final feedback cost (per user) for this case.

Similar approach is exploited for the case with < K. In this case, we
apply time sharing between delayed CSIT feedback wjith- 0 and alternating
CSIT feedback withhg = M /K. In this case, the first feedback strategy achieves
ds, = T by applying MAT scheme, with the second strategy achieviig= M

15



Table 2: Summary of the achievability scheme for achievifng= % with 6p =

2
3K*

block index 1 2 3 K
No. of channel uses 3 3 3 3
Active users userl, 2 user 2, 3 user 3,4 userk, 1
Delayed CSIT feedback user 1:1/3 | user 2:1/3 | user 3:1/3 userk: 1/3
fractionin a block | user2:1/3 | user 3:1/3 | user4:1/3 user 1:1/3
therest: 0| therest: 0| therest: 0 the rest: 0
Sum DoF 4/3 4/3 4/3 4/3
in a block
by using alternating CSIT feedback manner. As a resultjygar [0, %] being the
final feedback cost for this case, the final sum DoF is calculated as
Y- 5P
d — d d// P
¥ = ( P 2)5}/3/ - 5{3
KT
K——)p+T
= ( 7 )op +

which completes the proof.

4.5 Proof of Proposition 3

As shown in the Fig 6, the sum DoF performance has three regions:

1+K5D7 5D€[72}
ds = 11 2+ 115D> dp € [%g{ %}

In the following, we will prove that the sum Dofy, = 1, g‘, g are achievable
with 6p = 0, %, gF, respectively. At the end, the whole DoF performance
declared can be achievable by time sharing between those performantse po

The proposed scheme achieviig = % with dp = 3K, is a modified version
of the MAT scheme in [4]. The new scheme hasblocks, with each block con-
sisting of three channel uses. In each block, four independent $yralmsent to
two orderly selected users, which can be done with MAT scheme with eaaloof
chosen user feeding back delayed CSIT in one channel use. Aslg des= % is
achievable withip = %K using the fact that each @& users needs to feed back
delayed CSIT twice only in the whole communication (see Table 2).

Similarly, the proposed scheme achieviig= 2 with 6p = 5% hasK blocks,
with each block consisting of 8 channel uses. In each block, 3 okt o§ers are

16



Table 3: Summary of the achievability scheme for achievifng= % with 6p =
9

3%
block index 1 2 3 e K
No. of channel uses 8 8 8 8
Active users userl, 2, 3| user2,3,4| user3,4,5 --- | userk, 1,2
Delayed CSIT feedback user 1:3/8 | user 2:3/8 | user3:3/8 | --- | userK: 3/8
fraction in a block | user 2:3/8 | user 3:3/8 | user 4:3/8 user 1:3/8
user 3:3/8 | user 4:3/8 | user 5:3/8 user 2:3/8
therest: 0| therest: 0| therest: 0 therest: O
Sum DoF 3/2 3/2 3/2 e 3/2
in a block

selected to communicate. In this cade,independent symbols are sent to the
chosen users during each block, which can be done with another MAdirse

with each of chosen users feeding back delayed CSIT in 3 chanrel Usea
result,ds. = % is achievable withlp = 8% using the fact that each @f users
needs to feed back delayed CSIT 9 times only in the whole communication (see

Table 3).
Finally, ds; = 1 is achievable without any CSIT. By now, we complete the

proof.

5 Conclusions

This work considered the general multiuser MISO BC, and established inne
and outer bounds on the tradeoff between DoF performance and €8dlbdck
quality, which are optimal for many cases. Those bounds, as well as salysig,
were provided with the aim of giving insights on how much CSIT feedback to
achieve a certain DoF performance.

6 Appendix

In this section, we will provide Proposition 4 used for the converse piaof
well as three lemmas to be used, together with corresponding proofsnipdicgy
we drop the time index.
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Proposition 4 Let

Yr = hpz + 2, (32)
ye Sy )" (33)
Zk = [Zl zZ9 Zkr (34)
H; 2 [hihy - hy]" (35)
H 2 [hihy - hgl" (36)
H=H+H (37)

whereh; ¢ CM*! hasi.i.d N¢(0,0?) entries. Then, for an/ such thab 7 =
Pxjpjr @dK > m > [, we have

l

U by, |U, 5 ) = by U, B, H) < —(m' =1) 3 log o2 +o(log snr) (38)
=1

where we defing = min {l, M} andm’ = min {m, M}.

