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Abstract

Using asymptotic analysis, we show how flat fading affects CDMA with linear re-
ceivers. Specifically, we let the number of users grow without bound while the ratio
of number of users to spreading sequence length is kept fixed to a value �. We
treat separately the case of flat, slow fading with lognormal shadowing (nonergodic
channel) and of flat, fast Rayleigh fading (ergodic channel). For the former channel
we derive the outage probability, while for the latter we compute the channel capac-
ity. We show in particular that, with fading, as �!1 the system capacity tends to
the same limit of 1.44 bit/symbol as for the non-fading channel. On the contrary, the
outage probability exibits a floor for all � values when a single-user matched filter
is employed, while with a linear minimum-mean-square-error receiver the floor is
present only for � > 1.

1 Introduction

We examine a CDMA system with error-control coding operating on a channel affected
by flat fading. We treat separately the case of flat, slow fading with lognormal shad-
owing (nonergodic channel) and of flat, fast Rayleigh fading (ergodic channel). For
the former channel we derive the outage probability, while for the latter we compute
the channel capacity. The receiver consists of a linear front-end, viz., either a single-
user matched filter (SUMF) detector or a linear minimum-mean-square error receiver
(MMSE) detector [6], followed by a single-user decoder. The key performance measure
here is the Signal-to-Interference plus Noise Ratio (SINR) at the output of the linear
filter: users’ quality of service can be expressed in terms of a target SINR. The SINR
cumulative distribution function (cdf) yields immediately the outage probability, i.e., the
probability that the actual SINR, say �, is below the required SINR target, denoted �0.
In general, �0 depends on the coding scheme. Our study is asymptotic, in the sense
that the number of users grows without bound, while the ratio of number of users to
spreading-sequence length is kept fixed. In this work, after a description of the system
model, we shall examine the outage probability of slow-fading channels in Section 3,
and the capacity of fast-fading Rayleigh channel in Section 4.
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2 System model

We consider a single-cell, chip-synchronous DS-CDMA system. Our model involves
K users, random spreading sequences, and a spreading-sequence length L = T=Tc,
where 1=T is the symbol rate and 1=Tc the chip rate. We assume (as in [3, 5]) a large
number of users (K ! 1) and K=L ! � (a constant “channel load” as the length
of the spreading sequences increases to accommodate the K users). Let the empirical
distribution function of the received interfering power from all users converge, as K !
1, to FP(x). Specifically, denote by Pk the power received from user k, and by FK(x)

the empirical cumulative distribution function of the received powers:

FK(x) =
1

K

KX
k=1

=fPk � xg

where =fAg is the indicator function of the event A. We require that FK(x) ! FP(x)

almost everywhere as K ! 1. Thus, FP(x) is the average cumulative distribution
function of the power received from a user picked at random (with uniform probability
1=K) from the population of K !1 users. In our previous paper [2] we chose for FP(x)
the step function

FP(x) = u(x� P0)

corresponding to a situation in which the power received from all users is P0. From [3,
4], with single-user matched filter (SUMF) reception and under mild convergence con-
ditions we have the asymptotic SINR:

� =
P

N0 + �
R
1

0
x dFP(x)

; (1)

where P is the useful power received from reference user, and N0 is the variance of
the additive white Gaussian noise samples. With linear minimum mean-square error
(MMSE) reception the asymptotic SINR � is the unique real nonnegative solution of

� =
P

N0 + �

Z
1

0

xP

P+ x�
dFP(x)

: (2)

2.1 Methodological premises

The intricacies of dealing with fading channels are thoroughly described in [1], so we
shall not delve into them here. Rather, we list a number of points that describe the
rationale behind the calculations that follow. In particular, we motivate the different
methods that are used to analyze the two situations of flat, slow fading and of flat, fast
fading.