Lemma 1 *LetG = G+ G € C™ ™ whereG has i.i.d.V,(0, 1) entries, andG
is independent ofs. Then, we have

Eg[logdet (G"G)] = ilog()\i(éHé)) + o(log snr) (39)
i=1

where);(G"'G) denotes thé th largest eigenvalue ofr G; 7 is the number of
eigenvalues of? G that do not vanish witknr, i.e., \;(G' G) = o(1) whensnr is
large,Vi > 7.

Lemma 2 For P € C™*™ a permutation matrix andt € C"™*" letAP = QR
be the QR decomposition of the column permuted versioh. dfhen, there exist
at least one permutation matriR such that

-
“Tm—i4+1
where as stated;(A"A) is thei th largest eigenvalue ofA" A; r;; is thei th
diagonal elements dR.

r Ni(AYA), i=1,...,m (40)

Lemma 3 For any matrixA € C™*™, there exists a column permuted versidn
such that

det(A7A7) > m H [ \(A"A), VI C{1,...,m} (41)
i€l

whereAr = [Aj; = j € {1,...,m},qi € Z] € C™*l is the submatrix ofA
formed by the columns with indicesdn

“We note that Lemma 1 is a slightly more general version of the result ir_gma 6].
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6.1 Proof of Lemma 1

Let us perform a singular value decomposition (SVD) on the maitji.e.,
G=U [Dl DQ} V" whereU,V e C™*™ are unitary matrices anB); and D,
arer’ x 7' and(m — 7') x (m —7') diagonal matrices of the singular values(ef
Without loss of generality, we assume that thé singluar valuej = 1,...,m,
scales withsnr assnr?, whensnr is large. Moreover, the singular valuesiiy, are
such thab; > 0 and those inD,, verify b; < 0. First, we have the following lower
bound

Eg[logdet (G"G)]

el (1 } M () eon)] e

> Er 10gdet< ”([D10]+M))] (43)
= En log’det (D1 + M ;) det(Mas — My (D1 + M1y) ™" M) ﬂ
) B
(44)
= log‘det (Dl)‘2 +Enry, [log}det (I + DflMll) ﬂ
+EpE, [logdet(M" (I + BBY) )] (45)
> log‘det (Dl)‘2 + Enry, [log}det (I + Dl_lMu) ﬂ
+  Eg [log det(MHM)] (46)

(In2)=1 o™ L (m—r'~1)=0(1)

where we definVl £ U"GV = [ 321 32| with My € €77/, and remind
that the entries oM, thus of M ;;, 4, j = 1,2, are also i.i.dN.(0, 1); (43) is from
the fact that expectation of the log determinant of a non-central Wishdrixsa
non-decreasing with in the “line-of-sight” component [25]; (44) is duthtoiden-

tity det (| N2 N22 | ) = det(N11) det(INa; — Noy N7 N15) wheneverN s
square and invertible; in (45), we notice that, given the ma&i M, (D1 + Mll)’l,

the columns ofV 5, — BM 1, are i.i.d \V,(0, I+BBH) from which|det (M, —
BM,)|? is equivalent in distribution taet(M " (I + BBY)M) whereM €
COn=)x(m=7") has i.i.d.N.(0,1) entries; the last inequality is fromv'" (I +
BBM\NM = M" M and thereforelet (M (I + BBH)M) > det(M" M),

V B; the closed-form term in the last inequality is due to [26] witft) being
Euler's digamma function. In the following, we show that

E[log|det (I + D7'M11)|] = O(1)
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as well. To that end, we use the fact that the distributiod6f; is invariant to
rotation, and so foD; ' M ;. Specifically, introducing ~ Unif(0, 27| that is
independent of the rest of the random variables, we have

Ent,, [log|det (I + D7 M) ||

= Ent,, 0 |logldet (1 -+ DT Myye ) |’ (47)