2.1.1 Flat, slow fading

Consider first flat, slow fading—not slow enough to be compensated by the power-
control system, yet slow enough to make the channel nonergodic. The fading is due
to lognormal shadowing. This situation occurs for example when the power control is
imperfect, thus leaving a residual shadowing of 2 dB (say), rather than the 8 dB of the



uncompensated shadowing. In this situation, (1) and (2) are still valid, provided that in
lieu of P we write z1P, where z1 is the lognormal RV modeling the shadowing in user-1
channel, and in lieu of FP we write the limiting empirical distribution of the product
zkPk, where zk is the lognormal RV modeling user-k channel and Pk is the power re-
ceived from user k when there is no shadowing. Even if we choose all the Pk equal (to
Q, say), the distribution FP is not a step function, but rather equals the distribution of
the lognormal RV zQ, where z is a generic lognormal RV. Moreover, since we have z1P
instead of P, the value of � becomes a function of z1, and hence a random variable. We
will see in the following that � is proportional to z for both SUMF and MMSE. We may
define an outage probability

P (� < �0) (3)

which will not be generally a step function as in the nonfaded channel [2], even in our
limiting case of K and L both growing to infinity. The value of �0 is chosen as in [2].
For example, if we use a nonideal code with rate R bit/symbol achieving the target
performance at a certain Eb=N0, we set �0 = REb=N0. If we consider instead an optimum
code which operates at the Shannon limit for a Gaussian channel and we want a rate R,
then we set

�0 = 2
R � 1 (4)

as we did in [2].

2.1.2 Flat, fast fading

This is the case of a fading so fast that it cannot be compensated by power control but
constant over one symbol, and such as to make the channel ergodic. In this situation, (1)
and (2) are still valid under the same modification as in the previous subsection, but now
z1 and z are distributed as the instantaneous power gain of the channel. Here we choosep
z and

p
z1 to be Rayleigh-distributed, so that z1 and z are exponentially distributed

(with mean 1). Here the value of � (which, being a function of z1, is a random variable)
can be interpreted as the instantaneous SINR at the output of the linear receiver. With
optimum (Gaussian) codes, the capacity is given by [1]

C = E [log2(1 + �)] (5)

where the expectation E is taken with respect to the distribution of �. Eq. (5) can be eval-
uated by using numerical techniques. With SUMF, � is still exponentially distributed.
With MMSE, we can expect the distribution of � to be highly complex, so that the aver-
age capacity will be even worse (there is no conceptual complication, though). A major
departure from the situation of previous subsection occurs with the definition of outage
probability: in fact the probability P (� < �0) has no practical significance anymore (al-
though a widespread misconception leads it sometimes to be interpreted as an outage
probability). This is due to the fact that � is the instantaneous SINR, and with cod-
ing and fast fading the probability of error does not depend on the instantaneous SINR
(which is a RV), but rather on the statistics of SINR and on the code features, and is dif-
ficult to compute. We argue that in our case the sensible quantity is the system capacity,
defined as

Csys , max�C(�) bit/s/Hz (6)

and we write C(�) rather than C to stress the fact that the capacity depends on �. If we
want all users to transmit reliably at rate R, the maximum admissible � is

�max , maxf� : R � C(�)g (7)



In this way, we can still define a system outage probability: this is now a step function,
taking on value 0 if � < �max, and 1 if � > �max.

3 Slow-fading channel

Let � , P=N0 = REb=N0 be the signal-to-noise ratio for the single user.

3.1 SUMF receiver

With the SUMF receiver,

� =
z1P

N0 + �PE [z]
=

z1P

N0 + �P

where z1 and z denote the power gains of the useful and interfering users, respectively,
and follow a log-normal distribution with log-standard deviation � dB and mean value
E [z] = 1. In other words,

10 log10 z � N (��z; �)
where �z , �2 (ln 10)=20. Letting �s(�; �) , 1=(��1 + �) the outage probability is given
by

Pout;s = P (� � �0 = 2
R � 1) = P

�
z1 � (2

R � 1)=�s(�; �)
�

= 1�Q
�
��1

�
�z + 10 log10[(2

R � 1)=�s(�; �)]
��

(8)

where Q(x) , P (N(0; 1) > x).

3.2 MMSE receiver

With the MMSE receiver, the asymptotic SINR is the solution of the following equation,
obtained from the substitutions P! z1P and x! zP in (2):

� =
z1P

N0 + �PE

�
z1z

z1 + �z

� (9)

where E [�] denotes expectation with respect to z. This equation can also be expressed as
follows:

z1=� = ��1 + �E z

�
z

z1=� + z

�
(z1=�) (10)

and can be solved iteratively by the recursion

�n = ��1 + �E

�
z

�n�1 + z

�
�n�1

= ��1 +
�p
2�

�n�1

Z
1

�1

e�x
2
=2

�n�110(�z��x)=10 + 1
dx

initialized by �0 = 1. This iteration converges to a constant limn!1 �n = �m(�; �) as
shown in the following subsection which is the solution � of eq. (10). Its solution can be
written in the form

� = �m(�; �)z1 (11)



Note that � is proportional to z1 by a deterministic factor depending only on the param-
eters � and �. The outage probability is

Pout;m = P
�
z1 � (2

R � 1)=�m(�; �)
�
= 1�Q

�
��1

�
�z + 10 log10[(2

R � 1)=�m(�; �)
��

3.3 Outage probability floor

The above results show that with both receivers the outage probability may approach a
nonzero limit as � !1 (outage probability floor).

With the SUMF receiver, since lim�!1 �s(�; �) = ��1, from (8) the outage probability
floor is

Pout;s = 1�Q
�
��1

�
�z + 10 log10[(2

R � 1)�]
��

(12)

for any value of �. This result derives from the fact that the SUMF receiver is not near-far
resistant [6]: because of the fading, with nonzero probability some interferer is strong
enoughto make the SINR fall below the outage threshold.

As for the MMSE receiver, we have an outage probability floor if and only if � > 1,
i.e., the number of users exceeds the spreading factor. In fact, letting � ! 1 in (10) we
obtain the following equation:

�E z

�
�z

z1 + �z

�
= 1

This equation has a solution if and only if � � 1: in fact, the second factor in its LHS is
always less than or equal to 1. This result is due to the lack of near-far resistance of the
MMSE receiver when � > 1 [6].

The outage probability floor is illustrated in Fig. 1, obtained by plotting Pout versus
Eb=N0 with the MMSE and SUMF receivers, � = 0:2; 0:5; 0:8; 1; 1:2; 1:5, rates R = 1 and
2 bit/symbol, and � = 2 and 8 dB. The outage probability degrades, as we see, by
increasing either R, �, or �, which represent the user rate, system load, and shadowing
level, respectively.

4 Flat, fast fading

The channel capacity is given by

C(�) = E [log2(1 + �)]

Here, z and z1 are exponentially-distributed RV’s with unit mean. For the SUMF re-
ceiver, we get

Cs(�) =

Z
1

0

log2

�
1 +

z1P

N0 + �P

�
e�z1dz1 = e1=�s(�;�) Ei(1; 1=�s(�; �)) log2 e

For the MMSE receiver, equation (10) becomes

z1=� = ��1 + � (z1=�)

Z
1

0

z

z1=� + z
e�z dz

= ��1 + � (z1=�)[1� (z1=�)e
z1=�

Ei(1; z1=�)] (13)



which yields � = �0m(�; �)z1. Then, the capacity is given by

Cm(�) =

Z
1

0

log2[1 + �0s(�; �)z1]e
�z1dz1 = e1=�

0

m(�;�) Ei(1; 1=�0m(�; �)) log2 e (14)

Figure 5 shows the capacity curves for SUMF and MMSE as a function of P=N0 = � for
different values of �. Note that the capacity is always bounded for the SUMF receiver
and for the MMSE receiver when � > 1.

4.1 System capacity

We define the system capacity as

Csys = max
�:R�C(�)

�C(�)

Figure 3 shows both C(�) and �C(�) versus � at � = 6, 10, 20 and 30 dB, respectively.
They illustrate the following results.

� With the SUMF receiver, the product �C(�) increases with �, while for the MMSE
receiver it exhibits a maximum.