=Eny0 [log’det (e—ﬂ")f n D;an) \2] (48)

= ZE]EQ [log|e_j0 +)\i(D_1M11)|2] (49)
i—1 \—J;—J

=Y EEgllog(1 + | i[> + 2| Ji| cos(8 + 6(;)))] (50)
=1

= EjEgllog(1 + | Ji|* + 2|.J;| cos(6))] (51)
=1

>3 "[E,(log(1 + |1i|*) — 1] (52)
=1

> —1' (53)

where the first equality is from the fact thad |, is equivalent taM1;¢7? as long

asf is independent of\/1; and thatM {; has independent circularly symmet-
ric Gaussian entries; (49) is due to the characteristic polynomial of the matrix
—D~'My; in (50) we definep(.J;) the argument of/; that is independent of

6; (51) is from the fact thatnod(6 + ¢)ar ~ Unif(0, 27] and is independent of

¢, as long a® ~ Unif(0, 27] and is independent af, also known as the Crypto
Lemma [27]; (52) is from the identity;, log(a-+bcos(2rt)) dt = log @Y= >
log(a) — 1,Va > b > 0. Combining (46) and (53), we have the lower bound

Eg[log det (G"G)] > log|det (D1)|* + O(1) (54)

whensnr is large. In fact, it has been shown that th€l) term here, sum of the
O(1) termin (46) and-7" in (53), does not depend anr at all.

The next step is to derive an upper boundIEb[r]log det (G”G)]. Following
Jensen'’s inequality, we have

Es [log det(G"G)]
< logdet(E5[G"G]) (55)
— log det ([D? Dg] + E[MHM]) (56)

= log|det (D1)|? + log det (I+ mDIQ) +logdet (mI + D%) (57)

o(1) o(log snr)
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= log|det (D1)[* + o(log snr) (58)
Putting the lower and upper bounds together, we have

E[log det (G"G)] = log|det (D1)|* + o(log snr).

Finally, note that, sinca;(G' G) =snr®,i = 7' +1,..., 7, we have
log|det (Dl)‘2 = Zlog(Ai(GHé)) (59)
=1

=Y log(M(G'G) - Y log(M(G'G))  (60)
=1

i=7/+1
= Z log(/\i(G'HG’)) + o(log snr) (61)
i=1
from which the proof is complete.

6.2 Proof of Lemma 2

The existence is proved by construction. legt j = 1,...,m, be thej th
column ofA. We defingjj as the index of the column that has the largest Euclidean
norm, i.e.,

ji = arg max |a,]. (62)
7j=1,....m

=1,...,

Swapping thg and the first column, and denoticdy, = A, we have
B = ATy j: (63)

whereT';; € C™*™ denotes the permutation matrix that swapsittie and; th
columns. Now, lel/; € C™*™ be any unitary matrix such that the first column

is aligned with the first column @By, i.e., equal tq% Then, we can construct
71

a block-upper-triangular matriR,; = U'{B; = U} AT, j; with the following
form

T11 *
R, = 64
: [om_m AQ] (64)
where it is readily shown that

ri = lla; |® (65)

1

> || A

2 —llAulF (66)

1
> — X\ (AVA}). (67)

m
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Repeating the same procedure 4p, we will have Ry = UY B,y = UQAQTQJ»;
where all the involved matrices are similarly defined as above except foethe
duced dimensiom — 1) x (m — 1) and

T992 *
Ry = 68
2 |:0(m2)><1 A3] (68)
where it is readily shown that
1
2 > H

T2 Z m—1 1)\1(A2A2) (69)

1

Here, the last inequality is from the fact that, for any ma@hand a submatrixC',
by removingk rows or columns, we have [28, Corollary 3.1.3]

Ai(CiCr) > A1 (CM0O) (71)

where we recall thak; is thei th largest eigenvalue. Let us continue the procedure
on Az and so on. At the end, we will have all t§&;} and{T'; ;- } such that

1o 1 H 1 I Im—1
R L e Y R

»Jm

Q" P
ry % % %
7929 * *
= _ (72)
T"mm

where it is obvious thaP is a permutation matrix an€ is unitary. The proof is
thus completed.
6.3 Proof of Lemma 3