� As �!1, with both receivers �C(�) approaches the same limit, 1.44 bit/symbol,
regardless of �. In fact, with the SUMF receiver we have

lim
�!1

�Cs(�) = lim
�!1

� e�
�1+�

Ei(1; ��1 + �) log2 e = log2 e = 1:44 bit/symbol

With the MMSE receiver, when �!1, we have from (13):

� = ��1 + ��[1� � e� Ei(1; �)] = ��[1=� +O(1=�2)] = �[1 +O(1=�)]

where we set � = z1=�. Now, from � = �[1 + O(1=�)] we have � = �[1 + q=�] for
some finite q when both � and � are sufficiently large. Thus, �2���� q = 0, which
can be solved as follows:

� =
1

2
[� +

p
�2 + 4q] =

1

2
[�+ �

p
1 + 4q=�2] =

1

2
[� + � + 2q=�+O(��3)]

It follows that � = �+O(1=�). Hence

lim
�!1

�Cm(�) = lim
�!1

� e� Ei(1; �) log2 e = lim
�!1

�[1=� +O(1=�2)] log2 e = 1:44

Since in a non-faded channel both SUMF and MMSE achieve the same limiting
spectral efficiency of 1.44 bit/s/Hz [2], we have shown that fast Rayleigh fading
does not reduce system capacity.

� The maximum system capacity with SUMF is achieved for � ! 1. On the con-
trary, with MMSE receivers an optimal � = �opt exists which maximizes �Cm(�);
thus, the system capacity is �opt Cm(�opt). This optimum can be found by solving
(13) for �:

� =
� � ��1

�[1� � e� Ei(1; �)]



which yields

�Cm(�) =
� � ��1

�[1� � e� Ei(1; �)]
e� Ei(1; �) log2 e

The optimum � can be obtained and Fig. 4 shows the system capacity and the
optimal load versus the SNR �. The system capacity is increasing asymptotically
linearly with the SNR. Note that �opt has a minimum at SNR=30.9 dB (0.8635).
This fact can be explained by noting that

1. For low SNR, the optimum linear MMSE receiver approaches the SUMF re-
ceiver since noise dominates MAI. In this case, system capacity is maximum
when �!1, as with the SUMF receiver (additionally, the SNR! 0).

2. For high SNR, the optimum linear MMSE receiver approaches the decorre-
lating receiver which is the optimal linear receiver in the absence of noise. In
this case, system capacity is maximum for �! 1. In fact, if SNR= � !1,

�Cm(�) = e�
Ei(1; �)

1� �e�Ei(1; �)
log2 e

The rhs is a monotonically decreasing function of � so that the maximum is
attained when � = 0 and

lim
�!0

� = lim
�!0

1

1� �e�Ei(1; �)
= 1

Then, the continuity of �opt(�) implies that a maximum (� 1) exists.

4.1.1 Gaussian channel

For comparison, let us consider the channel capacity in the case of a purely Gaussian
channel without fading where all users transmit with the same power P [3, 5]

C(�) = log2(1 + �)

For the SUMF receiver the SINR is simply

� =
1

��1 + �

For the MMSE receiver the SINR can be evaluated from

� =
1

��1 + �

1+�

which yields

� =
1

2

h
�(1� �)� 1 +

p
1 + 2�(1 + �) + �2(1� �)2

i

Figure 5 show C(�) and �C(�) for the two receivers for different P=N0. We observe that
the Gaussian channel capacity is slightly higher than that of the fading channel, but for
�!1 both converge to the same limit of 1.44 bit/symbol.
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Figure 1: Outage probability with MMSE (dashed) and SUMF (solid) for rates R = 1

and 2 bit/symbol, � = 2 and 8 dB, and � = 0:2; 0:5; 0:8; 1; 1:2; 1:5.
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Figure 3: Plot of C(�) and �C(�) versus � for the MMSE (dashed) and SUMF (solid)
receiver for � = 6; 10; 20; 30 dB.
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Figure 5: Plots of C(�) and �C(�) versus � for the SUMF (solid) and MMSE (dashed)
receiver for � = 6; 10; 20; 30 dB.
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