Let A £ AP = QR with P a permutation matrix such that (40) holds. Then,
we have

det(A7 A7) = det(R7Q"QRx) (73)
— det(RYR7) (74)
> det(RY;Rz7) (75)
= Tii (76)
1€
>m ] (A"A) (77)
1€L

where the first inequality results from the Cauchy-Binet formula, and ttara
equality is due to Lemma 2.
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6.4 Proof of Proposition 4

The inequality (38) is trivial whemn > 1 > M, i.e.,l’ = m' = M. From
the chain rulei(y,, |U, H, H) = h(y, | U, H, H) + h(yis1, - - - Ym |y, H, H) =
h(y, | U, H, H) + o(log snr), since withl > M, the observationg, 1, . . ., y,, can
be represented as a linear combinatiogy @iup to the noise error. In the following,
we focus on the cade< M.

We are now ready to prove the proposition. First of all, let us write

Wy, |U, H, H) = ph(y,|U, H, H)
=E; |EgW(Hpz + 2, |UH =H,H = H)
—pEgh(Hix + 2 |UH=H,H=H) (78)

In the following, we focus on the term inside the expection d¥en (78), i.e., for

a given realization off. Sincey, is a degraded version af,,, we can apply the

results in [29, Corollary 4] and obtain the optimality of Gaussian input, i.e.,
max  Eg[h(y,|U,H=H,H=H)| - puE;[h(y|UH=H,H=H)]

Px\uA?
Eftr(X XH)]<snr

- Eg [logdet (I + H,WHY, )] — nEg [log det (I + HYHJ
w0, B [log det (1 + ")) — nEj [logdet (1 + HZH)]
(79)

for anyp > 1. The next step is to upper bound the right hand side (RHS) of (79).

Next, let¥ = VAV" be the eigenvalue decomposition of the covariance ma-
trix ¥ whereA is a diagonal matrix and” is unitary. Note that it is without
loss of generality to assume that all eigenvalueslofire strictly positive, i.e.,
Ai(¥) > ¢ > 0, Vi, in the sense that

logdet (I + H¥H") < logdet (I + H(cI +¥)H")
<logdet (I + H¥H") + logdet (I + cHH"). (80)
In other words, a constant lift of the eigenvaluestofioes not have any impact

on the high SNR behavior. This regularization will however simplify the arslys
The following is an upper bound for the first term in the RHS of (79).

Ej; [log det (I + H, W HY, )|

= E; [log det (IM + W%H;Hm\p%)} (81)
<Ej [log det (IM rwsyH [IIHmIIQImf 0} U\pé)} (82)
—E; [log det (I + ||Hm||2\i:)} (83)
—Ej; [log det(¥)] + B [logdet (¥ + | Hop[2T) | (84)
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< Zlog)\i(\ll) +logdet((c™! +m + ||ﬂm|‘2)l) (85)
=1 o(logsnr)
< logdet(A) + o(logsnr) (86)

where®': is such tha(@2)? = ¥; (82) is due to fact that
HIH,, U™ [1H:0 T

with U being the matrix of eigenvectors 812 H,, and|| H,,|| being the Frobe-
nius norm ofH ,,,; in (83), we definal as them’ x m/ upper left block o/ W U";

the first term in (85) is due tdet(¥) = [[7, \i(¥) < [, M(URUT) =
H;Zl Ai(¥); the second term in (85) is from Jensen’s inequality and using the
fact that¥ —! < ¢~11,, by assumption and th&@, (H H,,) = 7", 021y +
AU, < mI + HH,,; the last inequality is from the assumption that every
eigenvalue ofl is lower-bounded by some constant> 0 independent ofnr.

Now, we need to lower bound the second expectation in the RHS of (73hido
end, let us write

det (Il —i—Hl‘I’H?) = det (I —i—HlVAVHH?) (87)
= det (In; + AVVHYH, V) (88)
= det (I + A®"S*®) (89)
=1+ ) det(Azz)det(®4’®7) (90)
Ig{l,..w.,]%}
I#

M
> det(3%) ) det(Az,z,) det (@ &7,) (91)

j=1

J=1

M M
> M det(£2) (H (det(AI]Ij)det((D%J@I]))) (92)

L
M

det(®4. @Ij)) (93)

—

= M det(32) det(A) 7 (

J=1

where (88) is an application of the identityt(/ + AB) = det(I + BA); in (89),
we define

P diag(o1,...,07), ® & ElelV, and® 2 EilI‘AIlV;
in (90), we defingdbr £ [®;; : j = 1,...,1, i € Z] € C*/Z| as the submatrix

of & with columns indexed i andAzz = [Aj; : 4,5 € Z)] € CEXIZI with 7
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denoting a nonempty set; the equality (90) is an application of the identity [30]

det(T+A)=1+ Y det(Azz)

IC{1,...,M}
T#0
forany A € CM>*M;in (91), we defindy, . . ., T, as the so-called sliding window
of indices
Il é{1727 7l}7 IQé{2737 7l7l+1}7 T IMé{M,1,27 7l_]-}

(94)
i€, Z; £ {mod(j +i— 1)y +1:i=0,1,---,01—1},i=1,2,--- M

(95)

with mod(x),, being the modulo operator; (92) is from the fact that arithmetic
mean is not smaller than geometric mean; in (93), we use the fact that

M
[] det(Az,z,) = det(A)".

=1

Without loss of generality, we assume that fffecolumns ofH V" are ordered
in such a way that 1) the firstcolumns are linearly independent, i.@z, has full
rank, and 2)A = ®7, satisfies Lemma 3. Note that the former condition can

almost always be satisfied sincenk(®) = [ almost surely. Hence, we have

rank(@y_j)
Ej;[logdet(®) @7)] = Y log(Ai(®7,81,)) + o(logsnr) (96)
i=1
rank(ézj nz,)
AH 2
> Z log()\i (<I>Ij<I>Ij)) + o(log snr) (97)
i=1

rank(<i>Ij nz;)

> Z log(A; (é;] NZ <i>zj nz)) + o(logsnr)
. (98)
= log det(é;j Nz @Ij nz.) + o(logsnr) (99)
> log H )\Z((i>H<i>) + o(log snr) (100)
i€, N

where (96) is from Lemma 1 by noticing th@t, = éfj + <i>1j with the entries
of &7, £ B~'H,V being i.i.d.N(0,1); (97) is from the fact thatank(®z,) >

rank(®7,7,); (98) is due to)\i(é;jézj) > )‘i(i’;m 7,87, n1,) where we re-
call that\;(A" A) is defined as the th largest eigenvalue oA" A; and the last
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inequality is due to Lemma 3. Summing over allve have

M
ZEEI [logdet(é%jQI | > log (H H i <i> ®) ) + o(logsnr)  (101)

j=1 J=14eZ; NIy
= log ( ( H Ai (<i> ) ) o(log snr) (102)
i€l
> llog H Ai( <I>Ilfl>11) o(log snr) (103)
€1y
A H A
= llog det <<I>Il @Il) + o(log snr) (104)
= —llogdet (22) + o(log snr) (105)

where (103) is due ta,(®"®) > \;(®7, &7,), Vi = 1,...,1; the last equality is
from the fact thatb;, = £~ ' H,;V 7, and thatH;V 7, has full rank by construc-
tion. From (93) and (105), we obtain

Ej [logdet (I, + HYH})| > ﬁ log det(A) + —— ! log det(£?) 4 o(log snr)
(106)
and finally
H M H
Ej [logdet (I, + H, O HY,)| — TEFI [logdet (I; + H/¥HY})]
e : log det(E?) + o(log snr). (107)

l

Whenm < M, the above bound (107) is not tight. However, we can show that, in
this case, (107) still holds when we replatewith m. To see this, let us define
A’ 2 diag(\1,. .., \y). First, note that whem < M, (86) holds if we replacA

with A’ on the RHS. Then, the RHS of (87) becomes a lower bound if we reflace
with A’ andV with V/ € CM>*™ the firstm columns ofV. From then on, every
step holds with\/ replaced bym. (107) thus follows withM replaced byin. By
taking the expectation on both sides of (107) afEand plugging it into (78), we
complete the proof of (38).
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